1
|
Jenkins AR, Radl DB, Kornecook TJ, Pizzagalli DA, Bergman J, Buhl DL, O'Donnell P, Kangas BD. Environmental determinants of ketamine's prohedonic and antianhedonic efficacy: Persistence of enhanced reward responsiveness is modulated by chronic stress. J Pharmacol Exp Ther 2025; 392:103572. [PMID: 40288209 DOI: 10.1016/j.jpet.2025.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Ketamine, a dissociative anesthetic with well documented abuse liability, can also provide rapid-onset and persistent antidepressant effects and is currently used for the management of treatment-resistant depression. Although the precise neurobiological mechanisms underlying its antidepressant actions are not fully determined, a critical feature of ketamine's clinical efficacy may be its antianhedonic action. Anhedonia is an endophenotype of depression defined by decreased responsivity to previously rewarding stimuli and is generally not ameliorated by conventional antidepressants, emphasizing the need to examine underlying behavioral mechanisms of action. In this study, the probabilistic reward task, a reverse-translated assay originally designed to objectively quantify anhedonic phenotypes in human subjects, was used in rats to examine ketamine's effects on reward responsiveness under conditions without programmed stressors (3.2-32.0 mg/kg) or during ongoing chronic exposure to ecologically relevant stress (10.0 mg/kg). Results showed that under conditions without programmed stress, ketamine produced significant prohedonic effects in the probabilistic reward task, defined by increases in reward responsiveness that dissipated within 24 hours. In rats exposed to ongoing chronic stress, ketamine produced significant antianhedonic effects, defined by the rescue of blunted reward responsiveness, that persisted for nearly 1 week. Taken together, the prolonged antianhedonic effects of ketamine in rats experiencing chronic stress, compared with the shorter-lived prohedonic effects in subjects without exposure to programmed stressors, are striking and highlight the role of environmental determinants in the effects of ketamine on behavioral processes. Moreover, the translational nature of this experimental design may offer the opportunity to accelerate development of novel antianhedonic therapeutics. SIGNIFICANCE STATEMENT: Although ketamine is used for the management of treatment-resistant depression, its precise behavioral mechanisms of action are not fully delineated. Emerging evidence suggests the attenuation of anhedonia plays a key role in its rapid-acting therapeutic efficacy. To evaluate this possibility, the effects of ketamine were studied using a reverse-translated assay of reward responsiveness in rats and documented to be short-lived (prohedonic) under nonstressful conditions and persistent (antianhedonic) under stressful conditions, informing ketamine effects in healthy versus depressed individuals.
Collapse
Affiliation(s)
- Amaya R Jenkins
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | | | | | | | - Jack Bergman
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Derek L Buhl
- Takeda Pharmaceuticals, Cambridge, Massachusetts
| | | | - Brian D Kangas
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
2
|
Wang L, Zhao S, Shao J, Su C. The effect and mechanism of low-dose esketamine in neuropathic pain-related depression-like behavior in rats. Brain Res 2024; 1843:149117. [PMID: 38977235 DOI: 10.1016/j.brainres.2024.149117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Clinical evidence suggests that Esketamine (ESK) is an effective treatment for depression. However, the effects of Esketamine in treating depression-like behavior induced by neuropathic pain is unclear. The underlying molecular mechanisms require further investigation to provide new therapeutic targets for the treatment of clinical neuropathic pain-related depression. METHODS A neuropathic pain-related depression model was established in rats with spared nerve injury (SNI). Male Sprague-Dawley rats were randomly divided into four groups: Sham Group, SNI group, SNI + Normal Saline (NS) Group and SNI + ESK5mg/kg Group. Mechanical pain thresholds were measured to assess pain sensitivity in SNI rats. On the 14th day after surgery a forced swim test and sucrose preference test were used to evaluate the depressive-like behavior of rats in each group. Further, a proteomic analysis was used to quantify differentially expressed proteins. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to explore the main protein targets of SNI in the medial prefrontal cortex. The expression of proteins was detected by Western blotting. RESULTS A neuropathic pain-related depression model was established. Compared with the Sham group, the mechanical pain threshold was decreased significantly (13.2 ± 1.0 vs. 0.7 ± 0.01 g n = 8), while immobility on the forced swim test was also decreased (93.1 ± 7.4 vs. 169.5 ± 9.6 s n = 8), and sucrose preference rate was significantly increased (98.8 ± 0.3 vs. 73.1 ± 1.4n = 7) in SNI group rats. Compared with the SNI + NS group, the mechanical pain threshold was not statistically significant, while immobility on the forced swim test was clearly decreased (161.1 ± 11.6 vs. 77.9 ± 5.0 s n = 8), and sucrose preference rate was significantly increased (53.1 ± 8.9 vs. 96.1 ± 1.4n = 7) in SNI + ESK5mg/kg group rats. To further investigate the underlying mechanism, we employed proteomics to identify proteins exhibiting more than a 1.2-fold difference (P < 0.05) in expression levels within each group for subsequent analysis. Relative to the Sham group, 88 downregulated and 104 up-regulated proteins were identified in the SNI group, while 120 and 84 proteins were up- and down-regulated in the Esketamine treatment group compared with the SNI + NS group. Compared with Sham group, the expressions of mGluR5 and Homer1a were up-regulated in the medial prefrontal cortex (mPFC) in SNI group (mGluR5:0.97 ± 0.05 vs 1.47 ± 0.15, Homer1a:1.03 ± 0.06 vs 1.46 ± 0.16n = 6), and down-regulated after intervention with Esketamine (mGluR5:1.54 ± 0.11 vs 1.06 ± 0.07, Homer1a:1.51 ± 0.13 vs 1.12 ± 0.34n = 6). CONCLUSIONS Low-dose Esketamine appeared to relieve depression-like behavior induced by neuropathic pain. The Homer1a-mGluR5 signaling pathway might be the mechanism of antidepressant effect of Esketamine.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, Hunan, China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuwu Zhao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, Hunan, China.
| |
Collapse
|
3
|
Stocking SQ, Webb CK, Miller GH, Thomeer MB, Goodin BR, Sorge RE. Understanding Risk of Chronic Pain Development and Related Mental Health Disparities Among Transgender People: A Review of Current Literature and Future Directions. THE JOURNAL OF PAIN 2024:104681. [PMID: 39307445 DOI: 10.1016/j.jpain.2024.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Biomedical and clinical research has traditionally focused on binary sex assignments as opposed to gender identity. This oversight has resulted in other gender minority populations being understudied. As a result, there is limited literature on chronic pain and mental health in transgender populations. These socially vulnerable individuals may be at increased risk for chronic pain development and related mental health disorders. Transgender individuals experience higher rates of social stigma and discrimination than their cisgender counterparts, and these factors have been linked to an increased prevalence of chronic pain, depression, and stress. Beyond chronic pain and mental health research, large overall health disparities and differences exist for transgender people compared with their cisgender peers. Therefore, it is crucial to include transgender individuals, as well as other gender minority people, in research in order to fully understand the impact of gender minority status on pain and quality of life. PERSPECTIVE: This review explores the intersectional impact of stress and mental health on chronic pain development and the unequal risk for transgender individuals. Promoting inclusion of gender minority individuals in research is a critical step to understanding the factors contributing to minority stress.
Collapse
Affiliation(s)
- Samantha Q Stocking
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Caroline K Webb
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Gabe H Miller
- Department of Sociology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Mieke B Thomeer
- Department of Sociology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Burel R Goodin
- Department of Anesthesiology, Washington University Pain Center, Washington University, St Louis, Missouri
| | - Robert E Sorge
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
4
|
Huerta MÁ, Cisneros E, Alique M, Roza C. Strategies for measuring non-evoked pain in preclinical models of neuropathic pain: Systematic review. Neurosci Biobehav Rev 2024; 163:105761. [PMID: 38852847 DOI: 10.1016/j.neubiorev.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The development of new analgesics for neuropathic pain treatment is crucial. The failure of promising drugs in clinical trials may be related to the over-reliance on reflex-based responses (evoked pain) in preclinical drug testing, which may not fully represent clinical neuropathic pain, characterized by spontaneous non-evoked pain (NEP). Hence, strategies for assessing NEP in preclinical studies emerged. This systematic review identified 443 articles evaluating NEP in neuropathic pain models (mainly traumatic nerve injuries in male rodents). An exponential growth in NEP evaluation was observed, which was assessed using 48 different tests classified in 12 NEP-related outcomes: anxiety, exploration/locomotion, paw lifting, depression, conditioned place preference, gait, autotomy, wellbeing, facial grooming, cognitive impairment, facial pain expressions and vocalizations. Although most of these outcomes showed clear limitations, our analysis suggests that conditioning-associated outcomes, pain-related comorbidities, and gait evaluation may be the most effective strategies. Moreover, a minimal part of the studies evaluated standard analgesics. The greater emphasis on evaluating NEP aligning with clinical pain symptoms may enhance analgesic drug development, improving clinical translation.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain
| | - Elsa Cisneros
- Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain; Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Matilde Alique
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain.
| |
Collapse
|
5
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
6
|
Adam AS, LaMalfa KS, Razavi Y, Kohut SJ, Kangas BD. A Multimodal Preclinical Assessment of MDMA in Female and Male Rats: Prohedonic, Cognition Disruptive, and Prosocial Effects. PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2024; 2:96-108. [PMID: 39149579 PMCID: PMC11324000 DOI: 10.1089/psymed.2023.0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Frontline antidepressants such as selective serotonin reuptake inhibitors (SSRIs) leave many patients with unmet treatment needs. Moreover, even when SSRIs reduce depressive symptoms, anhedonia, the loss of pleasure to previously rewarding activities, often remains unabated. This state of affairs is disheartening and calls for the development of medications to more directly treat anhedonia. The atypical psychedelic 3,4-methylenedioxymethamphetamine (MDMA) might have promise as a prohedonic medication given its efficacious applications for treatment-resistant post-traumatic stress disorder and comorbid depression. However, in addition to its prosocial effects as an entactogen, MDMA is also associated with neurotoxic cognitive deficits. The present studies were designed to examine the relative potency of MDMA in female and male rats across three distinct behavioral domains to assist in defining a preclinical profile of MDMA as a candidate prohedonic therapeutic. Methods First, signal detection metrics of reward responsivity were examined using the touchscreen probabilistic reward task (PRT), a reverse-translated assay used to objectively quantify anhedonic phenotypes in humans. Second, to probe potential cognitive deficits, touchscreen-based assays of psychomotor vigilance and delayed matching-to-position were used to examine attentional processes and short-term spatial memory, respectively. Finally, MDMA's entactogenic effects were studied via pairwise assessments of social interaction facilitated by machine-learning analyses. Results Findings show (1) dose-dependent increases in reward responsivity as quantified by the PRT, (2) dose-dependent deficits in attention and short-term memory, and (3) dose-dependent increases in aspects of prosocial interaction in male but not female subjects. Neither the desirable (prohedonic) nor undesirable (cognition disruptive) effects of MDMA persisted beyond 24 h. Conclusions The present results characterize MDMA as a promising prohedonic treatment, notwithstanding some liability for short-lived cognitive impairment following acute administration.
