1
|
Schena GJ, Murray EK, Hildebrand AN, Headrick AL, Yang Y, Koch KA, Kubo H, Eaton D, Johnson J, Berretta R, Mohsin S, Kishore R, McKinsey TA, Elrod JW, Houser SR. Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. Am J Physiol Heart Circ Physiol 2021; 321:H1014-H1029. [PMID: 34623184 PMCID: PMC8793944 DOI: 10.1152/ajpheart.00197.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
Heart failure is the one of the leading causes of death in the United States. Heart failure is a complex syndrome caused by numerous diseases, including severe myocardial infarction (MI). MI occurs after an occlusion of a cardiac artery causing downstream ischemia. MI is followed by cardiac remodeling involving extensive remodeling and fibrosis, which, if the original insult is severe or prolonged, can ultimately progress into heart failure. There is no "cure" for heart failure because therapies to regenerate dead tissue are not yet available. Previous studies have shown that in both post-MI and post-ischemia-reperfusion (I/R) models of heart failure, administration of cortical bone stem cell (CBSC) treatment leads to a reduction in scar size and improved cardiac function. Our first study investigated the ability of mouse CBSC-derived exosomes (mCBSC-dEXO) to recapitulate mouse CBSCs (mCBSC) therapeutic effects in a 24-h post-I/R model. This study showed that injection of mCBSCs and mCBSC-dEXOs into the ischemic region of an infarct had a protective effect against I/R injury. mCBSC-dEXOs recapitulated the effects of CBSC treatment post-I/R, indicating exosomes are partly responsible for CBSC's beneficial effects. To examine if exosomes decrease fibrotic activation, adult rat ventricular fibroblasts (ARVFs) and adult human cardiac fibroblasts (NHCFs) were treated with transforming growth factor β (TGFβ) to activate fibrotic signaling before treatment with mCBSC- and human CBSC (hCBSC)-dEXOs. hCBSC-dEXOs caused a 100-fold decrease in human fibroblast activation. To further understand the signaling mechanisms regulating the protective decrease in fibrosis, we performed RNA sequencing on the NHCFs after hCBSC-dEXO treatment. The group treated with both TGFβ and exosomes showed a decrease in small nucleolar RNA (snoRNA), known to be involved with ribosome stability.NEW & NOTEWORTHY Our work is noteworthy due to the identification of factors within stem cell-derived exosomes (dEXOs) that alter fibroblast activation through the hereto-unknown mechanism of decreasing small nucleolar RNA (snoRNA) signaling within cardiac fibroblasts. The study also shows that the injection of stem cells or a stem-cell-derived exosome therapy at the onset of reperfusion elicits cardioprotection, emphasizing the importance of early treatment in the post-ischemia-reperfusion (I/R) wounded heart.
Collapse
Affiliation(s)
- Giana J Schena
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Emma K Murray
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Alycia N Hildebrand
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Alaina L Headrick
- Division of Cardiology & Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yijun Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Keith A Koch
- Division of Cardiology & Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Deborah Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jaslyn Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Remus Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Timothy A McKinsey
- Division of Cardiology & Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Oyama Y, Walker LA, Eckle T. Targeting circadian PER2 as therapy in myocardial ischemia and reperfusion injury. Chronobiol Int 2021; 38:1262-1273. [PMID: 34034593 PMCID: PMC8355134 DOI: 10.1080/07420528.2021.1928160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
The cycle of day and night dominates life on earth. Therefore, almost all living organisms adopted a molecular clock linked to the light-dark cycles. It is now well established that this molecular clock is crucial for human health and wellbeing. Disruption of the molecular clockwork directly results in a myriad of disorders, including cardiovascular diseases. Further, the onset of many cardiovascular diseases such as acute myocardial infarction exhibits a circadian periodicity with worse outcomes in the early morning hours. Based on these observations, the research community became interested in manipulating the molecular clock to treat cardiovascular diseases. In recent years, several exciting discoveries of pharmacological agents or molecular mechanisms targeting the molecular clockwork have paved the way for circadian medicine's arrival in cardiovascular diseases. The current review will outline the most recent circadian therapeutic advances related to the circadian rhythm protein Period2 (PER2) to treat myocardial ischemia and summarize future research in the respective field.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
