1
|
Cozza M, Boccardi V, Duka R, Vashist Y, Marano L. Blood transfusion in older surgical patients: the only option or is there a better approach? Aging Clin Exp Res 2025; 37:135. [PMID: 40301140 PMCID: PMC12041150 DOI: 10.1007/s40520-025-03033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 05/01/2025]
Abstract
Anemia is a common clinical condition that can significantly affect patient outcomes, particularly in those undergoing surgery. In older adults, the presence of anemia combined with cardiovascular disease can increase surgical morbidity and mortality, influencing surgical decisions and creating a cascade of complications that may negatively impact recovery. Blood transfusion remains the primary response to anemia in the perioperative setting, despite evidence suggesting potential adverse effects on survival and recovery. However, older adults present unique challenges due to age-related physiological changes anda reduced tolerance to anemia and blood loss. The debate between restrictive and liberal blood transfusion strategies in this population remains unresolved. Patient Blood Management (PBM) protocols have been developed to systematically address perioperative anemia. This review emphasizes the need for a nuanced approach to transfusion in older adults, suggesting that while a restrictive strategy may not be universally applicable, decisions should be guided by thorough clinical evaluations. These assessments should prioritize not only hemoglobin levels but also patient-specific factors, including life expectancy, comorbidities, and patient preferences, with the involvement of a multidisciplinary team to tailor the best approach for everyone.
Collapse
Affiliation(s)
- Mariagiovanna Cozza
- Department of Integration, Intermediate Care Programme, AUSL Bologna, 40100, Bologna, Italy
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06128, Perugia, Italy
| | - Ruslan Duka
- Department of Surgery, Dnipro State Medical University, Dnipro, 49044, Ukraine
| | - Yogesh Vashist
- Organ Transplant Center for Excellence, Center for Liver Diseases and Oncology, King Faisal Specialist Hospital and Research Center, 12211, Riyadh, Saudi Arabia
| | - Luigi Marano
- Department of Surgery, Dnipro State Medical University, Dnipro, 49044, Ukraine.
- Department of Medicine, Academy of Applied Medical and Social Sciences - AMiSNS, ul. Lotnicza n. 2, 52-300, Elbląg, Poland.
- Department of General Surgery and Surgical Oncology, "Saint Wojciech" Hospital, "Nicolaus Copernicus" Health Center, 80-530, Gdańsk, Poland.
- Department of Medicine, Surgery, and Neurosciences, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
2
|
Karkoska KA, Gollamudi J, Hyacinth HI. Molecular and environmental contributors to neurological complications in sickle cell disease. Exp Biol Med (Maywood) 2023; 248:1319-1332. [PMID: 37688519 PMCID: PMC10625341 DOI: 10.1177/15353702231187646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy in which affected hemoglobin polymerizes under hypoxic conditions resulting in red cell distortion and chronic hemolytic anemia. SCD affects millions of people worldwide, primarily in Sub-Saharan Africa and the Indian subcontinent. Due to vaso-occlusion of sickled red cells within the microvasculature, SCD affects virtually every organ system and causes significant morbidity and early mortality. The neurological complications of SCD are particularly devastating and diverse, ranging from overt stroke to covert cerebral injury, including silent cerebral infarctions and blood vessel tortuosity. However, even individuals without evidence of neuroanatomical changes in brain imaging have evidence of cognitive deficits compared to matched healthy controls likely due to chronic cerebral hypoxemia and neuroinflammation. In this review, we first examined the biological contributors to SCD-related neurological complications and then discussed the equally important socioenvironmental contributors. We then discuss the evidence for neuroprotection from the two primary disease-modifying therapies, chronic monthly blood transfusions and hydroxyurea, and end with several experimental therapies designed to specifically target these complications.
Collapse
Affiliation(s)
- Kristine A Karkoska
- Division of Hematology & Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0525, USA
| | - Jahnavi Gollamudi
- Division of Hematology & Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0525, USA
| | - Hyacinth I Hyacinth
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0525, USA
| |
Collapse
|
3
|
Kuzminskaite V, Kontrimaviciute E, Kauzonas E, Slauzgalvyte I, Bukelyte G, Bruzyte‐Narkiene G, Jatuzis D. Sevoflurane and desflurane effects on early cognitive function after low-risk surgery: A randomized clinical trial. Brain Behav 2023; 13:e3017. [PMID: 37086000 PMCID: PMC10275520 DOI: 10.1002/brb3.3017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Deleterious effects on short-term and long-term quality of life have been associated with the development of postoperative cognitive dysfunction (POCD) after general anesthesia. Yet, the progress in the field is still required. Most of the studies investigate POCD after major surgery, so scarce evidence exists about the incidence and effect different anesthetics have on POCD development after minor procedures. In this study, we compared early postoperative cognitive function of the sevoflurane and desflurane patients who experienced a low-risk surgery of thyroid gland. MATERIALS AND METHODS Eighty-two patients, 40 years and over, with no previous severe cognitive, neurological, or psychiatric disorders, appointed for thyroid surgery under general anesthesia, were included in the study. In a random manner, the patients were allocated to either sevoflurane or desflurane study arms. Cognitive tests assessing memory, attention, and logical reasoning were performed twice: the day before the surgery and 24 h after the procedure. Primary outcome, magnitude of change in cognitive testing, results from baseline. POCD was diagnosed if postoperative score decreased by at least 20%. RESULTS Median change from baseline cognitive results did not differ between the sevoflurane and desflurane groups (-2.63%, IQR 19.3 vs. 1.13%, IQR 11.0; p = .222). POCD was detected in one patient (1.22%) of the sevoflurane group. Age, duration of anesthesia, postoperative pain, or patient satisfaction did not correlate with test scores. Intraoperative temperature negatively correlated with total postoperative score (r = -0.35, p = .007). CONCLUSIONS Both volatile agents proved to be equivalent in terms of the early cognitive functioning after low-risk thyroid surgery. Intraoperative body temperature may influence postoperative cognitive performance.
Collapse
Affiliation(s)
- Vilma Kuzminskaite
- Faculty of MedicineClinic of Anesthesiology and Intensive CareInstitute of Clinical MedicineVilnius UniversityVilniusLithuania
- Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Egle Kontrimaviciute
- Faculty of MedicineClinic of Anesthesiology and Intensive CareInstitute of Clinical MedicineVilnius UniversityVilniusLithuania
- Faculty of MedicineVilnius UniversityVilniusLithuania
| | | | | | | | | | - Dalius Jatuzis
- Faculty of MedicineClinic of Neurology and NeurosurgeryInstitute of Clinical MedicineVilnius UniversityVilniusLithuania
| |
Collapse
|
4
|
Huang H, Chou J, Tang Y, Ouyang W, Wu X, Le Y. Nomogram to predict postoperative cognitive dysfunction in elderly patients undergoing gastrointestinal tumor resection. Front Aging Neurosci 2022; 14:1037852. [PMID: 36389076 PMCID: PMC9640745 DOI: 10.3389/fnagi.2022.1037852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE To establish a nomogram model for the prediction of postoperative cognitive dysfunction (POCD) in elderly patients undergoing gastrointestinal tumor resection. METHODS A total of 369 elderly patients scheduled for elective gastrointestinal tumor resection under general anesthesia were included. The cognitive function of each participant was assessed by the Mini-Mental State Examination (MMSE) 1 day before surgery and 7 days after surgery for the diagnosis of POCD. According to the results, patients were divided into a POCD group and a non-POCD group. The differences in hospitalization data and examination results between the two groups were compared. A logistic regression model was used to explore the risk factors for POCD in elderly patients undergoing gastrointestinal tumor resection, and a nomogram was then constructed based on these factors. The diagnostic performance of the nomogram was evaluated using the area under the receiver operating characteristic curve (AUROC) and a calibration plot. The clinical usefulness of the nomogram was estimated using decision curve analysis (DCA). RESULTS Among the 369 patients undergoing gastrointestinal tumor resection, 79 patients had POCD, with a positive rate of 21.4%. The nomogram model comprised the following variables: age, body mass index (BMI), history of cerebrovascular disease, preoperative white blood cell (WBC) count, preoperative hemoglobin (Hb) level, intra-operative blood loss, and operation time. The model showed good discrimination, with an area under the curve (AUC) of 0.710 (95% CI = 0.645-0.775), and good calibration (Hosmer-Lemeshow test, χ2 = 5.133, p = 0.274). Internal validation also maintained ideal discrimination and calibration. Decision curves indicated that when the threshold probability was above 0.1, the nomogram achieved more benefit than both the treat-all and treat-none policies. CONCLUSION This scoring system is the first nomogram model developed for the prediction of POCD in elderly patients undergoing gastrointestinal tumor resection. It has good efficacy in the prediction of POCD risk and could provide an important reference for the prevention, management, and treatment of POCD.