Collapse
Affiliation(s)
- Abshir S. Adam
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Yasaman Razavi
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Stephen J. Kohut
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Brian D. Kangas
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
7
|
Teng Y, Niu J, Liu Y, Wang H, Chen J, Kong Y, Wang L, Lian B, Wang W, Sun H, Yue K. Ketamine alleviates fear memory and spatial cognition deficits in a PTSD rat model via the BDNF signaling pathway of the hippocampus and amygdala. Behav Brain Res 2024; 459:114792. [PMID: 38048914 DOI: 10.1016/j.bbr.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is associated with traumatic stress experiences. This condition can be accompanied by learning and cognitive deficits. Studies have demonstrated that ketamine can rapidly and significantly alleviate symptoms in patients with chronic PTSD. Nonetheless, the effects of ketamine on neurocognitive impairment and its mechanism of action in PTSD remain unclear. METHODS In this study, different concentrations of ketamine (5, 10, 15, and 20 mg/kg, i.p.) were evaluated in rat models of single prolonged stress and electrophonic shock (SPS&S). Expression levels of brain-derived neurotrophic factor (BDNF) and post-synaptic density-95 (PSD-95) in the hippocampus (HIP) and amygdala (AMG) were determined by Western blot analysis and immunohistochemistry. RESULTS The data showed that rats subjected to SPS&S exhibited significant PTSD-like cognitive impairment. The effect of ketamine on SPS&S-induced neurocognitive function showed a U-shaped dose effect in rats. A single administration of ketamine at a dosage of 10-15 mg/kg resulted in significant changes in behavioral outcomes. These manifestations of improvement in cognitive function and molecular changes were reversed at high doses (15-20 mg/kg). CONCLUSION Overall, ketamine reversed SPS&S-induced fear and spatial memory impairment and the down-regulation of BDNF and BDNF-related PSD-95 signaling in the HIP and AMG. A dose equal to 15 mg/kg rapidly reversed the behavioral and molecular changes and promoted the amelioration of cognitive dysfunction. The enhanced association of BDNF signaling with PSD-95 effects could be involved in the therapeutic efficiency of ketamine for PTSD.
Collapse
Affiliation(s)
- Yue Teng
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JiaYao Niu
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yang Liu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Han Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JinHong Chen
- School of Continuing Education, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - YuJia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Ling Wang
- Clinical Competency Training Center, Medical experiment and training center, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - WeiWen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, PR China
| | - HongWei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China.
| | - KuiTao Yue
- The Medical imaging Center, Affiliated Hospital of Weifang Medical University, 2428# Yuhe Road, Weifang, Shandong 261053, PR China.
| |
Collapse
|
8
|
Yang S, Zhang B, Wang D, Hu S, Wang W, Liu C, Wu Z, Yang C. Role of GABAergic system in the comorbidity of pain and depression. Brain Res Bull 2023:110691. [PMID: 37331640 DOI: 10.1016/j.brainresbull.2023.110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Patients with chronic pain often suffer with depressive symptoms, and these two conditions can be aggravated by each other over time, leading to an increase in symptom intensity and duration. The comorbidity of pain and depression poses a significant challenge to human health and quality of life, as it is often difficult to diagnose early and treat effectively. Therefore, exploring the molecular mechanisms underlying the comorbidity of chronic pain and depression is crucial to identifying new therapeutic targets for treatment. However, understanding the pathogenesis of comorbidity requires examining interactions among multiple factors, which calls for an integrative perspective. While several studies have explored the role of the GABAergic system in pain and depression, fewer have examined its interactions with other systems involved in their comorbidity. Here, we review the evidence that the role of GABAergic system in the comorbidity of chronic pain and depression, as well as the interactions between the GABAergic system and other secondary systems involved in pain and depression comorbidity, providing a comprehensive understanding of their intricate interplay.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Bingyuan Zhang
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, No. 399 Hailing South Road, Taizhou City, 225300, Jiangsu Province, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China.
| |
Collapse
|
9
|
Liu Y, Li A, Bair-Marshall C, Xu H, Jee HJ, Zhu E, Sun M, Zhang Q, Lefevre A, Chen ZS, Grinevich V, Froemke RC, Wang J. Oxytocin promotes prefrontal population activity via the PVN-PFC pathway to regulate pain. Neuron 2023; 111:1795-1811.e7. [PMID: 37023755 PMCID: PMC10272109 DOI: 10.1016/j.neuron.2023.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Neurons in the prefrontal cortex (PFC) can provide top-down regulation of sensory-affective experiences such as pain. Bottom-up modulation of sensory coding in the PFC, however, remains poorly understood. Here, we examined how oxytocin (OT) signaling from the hypothalamus regulates nociceptive coding in the PFC. In vivo time-lapse endoscopic calcium imaging in freely behaving rats showed that OT selectively enhanced population activity in the prelimbic PFC in response to nociceptive inputs. This population response resulted from the reduction of evoked GABAergic inhibition and manifested as elevated functional connectivity involving pain-responsive neurons. Direct inputs from OT-releasing neurons in the paraventricular nucleus (PVN) of the hypothalamus are crucial to maintaining this prefrontal nociceptive response. Activation of the prelimbic PFC by OT or direct optogenetic stimulation of oxytocinergic PVN projections reduced acute and chronic pain. These results suggest that oxytocinergic signaling in the PVN-PFC circuit constitutes a key mechanism to regulate cortical sensory processing.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Chloe Bair-Marshall
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Elaine Zhu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Mengqi Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhe Sage Chen
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Riccardi A, Guarino M, Serra S, Spampinato MD, Vanni S, Shiffer D, Voza A, Fabbri A, De Iaco F. Narrative Review: Low-Dose Ketamine for Pain Management. J Clin Med 2023; 12:jcm12093256. [PMID: 37176696 PMCID: PMC10179418 DOI: 10.3390/jcm12093256] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pain is the leading cause of medical consultations and occurs in 50-70% of emergency department visits. To date, several drugs have been used to manage pain. The clinical use of ketamine began in the 1960s and it immediately emerged as a manageable and safe drug for sedation and anesthesia. The analgesic properties of this drug were first reported shortly after its use; however, its psychomimetic effects have limited its use in emergency departments. Owing to the misuse and abuse of opioids in some countries worldwide, ketamine has become a versatile tool for sedation and analgesia. In this narrative review, ketamine's role as an analgesic is discussed, with both known and new applications in various contexts (acute, chronic, and neuropathic pain), along with its strengths and weaknesses, especially in terms of psychomimetic, cardiovascular, and hepatic effects. Moreover, new scientific evidence has been reviewed on the use of additional drugs with ketamine, such as magnesium infusion for improving analgesia and clonidine for treating psychomimetic symptoms. Finally, this narrative review was refined by the experience of the Pain Group of the Italian Society of Emergency Medicine (SIMEU) in treating acute and chronic pain with acute manifestations in Italian Emergency Departments.
Collapse
Affiliation(s)
| | - Mario Guarino
- Emergency Department, Centro Traumatologico Ortopedico, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Napoli, Italy
| | - Sossio Serra
- Emergency Department, Maurizio Bufalini Hospital, 47522 Cesena, Italy
| | | | - Simone Vanni
- Dipartimento Emergenza e Area Critica, Azienda USL Toscana Centro Struttura Complessa di Medicina d'Urgenza, 50053 Empoli, Italy
| | - Dana Shiffer
- Emergency Department, Humanitas University, Via Rita Levi Montalcini 4, 20089 Milan, Italy
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Andrea Fabbri
- Emergency Department, AUSL Romagna, Presidio Ospedaliero Morgagni-Pierantoni, 47121 Forlì, Italy
| | - Fabio De Iaco
- Emergency Department, Ospedale Maria Vittoria, 10144 Turin, Italy
| |
Collapse
|
11
|
Zhang Q, Hu S, Talay R, Xiao Z, Rosenberg D, Liu Y, Sun G, Li A, Caravan B, Singh A, Gould JD, Chen ZS, Wang J. A prototype closed-loop brain-machine interface for the study and treatment of pain. Nat Biomed Eng 2023; 7:533-545. [PMID: 34155354 PMCID: PMC9516430 DOI: 10.1038/s41551-021-00736-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Chronic pain is characterized by discrete pain episodes of unpredictable frequency and duration. This hinders the study of pain mechanisms and contributes to the use of pharmacological treatments associated with side effects, addiction and drug tolerance. Here, we show that a closed-loop brain-machine interface (BMI) can modulate sensory-affective experiences in real time in freely behaving rats by coupling neural codes for nociception directly with therapeutic cortical stimulation. The BMI decodes the onset of nociception via a state-space model on the basis of the analysis of online-sorted spikes recorded from the anterior cingulate cortex (which is critical for pain processing) and couples real-time pain detection with optogenetic activation of the prelimbic prefrontal cortex (which exerts top-down nociceptive regulation). In rats, the BMI effectively inhibited sensory and affective behaviours caused by acute mechanical or thermal pain, and by chronic inflammatory or neuropathic pain. The approach provides a blueprint for demand-based neuromodulation to treat sensory-affective disorders, and could be further leveraged for nociceptive control and to study pain mechanisms.
Collapse
Affiliation(s)
- Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Sile Hu
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Robert Talay
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - David Rosenberg
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Bassir Caravan
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Amrita Singh
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Gould
- College of Arts and Sciences, New York University, New York, NY, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Seo EH, Piao L, Cho EH, Hong SW, Kim SH. The Effect of Ketamine on Endoplasmic Reticulum Stress in Rats with Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24065336. [PMID: 36982408 PMCID: PMC10049202 DOI: 10.3390/ijms24065336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
This study aimed to investigate the effects of ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, on endoplasmic reticulum (ER) stress in rats with neuropathic pain (NP). NP was induced in rats through ligation and transection of the sciatic nerve. After confirmation of NP, the animals were randomly divided into ketamine and control groups. The ketamine group was administered 50 mg/kg of ketamine at 15, 18, and 21 days after surgery. The expression of NMDA receptor subtype 2B (NR2B) and ER stress markers in the spinal cord (L5) was evaluated. The ipsilateral side of the surgery in the ketamine group was less sensitive to mechanical and cold stimulations. The expression of NR2B on the ipsilateral side was significantly lower in the ketamine group than in the control group (18.93 ± 1.40% vs. 31.08 ± 0.74%, p < 0.05). All markers for ER stress on the ipsilateral side of the surgery in both groups had higher expression than those on the contralateral side. The expression of activating transcription factor-6 (ATF-6) on the ipsilateral side was significantly lower in the ketamine group than in the control group (p < 0.05). Systemic administration of ketamine inhibited the expression of NMDA receptors and improved NP symptoms. Among the markers of ER stress, the therapeutic effect of ketamine is associated with the inhibition of ATF-6 expression.