- Department of Anesthesiology and Intensive Care Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Kim B, Guaregua V, Chen X, Zhao C, Yeow W, Berg NK, Eltzschig HK, Yuan X. Characterization of a Murine Model System to Study MicroRNA-147 During Inflammatory Organ Injury. Inflammation 2021; 44:1426-1440. [PMID: 33566257 PMCID: PMC7873671 DOI: 10.1007/s10753-021-01427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory organ injury and sepsis have profound impacts on the morbidity and mortality of surgical and critical care patients. MicroRNAs are small RNAs composed of 20-25 nucleotides that have a significant contribution to gene regulation. MicroRNA-147 (miR-147), in particular, has been shown to have an emerging role in different physiological functions such as cell cycle regulation and inflammatory responses. However, animal model systems to study tissue-specific functions of miR-147 during inflammatory conditions in vivo are lacking. In the present study, we characterize miR-147 expression in different organs and cell types. Next, we generated a transgenic mouse line with a floxed miR-147 gene. Subsequently, we used this mouse line to generate mice with whole-body deletion of miR-147 (miR-147 -/-) by crossing "floxed" miR-147 mice with transgenic mice expressing Cre recombinase in all tissues (CMVcre mice). Systematic analysis of miR-147 -/- mice demonstrates normal growth, development, and off-spring. In addition, deletion of the target gene in different organs was successful at baseline or during inflammation, including the heart, intestine, stomach, liver, spleen, bone marrow, lungs, kidneys, or stomach. Moreover, miR-147 -/- mice have identical baseline inflammatory gene expression compared to C57BL/6 mice, except elevated IL-6 expression in the spleen (7.5 fold, p < 0.05). Taken together, our data show the successful development of a transgenic animal model for tissue and cell-specific deletion of miR-147 that can be used to study the functional roles of miR-147 during inflammatory organ injury.
Collapse
Affiliation(s)
- Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Victor Guaregua
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xuebo Chen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Chad Zhao
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wanyi Yeow
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Nathaniel K Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Impact of a Histone Deacetylase Inhibitor-Trichostatin A on Neurogenesis after Hypoxia-Ischemia in Immature Rats. Int J Mol Sci 2020; 21:ijms21113808. [PMID: 32471267 PMCID: PMC7312253 DOI: 10.3390/ijms21113808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-ischemia (HI) in the neonatal brain frequently results in neurologic impairments, including cognitive disability. Unfortunately, there are currently no known treatment options to minimize ischemia-induced neural damage. We previously showed the neuroprotective/neurogenic potential of a histone deacetylase inhibitor (HDACi), sodium butyrate (SB), in a neonatal HI rat pup model. The aim of the present study was to examine the capacity of another HDACi—Trichostatin A (TSA)—to stimulate neurogenesis in the subgranular zone of the hippocampus. We also assessed some of the cellular/molecular processes that could be involved in the action of TSA, including the expression of neurotrophic factors (glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF)) as well as the TrkB receptor and its downstream signalling substrate— cAMP response element-binding protein (CREB). Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by hypoxia for 1 h. TSA was administered directly after the insult (0.2 mg/kg body weight). The study demonstrated that treatment with TSA restored the reduced by hypoxia-ischemia number of immature neurons (neuroblasts, BrdU/DCX-positive) as well as the number of oligodendrocyte progenitors (BrdU/NG2+) in the dentate gyrus of the ipsilateral damaged hemisphere. However, new generated cells did not develop the more mature phenotypes. Moreover, the administration of TSA stimulated the expression of BDNF and increased the activation of the TrkB receptor. These results suggest that BDNF-TrkB signalling pathways may contribute to the effects of TSA after neonatal hypoxic-ischemic injury.