Collapse
Affiliation(s)
- Huifan Huang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chou
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhong Tang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Wu
- Department of Nursing, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Le
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Insight into the Effects of High-Altitude Hypoxic Exposure on Learning and Memory. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4163188. [PMID: 36160703 PMCID: PMC9492407 DOI: 10.1155/2022/4163188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.
Collapse
|
6
|
Pan K, Pang S, Robinson M, Goede D, Meenrajan S. A review of perioperative anemia: A modifiable and not so benign risk factor. J Family Med Prim Care 2022; 11:5004-5009. [PMID: 36505526 PMCID: PMC9731044 DOI: 10.4103/jfmpc.jfmpc_2209_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 11/05/2022] Open
Abstract
Anemia is a commonly encountered finding either during the preoperative assessment or during the postoperative management of the patient. Anemia often gets overlooked while more emphasis is paid to cardiovascular and pulmonary evaluation. Evidence, however, suggests that the presence of anemia in the perioperative period can predispose patients to other complications. Awareness of the consequences of anemia in the perioperative period can lead to better recognition and early management of this potentially modifiable risk factor. In this review, we focus on the effects of anemia on the cardiac, pulmonary, neurologic, cognitive, and functional status outcomes of patients. We also review management strategies that could be employed, depending on the available time and resources.
Collapse
Affiliation(s)
- Kelsey Pan
- Department of Internal Medicine, University of Florida, Gainesville, USA,Address for correspondence: Dr. Kelsey Pan, Department of Internal Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA. E-mail:
| | - Shiyi Pang
- Department of Internal Medicine, University of Florida, Gainesville, USA
| | - Michael Robinson
- Department of Internal Medicine, University of Florida, Gainesville, USA
| | - Dianne Goede
- Department of Internal Medicine, University of Florida, Gainesville, USA
| | - Senthil Meenrajan
- Department of Internal Medicine, University of Florida, Gainesville, USA
| |
Collapse
|
7
|
Han MX, Jiang WY, Jiang Y, Wang LH, Xue R, Zhang GX, Chen JW. Gao-Zi-Yao improves learning and memory function in old spontaneous hypertensive rats. BMC Complement Med Ther 2022; 22:147. [PMID: 35643519 PMCID: PMC9148521 DOI: 10.1186/s12906-022-03630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aims Gao-Zi-Yao has long been a unique way for treating various diseases. The present study is to explore the effect of Gao-Zi-Yao on learning and memory function in old spontaneous hypertensive rats (SHR) and its possible mechanism. Method Male old SHR were received different doses of Gao-Zi-Yao for 4 weeks. Systolic blood pressure (SBP) and heart rate were monitored. Serum levels of nitric oxide (NO), interleukin (IL)-1β, IL-2, and tumor necrotic factor (TNF)-α were measured. Morris water maze was performed to test the learning and memory function of the rats. Number of neurons in hippocampus was counted by Nissl staining. Western blot was applied to detect the expressions of learning and memory function related proteins, N-methyl-d-aspartate receptor 2B (NMDAR 2B), glutamate receptor 1 (GluR1), phosphorylated-calmodulin-dependent protein kinase II (p-CaMK II), and phosphorylated-cAMP responsive element-binding protein (p-CREB) in rat hippocampus. Results Data showed that Gao-Zi-Yao reduced SBP in old SHR, elevated NO level, and suppressed levels of IL-1β, IL-2, TNF-α. The results of Morris water maze experiment showed that Gao-Zi-Yao dose-dependently improved learning and memory function. Number of neurons in the hippocampal dentate gyrus (DG) region of the old SHR was increased by Gao-Zi-Yao treatment. In addition, Gao-Zi-Yao elevated the protein expressions of NMDAR 2B, GluR1, p-CaMK II, and p-CREB in hippocampus. Conclusion Gao-Zi-Yao decreases SBP and improves the learning and memory function of the old SHR by regulation of oxidative stress, inflammatory factors and neuron number in hippocampal DG area and the expression of learning and memory function related proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03630-0.
Collapse
|
8
|
Snyder B, Wu HK, Tillman B, Floyd TF. Aged Mouse Hippocampus Exhibits Signs of Chronic Hypoxia and an Impaired HIF-Controlled Response to Acute Hypoxic Exposures. Cells 2022; 11:cells11030423. [PMID: 35159233 PMCID: PMC8833982 DOI: 10.3390/cells11030423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Altered hypoxia-inducible factor-alpha (HIF-α) activity may have significant consequences in the hippocampus, which mediates declarative memory, has limited vascularization, and is vulnerable to hypoxic insults. Previous studies have reported that neurovascular coupling is reduced in aged brains and that diseases which cause hypoxia increase with age, which may render the hippocampus susceptible to acute hypoxia. Most studies have investigated the actions of HIF-α in aging cortical structures, but few have focused on the role of HIF-α within aged hippocampus. This study tests the hypothesis that aging is associated with impaired hippocampal HIF-α activity. Dorsal hippocampal sections from mice aged 3, 9, 18, and 24 months were probed for the presence of HIF-α isoforms or their associated gene products using immunohistochemistry and fluorescent in situ hybridization (fISH). A subset of each age was exposed to acute hypoxia (8% oxygen) for 3 h to investigate changes in the responsiveness of HIF-α to hypoxia. Basal mean intensity of fluorescently labeled HIF-1α protein increases with age in the hippocampus, whereas HIF-2α intensity only increases in the 24-month group. Acute hypoxic elevation of HIF-1α is lost with aging and is reversed in the 24-month group. fISH reveals that glycolytic genes induced by HIF-1α (lactose dehydrogenase-a, phosphoglycerate kinase 1, and pyruvate dehydrogenase kinase 1) are lower in aged hippocampus than in 3-month hippocampus, and mRNA for monocarboxylate transporter 1, a lactose transporter, increases. These results indicate that lactate, used in neurotransmission, may be limited in aged hippocampus, concurrent with impaired HIF-α response to hypoxic events. Therefore, impaired HIF-α may contribute to age-associated cognitive decline during hypoxic events.
Collapse
Affiliation(s)
- Brina Snyder
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Hua-Kang Wu
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Brianna Tillman
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Thomas F. Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
- Department of Cardiothoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
9
|
Altintas MM, Kaya S, Kocaoglu AE, Mulkut F. Does preoperative anaemia have an effect on the perioperative period in colorectal cancer surgery? Niger J Clin Pract 2022; 25:1102-1106. [DOI: 10.4103/njcp.njcp_1664_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Snyder BD, Simone SM, Giovannetti T, Floyd TF. Cerebral Hypoxia: Its Role in Age-Related Chronic and Acute Cognitive Dysfunction. Anesth Analg 2021; 132:1502-1513. [PMID: 33780389 PMCID: PMC8154662 DOI: 10.1213/ane.0000000000005525] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Postoperative cognitive dysfunction (POCD) has been reported with widely varying frequency but appears to be strongly associated with aging. Outside of the surgical arena, chronic and acute cerebral hypoxia may exist as a result of respiratory, cardiovascular, or anemic conditions. Hypoxia has been extensively implicated in cognitive impairment. Furthermore, disease states associated with hypoxia both accompany and progress with aging. Perioperative cerebral hypoxia is likely underdiagnosed, and its contribution to POCD is underappreciated. Herein, we discuss the various disease processes and forms in which hypoxia may contribute to POCD. Furthermore, we outline hypoxia-related mechanisms, such as hypoxia-inducible factor activation, cerebral ischemia, cerebrovascular reserve, excitotoxicity, and neuroinflammation, which may contribute to cognitive impairment and how these mechanisms interact with aging. Finally, we discuss opportunities to prevent and manage POCD related to hypoxia.