Collapse
Affiliation(s)
- Eun-Hye Seo
- Korea mRNA Vaccine Initiative, School of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | - Liyun Piao
- Department of Infection and Immunology, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
| | - Eun-Hwa Cho
- Department of Infection and Immunology, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
| | - Seung-Wan Hong
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, School of Medicine, Konkuk University, Neudong-ro (Hwayang-dong), Seoul 05030, Republic of Korea
| | - Seong-Hyop Kim
- Department of Infection and Immunology, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, School of Medicine, Konkuk University, Neudong-ro (Hwayang-dong), Seoul 05030, Republic of Korea
- Department of Medicine, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
- Correspondence: ; Tel.: +82-2-2030-5454; Fax: +82-2-2030-5449
| |
Collapse
|
13
|
Zhang Z, Zhang WH, Lu YX, Lu BX, Wang YB, Cui LY, Cheng H, Yuan ZY, Zhang J, Gao DP, Gong JF, Ji Q. Intraoperative Low-Dose S-Ketamine Reduces Depressive Symptoms in Patients with Crohn's Disease Undergoing Bowel Resection: A Randomized Controlled Trial. J Clin Med 2023; 12:jcm12031152. [PMID: 36769799 PMCID: PMC9917783 DOI: 10.3390/jcm12031152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Background: Patients with Crohn's disease (CD) undergoing bowel resection often suffer from depression and acute pain, which severely impairs their recovery. We aimed to investigate the effects of S-ketamine preconditioning on postoperative depression in patients with CD undergoing a bowel resection with mild to moderate depression and to observe whether it can relieve postoperative pain and anti-inflammation. Methods: A total of 124 adult patients were randomized into one of the two groups. Patients in the S-ketamine group received a 0.25 mg/kg S-ketamine intravenous drip under general anesthesia induction, followed by a continuous infusion of S-ketamine with 0.12 mg/kg/h for more than 30 min through target-controlled infusion. Patients in the placebo group received 0.9% saline at an identical volume and rate. The primary outcome measure was the 17-item Hamilton depression Scale (HAMD-17). The secondary outcomes were scores on the following questionnaires: a nine-item patient health questionnaire (PHQ-9); a quality of recovery (QoR-15) form; and a numeric rating scale (NRS). Additional secondary outcomes included the levels of C-reactive protein (CRP) and interleukin 6 (IL-6) on postoperative days (PODs) 1, 3, and 5, the length of hospital stay, and opioid use throughout the hospital stay. Results: The scores of PHQ-9 and HAMD-17 in the S-ketamine group were lower than those in the placebo group on postoperative days (PODs) 1, 2, and 7 (p < 0.05). The scores of QoR-15 in the S-ketamine group were higher than those in the placebo group on postoperative days (PODs) 3 and 5 (p < 0.05). The NRS scores of PACU, postoperative days 1 and 2 in the S-ketamine group were lower than those in the placebo group (p < 0.05). There was no significant difference in the CRP and IL-6 levels on postoperative days (PODs) 1, 3, and 5, postoperative complications, and hospital stay between the two groups (p > 0.05). Conclusions: The trial indicated that the intraoperative administration of low-dose S-ketamine could alleviate mild-to-moderate depressive symptoms and postoperative pain in patients with Crohn's disease undergoing bowel resection without worsening their safety.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Wen-Hao Zhang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Yin-Xiao Lu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Bo-Xuan Lu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Yi-Bo Wang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Li-Ying Cui
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Hao Cheng
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Zhen-Yu Yuan
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Jie Zhang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Da-Peng Gao
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Jian-Feng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210016, China
- Correspondence:
| |
Collapse
|
14
|
Tao Z, Lin R, Zhang R, He P, Lei C, Li Y. Ischemia reperfusion myocardium injuries in type 2 diabetic rats: Effects of ketamine and insulin on LC3-II and mTOR expression. Int J Immunopathol Pharmacol 2023; 37:3946320231196450. [PMID: 37643354 PMCID: PMC10467302 DOI: 10.1177/03946320231196450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Objectives: Myocardiopathy occurs in ischemia-induced injury caused by dysregulation of autophagy of cardiac tissues. The present report evaluates the protective effect of ketamine and insulin against myocardial injury in type 2 diabetic rats (T2DM).Methods: The effects of ketamine and its combination with insulin on biochemical parameters and inflammatory cytokines in the serum of I/R-induced myocardial injury in T2DM rats were evaluated. The parameters of reactive oxygen species and the expression of autophagosome signaling pathway proteins were also determined. Using transmission electron microscopy, we investigated autophagosomes. Western blots were used to detect autophagy-associated signaling pathways. Myocardial function was determined by echocardiography and histopathological changes in myocardial tissues were also determined in I/R-induced myocardial injury in type 2 diabetic rats.Results: There was a significant reduction in glucose, AST, LDH, and CK-MB levels and cytokines (IL-1β, IL-6, and TNF-α) in serum of the ketamine (p < .05) and ketamine + insulin (p < .01) groups than in the diabetic + I/R. MDA and ROS levels were reduced with a substantial (p < .05) increase in GSH levels through improved cardiac function in the ketamine (p < .05) and ketamine + insulin (p < .01) groups than the diabetic + I/R group. There was an increase in mature autophagosomes in diabetic+I/R+Kt+In compared to diabetic+I/R+Kt alone in infarction and marginal zones. It should be noted that the significant increase (p < .01) in protein levels of the autophagy-associated intracellular signaling pathways AMPK and mTOR, as well as an increase in LC3-II and BECLIN-1, suggests that ketamine combined with insulin-activated autophagy-associated intracellular signaling AMPK and mTOR.Conclusion: The findings of the study suggest that ketamine combined with insulin administration remarkably protects I/R-induced myocardial injury in rats with T2DM by reducing the dysregulation of autophagy.
Collapse
Affiliation(s)
- Zhiguo Tao
- Department of Anaesthesiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Rongmu Lin
- Department of Anaesthesiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Rui Zhang
- Department of Anaesthesiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Peng He
- Department of Anaesthesiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Chengwen Lei
- Department of Anaesthesiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yuanhai Li
- Department of Anaesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Doan LV, Li A, Brake L, Ok D, Jee HJ, Park H, Cuevas R, Calvino S, Guth A, Schnabel F, Hiotis K, Axelrod D, Wang J. Single-Dose of Postoperative Ketamine for Postoperative Pain After Mastectomy: A Pilot Randomized Controlled Trial. J Pain Res 2023; 16:881-892. [PMID: 36942305 PMCID: PMC10024470 DOI: 10.2147/jpr.s389564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/24/2022] [Indexed: 03/17/2023] Open
Abstract
Background and Objectives Perioperative ketamine has been shown to reduce opioid consumption and pain after surgery. Ketamine is most often given as an infusion, but an alternative is single-dose ketamine. Single-dose ketamine at up to 1 mg/kg has been shown to reduce symptoms of depression, and a wide range of dosages has been used for pain in the emergency department. However, limited data exists on the tolerability and efficacy of a single-dose of ketamine at 0.6 mg/kg for pain when administered immediately after surgery. We conducted a pilot study of single-dose ketamine in patients undergoing mastectomy with reconstruction, hypothesizing that a single-dose of ketamine is well tolerated and can relieve postoperative pain and improve mood and recovery. Methods This is a randomized, single-blind, placebo-controlled, two-arm parallel, single-center study. Thirty adult women undergoing mastectomy with reconstruction for oncologic indication received a single-dose of ketamine (0.6mg/kg) or placebo after surgery in the post-anesthesia care unit (PACU). Patients were followed through postoperative day (POD) 7. The primary outcome was postoperative pain measured by the Brief Pain Inventory (BPI) pain subscale on POD 1 and 2. Secondary outcomes include effects on opioid use, PROMIS fatigue and sleep, mood, Quality of Recovery-15, and the Breast Cancer Pain Questionnaire. Results Side effects were minor and not significantly different in frequency between groups. The ketamine group reported lower scores on the BPI pain severity subscale, especially at POD 7; however, the difference was not statistically significant. There were no statistically significant differences between ketamine and placebo groups for the secondary outcomes. Conclusion A single-dose of ketamine at 0.6mg/kg administered postoperatively in the PACU is well tolerated in women undergoing mastectomy and may confer better pain control up to one week after surgery. Future studies with larger sample sizes are necessary to adequately characterize the effect of postoperative single-dose ketamine on pain control in this population.
Collapse
Affiliation(s)
- Lisa V Doan
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Correspondence: Lisa V Doan, Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, 240 E 38th St, 14th Floor, New York, NY, 10016, USA, Tel +1 212201-1004, Email
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee Brake
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Park
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Randy Cuevas
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Steven Calvino
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber Guth
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Freya Schnabel
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Karen Hiotis
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Deborah Axelrod
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Ru Q, Lu Y, Saifullah AB, Blanco FA, Yao C, Cata JP, Li DP, Tolias KF, Li L. TIAM1-mediated synaptic plasticity underlies comorbid depression-like and ketamine antidepressant-like actions in chronic pain. J Clin Invest 2022; 132:e158545. [PMID: 36519542 PMCID: PMC9753999 DOI: 10.1172/jci158545] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic pain often leads to depression, increasing patient suffering and worsening prognosis. While hyperactivity of the anterior cingulate cortex (ACC) appears to be critically involved, the molecular mechanisms underlying comorbid depressive symptoms in chronic pain remain elusive. T cell lymphoma invasion and metastasis 1 (Tiam1) is a Rac1 guanine nucleotide exchange factor (GEF) that promotes dendrite, spine, and synapse development during brain development. Here, we show that Tiam1 orchestrates synaptic structural and functional plasticity in ACC neurons via actin cytoskeleton reorganization and synaptic N-methyl-d-aspartate receptor (NMDAR) stabilization. This Tiam1-coordinated synaptic plasticity underpins ACC hyperactivity and drives chronic pain-induced depressive-like behaviors. Notably, administration of low-dose ketamine, an NMDAR antagonist emerging as a promising treatment for chronic pain and depression, induces sustained antidepressant-like effects in mouse models of chronic pain by blocking Tiam1-mediated maladaptive synaptic plasticity in ACC neurons. Our results reveal Tiam1 as a critical factor in the pathophysiology of chronic pain-induced depressive-like behaviors and the sustained antidepressant-like effects of ketamine.