Collapse
|
5
|
Bartman CM, Eckle T. Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease. Curr Pharm Des 2020; 25:1075-1090. [PMID: 31096895 DOI: 10.2174/1381612825666190516081612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
Throughout the evolutionary time, all organisms and species on Earth evolved with an adaptation to consistent oscillations of sunlight and darkness, now recognized as 'circadian rhythm.' Single-cellular to multisystem organisms use circadian biology to synchronize to the external environment and provide predictive adaptation to changes in cellular homeostasis. Dysregulation of circadian biology has been implicated in numerous prevalent human diseases, and subsequently targeting the circadian machinery may provide innovative preventative or treatment strategies. Discovery of 'peripheral circadian clocks' unleashed widespread investigations into the potential roles of clock biology in cellular, tissue, and organ function in healthy and diseased states. Particularly, oxygen-sensing pathways (e.g. hypoxia inducible factor, HIF1), are critical for adaptation to changes in oxygen availability in diseases such as myocardial ischemia. Recent investigations have identified a connection between the circadian rhythm protein Period 2 (PER2) and HIF1A that may elucidate an evolutionarily conserved cellular network that can be targeted to manipulate metabolic function in stressed conditions like hypoxia or ischemia. Understanding the link between circadian and hypoxia pathways may provide insights and subsequent innovative therapeutic strategies for patients with myocardial ischemia. This review addresses our current understanding of the connection between light-sensing pathways (PER2), and oxygen-sensing pathways (HIF1A), in the context of myocardial ischemia and lays the groundwork for future studies to take advantage of these two evolutionarily conserved pathways in the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
6
|
Remote ischemic perconditioning attenuates adverse cardiac remodeling and preserves left ventricular function in a rat model of reperfused myocardial infarction. Int J Cardiol 2019; 285:72-79. [PMID: 30904281 DOI: 10.1016/j.ijcard.2019.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
AIMS Remote ischemic conditioning (RIC) is considered a potential clinical approach to reduce myocardial infarct size and ameliorate adverse post-infarct left ventricular (LV) remodeling, however the mechanisms are unknown. The aim was to clarify the impact of RIC on Neuregulin-1 (NRG-1)/ErbBs expression, inflammation and LV hemodynamic function. METHODS AND RESULTS Male Sprague-Dawley rats were subjected to 30 min occlusion of the left coronary artery (LCA) followed by 2 weeks of reperfusion and separated into three groups: (1) sham operated (without LCA occlusion); (2) Myocardial ischemia/reperfusion (MIR) and (3) remote ischemic perconditioning group (MIR + RIPerc). Cardiac structural and functional changes were evaluated by echocardiography and on the isolated working heart system. The level of H3K4me3 at the NRG-1 promoter, and both plasma and LV tissue levels of NRG-1 were assessed. The expression of pro-inflammatory cytokines, ECM components and ErbB receptors were assessed by RT-qPCR. MIR resulted in a significant decrease in LV function and enlargement of LV chamber. This was accompanied with a decrease in the level of H3K4me3 at the NRG-1 promoter. Consequently NRG-1 protein levels were reduced in the infarcted myocardium. Subsequently, an upregulated influx of CD68+ macrophages, high expression of MMP-2 and -9 as well as an increase of IL-1β, TLR-4, TNF-α, TNC expression were observed. In contrast, RIPerc significantly decreased inflammation and improved LV function in association with the enhancement of NRG-1 levels and ErbB3 expression. CONCLUSIONS These findings may reveal a novel anti-remodeling and anti-inflammatory effect of RIPerc, involving activation of NRG-1/ErbB3 signaling.