Collapse
Affiliation(s)
- Brina D. Snyder
- Department of Anesthesiology and Pain Management, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Thomas F. Floyd
- Department of Anesthesiology and Pain Management, UT Southwestern Medical Center, Dallas, TX
- Department of Cardiothoracic Surgery, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
11
|
Ssemata AS, Opoka RO, Ssenkusu JM, Nakasujja N, John CC, Bangirana P. Socio-emotional and adaptive behaviour in children treated for severe anaemia at Lira Regional Referral Hospital, Uganda: a prospective cohort study. Child Adolesc Psychiatry Ment Health 2020; 14:45. [PMID: 33292468 PMCID: PMC7694894 DOI: 10.1186/s13034-020-00352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/21/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Severe anaemia is a global public health challenge commonly associated with morbidity and mortality among children < 5 years of age in Sub-Saharan Africa. However, less is known about the behavioural performance of children < 5 years surviving severe anaemia in low resource settings. We investigated social-emotional and adaptive behaviour in children < 5 years diagnosed with severe anaemia in Northern Uganda. METHODS We conducted a hospital based prospective cohort study among children 6-42 months who were treated for severe anaemia (n = 171) at Lira Regional Referral Hospital, Uganda. Socio-emotional and adaptive behaviour were assessed 14 days post discharge using the Bayley Scales of Infant and Toddler Development, 3rd edition. Age-adjusted z-scores for each domain were calculated using scores from healthy community children (n = 88) from the same environment for each age category. Multiple linear regression was used to compare z-scores in the social-emotional and adaptive behaviour scales between the two groups after adjusting for weight-for-age z-score, social economic status, mother's education, father's education and father's employment on all the scales. RESULTS Compared with healthy community controls, children with severe anaemia had poorer [adjusted mean scores (standard error)], socio-emotional [- 0.29, (0.05) vs. 0.01, (0.08), P = 0.002]; but not overall/ composite adaptive behaviour [- 0.10, (0.05) vs. - 0.01, (0.07), P = 0.343]. Within the adaptive behaviour subscales, children with SA displayed significantly poorer scores on the community use [adjusted mean score (standard error)], [- 0.63, (0.10) vs. - 0.01, (0.13), P < 0.001]; and leisure [- 0.35, (0.07) vs. - 0.02, (0.07), P = 0.036] skills. CONCLUSION This study suggests that severe anaemia in children < 5 years is associated with poor social-emotional scores in the short-term post clinical recovery in Northern Uganda. We recommend long-term follow-up to determine the course of these problems and appropriate interventions to reduce the behavioural burden among children < 5 years surviving severe anaemia in Uganda.
Collapse
Affiliation(s)
- Andrew Sentoogo Ssemata
- Department of Psychiatry, Makerere University, College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
| | - Robert Opika Opoka
- Department of Paediatrics and Child Health, Makerere University, College of Health Sciences, Kampala, Uganda
| | - John Mbaziira Ssenkusu
- Department of Epidemiology and Biostatistics, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, Makerere University, College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease & Global Health, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Paul Bangirana
- Department of Psychiatry, Makerere University, College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| |
Collapse
|
12
|
Feng LR, Wolff BS, Liwang J, Regan JM, Alshawi S, Raheem S, Saligan LN. Cancer‑related fatigue during combined treatment of androgen deprivation therapy and radiotherapy is associated with mitochondrial dysfunction. Int J Mol Med 2019; 45:485-496. [PMID: 31894256 PMCID: PMC6984780 DOI: 10.3892/ijmm.2019.4435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/06/2019] [Indexed: 01/02/2023] Open
Abstract
Combined androgen deprivation therapy (ADT) and radiation therapy (RT) is the standard of care treatment for non-metastatic prostate cancer (NMPC). Despite the efficacy, treatment-related symptoms including fatigue greatly reduce the quality of life of cancer patients. The goal of the study is to examine the influence of combined ADT/RT on fatigue and understand its underlying mechanisms. A total of 64 participants with NMPC were enrolled. Fatigue was assessed using the Functional Assessment of Cancer Therapy-Fatigue. Mitochondrial function parameters were measured as oxygen consumption from peripheral blood mononuclear cells (PBMCs) extracted from participants' whole blood. An ADT/RT-induced fatigue mouse model was developed, with fatigue measured as a reduction in voluntary wheel-running activity (VWRA) in 54 mice. Mitochondrial function was assessed in the ADT/RT mouse brains using western blot analysis of glucose transporter 4 (GLUT4) and transcription factor A, mitochondrial (TFAM). The results demonstrated that fatigue in the ADT group was exacerbated during RT compared with the non-ADT group. This effect was specific to fatigue, as depressive symptoms were unaffected. PBMCs of fatigued subjects exhibited decreased ATP coupling efficiency compared to non-fatigued subjects, indicative of mitochondrial dysfunction. The ADT/RT mice demonstrated the synergistic effect of ADT and RT in decreasing VWRA. Brain tissues of ADT/RT mice exhibited decreased levels of GLUT4 and TFAM suggesting that impaired neuronal metabolic homeostasis may contribute to fatigue pathogenesis. In conclusion, these findings suggest that fatigue induced by ADT/RT may be attributable to mitochondrial dysfunction both peripherally and in the central nervous system (CNS). The synergistic effect of ADT/RT is behaviorally reproducible in a mouse model and its mechanism may be related to bioenergetics in the CNS.
Collapse
Affiliation(s)
- Li Rebekah Feng
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian S Wolff
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josephine Liwang
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeniece M Regan
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Alshawi
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sumiyya Raheem
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leorey N Saligan
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Tong Y, Yu Z, Zhang R, Ding X, Chen Z, Li Q. WISP1 mediates lung injury following hepatic ischemia reperfusion dependent on TLR4 in mice. BMC Pulm Med 2018; 18:189. [PMID: 30522479 PMCID: PMC6282316 DOI: 10.1186/s12890-018-0744-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (IRI) is a common pathological phenomenon, which causes hepatic injury as well as remote organ injuries such as the lung. Several mediators, such as oxidative stress, Ca2+ overload and neutrophil infiltration, have been implied in the pathogenesis of liver and remote organ injuries following reperfusion. WNT1 inducible signaling pathway protein 1 (WISP1) is an extracellular matrix protein that has been associated with the onset of several malignant diseases. Previous work in our group has demonstrated WISP1 is upregulated and contributes to proinflammatory cascades in hepatic IRI. However, the role of WISP1 in the pathogenesis of lung injury after hepatic IRI still remains unknown. METHODS Male C57BL/6 mice were used to examine the expression and role of WISP1 in the pathogenesis of lung injuries after hepatic IRI and explore its potential mechanisms in mediating lung injuries. RESULTS We found WISP1 was upregulated in lung tissues following hepatic IRI. Treatment with anti-WISP1 antibody ameliorated lung injuries with alteration of cytokine profiles. Administration with rWISP1 aggravated lung injuries following hepatic IRI through excessive production of proinflammatory cytokines and inhibition of anti-inflammatory cytokines. CONCLUSIONS In this study, we concluded that WISP1 contributed to lung injuries following hepatic IRI through TLR4 pathway.
Collapse
Affiliation(s)
- Yao Tong
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200120, China
| | - Zhuang Yu
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200120, China
| | - Renlingzi Zhang
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200120, China
| | - Xibing Ding
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200120, China
| | - Zhixia Chen
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200120, China
| | - Quan Li
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
14
|
Dhir A, Tempe DK. Anemia and Patient Blood Management in Cardiac Surgery—Literature Review and Current Evidence. J Cardiothorac Vasc Anesth 2018; 32:2726-2742. [DOI: 10.1053/j.jvca.2017.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Indexed: 12/24/2022]
|
15
|
Ding X, Tong Y, Jin S, Chen Z, Li T, Billiar TR, Pitt BR, Li Q, Zhang LM. Mechanical ventilation enhances extrapulmonary sepsis-induced lung injury: role of WISP1-αvβ5 integrin pathway in TLR4-mediated inflammation and injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:302. [PMID: 30445996 PMCID: PMC6240278 DOI: 10.1186/s13054-018-2237-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Abstract
Background High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV. Methods We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4−/− mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4−/−, MyD88−/− and TRIF−/− mice were used to identify a WISP1–TLR4–integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment. Results MTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4−/− mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5. Conclusions These data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1–TLR4–integrin β5 pathway contributes to this phenomenon. Electronic supplementary material The online version of this article (10.1186/s13054-018-2237-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xibing Ding
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Anesthesiology, University of Pittsburgh School of Medicine, 200 Lothrop St. UPMC MUH N467, Pittsburgh, 15213, PA, USA.,Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yao Tong
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China
| | - Shuqing Jin
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhixia Chen
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China
| | - Tunliang Li
- Department of Anesthesiology, Xiangya 3rd Hospital, Central South University, Hunan, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce R Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School Public Health, Pittsburgh, PA, USA
| | - Quan Li
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China. .,Department of Anesthesiology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
| | - Li-Ming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 200 Lothrop St. UPMC MUH N467, Pittsburgh, 15213, PA, USA.