Collapse
Affiliation(s)
- Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yungang Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Changqun Yao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lingyong Li
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Zhang M, Lyu D, Wang F, Shi S, Wang M, Yang W, Huang H, Wei Z, Chen S, Xu Y, Hong W. Ketamine May Exert Rapid Antidepressant Effects Through Modulation of Neuroplasticity, Autophagy, and Ferroptosis in the Habenular Nucleus. Neuroscience 2022; 506:29-37. [PMID: 36280022 DOI: 10.1016/j.neuroscience.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder is a burdensome condition with few treatment options, and traditional antidepressants are characterized by slow onset. Sub-anesthetic ketamine has rapid-onset effects for the treatment of major depressive disorder (MDD), the mechanisms of which remain elusive. In this study, we explored whether neuroplasticity, autophagy, and ferroptosis in the habenular nucleus are involved in the rapid antidepressant process of ketamine. The results showed that Chronic Restraint Stress (CRS) treated rats exhibited decreased neuroplasticity, inhibition of autophagy, and enhanced ferroptosis. Depression-like symptoms were significantly improved after ketamine treatment in CRS rats, with changes in physiological parameters. Ketamine-treated CRS rats showed a significant improvement in habenular nuclear neuroplasticity. Electron microscopy observed that ketamine triggered autophagy, with increased levels of autophagy-related proteins. Ferroptosis was inhibited by ketamine by electron microscopy, with increased FTH1 and GPX4 levels and decreased Tfr1 levels. In conclusion, our findings demonstrate that ketamine may exert rapid antidepressant effects by improving neuroplasticity, activating autophagy, and inhibiting ferroptosis in the nuclear complex.
Collapse
Affiliation(s)
- Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Shuxiang Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Meiti Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Weichieh Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Haijing Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Zheyi Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - ShenTse Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Yi Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China.
| |
Collapse
|
18
|
Lyu D, Wang F, Zhang M, Yang W, Huang H, Huang Q, Wu C, Qian N, Wang M, Zhang H, Zheng S, Chen J, Fu Y, Zhang C, Li Z, Hong W. Ketamine induces rapid antidepressant effects via the autophagy-NLRP3 inflammasome pathway. Psychopharmacology (Berl) 2022; 239:3201-3212. [PMID: 35925279 DOI: 10.1007/s00213-022-06201-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Sub-anesthetic ketamine has rapid-onset effects for the treatment of major depressive disorder (MDD). However, the mechanism underlying ketamine's antidepressant properties remains unclear. Recent studies have reported an interrelationship between autophagy and the inflammasome, both of which are involved in the pathophysiology of MDD. In this study, we assess whether ketamine exerts its antidepressant effects via an association with the autophagy-NLRP3 inflammasome pathway. METHODS We established a depressive-like rat model by treating Wistar Kyoto rats with chronic restraint stress (CRS) for 28 days. Microglial cells from newborn Sprague-Dawley rats were used for in vitro experiments. RESULTS We found sub-anesthetic ketamine treatment reversed depressive-like behavior in CRS rats. Ketamine triggered autophagy in the microglia of prefrontal cortex (PFC) and (hippocampus) HPC, with increased levels of LC3B, decreased levels of p62 protein, and elevated autophagosomes both in vivo and in vitro. Moreover, NLRP3 inflammasome activation was also inhibited by ketamine, with reduced expression of NLRP3-ASC-CASP1 assembly and decreased IL-1β levels in cerebrospinal fluid (CSF) as well as in the serum. Increased BDNF levels and synaptophysin levels were detected in the ketamine-treated group. The rapid anti-depressive effects, elevation of autophagy, reduction in NLRP3, and neuroplasticity-related factors induced by ketamine could be significantly blocked by the autophagy inhibitor Baf A1 (0.1 mg/kg). CONCLUSIONS Our findings demonstrate that sub-anesthetic doses of ketamine exert their antidepressant-like effects by inhibiting inflammation and initiating neuroprotection via autophagy activation. These data might help expand future investigations on the antidepressant properties of ketamine.
Collapse
Affiliation(s)
- Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Weichieh Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Haijing Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Qinte Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Chenglin Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Nuoshi Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Meiti Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Huanfei Zhang
- Department of Anesthesiology, The Longgang People's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Sichai Zheng
- Department of Anesthesiology, The People's Hospital of Pingyang, Wenzhou Medical University, Zhejiang, China
| | - Jing Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Yingmei Fu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China.
| |
Collapse
|
19
|
de la Puente B, Zamanillo D, Romero L, Carceller A, Vela JM, Merlos M, Portillo-Salido E. Comprehensive Preclinical Assessment of Sensory, Functional, Motivational-Affective, and Neurochemical Outcomes in Neuropathic Pain: The Case of the Sigma-1 Receptor. ACS Pharmacol Transl Sci 2022; 5:240-254. [PMID: 35434530 PMCID: PMC9003638 DOI: 10.1021/acsptsci.2c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Chronic pain remains a major health problem and is currently facing slow drug innovation. New drug treatments should address not only the sensory-discriminative but also functional and motivational-affective components of chronic pain. In a mouse model of neuropathic pain induced by partial sciatic nerve ligation (PSNL), we analyzed sensory and functional-like outcomes by hindpaw mechanical stimulation and automated gait analysis (CatWalk). We characterized over time a reward-seeking task based on diminished motivation for natural reinforcers (anhedonic-like behavior). To differentiate the appetitive ("wanting") and consummatory ("liking") aspects of motivational behavior, we quantified the latency and number of approaches to eat white chocolate, as well as the eating duration and amount consumed. We explored a putative chronic pain-induced dysregulation of monoamine function by measuring monoamine levels in the nucleus accumbens (NAc), a well-known brain reward area. Finally, we investigated the role of sigma-1 receptor (σ1R) modulation, a nonopioid target, in these multiple dimensions by genetic deletion and pharmacological dose-response studies. After 6 weeks, PSNL increased the approach latency and reduced the consumption of white chocolate in 20-25% of the mice, while around 50-60% had one or the other parameter affected independently. After 10 weeks, sham-operated mice also displayed anhedonic-like behavior. PSNL was associated with reduced extracellular baseline dopamine and increased norepinephrine in the NAc and with a suppression of increased dopamine and serotonin efflux in response to the rewarding stimulus. Genetic and pharmacological blockade of σ1R relieved these multiple alterations in nerve-injured mice. We comprehensively describe sensory, functional, and depression-like impairment of key components of motivated behavior associated with nerve injury. We provide a neurochemical substrate for the depressed mesocorticolimbic reward processing in chronic pain, with a potentially increased translational value. Our results also highlight σ1R for the therapeutic intervention of neuropathic pain.
Collapse
Affiliation(s)
| | - Daniel Zamanillo
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Luz Romero
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alicia Carceller
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
20
|
Sucrose intake and preference by Wistar Han rats are not influenced by sex or food/water deprivation. Pharmacol Biochem Behav 2022; 216:173387. [DOI: 10.1016/j.pbb.2022.173387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/11/2023]
|
21
|
Teixeira MA, Papini JZB, Garcez A, Tofoli GR. Comparative analysis of two laser wavelengths in the stimulation of acupuncture points for analgesic effects in an animal model. JOURNAL OF BIOPHOTONICS 2022; 15:e202100213. [PMID: 34658149 DOI: 10.1002/jbio.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
This study compares the effectiveness of two laser wavelengths for stimulating acupoints in an experimental model of acute postoperative pain. Forty-five Wistar rats were randomly assigned to receive treatment on their left hind paw, contralateral to a surgical procedure. Laser treatments were performed with Green Laser-GL (532 nm, 70 mW and 7 J/cm2 of energy), Red Laser-RL (660 nm, 100 mW and 7 J/cm2 of energy), or with Laser Off-LO. After each application, the animals were evaluated with a Von Frey analgesiometer to check for painful sensitivity on their right (with surgery) and left (without surgery) hind paws. Neuropeptides and cytokine levels in the incision site tissue of the right paw were measured by ELISA after 1, 6 and 24 hours. It was possible to observe that, in this pain model, both lasers promoted analgesia and that the GL altered the levels of TNF-α and IL-1β.
Collapse
Affiliation(s)
| | | | - Aguinaldo Garcez
- Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | | |
Collapse
|
22
|
Kimmey BA, McCall NM, Wooldridge LM, Satterthwaite T, Corder G. Engaging endogenous opioid circuits in pain affective processes. J Neurosci Res 2022; 100:66-98. [PMID: 33314372 PMCID: PMC8197770 DOI: 10.1002/jnr.24762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
The pervasive use of opioid compounds for pain relief is rooted in their utility as one of the most effective therapeutic strategies for providing analgesia. While the detrimental side effects of these compounds have significantly contributed to the current opioid epidemic, opioids still provide millions of patients with reprieve from the relentless and agonizing experience of pain. The human experience of pain has long recognized the perceived unpleasantness entangled with a unique sensation that is immediate and identifiable from the first-person subjective vantage point as "painful." From this phenomenological perspective, how is it that opioids interfere with pain perception? Evidence from human lesion, neuroimaging, and preclinical functional neuroanatomy approaches is sculpting the view that opioids predominately alleviate the affective or inferential appraisal of nociceptive neural information. Thus, opioids weaken pain-associated unpleasantness rather than modulate perceived sensory qualities. Here, we discuss the historical theories of pain to demonstrate how modern neuroscience is revisiting these ideas to deconstruct the brain mechanisms driving the emergence of aversive pain perceptions. We further detail how targeting opioidergic signaling within affective or emotional brain circuits remains a strong avenue for developing targeted pharmacological and gene-therapy analgesic treatments that might reduce the dependence on current clinical opioid options.
Collapse
Affiliation(s)
- Blake A. Kimmey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Nora M. McCall
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Lisa M. Wooldridge
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Disrupted population coding in the prefrontal cortex underlies pain aversion. Cell Rep 2021; 37:109978. [PMID: 34758316 PMCID: PMC8696988 DOI: 10.1016/j.celrep.2021.109978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
The prefrontal cortex (PFC) regulates a wide range of sensory experiences. Chronic pain is known to impair normal neural response, leading to enhanced aversion. However, it remains unknown how nociceptive responses in the cortex are processed at the population level and whether such processes are disrupted by chronic pain. Using in vivo endoscopic calcium imaging, we identify increased population activity in response to noxious stimuli and stable patterns of functional connectivity among neurons in the prelimbic (PL) PFC from freely behaving rats. Inflammatory pain disrupts functional connectivity of PFC neurons and reduces the overall nociceptive response. Interestingly, ketamine, a well-known neuromodulator, restores the functional connectivity among PL-PFC neurons in the inflammatory pain model to produce anti-aversive effects. These results suggest a dynamic resource allocation mechanism in the prefrontal representations of pain and indicate that population activity in the PFC critically regulates pain and serves as an important therapeutic target. Li et al. reveal that inflammatory pain disrupts the functional connectivity of neurons in the prelimbic prefrontal cortex (PL-PFC) and the overall nociceptive response. Ketamine, meanwhile, restores the functional connectivity of neurons in the PL-PFC in the inflammatory pain state to produce anti-aversive effects.