Collapse
|
7
|
Hospital overnight and evaluation of systems and timelines study: A point prevalence study of practice in Australia and New Zealand. Resuscitation 2016; 100:1-5. [DOI: 10.1016/j.resuscitation.2015.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022]
|
8
|
Seo SW, Koeppen M, Bonney S, Gobel M, Thayer M, Harter PN, Ravid K, Eltzschig HK, Mittelbronn M, Walker L, Eckle T. Differential Tissue-Specific Function of Adora2b in Cardioprotection. THE JOURNAL OF IMMUNOLOGY 2015; 195:1732-43. [PMID: 26136425 DOI: 10.4049/jimmunol.1402288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/03/2015] [Indexed: 01/18/2023]
Abstract
The adenosine A2b receptor (Adora2b) has been implicated in cardioprotection from myocardial ischemia. As such, Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia/reperfusion (IR) injury of the heart. Whereas Adora2b is present on various cells types, the tissue-specific role of Adora2b in cardioprotection is still unknown. To study the tissue-specific role of Adora2b signaling on inflammatory cells, endothelia, or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre(+), VE-cadherin-Cre(+), or myosin-Cre(+) transgenic mice, respectively. Mice were exposed to 60 min of myocardial ischemia with or without IP (four times for 5 min) followed by 120 min of reperfusion. Cardioprotection by IP was abolished in Adora2b(f/f)-VE-cadherin-Cre(+) or Adora2b(f/f)-myosin-Cre(+), indicating that Adora2b signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardioprotection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2b(f/f)-Lyz2-Cre(+) mice only. Cytokine profiling of IR injury in Adora2b(f/f)-Lyz2-Cre(+) mice pointed toward polymorphonuclear neutrophils (PMNs). Analysis of PMNs from Adora2b(f/f)-Lyz2-Cre(+) confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Adora2b(-/-) PMNs revealed a critical role of Adora2b on PMNs in cardioprotection from IR injury. Adora2b signaling mediates different types of cardioprotection in a tissue-specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia.
Collapse
Affiliation(s)
- Seong-wook Seo
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Michael Koeppen
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045; Department of Anesthesiology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Stephanie Bonney
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Merit Gobel
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Molly Thayer
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), University of Frankfurt, 60528 Frankfurt, Germany
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118; and
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), University of Frankfurt, 60528 Frankfurt, Germany
| | - Lori Walker
- Division of Cardiology, University of Colorado Denver, Aurora, CO 80045
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045;
| |
Collapse
|
9
|
Brainard J, Gobel M, Bartels K, Scott B, Koeppen M, Eckle T. Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions. Semin Cardiothorac Vasc Anesth 2014; 19:49-60. [PMID: 25294583 DOI: 10.1177/1089253214553066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rotation of the earth and associated alternating cycles of light and dark--the basis of our circadian rhythms--are fundamental to human biology and culture. However, it was not until 1971 that researchers first began to describe the molecular mechanisms for the circadian system. During the past few years, groundbreaking research has revealed a multitude of circadian genes affecting a variety of clinical diseases, including diabetes, obesity, sepsis, cardiac ischemia, and sudden cardiac death. Anesthesiologists, in the operating room and intensive care units, manage these diseases on a daily basis as they significantly affect patient outcomes. Intriguingly, sedatives, anesthetics, and the intensive care unit environment have all been shown to disrupt the circadian system in patients. In the current review, we will discuss how newly acquired knowledge of circadian rhythms could lead to changes in clinical practice and new therapeutic concepts.
Collapse
Affiliation(s)
| | - Merit Gobel
- University of Colorado Denver, Aurora, CO, USA
| | | | | | - Michael Koeppen
- University of Colorado Denver, Aurora, CO, USA Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
10
|
Bonney S, Kominsky D, Brodsky K, Eltzschig H, Walker L, Eckle T. Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS One 2013; 8:e71493. [PMID: 23977055 PMCID: PMC3748049 DOI: 10.1371/journal.pone.0071493] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/01/2013] [Indexed: 01/06/2023] Open
Abstract
Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In contrast to Clock−/−, Per2−/− mice have larger infarct sizes with deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we measured lactate during reperfusion in Per1−/−, Per2−/− or wildtype mice. As lactate measurements in whole blood indicated an exclusive role of Per2 in controlling lactate production during myocardial ischemia, we next performed gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2−/− mice. Surprisingly, high-throughput gene array analysis revealed dominantly lipid metabolism as the differentially regulated pathway in wildtype mice when compared to Per2−/−. In all ischemia-reperfusion protocols used, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2−/− mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated ‘Per2-genes’. Subsequent studies on inflammatory markers showed increasing IL-6 or TNFα levels during reperfusion in Per2−/− mice. In summary, these studies reveal an important role of cardiac Per2 for fatty acid metabolism and inflammation during myocardial ischemia and reperfusion, respectively.