| |
Collapse
|
16
|
Leiton CV, Chen E, Cutrone A, Conn K, Mellanson K, Malik DM, Klingener M, Lamm R, Cutrone M, Petrie J, Sheikh J, DiBua A, Cohen B, Floyd TF. Astrocyte HIF-2α supports learning in a passive avoidance paradigm under hypoxic stress. HYPOXIA (AUCKLAND, N.Z.) 2018; 6:35-56. [PMID: 30519596 PMCID: PMC6234990 DOI: 10.2147/hp.s173589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The brain is extensively vascularized, useŝ20% of the body's oxygen, and is highly sensitive to changes in oxygen. While synaptic plasticity and memory are impaired in healthy individuals by exposure to mild hypoxia, aged individuals appear to be even more sensitive. Aging is associated with progressive failure in pulmonary and cardiovascular systems, exposing the aged to both chronic and superimposed acute hypoxia. The HIF proteins, the "master regulators" of the cellular response to hypoxia, are robustly expressed in neurons and astrocytes. Astrocytes support neurons and synaptic plasticity via complex metabolic and trophic mechanisms. The activity of HIF proteins in the brain is diminished with aging, and the increased exposure to chronic and acute hypoxia with aging combined with diminished HIF activity may impair synaptic plasticity. PURPOSE Herein, we test the hypothesis that astrocyte HIF supports synaptic plasticity and learning upon hypoxia. MATERIALS AND METHODS An Astrocyte-specific HIF loss-of-function model was employed, where knock-out of HIF-1α or HIF-2α in GFAP expressing cells was accomplished by cre-mediated recombination. Animals were tested for behavioral (open field and rotarod), learning (passive avoidance paradigm), and electrophysiological (long term potentiation) responses to mild hypoxic challenge. RESULTS In an astrocyte-specific HIF loss-of-function model followed by mild hypoxia, we identified that the depletion of HIF-2α resulted in an impaired passive avoidance learning performance. This was accompanied by an attenuated response to induction in long-term potentiation (LTP), suggesting that the hippocampal circuitry was perturbed upon hypoxic exposure following HIF-2α loss in astrocytes, and not due to hippocampal cell death. We investigated HIF-regulated trophic and metabolic target genes and found that they were not regulated by HIF-2α, suggesting that these specific targets may not be involved in mediating the phenotypes observed. CONCLUSION Together, these results point to a role for HIF-2α in the astrocyte's regulatory role in synaptic plasticity and learning under hypoxia and suggest that even mild, acute hypoxic challenges can impair cognitive performance in the aged population who harbor impaired HIF function.
Collapse
Affiliation(s)
- Cindy V Leiton
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Elyssa Chen
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Alissa Cutrone
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kristy Conn
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Kennelia Mellanson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Dania M Malik
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Klingener
- Department of Genetics, Stony Brook University, Stony Brook, NY, USA
| | - Ryan Lamm
- Department of General Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Michael Cutrone
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - John Petrie
- Department of Biochemistry & Molecular Biology, Bloomberg School of Public health, Johns Hopkins University, Baltimore, MD, USA
| | - Joher Sheikh
- Department of Physiology and Biophysics, Georgetown University, Washington, DC, USA
| | - Adriana DiBua
- Department of Chemistry, Hofstra University, Hempstead, NY, USA
| | - Betsy Cohen
- Computer Science Department, Swarthmore College, Swarthmore, PA, USA
| | - Thomas F Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, TX, USA,
- Department of Cardiothoracic Surgery, University of Texas Southwestern, Dallas, TX, USA,
- Department of Radiology, University of Texas Southwestern, Dallas, TX, USA,
| |
Collapse
|
17
|
Wang X, Luo B, Lu Y, Pang D, Zheng J, Mo J, Huang H, Feng J. The triggering receptor expressed by myeloid cells-1 activates TLR4-MyD88-NF-κB-dependent signaling to aggravate ventilation-induced lung inflammation and injury in mice. Cell Tissue Res 2018; 374:137-148. [PMID: 29869715 DOI: 10.1007/s00441-018-2853-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
The triggering receptor expressed by myeloid cells-1 (TREM-1) plays an important role in infectious and autoimmune diseases but how it contributes to ventilation-induced lung injury (VILI) and inflammation is unclear. Here, we examine the possibility that TREM-1 activates signaling dependent on Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and nuclear factor (NF)-κB, which leads in turn to VILI. In a mouse model of VILI, which we validated based on lung edema and histopathology as well as cytokine levels, we examine mRNA and protein levels of TREM-1, TLR4, MyD88, NF-κB and its inhibitory protein I-κB in animals subjected to ventilation at normal or high tidal volume. The extent of lung edema, injury and inflammation were higher in the high tidal volume animals, as were the expression levels of all proteins examined. Treatment with TREM-1 agonist aggravated these effects, whereas treatment with TREM-1 antagonist attenuated them. Our results suggest that aggravation of VILI by TREM-1 in mice may be associated with TLR4-MyD88-NF-κB-dependent signaling.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Anesthesiology, The Maternal and & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Xiang Zhu Rd No. 59, Nanning, 530002, People's Republic of China
| | - Bijun Luo
- Department of Anesthesiology, The Maternal and & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Xiang Zhu Rd No. 59, Nanning, 530002, People's Republic of China
| | - Yanyan Lu
- Department of Anesthesiology, The Maternal and & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Xiang Zhu Rd No. 59, Nanning, 530002, People's Republic of China
| | - Dengge Pang
- Department of Anesthesiology, The Maternal and & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Xiang Zhu Rd No. 59, Nanning, 530002, People's Republic of China
| | - Jianqiu Zheng
- Department of Anesthesiology, The Maternal and & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Xiang Zhu Rd No. 59, Nanning, 530002, People's Republic of China
| | - Jianlan Mo
- Department of Anesthesiology, The Maternal and & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Xiang Zhu Rd No. 59, Nanning, 530002, People's Republic of China
| | - Hui Huang
- Department of Anesthesiology, The Maternal and & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Xiang Zhu Rd No. 59, Nanning, 530002, People's Republic of China
| | - Jifeng Feng
- Department of Anesthesiology, The Maternal and & Child Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Xiang Zhu Rd No. 59, Nanning, 530002, People's Republic of China.
| |
Collapse
|
18
|
Impact of Preoperative Anemia on Perioperative Outcomes in Patients Undergoing Elective Colorectal Surgery. Gastroenterol Res Pract 2018; 2018:2417028. [PMID: 29853859 PMCID: PMC5964567 DOI: 10.1155/2018/2417028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/13/2017] [Indexed: 01/12/2023] Open
Abstract
Aim To evaluate the impact of preoperative anemia (POA) on perioperative outcomes in patients undergoing elective surgery for colorectal cancer (CRC). Methods A total of 326 CRC patients were enrolled. POA was defined as a hemoglobin (Hb) concentration ≤ 12 g/dl. Univariable and multivariable analyses were performed to assess the impact of POA on the risks of postoperative complications like surgical site infection (SSI). Results Patients with colon cancer presented higher rate of POA than patients with rectal cancer (60% versus 40% for colon cancer versus rectal cancer). In addition, female patients and patients with large tumor mass (>4 cm) had a higher rate of POA than male patients and patients with small tumor (≤4 cm), respectively. Upon univariable analysis, CRC patients with POA had a higher rate of incisional SSI than patients without POA (12% versus 6%, P = 0.04). However, POA was not associated with other postoperative complications, like anastomotic leak, organ space SSI, and bleeding. Upon multivariable analysis, POA and stoma formation were identified as two independent risk factors for incisional SSI (OR (95%CI): 2.44 (1.09–5.49) for POA versus no POA and 2.64 (1.20–5.81) for stoma formation versus no stoma formation). Conclusions POA was an independent risk factor for incisional surgical site infection after colorectal resection for CRC, and correcting POA should be considered before elective surgery.