Collapse
|
24
|
Maraschin JC, Frias AT, Hernandes PM, Batistela MF, Martinez LM, Joca SRL, Graeff FG, Audi EA, Spera de Andrade TGC, Zangrossi H. Antipanic-like effect of esketamine and buprenorphine in rats exposed to acute hypoxia. Behav Brain Res 2021; 418:113651. [PMID: 34732354 DOI: 10.1016/j.bbr.2021.113651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
The antidepressant effect of ketamine has been widely acknowledged and the use of one of its enantiomers, S-ketamine (esketamine), has recently been approved for the clinical management of treatment-resistant depression. As with ketamine, the non-selective opioid receptor-interacting drug buprenorphine is reported to have antidepressant and anxiolytic properties in humans and rodents. Given the fact that antidepressant drugs are also first line treatment for panic disorder, it is surprising that the potential panicolytic effect of these compounds has been scarcely (ketamine), or not yet (buprenorphine) investigated. We here evaluated the effects of ketamine (the racemic mixture), esketamine, and buprenorphine in male Wistar rats submitted to a panicogenic challenge: acute exposure to hypoxia (7% O2). We observed that esketamine (20 mg/kg), but not ketamine, decreased the number of escape attempts made during hypoxia, and this effect could be observed even 7 days after the drug administration. A panicolytic-like effect was also observed with MK801, which like esketamine, antagonizes NMDA glutamate receptors. Buprenorphine (0.3 mg/kg) also impaired hypoxia-induced escape, an effect blocked by the non-selective opioid receptor antagonist naloxone, indicating an interaction with classical ligand sites, such as µ and kappa receptors, but not with nociception/orphanin FQ receptors. Altogether, the results suggest that esketamine and buprenorphine cause rapid-onset panicolytic-like effects, and may be alternatives for treating panic disorder, particularly in patients who are refractory to standard pharmacological treatment.
Collapse
Affiliation(s)
- Jhonatan Christian Maraschin
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alana Tercino Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paloma Molina Hernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Matheus Fitipaldi Batistela
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Motta Martinez
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia Regiane Lourenço Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | | | - Elisabeth Aparecida Audi
- Department of Pharmacology and Therapeutics, State University of Maringá (UEM), Maringá, PR, Brazil
| | | | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Behavioural Neurosciences Institute (INeC), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
Ma KH, Cheng CY, Chan WH, Chen SY, Kao LT, Sung CS, Hueng DY, Yeh CC. Pulsed Radiofrequency Upregulates Serotonin Transporters and Alleviates Neuropathic Pain-Induced Depression in a Spared Nerve Injury Rat Model. Biomedicines 2021; 9:biomedicines9101489. [PMID: 34680606 PMCID: PMC8533300 DOI: 10.3390/biomedicines9101489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is difficult to treat due to complex pathophysiological mechanisms. Pulsed radiofrequency (RRF) has been used widely with neuromodulation effect in refractory chronic pain treatment. A recent study found that PRF treatment may decrease chronic pain-related anxiety-depressant symptoms in patients, even though the mechanisms are unclear. Additionally, accumulated evidence has shown serotonin uptake is correlated with various neuropsychiatric diseases. Therefore, we investigated the effects and underlying mechanisms of PRF on depression-like behaviors, resulting from spared nerve injury (SNI)-induced NP. We examined the indexes of mechanical allodynia, cold allodynia, depression-like behavior, and blood cytokines by dynamic plantar aesthesiometry, acetone spray test, forced swimming test, and ProcartaPlex multiplex immunoassays in male Wistar rats, respectively. Serotonin transporters (SERTs) in rat brains were examined by using 4-[18F]-ADAM/PET imaging. We found that specific uptake ratios (SURs) of SERTs were significantly decreased in the brain regions of the thalamus and striatum in rats with SNI-induced NP and depression-like behaviors. Additionally, the decrease in SERT density was correlated with the development of a depression-like behavior indicated by the forced swimming test results and pronounced IL-6 cytokines. Moreover, we demonstrated that PRF application could modulate the descending serotoninergic pathway to relieve pain and depression behaviors.
Collapse
Affiliation(s)
- Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 115, Taiwan;
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
| | - Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
| | - Shih-Yu Chen
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
| | - Li-Ting Kao
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 115, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
| | - Chun-Chang Yeh
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
- Correspondence:
| |
Collapse
|
26
|
White PF. Ketamine and depression: An old drug in search of a clinical indication. J Clin Anesth 2021; 75:110500. [PMID: 34517291 DOI: 10.1016/j.jclinane.2021.110500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Paul F White
- Department of Anesthesia, Cedars Sinai Medical Center in Los Angeles, CA, United States of America; White Mountain Institute, The Sea Ranch, CA, United States of America.
| |
Collapse
|
27
|
van Velzen M, Dahan JD, van Dorp EL, Mogil JS, Hooijmans CR, Dahan A. Efficacy of ketamine in relieving neuropathic pain: a systematic review and meta-analysis of animal studies. Pain 2021; 162:2320-2330. [PMID: 33790195 PMCID: PMC8374709 DOI: 10.1097/j.pain.0000000000002231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/09/2022]
Abstract
ABSTRACT In humans, proof of long-term efficacy of ketamine treatment in neuropathic pain is lacking. To improve our understanding of ketamine behavior under various administration conditions, we performed a systematic review and meta-analyses of controlled studies on the efficacy of ketamine in mice and rats with a disease model of nerve injury on relief of allodynia. Searches in PubMed and EMBASE identified 31 unique studies. Four meta-analyses were conducted. The first analysis included 19 comparisons on a single ketamine dose and measurement of effect within 3 hours of dosing and showed an appreciable effect (standardized mean difference 1.6, 95% confidence interval 1.1-2.1). Subgroup analyses showed no effect of species, administration route, or dose. A single administration was insufficient to sustain relief of allodynia at 24 or 72 hours after dosing, as observed in our second analysis (7 comparisons) with similar effects in ketamine-treated and control animals. Chronic ketamine administration (9 comparisons) caused profound relief of allodynia when tested during ketamine exposure (effect size 5.1, 3.7-6.5). The final analysis (6 comparisons) showed that chronic administration caused a slow loss of relief of allodynia with 70% loss of effect 24 days after end of treatment. No subgroups analyses were possible in the last 3 meta-analyses due to small group sizes. These results indicate long-term ketamine anti-allodynic effects after chronic exposure (>3 days) but not after a single administration. Given several limitations, extrapolation of the animal data to the human condition is tenuous.
Collapse
Affiliation(s)
- Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jack D.C. Dahan
- Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
| | - Eveline L.A van Dorp
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeffrey S. Mogil
- Department of Psychology and Anesthesia, McGill University, Montreal, Canada
| | - Carlijn R. Hooijmans
- Department of Health Evidence unit SYRCLE and Department of Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
28
|
Structural connectivity and subcellular changes after antidepressant doses of ketamine and Ro 25-6981 in the rat: an MRI and immuno-labeling study. Brain Struct Funct 2021; 226:2603-2616. [PMID: 34363521 PMCID: PMC8448713 DOI: 10.1007/s00429-021-02354-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
Ketamine has rapid and robust antidepressant effects. However, unwanted psychotomimetic effects limit its widespread use. Hence, several studies examined whether GluN2B-subunit selective NMDA antagonists would exhibit a better therapeutic profile. Although preclinical work has revealed some of the mechanisms of action of ketamine at cellular and molecular levels, the impact on brain circuitry is poorly understood. Several neuroimaging studies have examined the functional changes in the brain induced by acute administration of ketamine and Ro 25-6981 (a GluN2B-subunit selective antagonist), but the changes in the microstructure of gray and white matter have received less attention. Here, the effects of ketamine and Ro 25-6981 on gray and white matter integrity in male Sprague-Dawley rats were determined using diffusion-weighted magnetic resonance imaging (DWI). In addition, DWI-based structural brain networks were estimated and connectivity metrics were computed at the regional level. Immunohistochemical analyses were also performed to determine whether changes in myelin basic protein (MBP) and neurofilament heavy-chain protein (NF200) may underlie connectivity changes. In general, ketamine and Ro 25-6981 showed some opposite structural alterations, but both compounds coincided only in increasing the fractional anisotropy in infralimbic prefrontal cortex and dorsal raphe nucleus. These changes were associated with increments of NF200 in deep layers of the infralimbic cortex (together with increased MBP) and the dorsal raphe nucleus. Our results suggest that the synthesis of NF200 and MBP may contribute to the formation of new dendritic spines and myelination, respectively. We also suggest that the increase of fractional anisotropy of the infralimbic and dorsal raphe nucleus areas could represent a biomarker of a rapid antidepressant response.
Collapse
|
29
|
Sun YM, Shen Y, Huang H, Liu Q, Chen C, Ma LH, Wan J, Sun YY, Zhou CH, Wu YQ. Downregulated SIRT1 in the CeA is involved in chronic pain-depression comorbidity. Brain Res Bull 2021; 174:339-348. [PMID: 34245841 DOI: 10.1016/j.brainresbull.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Comorbid chronic pain and depression are increasingly becoming a concerning public problem, but the underlying mechanisms remain unclear. Here, we demonstrate that pain-related depression-like behaviors are induced in a rat model of chronic constriction injury (CCI). Using this model, we found that chronic neuropathic pain decreased the activity and expression of sirtuin 1 (SIRT1, an NAD+-dependent deacetylase) in the central nucleus of the amygdala (CeA). In addition, the pharmacologic activation of SIRT1 in the CeA could alleviate the depression-like behaviors associated with chronic pain while relieving sensory pain. Accordingly, adeno-associated virus (AAV)-mediated SIRT1 overexpression in the CeA produced a positive effect on the easement of chronic pain and comorbid depression. Taken together, these findings highlight the role of SIRT1 in the CeA in chronic pain and depression states and reveal that the upregulation of SIRT1 may be a potential therapy for the treatment of pain-depression comorbidities.
Collapse
Affiliation(s)
- Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Ying Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Lin-Hui Ma
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Jie Wan
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yin-Ying Sun
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, PR China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| |
Collapse
|
30
|
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J 2021; 62:238-273. [PMID: 34180990 PMCID: PMC9236661 DOI: 10.1093/ilar/ilab016] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors’ recommendation based on the authors’ clinical experiences.