Collapse
Affiliation(s)
- Stephanie Bonney
- Department of Anesthesiology and Mucosal Inflammation Program, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Doug Kominsky
- Department of Anesthesiology and Mucosal Inflammation Program, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Kelley Brodsky
- Department of Anesthesiology and Mucosal Inflammation Program, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Holger Eltzschig
- Department of Anesthesiology and Mucosal Inflammation Program, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Lori Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, United States of America
| | - Tobias Eckle
- Department of Anesthesiology and Mucosal Inflammation Program, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth 2012; 16:123-32. [PMID: 22368166 DOI: 10.1177/1089253211436350] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myocardial ischemia reperfusion injury contributes to adverse cardiovascular outcomes after myocardial ischemia, cardiac surgery or circulatory arrest. Primarily, no blood flow to the heart causes an imbalance between oxygen demand and supply, named ischemia (from the Greek isch, restriction; and haema, blood), resulting in damage or dysfunction of the cardiac tissue. Instinctively, early and fast restoration of blood flow has been established to be the treatment of choice to prevent further tissue injury. Indeed, the use of thrombolytic therapy or primary percutaneous coronary intervention is the most effective strategy for reducing the size of a myocardial infarct and improving the clinical outcome. Unfortunately, restoring blood flow to the ischemic myocardium, named reperfusion, can also induce injury. This phenomenon was therefore termed myocardial ischemia reperfusion injury. Subsequent studies in animal models of acute myocardial infarction suggest that myocardial ischemia reperfusion injury accounts for up to 50% of the final size of a myocardial infarct. Consequently, many researchers aim to understand the underlying molecular mechanism of myocardial ischemia reperfusion injury to find therapeutic strategies ultimately reducing the final infarct size. Despite the identification of numerous therapeutic strategies at the bench, many of them are just in the process of being translated to bedside. The current review discusses the most striking basic science findings made during the past decades that are currently under clinical evaluation, with the ultimate goal to treat patients who are suffering from myocardial ischemia reperfusion-associated tissue injury.
Collapse
Affiliation(s)
- Anja Frank
- University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
12
|
Feng Y, Chao W. Toll-like receptors and myocardial inflammation. Int J Inflam 2011; 2011:170352. [PMID: 21977329 PMCID: PMC3182762 DOI: 10.4061/2011/170352] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/24/2011] [Accepted: 06/12/2011] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are a member of the innate immune system. TLRs detect invading pathogens through the pathogen-associated molecular patterns (PAMPs) recognition and play an essential role in the host defense. TLRs can also sense a large number of endogenous molecules with the damage-associated molecular patterns (DAMPs) that are produced under various injurious conditions. Animal studies of the last decade have demonstrated that TLR signaling contributes to the pathogenesis of the critical cardiac conditions, where myocardial inflammation plays a prominent role, such as ischemic myocardial injury, myocarditis, and septic cardiomyopathy. This paper reviews the animal data on (1) TLRs, TLR ligands, and the signal transduction system and (2) the important role of TLR signaling in these critical cardiac conditions.
Collapse
Affiliation(s)
- Yan Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
13
|
Lennon FE, Singleton PA. Hyaluronan regulation of vascular integrity. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2011; 1:200-213. [PMID: 22254199 PMCID: PMC3253523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/16/2011] [Indexed: 05/31/2023]
Abstract
Vascular integrity or the maintenance of blood vessel continuity is a fundamental process regulated, in part, by the endothelial glycocalyx and cell-cell junctions. Defects in endothelial barrier function are an initiating factor in several disease processes including atherosclerosis, ischemia/reperfusion, tumor angiogenesis, cancer metastasis, diabetes, sepsis and acute lung injury. The glycosaminoglycan, hyaluronan (HA), maintains vascular integrity through endothelial glycocalyx modulation, caveolin-enriched microdomain regulation and interaction with endothelial HA binding proteins. Certain disease states increase hyaluronidase activity and reactive oxygen species (ROS) generation which break down high molecular weight HA to low molecular weight fragments causing damage to the endothelial glycocalyx. Further, these HA fragments can activate specific HA binding proteins upregulated in vascular disease to promote actin cytoskeletal reorganization and inhibition of endothelial cell-cell contacts. This review focuses on the crucial role of HA in vascular integrity and how HA degradation promotes vascular barrier disruption.
Collapse
|