Collapse
|
19
|
Mistry N, Mazer CD, Sled JG, Lazarus AH, Cahill LS, Solish M, Zhou YQ, Romanova N, Hare AGM, Doctor A, Fisher JA, Brunt KR, Simpson JA, Hare GMT. Red blood cell antibody-induced anemia causes differential degrees of tissue hypoxia in kidney and brain. Am J Physiol Regul Integr Comp Physiol 2018; 314:R611-R622. [PMID: 29351418 DOI: 10.1152/ajpregu.00182.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Moderate anemia is associated with increased mortality and morbidity, including acute kidney injury (AKI), in surgical patients. A red blood cell (RBC)-specific antibody model was utilized to determine whether moderate subacute anemia could result in tissue hypoxia as a potential mechanism of injury. Cardiovascular and hypoxic cellular responses were measured in transgenic mice capable of expressing hypoxia-inducible factor-1α (HIF-1α)/luciferase activity in vivo. Antibody-mediated anemia was associated with mild intravascular hemolysis (6 h) and splenic RBC sequestration ( day 4), resulting in a nadir hemoglobin concentration of 89 ± 13 g/l on day 4. At this time point, renal tissue oxygen tension (PtO2) was decreased in anemic mice relative to controls (13.1 ± 4.3 vs. 20.8 ± 3.7 mmHg, P < 0.001). Renal tissue hypoxia was associated with an increase in HIF/luciferase expression in vivo ( P = 0.04) and a 20-fold relative increase in renal erythropoietin mRNA transcription ( P < 0.001) but no increase in renal blood flow ( P = 0.67). By contrast, brain PtO2 was maintained in anemic mice relative to controls (22.7 ± 5.2 vs. 23.4 ± 9.8 mmHg, P = 0.59) in part because of an increase in internal carotid artery blood flow (80%, P < 0.001) and preserved cerebrovascular reactivity. Despite these adaptive changes, an increase in brain HIF-dependent mRNA levels was observed (erythropoietin: P < 0.001; heme oxygenase-1: P = 0.01), providing evidence for subtle cerebral tissue hypoxia in anemic mice. These data demonstrate that moderate subacute anemia causes significant renal tissue hypoxia, whereas adaptive cerebrovascular responses limit the degree of cerebral tissue hypoxia. Further studies are required to assess whether hypoxia is a mechanism for acute kidney injury associated with anemia.
Collapse
Affiliation(s)
- Nikhil Mistry
- Department of Anesthesia, St. Michael's Hospital, University of Toronto , Toronto, Ontario , Canada.,Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - C David Mazer
- Department of Anesthesia, St. Michael's Hospital, University of Toronto , Toronto, Ontario , Canada.,Department of Physiology, University of Toronto , Toronto, Ontario , Canada.,Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario , Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Medical Biophysics, University of Toronto , Toronto, Ontario , Canada
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario , Canada.,Canadian Blood Services Centre for Innovation , Ottawa, Ontario , Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children , Toronto, Ontario , Canada
| | - Max Solish
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario , Canada
| | - Yu-Qing Zhou
- Mouse Imaging Centre, The Hospital for Sick Children , Toronto, Ontario , Canada
| | - Nadya Romanova
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph , Guelph, Ontario , Canada
| | - Alexander G M Hare
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario , Canada
| | - Allan Doctor
- Department of Pediatrics, Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis , St. Louis, Missouri
| | - Joseph A Fisher
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada.,Department of Anesthesia, Toronto General Hospital, University of Toronto , Toronto, Ontario , Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie University , Saint John, New Brunswick , Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph , Guelph, Ontario , Canada
| | - Gregory M T Hare
- Department of Anesthesia, St. Michael's Hospital, University of Toronto , Toronto, Ontario , Canada.,Department of Physiology, University of Toronto , Toronto, Ontario , Canada.,Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario , Canada.,St. Michael's Hospital Center of Excellence in Patient Blood Management, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Abstract
Anemia is a common and often ignored condition in surgical patients. Anemia is usually multifactorial and iron deficiency and inflammation are commonly involved. An exacerbating factor in surgical patients is iatrogenic blood loss. Anemia has been repeatedly shown to be an independent predictor of worse outcomes. Patient blood management (PBM) provides a multimodality framework for prevention and management of anemia and related risk factors. The key strategies in PBM include support of hematopoiesis and improving hemoglobin level, optimizing coagulation and hemostasis, use of interdisciplinary blood conservation modalities, and patient-centered decision making throughout the course of care.
Collapse
Affiliation(s)
- Aryeh Shander
- Department of Anesthesiology and Critical Care Medicine, Englewood Hospital and Medical Center, TeamHealth Research Institute, 350 Engle Street, Englewood, NJ 07631, USA.
| | - Gregg P Lobel
- Department of Anesthesiology and Critical Care Medicine, Englewood Hospital and Medical Center, TeamHealth Research Institute, 350 Engle Street, Englewood, NJ 07631, USA
| | - Mazyar Javidroozi
- Department of Anesthesiology and Critical Care Medicine, Englewood Hospital and Medical Center, TeamHealth Research Institute, 350 Engle Street, Englewood, NJ 07631, USA
| |
Collapse
|
21
|
Cahill LS, Gazdzinski LM, Tsui AK, Zhou YQ, Portnoy S, Liu E, Mazer CD, Hare GM, Kassner A, Sled JG. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice. J Cereb Blood Flow Metab 2017; 37:994-1005. [PMID: 27165012 PMCID: PMC5363475 DOI: 10.1177/0271678x16649194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.
Collapse
Affiliation(s)
- Lindsay S Cahill
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa M Gazdzinski
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Albert Ky Tsui
- 2 Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Anesthesia, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Portnoy
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elaine Liu
- 2 Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Anesthesia, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- 2 Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Anesthesia, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,3 Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Mt Hare
- 2 Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Anesthesia, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,3 Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Kassner
- 4 Department of Medical Imaging, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,5 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Orlov YP, Lukach VN, Govorova NV, Baytugaeva GA. [Fear of anemia or why don't we afraid of blood transfusion?]. Khirurgiia (Mosk) 2015:88-94. [PMID: 27010036 DOI: 10.17116/hirurgia20151188-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Yu P Orlov
- Chair of Anesthesiology and Intensive Care of Omsk State Medical Academy, Russian Ministry of Health, Omsk, Russia
| | - V N Lukach
- Chair of Anesthesiology and Intensive Care of Omsk State Medical Academy, Russian Ministry of Health, Omsk, Russia
| | - N V Govorova
- Chair of Anesthesiology and Intensive Care of Omsk State Medical Academy, Russian Ministry of Health, Omsk, Russia
| | - G A Baytugaeva
- Chair of Anesthesiology and Intensive Care of Omsk State Medical Academy, Russian Ministry of Health, Omsk, Russia
| |
Collapse
|
23
|
Wang W, Wang Y, Wu H, Lei L, Xu S, Shen X, Guo X, Shen R, Xia X, Liu Y, Wang F. Postoperative cognitive dysfunction: current developments in mechanism and prevention. Med Sci Monit 2014; 20:1908-12. [PMID: 25306127 PMCID: PMC4206478 DOI: 10.12659/msm.892485] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a subtle disorder of thought processes, which may influence isolated domains of cognition and has a significant impact on patient health. The reported incidence of POCD varies enormously due to lack of formal criteria for the assessment and diagnosis of POCD. The significant risk factors of developing POCD mainly include larger and more invasive operations, duration of anesthesia, advanced age, history of alcohol abuse, use of anticholinergic medications, and other factors. The release of cytokines due to the systemic stress response caused by anesthesia and surgical procedures might induce the changes of brain function and be involved in the development of postoperative cognitive dysfunction. The strategies for management of POCD should be a multimodal approach involving close cooperation between the anesthesiologist, surgeon, geriatricians, and family members to promote early rehabilitation and avoid loss of independence in these patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yan Wang
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Chaohu, Anhui, China (mainland)
| | - Haibo Wu
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Liming Lei
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Shiqin Xu
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xirong Guo
- Pediatric Institute, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Rong Shen
- Pediatric Institute, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xiaoqiong Xia
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Chaohu, Anhui, China (mainland)
| | - Yusheng Liu
- Department of Anesthesiology, Nanjing Medical University, Nanjing, China (mainland)
| | - Fuzhou Wang
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
24
|
Evaluation of neuronal apoptosis precursors in an experimental model of acute normovolemic hemodilution. PLoS One 2014; 9:e108366. [PMID: 25254661 PMCID: PMC4177928 DOI: 10.1371/journal.pone.0108366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
Background The effects of acute anemia on neuronal cells and the safe limits of hematocrit are not well established. The objective of this study was to evaluate neuronal pro- and anti-apoptotic Bax and Bcl-x proteins, caspase-3 and -9 activity, and DNA fragmentation after acute normovolemic hemodilution (ANH). Methods Twenty-four pigs were anesthetized and randomized into 4 groups: Sham, ANH to 15% hematocrit (ANH15%), ANH to 10% hematocrit (ANH10%) and hypoxia (Hx). ANH was achieved by simultaneous blood withdrawal and hydroxyethyl starch infusion. Hx consisted of ventilation with a 6% inspired oxygen fraction for 60 minutes. Bax and Bcl-x proteins as well as DNA fragmentation were evaluated in cortical nuclear and mitochondrial fractions. Caspase-3 and -9 activity was evaluated in the cortical mitochondrial and hippocampal cytosolic fractions. The data were compared using analysis of variance followed by Tukey’s test (P<0.05). Results No changes were observed in Bax protein expression after hemodilution in the ANH15% and ANH10% groups compared to the Sham group. Bax expression in the Hx group was increased in the nuclear and mitochondrial fractions compared to all other groups. No significant difference was observed in Bcl-x expression. Caspase-3 and -9 activity in the cytosolic and mitochondrial fractions was different in the Hx group compared to all other groups. No statistical significance in DNA fragmentation was found among the Sham, ANH15% or ANH10% groups. Conclusion ANH to 10 and 15% hematocrit did not induce alterations in apoptosis precursors, suggesting that cerebral oxygenation was preserved during these anemic states.