Collapse
Affiliation(s)
- Kaela L Navarro
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Monika Huss
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan, USA
| | - Patrick Sharp
- Office of Research and Economic Development, University of California, Merced, California, USA
- Animal Resources Authority, Murdoch, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholawat Pacharinsak
- Corresponding Author: Cholawat Pacharinsak, DVM, PhD, DACVAA, Stanford University, Department of Comparative Medicine, 287 Campus Drive, Stanford, CA 94305-5410, USA. E-mail:
| |
Collapse
|
31
|
Abstract
BACKGROUND Pain and depression have a high impact on caring for the people who need palliative care, but both of these are neglected compared with the approach for other symptoms encountered by these patients. AREAS OF UNCERTAINTY There are few studies in humans that support the existence of common neural circuits between depression and pain that also explore the use of drugs with effects in both conditions. More knowledge is needed about the relationship of these clinical entities that will lead to the optimization of the treatment and improvement of quality of life. DATA SOURCES We conducted a search in PubMed to identify relevant articles and reviews that have been published in the last 5 years, concerning the topic of common pathways between depression and pain (2014-April 2019). THERAPEUTIC ADVANCES The connections between the 2 clinical entities start at the level of the cortical regions. The hippocampus is the main site of neural changes, modification of the immune system, neuromodulators, neurotransmitters, and signaling pathways implicated in both conditions. Increased levels of peripheral proinflammatory cytokines and neuroinflammatory changes are related to the physiopathology of these entities. Inflammation links depression and pain by altering neural circuits and changes in their common cortical regions. Antidepressants are used to treat depression and chronic, pain but more experimental studies are needed to determine which antidepressant drugs are the most effective in treating the 2 entities. CONCLUSIONS Pharmacological and nonpharmacological interventions targeting cortical changes in pain and depression are promising, but more clinical studies are needed to validate their usefulness.
Collapse
|
32
|
Predictors for Depression, Sleep Disturbance, and Subjective Pain among Inpatients with Depressive Disorders during the COVID-19 Pandemic: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126523. [PMID: 34204350 PMCID: PMC8296448 DOI: 10.3390/ijerph18126523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic can have a negative impact on patients with mood disorders. The aim of this study is to explore the societal influence of COVID-19 and associated impacts on levels of depression, sleep disturbance, and subjective pain among patients with mood disorders. This cross-sectional study recruited inpatients with depression and bipolar disorder. Levels of depression, sleep disturbance, subjective pain, and related demographic variables were collected through self-reported questionnaires. Potential factors associated with levels of depression, sleep disturbance, and subjective pain were identified using univariate linear regression and further entered into a stepwise multivariate linear regression model to identify the independent predictors. A total of 119 participants were included in the analysis, of whom 50.42% had bipolar disorder and 49.58% had unipolar depression. Multivariate analysis showed that a higher level of depression was associated with female subjects, subjects with partners, present history of psychological trauma, and drinking alcohol. Sleep disturbance was associated with subjects with partners and drinking alcohol. A higher level of subjective pain was associated with a higher level of social anxiety and a history of psychological trauma. The current study identified several predictors of psychological burden and subjective pain among inpatients with depression during the COVID-19 pandemic. Further investigations are warranted to extend the application and generalizability of our results.
Collapse
|
33
|
Zhou JY, Hamilton P, Macres S, Peña M, Tang S. Update on Ketamine. Adv Anesth 2021; 38:97-113. [PMID: 34106842 DOI: 10.1016/j.aan.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jon Y Zhou
- UC Davis Department of Anesthesiology and Pain Medicine, UC Davis Medical Center, 4150 V Street, Suite 1200 PSSB, Sacramento, CA 95817, USA.
| | - Perry Hamilton
- UC Davis Department of Anesthesiology and Pain Medicine, UC Davis Medical Center, 4150 V Street, Suite 1200 PSSB, Sacramento, CA 95817, USA. https://twitter.com/pvham1011
| | - Stephen Macres
- UC Davis Department of Anesthesiology and Pain Medicine, UC Davis Medical Center, 4150 V Street, Suite 1200 PSSB, Sacramento, CA 95817, USA
| | - Matthew Peña
- UC Davis Department of Anesthesiology and Pain Medicine, UC Davis Medical Center, 4150 V Street, Suite 1200 PSSB, Sacramento, CA 95817, USA
| | - Schirin Tang
- UC Davis Department of Anesthesiology and Pain Medicine, UC Davis Medical Center, 4150 V Street, Suite 1200 PSSB, Sacramento, CA 95817, USA. https://twitter.com/SchirinMD
| |
Collapse
|
34
|
Boullon L, Finn DP, Llorente-Berzal Á. Sex Differences in a Rat Model of Peripheral Neuropathic Pain and Associated Levels of Endogenous Cannabinoid Ligands. FRONTIERS IN PAIN RESEARCH 2021; 2:673638. [PMID: 35295501 PMCID: PMC8915733 DOI: 10.3389/fpain.2021.673638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic neuropathic pain is a major unmet clinical need affecting 10% of the world population, the majority of whom suffer from co-morbid mood disorders. Sex differences have been reported in pain prevalence, perception and response to analgesics. However, sexual dimorphism in chronic neuropathic pain and the associated neurobiology, are still poorly understood. The lack of efficacy and the adverse effects associated with current pharmacological treatments, further underline the need for new therapeutic targets. The endocannabinoid system (ECS) is a lipid signalling system which regulates a large number of physiological processes, including pain. The aim of this study was to investigate sexual dimorphism in pain-, anxiety- and depression-related behaviours, and concomitant alterations in supraspinal and spinal endocannabinoid levels in the spared nerve injury (SNI) animal model of peripheral neuropathic pain. Sham or SNI surgery was performed in adult male and female Sprague-Dawley rats. Mechanical and cold allodynia was tested weekly using von Frey and acetone drop tests, respectively. Development of depression-related behaviours was analysed using sucrose splash and sucrose preference tests. Locomotor activity and anxiety-related behaviours were assessed with open field and elevated plus maze tests. Levels of endocannabinoid ligands and related N-acylethanolamines in supraspinal regions of the descending inhibitory pain pathway, and spinal cord, were analysed 42 days post-surgery. SNI surgery induced allodynia in rats of both sexes. Female-SNI rats exhibited earlier onset and greater sensitivity to cold and mechanical allodynia than their male counterparts. In male rats, SNI induced a significant reduction of rearing, compared to sham controls. Trends for depressive-like behaviours in females and for anxiety-like behaviours in males were observed after SNI surgery but did not reach statistical significance. No concomitant alterations in levels of endogenous cannabinoid ligands and related N-acylethanolamines were observed in the regions analysed. Our results demonstrate differential development of SNI-induced nociceptive behaviour between male and female rats suggesting important sexually dimorphic modifications in pain pathways. SNI had no effect on depression- or anxiety-related behaviours in animals of either sex, or on levels of endocannabinoid ligands and related N-acylethanolamines across the regions involved in the descending modulation of nociception at the time points investigated.
Collapse
|
35
|
Rizvi SJ, Gandhi W, Salomons T. Reward processing as a common diathesis for chronic pain and depression. Neurosci Biobehav Rev 2021; 127:749-760. [PMID: 33951413 DOI: 10.1016/j.neubiorev.2021.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/14/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
Pain disorders and psychiatric illness are strongly comorbid, particularly in the context of Major Depressive Disorder (MDD). While these disorders account for a significant amount of global disability, the mechanisms of their overlap remain unclear. Understanding these mechanisms is of vital importance to developing prevention strategies and interventions that target both disorders. Of note, brain reward processing may be relevant to explaining how the comorbidity arises, given pain disorders and MDD can result in maladaptive reward responsivity that limits reward learning, appetitive approach behaviours and consummatory response. In this review, we discuss this research and explore the possibility of reward processing deficits as a common diathesis to explain the manifestation of pain disorders and MDD. Specifically, we hypothesize that contextual physical or psychological events (e.g. surgery, divorce) in the presence of a reward impairment diathesis worsens symptoms and results in a negative feedback loop that increases the chronicity and probability of developing the other disorder. We also highlight the implications for treatment and provide a framework for future research.
Collapse
Affiliation(s)
- Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Wiebke Gandhi
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Tim Salomons
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
36
|
Zeng F, Zhang Q, Liu Y, Sun G, Li A, Talay RS, Wang J. AMPAkines potentiate the corticostriatal pathway to reduce acute and chronic pain. Mol Brain 2021; 14:45. [PMID: 33653395 PMCID: PMC7923831 DOI: 10.1186/s13041-021-00757-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
The corticostriatal circuit plays an important role in the regulation of reward- and aversion-types of behaviors. Specifically, the projection from the prelimbic cortex (PL) to the nucleus accumbens (NAc) has been shown to regulate sensory and affective aspects of pain in a number of rodent models. Previous studies have shown that enhancement of glutamate signaling through the NAc by AMPAkines, a class of agents that specifically potentiate the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, reduces acute and persistent pain. However, it is not known whether postsynaptic potentiation of the NAc with these agents can achieve the full anti-nociceptive effects of PL activation. Here we compared the impact of AMPAkine treatment in the NAc with optogenetic activation of the PL on pain behaviors in rats. We found that not only does AMPAkine treatment partially reconstitute the PL inhibition of sensory withdrawals, it fully occludes the effect of the PL on reducing the aversive component of pain. These results indicate that the NAc is likely one of the key targets for the PL, especially in the regulation of pain aversion. Furthermore, our results lend support for neuromodulation or pharmacological activation of the corticostriatal circuit as an important analgesic approach.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Robert S Talay
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Phelps CE, Lumb BM, Donaldson LF, Robinson ES. The partial saphenous nerve injury model of pain impairs reward-related learning but not reward sensitivity or motivation. Pain 2021; 162:956-966. [PMID: 33591111 DOI: 10.1097/j.pain.0000000000002177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is highly comorbid with affective disorders, including major depressive disorder. A core feature of major depressive disorder is a loss of interest in previously rewarding activities. Major depressive disorder is also associated with negative affective biases where cognitive processes are modulated by the affective state. Previous work from our laboratory has shown that reward-related learning and memory is impaired in rodent models of depression generated through a variety of different manipulations. This study investigated different aspects of reward-related behaviour in a rodent model of chronic pain, the partial saphenous nerve injury (PSNI). Using our reward-learning assay, an impairment in reward learning was observed with no difference in sucrose preference, consistent with a lack of effect on reward sensitivity and similar to the effects seen in depression models. In a successive negative contrast task, chronic pain was not associated with changes in motivation for reward either under normal conditions or when reward was devalued although both sham and PSNI groups exhibited the expected negative contrast effect. In the affective bias test, PSNI rats developed a positive affective bias when treated with gabapentin, an effect not seen in the controls suggesting an association with the antinociceptive effects of the drug inducing a relatively more positive affective state. Together, these data suggest that there are changes in reward-related cognition in this chronic pain model consistent with previous findings in rodent models of depression. The effects seen with gabapentin suggest that pain-associated negative affective state may be remediated by this atypical analgesic.
Collapse
Affiliation(s)
- Caroline E Phelps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, United States
| | - Bridget M Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Lucy F Donaldson
- School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, United Kingdom
| | - Emma S Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
38
|
Caravan B, Hu L, Veyg D, Kulkarni P, Zhang Q, Chen ZS, Wang J. Sleep spindles as a diagnostic and therapeutic target for chronic pain. Mol Pain 2021; 16:1744806920902350. [PMID: 31912761 PMCID: PMC6977222 DOI: 10.1177/1744806920902350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pain is known to disrupt sleep patterns, and disturbances in sleep can further worsen pain symptoms. Sleep spindles occur during slow wave sleep and have established effects on sensory and affective processing in mammals. A number of chronic neuropsychiatric conditions, meanwhile, are known to alter sleep spindle density. The effect of persistent pain on sleep spindle waves, however, remains unknown, and studies of sleep spindles are challenging due to long period of monitoring and data analysis. Utilizing automated sleep spindle detection algorithms built on deep learning, we can monitor the effect of pain states on sleep spindle activity. In this study, we show that in a chronic pain model in rodents, there is a significant decrease in sleep spindle activity compared to controls. Meanwhile, methods to restore sleep spindles are associated with decreased pain symptoms. These results suggest that sleep spindle density correlates with chronic pain and may be both a potential biomarker for chronic pain and a target for neuromodulation therapy.
Collapse
Affiliation(s)
- Bassir Caravan
- New York University School of Medicine, New York, NY, USA
| | - Lizbeth Hu
- New York University School of Medicine, New York, NY, USA
| | - Daniel Veyg
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY, USA
| | - Prathamesh Kulkarni
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA.,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
39
|
Antihypernociceptive and Neuroprotective Effects of the Aqueous and Methanol Stem-Bark Extracts of Nauclea pobeguinii (Rubiaceae) on STZ-Induced Diabetic Neuropathic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6637584. [PMID: 33603820 PMCID: PMC7872765 DOI: 10.1155/2021/6637584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The greatest common and devastating complication of diabetes is painful neuropathy that can cause hyperalgesia and allodynia. It can disturb psychosocial functioning by increasing levels of anxiety and depression. This work was designed to evaluate the antihyperalgesic, antidepressant, and anxiolytic-like effects of the aqueous and methanol extracts of Nauclea pobeguinii stem-bark in diabetic neuropathy induced by streptozotocin in mice. Diabetic neuropathy was induced in mice by the intraperitoneal administration of 200 mg/kg streptozotocin (STZ) to provoke hyperglycemia. Nauclea pobeguinii aqueous and methanol extracts at the doses of 150 and 300 mg/kg were administered by oral route, and their effects were evaluated on antihyperalgesic activity (Von Frey filaments, hot plate, acetone, and formalin tests), blood glucose levels, body weight, serum, sciatic nerve proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and sciatic nerve growth factor (IGF and NGF) rates, depression (open field test, forced swimming test, tail suspension test), and anxiety (elevated plus maze, light-dark box test, social interaction). Oral administration of Nauclea pobeguinii stem-bark aqueous and methanol extracts (150 and 300 mg/kg) produced antihyperalgesic, antidepressant, and anxiolytic-like effects in STZ-induced diabetic neuropathic mice. Extracts also triggered a decrease in glycaemia and increased body weight in treated animals. They also significantly (p <0.001) reduced tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 and significantly (p <0.001) increased nerve growth factor (NGF) and insulin-like growth factor (IGF) in sciatic nerves. The results of this study confirmed that Nauclea pobeguinii aqueous and methanol extracts possess antihyperalgesic, antidepressant, and anxiolytic activities and could be beneficial therapeutic agents.
Collapse
|
40
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
41
|
Talay RS, Liu Y, Michael M, Li A, Friesner ID, Zeng F, Sun G, Chen ZS, Zhang Q, Wang J. Pharmacological restoration of anti-nociceptive functions in the prefrontal cortex relieves chronic pain. Prog Neurobiol 2021; 201:102001. [PMID: 33545233 DOI: 10.1016/j.pneurobio.2021.102001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022]
Abstract
Chronic pain affects one in four adults, and effective non-sedating and non-addictive treatments are urgently needed. Chronic pain causes maladaptive changes in the cerebral cortex, which can lead to impaired endogenous nociceptive processing. However, it is not yet clear if drugs that restore endogenous cortical regulation could provide an effective therapeutic strategy for chronic pain. Here, we studied the nociceptive response of neurons in the prelimbic region of the prefrontal cortex (PL-PFC) in freely behaving rats using a spared nerve injury (SNI) model of chronic pain, and the impact of AMPAkines, a class of drugs that increase central glutamate signaling, on such response. We found that neurons in the PL-PFC increase their firing rates in response to noxious stimulations; chronic neuropathic pain, however, suppressed this important cortical pain response. Meanwhile, CX546, a well-known AMPAkine, restored the anti-nociceptive response of PL-PFC neurons in the chronic pain condition. In addition, both systemic administration and direct delivery of CX546 into the PL-PFC inhibited symptoms of chronic pain, whereas optogenetic inactivation of the PFC neurons or administration of AMPA receptor antagonists in the PL-PFC blocked the anti-nociceptive effects of CX546. These results indicate that restoration of the endogenous anti-nociceptive functions in the PL-PFC by pharmacological agents such as AMPAkines constitutes a successful strategy to treat chronic neuropathic pain.
Collapse
Affiliation(s)
- Robert S Talay
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States; Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Matthew Michael
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Isabel D Friesner
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Fei Zeng
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Guanghao Sun
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, United States; Neuroscience Institute, New York University Langone Health, New York, NY 10016, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States; Neuroscience Institute, New York University Langone Health, New York, NY 10016, United States; Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, United States.
| |
Collapse
|
42
|
Culp C, Kim HK, Abdi S. Ketamine Use for Cancer and Chronic Pain Management. Front Pharmacol 2021; 11:599721. [PMID: 33708116 PMCID: PMC7941211 DOI: 10.3389/fphar.2020.599721] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Ketamine, an N-methyl-D-aspartate receptor antagonist, is widely known as a dissociative anesthetic and phencyclidine derivative. Due to an undesirable adverse event profile when used as an anesthetic it had widely fallen out of human use in favor of more modern agents. However, it has recently been explored for several other indications such as treatment resistant depression and chronic pain. Several recent studies and case reports compiled here show that ketamine is an effective analgesic in chronic pain conditions including cancer-related neuropathic pain. Of special interest is ketamine's opioid sparing ability by counteracting the central nervous system sensitization seen in opioid induced hyperalgesia. Furthermore, at the sub-anesthetic concentrations used for analgesia ketamine's safety and adverse event profiles are much improved. In this article, we review both the basic science and clinical evidence regarding ketamine's utility in chronic pain conditions as well as potential adverse events.
Collapse
Affiliation(s)
- Clayton Culp
- McGovern Medical School, University of Texas Health Science Center Houston (UTHealth), Houston, TX, United States
| | - Hee Kee Kim
- Division of Anesthesiology, Department of Pain Medicine, Critical Care and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Salahadin Abdi
- Division of Anesthesiology, Department of Pain Medicine, Critical Care and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
43
|
Zhang L, Ma Z, Wu Z, Jin M, An L, Xue F. Curcumin Improves Chronic Pain Induced Depression Through Regulating Serum Metabolomics in a Rat Model of Trigeminal Neuralgia. J Pain Res 2020; 13:3479-3492. [PMID: 33402844 PMCID: PMC7778445 DOI: 10.2147/jpr.s283782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background Depression is a prevalent and complex psychiatric disorder with high incidence in patients with chronic pain. The underlying pathogenesis of chronic pain-induced depression is complicated and remains largely unclear. An integrated analysis of endogenous substance-related metabolisms would help to understand the molecular mechanism of chronic pain-induced depression. Curcumin was reported to exert various health benefits, such as anti-depression, antioxidant, antineoplastic, analgesia, and anti-inflammation. Objective The aim of this study was to analyze the biomarkers related to depression in serum and to evaluate the anti-depression properties of curcumin in a chronic pain-induced depression model of rats. Design This is a randomized, controlled experiment. Setting This study was conducted at the Experimental Animal Center, Beijing Friendship Hospital, Capital Medical University. Methods Trigeminal neuralgia (TN) was produced by injecting 4 µL, 10% cobra venom saline solution into the infraorbital nerve (ION). Curcumin was administered by gavage twice a day from post-operation day (POD) 15 to POD 42. Mechanical allodynia was assessed using von Frey filaments. Sucrose preference and forced swimming tests were performed to evaluate depression-like behaviors. The metabolomics analysis was preceded by LCMS-IT-TOF and multivariate statistical methods for sample detection and biomarker screening. Results Cobra venom intra-ION injection led to chronic mechanical allodynia, reduced sucrose preference, and prolonged immobility during forced swimming. Curcumin treatment alleviated chronic mechanical allodynia, regained sucrose preference, and reduced immobility time. Differential analysis identified 30 potential metabolites changed under TN condition. The integrated analyses further revealed two major metabolic changes by comparing the serums from sham operated rats, TN rats, and TN rats treated with curcumin: 1) ether lipid metabolism; and 2) glycerophospholipid metabolism, and suggested that curcumin may improve chronic pain-induced depression by regulating these two types of lipid metabolisms. Conclusion Ether lipid and glycerophospholipid metabolism might be two of the pathways with the most potential related to chronic pain induced-depression; and curcumin could alleviate chronic pain induced-depression by modulating these two pathways. These results provide further insights into the mechanisms of chronic pain-induced depression and may help to identify potential targets for anti-depression properties of curcumin.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Wu
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Mu Jin
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lixin An
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
44
|
Li L, Zou Y, Liu B, Yang R, Yang J, Sun M, Li Z, Xu X, Li G, Liu S, Greffrath W, Treede RD, Li G, Liang S. Contribution of the P2X4 Receptor in Rat Hippocampus to the Comorbidity of Chronic Pain and Depression. ACS Chem Neurosci 2020; 11:4387-4397. [PMID: 33284579 DOI: 10.1021/acschemneuro.0c00623] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hippocampus is an important region for the interaction between depression and pain. Studies show that the P2X4 receptor plays key role in neuropathic pain. This work investigated the potential implication of the P2X4 receptor in the hippocampus in comorbidity of chronic pain and depression. The rat model induced by chronic constriction injury (CCI) plus unpredictable chronic mild stress (UCMS) was used in this study. Our data showed that CCI plus UCMS treatment resulted in abnormal changes in pain and depressive-like behaviors in the rat, accompanied by the upregulated expression of P2X4, NLRP3 (NOD-like receptor protein 3) inflammasome, and interleukin-1β and the activation of p38 MAPK in the hippocampus. The P2X4 antagonist 5-BDBD reversed these abnormal changes in the hippocampus, relieved hippocampal neuronal damage, and alleviated the abnormal pain and depressive-like behaviors in the CCI plus UCMS treated rats. These findings suggest that the P2X4 receptor in the hippocampus may mediate and significantly contribute to the pathological processes of comorbid pain and depression.