Collapse
|
25
|
Kuipers MT, Aslami H, Tuinman PR, Tuip-de Boer AM, Jongsma G, van der Sluijs KF, Choi G, Wolthuis EK, Roelofs JJ, Bresser P, Schultz MJ, van der Poll T, Wieland CW. The receptor for advanced glycation end products in ventilator-induced lung injury. Intensive Care Med Exp 2014. [PMID: 26215707 PMCID: PMC4678142 DOI: 10.1186/s40635-014-0022-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). The innate immune response mediates this iatrogenic inflammatory condition. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that can amplify immune and inflammatory responses. We hypothesized that RAGE signaling contributes to the pro-inflammatory state induced by MV. Methods RAGE expression was analyzed in lung brush and lavage cells obtained from ventilated patients and lung tissue of ventilated mice. Healthy wild-type (WT) and RAGE knockout (KO) mice were ventilated with relatively low (approximately 7.5 ml/kg) or high (approximately 15 ml/kg) tidal volume. Positive end-expiratory pressure was set at 2 cm H2O during both MV strategies. Also, WT and RAGE KO mice with lipopolysaccharide (LPS)-induced lung injury were ventilated with the above described ventilation strategies. In separate experiments, the contribution of soluble RAGE, a RAGE isoform that may function as a decoy receptor, in ventilated RAGE KO mice was investigated. Lung wet-to-dry ratio, cell and neutrophil influx, cytokine and chemokine concentrations, total protein levels, soluble RAGE, and high-mobility group box 1 (HMGB1) presence in lung lavage fluid were analyzed. Results MV was associated with increased RAGE mRNA levels in both human lung brush samples and lung tissue of healthy mice. In healthy high tidal volume-ventilated mice, RAGE deficiency limited inflammatory cell influx. Other VILI parameters were not affected. In our second set of experiments where we compared RAGE KO and WT mice in a 2-hit model, we observed higher pulmonary cytokine and chemokine levels in RAGE KO mice undergoing LPS/high tidal volume MV as compared to WT mice. Third, in WT mice undergoing the LPS/high tidal volume MV, we observed HMGB1 presence in lung lavage fluid. Moreover, MV increased levels of soluble RAGE in lung lavage fluid, with the highest levels found in LPS/high tidal volume-ventilated mice. Administration of soluble RAGE to LPS/high tidal volume-ventilated RAGE KO mice attenuated the production of inflammatory mediators. Conclusions RAGE was not a crucial contributor to the pro-inflammatory state induced by MV. However, the presence of sRAGE limited the production of pro-inflammatory mediators in our 2-hit model of LPS and high tidal volume MV. Electronic supplementary material The online version of this article (doi:10.1186/s40635-014-0022-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria T Kuipers
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Centre, University of Amsterdam, room M0-220, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Prevalence of anemia and its impact on the state of frailty in elderly people living in the community: SADEM study. Ann Hematol 2014; 93:2057-62. [DOI: 10.1007/s00277-014-2155-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|
27
|
Tsui AKY, Marsden PA, Mazer CD, Sled JG, Lee KM, Henkelman RM, Cahill LS, Zhou YQ, Chan N, Liu E, Hare GMT. Differential HIF and NOS responses to acute anemia: defining organ-specific hemoglobin thresholds for tissue hypoxia. Am J Physiol Regul Integr Comp Physiol 2014; 307:R13-25. [DOI: 10.1152/ajpregu.00411.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue hypoxia likely contributes to anemia-induced organ injury and mortality. Severe anemia activates hypoxia-inducible factor (HIF) signaling by hypoxic- and neuronal nitric oxide (NO) synthase- (nNOS) dependent mechanisms. However, organ-specific hemoglobin (Hb) thresholds for increased HIF expression have not been defined. To assess organ-specific Hb thresholds for tissue hypoxia, HIF-α (oxygen-dependent degradation domain, ODD) luciferase mice were hemodiluted to mild, moderate, or severe anemia corresponding to Hb levels of 90, 70, and 50 g/l, respectively. HIF luciferase reporter activity, HIF protein, and HIF-dependent RNA levels were assessed. In the brain, HIF-1α was paradoxically decreased at mild anemia, returned to baseline at moderate anemia, and then increased at severe anemia. Brain HIF-2α remained unchanged at all Hb levels. Both kidney HIF-1α and HIF-2α increased earlier (Hb ∼70–90 g/l) in response to anemia. Liver also exhibited an early HIF-α response. Carotid blood flow was increased early (Hb ∼70, g/l), but renal blood flow remained relatively constant, only increased at Hb of 50 g/l. Anemia increased nNOS (brain and kidney) and endothelia NOS (eNOS) (kidney) levels. Whereas anemia-induced increases in brain HIFα were nNOS-dependent, our current data demonstrate that increased renal HIFα was nNOS independent. HIF-dependent RNA levels increased linearly (∼10-fold) in the brain. However, renal HIF-RNA responses (MCT4, EPO) increased exponentially (∼100-fold). Plasma EPO levels increased near Hb threshold of 90 g/l, suggesting that the EPO response is sensitive. Collectively, these observations suggest that each organ expresses a different threshold for cellular HIF/NOS hypoxia responses. This knowledge may help define the mechanism(s) by which the brain and kidney maintain oxygen homeostasis during anemia.
Collapse
Affiliation(s)
- Albert K. Y. Tsui
- Department of Anesthesia, St. Michael's Hospital, University of Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Philip A. Marsden
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - C. David Mazer
- Department of Anesthesia, St. Michael's Hospital, University of Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - John G. Sled
- Department of Medical Biophysics, University of Toronto, Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Keith M. Lee
- Department of Anesthesia, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - R. Mark Henkelman
- Department of Medical Biophysics, University of Toronto, Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lindsay S. Cahill
- Department of Medical Biophysics, University of Toronto, Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Department of Medical Biophysics, University of Toronto, Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Neville Chan
- Department of Anesthesia, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Elaine Liu
- Department of Anesthesia, St. Michael's Hospital, University of Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gregory M. T. Hare
- Department of Anesthesia, St. Michael's Hospital, University of Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Iampietro M, Giovannetti T, Tarazi R. Hypoxia and inflammation in children with sickle cell disease: implications for hippocampal functioning and episodic memory. Neuropsychol Rev 2014; 24:252-65. [PMID: 24744195 DOI: 10.1007/s11065-014-9259-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/01/2014] [Indexed: 01/02/2023]
Abstract
Children with sickle cell disease (SCD) suffer from systemic processes (e.g., chronic anemia, recurrent hypoxic-ischemic events, chronic inflammation) that have been associated with neurocognitive impairment in a range of clinical populations, but which have been largely understudied in relation to specific domains of cognitive functioning in children with SCD. This review focuses on episodic memory, as the hippocampus may be especially vulnerable to the systemic processes associated with SCD. The first part of the paper outlines the pathophysiology of SCD and briefly reviews the extant literature on academic and cognitive functioning in children with SCD, emphasizing the dearth of research on episodic memory. Next, the complex systemic processes of hypoxia and inflammation associated with SCD are reviewed, along with research that has associated these processes with hippocampal damage and memory impairment. The paper concludes with suggestions for future research that are informed, in part, by the literature on developmental amnesia.
Collapse
Affiliation(s)
- Mary Iampietro
- Department of Psychology, Weiss Hall, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | | | | |
Collapse
|
29
|
Price CC, Tanner JJ, Schmalfuss I, Garvan CW, Gearen P, Dickey D, Heilman K, McDonagh DL, Libon DJ, Leonard C, Bowers D, Monk TG. A pilot study evaluating presurgery neuroanatomical biomarkers for postoperative cognitive decline after total knee arthroplasty in older adults. Anesthesiology 2014; 120:601-13. [PMID: 24534857 DOI: 10.1097/aln.0000000000000080] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Total knee arthroplasty improves quality of life but is associated with postoperative cognitive dysfunction in older adults. This prospective longitudinal pilot study with a parallel control group tested the hypotheses that (1) nondemented adults would exhibit primary memory and executive difficulties after total knee arthroplasty, and (2) reduced preoperative hippocampus/entorhinal volume would predict postoperative memory change, whereas preoperative leukoaraiosis and lacunae volumes would predict postoperative executive dysfunction. METHODS Surgery (n = 40) and age-education-matched controls with osteoarthritis (n = 15) completed pre- and postoperative (3 weeks, 3 months, and 1 yr) memory and cognitive testing. Hypothesized brain regions of interest were measured in patients completing preoperative magnetic resonance scans (surgery, n = 31; control, n = 12). Analyses used reliable change methods to identify the frequency of cognitive change at each time point. RESULTS The incidence of postoperative memory difficulties was shown with delay test indices (i.e., story memory test: 3 weeks = 17%, 3 months = 25%, 1 yr = 9%). Postoperative executive difficulty with measures of inhibitory function (i.e., Stroop Color Word: 3 weeks = 21%, 3 months = 22%, 1 yr = 9%). Hierarchical regression analysis assessing the predictive interaction of group (surgery, control) and preoperative neuroanatomical structures on decline showed that greater preoperative volumes of leukoaraiosis/lacunae were significantly contributed to postoperative executive (inhibitory) declines. CONCLUSIONS This pilot study suggests that executive and memory declines occur in nondemented adults undergoing orthopedic surgery. Severity of preoperative cerebrovascular disease may be relevant for understanding executive decline, in particular.
Collapse
Affiliation(s)
- Catherine C Price
- From the Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida (C.C.P., J.J.T., D.D., and D.B.); Joint Appointment, Department of Anesthesiology, University of Florida, Gainesville, Florida (C.C.P.); Department of Radiology, University of Florida, Gainesville, Florida (I.S.); Department of Radiology, North Florida South Georgia Veteran Association, Gainesville, Florida (I.S.); Health Science Center, University of Florida, Gainesville, Florida (C.W.G.); Department of Orthopedic Surgery, University of Florida, Gainesville, Florida (P.G. and D.B.); Department of Neurology, University of Florida, Gainesville, Florida (K.H. and T.G.M.); Department of Anesthesiology, Duke University, Durham, North Carolina (D.L.M.); Department of Neurology, Drexel University, Philadelphia, Pennsylvania (D.J.L.); and Department of Neuroscience, University of Florida, Gainesville, Florida (C.L.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fujisaki K, Tsuruya K, Yamato M, Toyonaga J, Noguchi H, Nakano T, Taniguchi M, Tokumoto M, Hirakata H, Kitazono T. Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice: neuroprotective effect of tempol. Nephrol Dial Transplant 2014; 29:529-538. [DOI: 10.1093/ndt/gft327] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
31
|
Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 2014; 506:503-6. [PMID: 24463523 PMCID: PMC4117212 DOI: 10.1038/nature12902] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022]
Abstract
Tissue-resident macrophages of barrier organs constitute the first line of defense against pathogens at the systemic interface with the ambient environment. In lung, resident alveolar macrophages (AMs) provide sentinel function against inhaled pathogens1. Bacterial constituents ligate toll-like receptors (TLRs) on AMs2, causing AMs to secrete proinflammatory cytokines3 that activate alveolar epithelial receptors4, leading to recruitment of neutrophils that engulf pathogens5,6. However, since the AM-induced immune response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, through real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall, formed connexin 43 (Cx43)-containing gap junctional channels (GJCs) with the epithelium. During lipopolysaccharide (LPS)-induced inflammation, the AMs remained alveolus-attached and sessile, and they established intercommunication through synchronized Ca2+ waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca2+ dependent activation of Akt, since AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage (BAL). The picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.
Collapse
|
32
|
Hare GM, Tsui AK, Ozawa S, Shander A. Anaemia: Can we define haemoglobin thresholds for impaired oxygen homeostasis and suggest new strategies for treatment? Best Pract Res Clin Anaesthesiol 2013; 27:85-98. [DOI: 10.1016/j.bpa.2012.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/17/2012] [Indexed: 12/30/2022]
|
33
|
Hu T, Beattie WS, Mazer CD, Leong-Poi H, Fujii H, Wilson DF, Tsui AKY, Liu E, Muhammad M, Baker AJ, Hare GMT. Treatment with a highly selective β₁ antagonist causes dose-dependent impairment of cerebral perfusion after hemodilution in rats. Anesth Analg 2013; 116:649-62. [PMID: 23400988 DOI: 10.1213/ane.0b013e318280e26d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Acute β-blockade has been associated with a dose-dependent increase in adverse outcomes, including stroke and mortality. Acute blood loss contributes to the incidence of these adverse events. In an attempt to link the risks of acute blood loss and β-blockade, animal studies have demonstrated that acute β-blockade impairs cerebral perfusion after hemodilution. We expanded on these findings by testing the hypothesis that acute β-blockade with a highly β(1)-specific antagonist (nebivolol) causes dose-dependent cerebral hypoxia during hemodilution. METHODS Anesthetized rats and mice were randomized to receive vehicle or nebivolol (1.25 or 2.5 mg/kg) IV before hemodilution to a hemoglobin concentration near 60 g/L. Drug levels, heart rate (HR), cardiac output (CO), regional cerebral blood flow (rCBF, laser Doppler), and microvascular brain Po(2) (P(Br)O(2), G2 Oxyphor) were measured before and after hemodilution. Endothelial nitric oxide synthase (NOS), neuronal NOS (nNOS), inducible NOS, and hypoxia inducible factor (HIF)-1α were assessed by Western blot. HIF-α expression was also assessed using an HIF-(ODD)-luciferase mouse model. Data were analyzed using analysis of variance with significance assigned at P < 0.05, and corrected P values are reported for all post hoc analyses. RESULTS Nebivolol treatment resulted in dose-specific plasma drug levels. In vehicle-treated rats, hemodilution increased CO and rCBF (P < 0.010) whereas P(Br)O(2) decreased to 45.8 ± 18.7 mm Hg (corrected P < 0.001; 95% CI 29.4-69.7). Both nebivolol doses comparably reduced HR and attenuated the CO response to hemodilution (P < 0.012). Low-dose nebivolol did not impair rCBF or further reduce P(Br)O(2) after hemodilution. High-dose nebivolol attenuated the rCBF response to hemodilution and caused a further reduction in P(Br)O(2) to 28.4 ± 9.6 mm Hg (corrected P = 0.019; 95% CI 17.4-42.7). Both nebivolol doses increased brain endothelial NOS protein levels. Brain HIF-1α, inducible NOS, and nNOS protein levels and brain HIF-luciferase activity were increased in the high-dose nebivolol group after hemodilution (P < 0.032). CONCLUSIONS Our data demonstrate that nebivolol resulted in a dose-dependent decrease in cerebral oxygen delivery after hemodilution as reflected by a decrease in brain tissue Po(2) and an increase in hypoxic protein responses (HIF-1α and nNOS). Low-dose nebivolol treatment did not result in worsened tissue hypoxia after hemodilution, despite comparable effects on HR and CO. These data support the hypothesis that acute β-blockade with a highly β(1)-specific antagonist causes a dose-dependent impairment in cerebral perfusion during hemodilution.
Collapse
Affiliation(s)
- Tina Hu
- Department of Anesthesia, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hare GMT, Freedman J, David Mazer C. Review article: Risks of anemia and related management strategies: can perioperative blood management improve patient safety? Can J Anaesth 2013; 60:168-75. [DOI: 10.1007/s12630-012-9861-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
|
35
|
López-Aguilar J, Fernández-Gonzalo MS, Turon M, Quílez ME, Gómez-Simón V, Jódar MM, Blanch L. [Lung-brain interaction in the mechanically ventilated patient]. Med Intensiva 2012; 37:485-92. [PMID: 23260265 DOI: 10.1016/j.medin.2012.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 01/08/2023]
Abstract
Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term.