Collapse
Affiliation(s)
- Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Yuting Zou
- Medical School of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Baoe Liu
- Medical School of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Jingjian Yang
- Queen Marie College of Nanchang University, Medical College of Nanchang University, Nanchang, 330008, People’s Republic of China
| | - Minghao Sun
- Medical School of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Zijing Li
- Medical School of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Wolfgang Greffrath
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Guodong Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| |
Collapse
|
45
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
46
|
Friesner ID, Martinez E, Zhou H, Gould JD, Li A, Chen ZS, Zhang Q, Wang J. Ketamine normalizes high-gamma power in the anterior cingulate cortex in a rat chronic pain model. Mol Brain 2020; 13:129. [PMID: 32967695 PMCID: PMC7513294 DOI: 10.1186/s13041-020-00670-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
Chronic pain alters cortical and subcortical plasticity, causing enhanced sensory and affective responses to peripheral nociceptive inputs. Previous studies have shown that ketamine had the potential to inhibit abnormally amplified affective responses of single neurons by suppressing hyperactivity in the anterior cingulate cortex (ACC). However, the mechanism of this enduring effect has yet to be understood at the network level. In this study, we recorded local field potentials from the ACC of freely moving rats. Animals were injected with complete Freund’s adjuvant (CFA) to induce persistent inflammatory pain. Mechanical stimulations were administered to the hind paw before and after CFA administration. We found a significant increase in the high-gamma band (60–100 Hz) power in response to evoked pain after CFA treatment. Ketamine, however, reduced the high-gamma band power in response to evoked pain in CFA-treated rats. In addition, ketamine had a sustained effect on the high-gamma band power lasting up to five days after a single dose administration. These results demonstrate that ketamine has the potential to alter maladaptive neural responses in the ACC induced by chronic pain.
Collapse
Affiliation(s)
- Isabel D Friesner
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Erik Martinez
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Haocheng Zhou
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, 10016, USA. .,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
47
|
A Central Amygdala-Ventrolateral Periaqueductal Gray Matter Pathway for Pain in a Mouse Model of Depression-like Behavior. Anesthesiology 2020; 132:1175-1196. [PMID: 31996550 DOI: 10.1097/aln.0000000000003133] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The mechanisms underlying depression-associated pain remain poorly understood. Using a mouse model of depression, the authors hypothesized that the central amygdala-periaqueductal gray circuitry is involved in pathologic nociception associated with depressive states. METHODS The authors used chronic restraint stress to create a mouse model of nociception with depressive-like behaviors. They then used retrograde tracing strategies to dissect the pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal gray. The authors performed optogenetic and chemogenetic experiments to manipulate the activity of this pathway to explore its roles for nociception. RESULTS The authors found that γ-aminobutyric acid-mediated (GABAergic) neurons from the central amygdala project onto GABAergic neurons of the ventrolateral periaqueductal gray, which, in turn, locally innervate their adjacent glutamatergic neurons. After chronic restraint stress, male mice displayed reliable nociception (control, mean ± SD: 0.34 ± 0.11 g, n = 7 mice; chronic restraint stress, 0.18 ± 0.11 g, n = 9 mice, P = 0.011). Comparable nociception phenotypes were observed in female mice. After chronic restraint stress, increased circuit activity was generated by disinhibition of glutamatergic neurons of the ventrolateral periaqueductal gray by local GABAergic interneurons via receiving enhanced central amygdala GABAergic inputs. Inhibition of this circuit increased nociception in chronic restraint stress mice (median [25th, 75th percentiles]: 0.16 [0.16, 0.16] g to 0.07 [0.04, 0.16] g, n = 7 mice per group, P < 0.001). In contrast, activation of this pathway reduced nociception (mean ± SD: 0.16 ± 0.08 g to 0.34 ± 0.13 g, n = 7 mice per group, P < 0.001). CONCLUSIONS These findings indicate that the central amygdala-ventrolateral periaqueductal gray pathway may mediate some aspects of pain symptoms under depression conditions.
Collapse
|
48
|
Wang J, Wang Y, Xu X, Peng S, Xu F, Liu P. Use of Various Doses of S-Ketamine in Treatment of Depression and Pain in Cervical Carcinoma Patients with Mild/Moderate Depression After Laparoscopic Total Hysterectomy. Med Sci Monit 2020; 26:e922028. [PMID: 32565534 PMCID: PMC7331479 DOI: 10.12659/msm.922028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study investigated the effects of various doses of S-ketamine on depression and pain management of cervical carcinoma patients with mild/moderate depression. Material/Methods This randomized, double-blind, controlled study included 417 cervical carcinoma patients who received laparoscopic modified radical hysterectomy from April 2015 to July 2018 and who also had mild/moderate depression symptoms based on HAMD-17 scores (8~24). All patients were randomized into 4 groups: 1) the control group, 2) the racemic ketamine group, 3) the high-dose S-ketamine group; and 4) the low-dose S-ketamine group. Pain was assessed using the Visual Analogue Score (VAS), and depression was assessed using theHAMD-17 score. Serum levels of BDNF and 5-HT were measured. Results The 4 groups of patients showed no significant differences in operation time, bleeding volume, hospitalization duration, or complications. The high-dose S-ketamine group showed significantly lower VAS and HAMD-17 scores than all other groups at 1 day and 3 days postoperatively, but no differences were observed in the low-dose S-ketamine group and the racemic ketamine group. The high-dose S-ketamine group showed significantly higher serum BDNF and 5-HT levels at 1 day and 3 days after surgery. However, 1 week after surgery, no difference was observed in any of the treatment groups. Conclusions At subanesthetic dose, both 0.5 mg/kg and 0.25 mg/kg S-ketamine improved short-term depression and pain for cervical carcinoma patients after surgery, and the effects were better than with the same dose of racemic ketamine.
Collapse
Affiliation(s)
- Jie Wang
- Department of Anesthesiology, Ninth People's Hospital of Suzhou, Suzhou, Jiangsu, China (mainland)
| | - Yajun Wang
- Department of Anesthesiology, Xishan People's Hospital, Wuxi, Jiangsu, China (mainland)
| | - Xudong Xu
- Department of Anesthesiology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, Jiangsu, China (mainland)
| | - Sheng Peng
- Department of Anesthesiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China (mainland)
| | - Feng Xu
- Department of Medical Oncology, Shanghai Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Peirong Liu
- Department of Anesthesiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China (mainland)
| |
Collapse
|
49
|
Humo M, Ayazgök B, Becker LJ, Waltisperger E, Rantamäki T, Yalcin I. Ketamine induces rapid and sustained antidepressant-like effects in chronic pain induced depression: Role of MAPK signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109898. [PMID: 32109506 DOI: 10.1016/j.pnpbp.2020.109898] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Chronic pain produces psychologic distress, which often leads to mood disorders such as depression. Co-existing chronic pain and depression pose a serious socio-economic burden and result in disability affecting millions of individuals, which urges the development of treatment strategies targeting this comorbidity. Ketamine, a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, is shown to be efficient in treating both pain and depression-related symptoms. However, the molecular characteristics of its role in chronic pain-induced depression remain largely unexplored. Hence, we studied the behavioral and molecular effects of a single systemic administration of ketamine (15 mg/kg, i.p.) on mechanical hypersensitivity and depressive-like consequences of chronic neuropathic pain. We showed that ketamine transiently alleviated mechanical hypersensitivity (lasting <24 h), while its antidepressant effect was observed even 72 h after administration. In addition, ketamine normalized the upregulated expression of the mitogen activated protein kinase (MAPK) phosphatase 1 (MKP-1) and the downregulated phosphorylation of extracellular signal-regulated kinase (pERK) in the anterior cingulate cortex (ACC) of mice displaying neuropathic pain-induced depressive-like behaviors. This effect of ketamine on the MKP-1 was first detected 30 min after the ketamine administration and persisted until up to 72 h. Altogether, these findings provide insight into the behavioral and molecular changes associated with single ketamine administration in the comorbidity of chronic pain and depression.
Collapse
Affiliation(s)
- Muris Humo
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, 67000 Strasbourg, France
| | - Beyza Ayazgök
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, 67000 Strasbourg, France; Department of Biochemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey
| | - Léa J Becker
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, 67000 Strasbourg, France
| | - Elisabeth Waltisperger
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, 67000 Strasbourg, France
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapeutics, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique et Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
50
|
Yang Y, Song Y, Zhang X, Zhao W, Ma T, Liu Y, Ma P, Zhao Y, Zhang H. Ketamine relieves depression-like behaviors induced by chronic postsurgical pain in rats through anti-inflammatory, anti-oxidant effects and regulating BDNF expression. Psychopharmacology (Berl) 2020; 237:1657-1669. [PMID: 32125485 DOI: 10.1007/s00213-020-05490-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Clinically, chronic postsurgical pain (CPSP) is very common. Many CPSP patients may experience depression. Thus far, little is known about the mechanism of the comorbidity of CPSP and depression. Ketamine has been confirmed to possess analgesic and rapid antidepressant effects, but it is unclear whether ketamine can relieve the comorbidity of CPSP and depression. OBJECTIVES The present study evaluated the effects of ketamine in rats with the comorbidity of CPSP and depression. METHODS We induced CPSP in rats by thoracotomy and screened for rats with or without depression-like phenotype by hierarchical cluster analysis based on the results of depression-related behavioral experiments. Subsequently, rats were intraperitoneally injected with ketamine (20 mg/kg) and were evaluated by mechanical withdrawal threshold, cold hyperalgesia test, sucrose preference test, forced swimming test, and open field test. The inflammatory-related cytokines (IL-1, IL-6, TNF-α, nuclear factor-kappaB), oxidative stress parameters (superoxide dismutase, malondialdehyde, glutathione, catalase), and brain-derived neurotrophic factor (BDNF) in rat hippocampus were detected. RESULTS In the hippocampus of rats with the comorbidity of CPSP and depression, IL-1, IL-6, TNF-α, nuclear factor-kappaB, and malondialdehyde were significantly increased, while superoxide dismutase, glutathione, catalase, and BDNF were significantly decreased. Ketamine relieved depression but did not attenuate hyperalgesia in CPSP rats. Additionally, ketamine reduced proinflammatory cytokines, inhibited oxidative stress, and elevated BDNF levels in rat hippocampus. CONCLUSIONS Ketamine can rapidly relieve CPSP-induced depression in rats, which may be related to the reduction of proinflammatory cytokines, regulating oxidative stress and increasing BDNF in the hippocampus.
Collapse
Affiliation(s)
- Yitian Yang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Yuxiang Song
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Xuan Zhang
- Department of Anesthesiology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Weixing Zhao
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Tao Ma
- Department of Anesthesiology, Rocket Army Characteristic Medical Center, Beijing, 100088, China
| | - Yi Liu
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China
| | - Penglei Ma
- Department of Anesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Yifan Zhao
- Department of Anesthesiology, The Fourth Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, Beijing, 100037, China
| | - Hong Zhang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Medical school of Chinese PLA, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|