Collapse
Affiliation(s)
- J López-Aguilar
- Fundació Parc Taulí, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España; Institut Universitari Parc Taulí, Universitat Autònoma de Barcelona, Campus d' Excelència Internacional, Bellaterra, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Medicina Intensiva, Hospital de Sabadell, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España
| | | | | | | | | | | | | |
Collapse
|
36
|
López-Aguilar J, Fernández-Gonzalo MS, Turon M, Quílez ME, Gómez-Simón V, Jódar MM, Blanch L. [Lung-brain interaction in the mechanically ventilated patient]. Med Intensiva 2012. [PMID: 23260265 DOI: 10.1016/j.medine.2012.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term.
Collapse
Affiliation(s)
- J López-Aguilar
- Fundació Parc Taulí, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España; Institut Universitari Parc Taulí, Universitat Autònoma de Barcelona, Campus d' Excelència Internacional, Bellaterra, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España; Servicio de Medicina Intensiva, Hospital de Sabadell, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Postoperative cognitive dysfunction (POCD) is a severe long-term complication after surgical procedures. POCD is mainly seen among geriatric patients. Hospitalization, extent of surgery, and systemic inflammatory response might contribute to POCD. The possible influence of the type of anesthesia is discussed. POCD is often not recognized; thus, incidence rates are likely to be underestimated (19-40%). POCD is associated with major consequences for the individual patient, e.g., delayed long-term recovery, reduced quality of life, and an increased mortality rate. Multiple risk factors have been identified over the last decade. However, the exact etiology is still unknown. This mini-review summarizes the recent developments concerning POCD prevention, diagnosis, and treatment.
Collapse
|
38
|
Wilson MR, Patel BV, Takata M. Ventilation with "clinically relevant" high tidal volumes does not promote stretch-induced injury in the lungs of healthy mice. Crit Care Med 2012; 40:2850-7. [PMID: 22890257 PMCID: PMC3698535 DOI: 10.1097/ccm.0b013e31825b91ef] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Ventilator-induced lung injury is a crucial determinant of the outcome of mechanically ventilated patients. Increasing numbers of mouse studies have identified numerous pathways and mediators that are modulated by ventilation, but it is conceptually difficult to reconcile these into a single paradigm. There is substantial variability in tidal volumes used in these studies and no certainty about the pathophysiology that such varied models actually represent. This study was designed to investigate whether ventilation strategies ranging from "very high" to more "clinically relevant" tidal volumes induce similar pathophysiologies in healthy mice or represent distinct entities. DESIGN In vivo study. SETTING University research laboratory. SUBJECTS C57/Bl6 mice. INTERVENTIONS Anesthetized mice were ventilated with various tidal volumes up to 40 mL/kg. MEASUREMENTS AND MAIN RESULTS Respiratory system compliance and arterial blood gases were used to evaluate physiological variables of injury. Lung wet:dry weight ratio, lavage fluid protein, and cytokines were used to assess pulmonary edema and inflammation. All ventilation strategies induced changes in respiratory system compliance, although the pattern of change was unique for each strategy. Ventilation with 10 mL/kg and 40 mL/kg also induced decreases in arterial PO2 and blood pressure. Any physiological changes induced during the 10, 20, and 30 mL/kg strategies were largely reversed by recruitment maneuvers at the end of the protocol. Markers of pulmonary edema and inflammation indicated that only 40 mL/kg induced substantial increases in both, consistent with development of lung injury. CONCLUSIONS Tidal volumes up to 20 mL/kg are unlikely to induce substantial lung overstretch in models using healthy, young mice. Signs of injury/inflammation using such models are likely to result from other factors, particularly alveolar derecruitment and atelectasis. The results of such studies may need to be reevaluated before clinical relevance can be accurately determined.
Collapse
Affiliation(s)
- Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom.
| | | | | |
Collapse
|
39
|
Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci 2012; 322:241-9. [PMID: 22726353 DOI: 10.1016/j.jns.2012.05.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/23/2012] [Indexed: 11/28/2022]
Abstract
Arterial hypertension is the main risk factor for stroke and plays a role in the development of vascular cognitive impairment (VCI) and vascular dementia (VaD). An association between hypertension and reduced cerebral blood flow and VCI is documented and arterial hypertension in midlife is associated with a higher probability of cognitive impairment. These findings suggest that arterial hypertension is a main cause of vascular brain disorder (VBD). Spontaneously hypertensive rat (SHR) is the rat strain most extensively investigated and used for assessing hypertensive brain damage and treatment of it. They are normotensive at birth and at 6months they have a sustained hypertension. Time-dependent rise of arterial blood pressure, the occurrence of brain atrophy, loss of nerve cells and glial reaction are phenomena shared to some extent with hypertensive brain damage in humans. SHR present changes of some neurotransmitter systems that may have functional and behavioral relevance. An impaired cholinergic neurotransmission characterizes SHR, similarly as reported in patients affected by VaD. SHR are also characterized by a dopaminergic hypofunction and noradrenergic hyperactivity similarly as occurs in attention-deficit with hyperactivity disorder (ADHD). Microanatomical, neurochemical and behavioral data on SHR are in favor of the hypothesis that this strain is a suitable model of VBD. Changes in catecholaminergic transmission put forward SHR as a possible model of ADHD as well. Hence SHR could represent a multi-faced model of two important groups of pathologies, VBD and ADHD. As for most models, researchers should always consider that SHR offer some similarities with corresponding human pathologies, but they do not suffer from the same disease. This paper reviews the main microanatomical, neurochemical and behavioral characteristics of SHR with particular reference as an animal model of brain vascular injury.
Collapse
Affiliation(s)
- Seyed Khosrow Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy.
| | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Ventilator-induced lung injury (VILI) is a ubiquitous iatrogenic clinical problem in critical care. Aside from avoiding large tidal volumes, little progress has been made in identifying effective clinical strategies to minimize this injury. With recent rapid development in bioinformatics and high-throughput molecular technology, the genetic basis of lung injury has been intensively investigated. This review will describe recent insights and potential therapies developed in the field. RECENT FINDINGS Much progress has been made in delineating the possible genes and gene products involved in VILI through various mechanisms such as early induced genes, capillary leak, apoptosis, fibrin deposition, inflammatory cytokines, oxidative stress, disrupted angiogenesis, and neutrophil infiltration. Some studies have translated bench findings to the bedside in an attempt to identify clinically important genetic susceptibility, which could aid in the identification of at-risk individuals who might benefit from careful titration of mechanical ventilation. Genetic insights also provide candidate pharmaceutical approaches that may ameliorate VILI in the future. SUMMARY Much relevant information exists for investigators and clinicians interested in VILI. Future research will interlink evolving data to provide a more integrated picture of the molecular mechanisms involved in VILI enabling translation of the most promising candidate therapies.
Collapse
|
41
|
Shander A, Javidroozi M, Ozawa S, Hare G. What is really dangerous: anaemia or transfusion? Br J Anaesth 2011; 107 Suppl 1:i41-59. [DOI: 10.1093/bja/aer350] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
42
|
Nalla BP, Freedman J, Hare GMT, Mazer CD. Update on blood conservation for cardiac surgery. J Cardiothorac Vasc Anesth 2011; 26:117-33. [PMID: 22000983 DOI: 10.1053/j.jvca.2011.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Bhanu P Nalla
- Department of Anesthesia, Keenan Research Center in the Li Ka Shing Knowledge Translation Institute of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
[Postoperative cognitive dysfunction (POCD): strategy of prevention, assessment and management]. ACTA ACUST UNITED AC 2011; 30:e49-53. [PMID: 21945705 DOI: 10.1016/j.annfar.2011.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The femoral neck fracture is a major cause of morbidity and mortality in the elderly. The etiology of cognitive impairment observed in this population of aged patient seems to be multifactorial. In the strategy of prevention, elderly patient must have the clearer information dealing with the postoperative cognitive dysfunction. This would reduce the incidence of POCD and some cognitive complaints, which often reflect the anxiety of the elderly patient facing the possibility of cognitive impairment. During the anaesthesia consultation, it seems important to assess the cognitive function of this elderly patient (like using neuropsycholgical scale as the MMSE) and to identify associated risk factors of cognitive dysfunction. The management of cognitive disorders should be multidisciplinary, the anesthesiologist being the main referent, in collaboration with the geriatrician and the surgeon. In the clinical setting of femoral neck fracture in the elderly, this multimodal management (pain, nutrition, functional rehabilitation to make these patients autonomous as quickly as possible), seems to improve the functional prognosis and to have the observed POCD decreased.
Collapse
|