1
|
Guler S, Sahli AS, Dogan M. Effect of type of delivery and anesthesia method to ABR results on newborn hearing screening. Int J Pediatr Otorhinolaryngol 2025; 188:112185. [PMID: 39675205 DOI: 10.1016/j.ijporl.2024.112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVES The aim of this study is to examine the effect of type of delivery and anesthesia method on the screening ABR test results of newborns within the scope of the Newborn Hearing Screening Program (NHCP) and to investigate the relationship between the test results and the relevant variables. METHODS 441 newborns were included in the study. Of these newborns, 221 constituted the control group (normal (vaginal) delivery), and 220 constituted the study group (cesarean section, delivery). In the study, all newborns whose hearing was evaluated within the scope of the Newborn Screening Program were screened twice. Screening ABR test results applied were compared considering the type of delivery (normal (vaginal) or cesarean section) and anesthesia method (spinal or general). The effects of variables such as the duration of the baby's separation (dissection) from the mother's womb, the duration of exposure to the anesthetic agent and the total duration of the surgical procedure were examined. RESULTS As a result of the study, a statistically significant relationship was found between delivery type (normal (vaginal) or cesarean section) and anesthesia method (spinal or general) and first screening ABR test results (p < 0.001). While there was a statistically significant difference (p < 0.001) in terms of separation time from the mother's womb (p < 0.001) and exposure to an anesthetic agent among the first test screening ABR results of newborns born under general anesthesia, there was no statistically significant difference (p < 0.001) in terms of total surgical procedure time (p = 0.106) no difference was detected. There was no statistically significant difference between ABR test results and these three variables in newborns born under spinal anesthesia (p > 0.05). CONCLUSIONS The type of delivery newborns and the anesthesia method used at delivery may affect the results of screening ABR applied within the scope of a newborn hearing screening protocol. For this reason, it is very important to perform screening tests at the most appropriate and correct time.
Collapse
Affiliation(s)
- Semih Guler
- Sivas Numune Hospital, Department of ENT and Audiology, Sivas, Turkey.
| | - Ayse Sanem Sahli
- Hacettepe University, Hearing and Speech Training Center, Ankara, Turkey.
| | - Murat Dogan
- HUMA Gynecology, Obstetrics and ENT Hospital, Sivas, Turkey.
| |
Collapse
|
2
|
Zhou H, Neudecker V, Perez-Zoghbi JF, Brambrink AM, Yang G. Age-dependent cerebral vasodilation induced by volatile anesthetics is mediated by NG2 + vascular mural cells. Commun Biol 2024; 7:1519. [PMID: 39548262 PMCID: PMC11568297 DOI: 10.1038/s42003-024-07200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Anesthesia can influence cerebral blood flow by altering vessel diameter. Using in vivo two-photon imaging, we examined the effects of volatile anesthetics, sevoflurane and isoflurane, on vessel diameter in young and adult mice. Our results show that these anesthetics induce robust dilation of cortical arterioles and arteriole-proximate capillaries in adult mice, with milder effects in juveniles and no dilation in infants. This anesthesia-induced vasodilation correlates with decreased cytosolic Ca2+ levels in NG2+ vascular mural cells. Optogenetic manipulation of these cells bidirectionally regulates vessel diameter, and their ablation abolishes the vasodilatory response to anesthetics. In immature brains, NG2+ mural cells are fewer in number and express lower levels of Kir6.1, a subunit of ATP-sensitive potassium channels. This likely contributes to the age-dependent differences in vasodilation, as Kir6.1 activation promotes, while its inhibition reduces, anesthesia-induced vasodilation. These findings highlight the essential role of NG2+ mural cells in mediating anesthesia-induced cerebral vasodilation.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, Guangdong Province, 518107, China
| | - Viola Neudecker
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA.
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 100032, USA.
| |
Collapse
|
3
|
Wong-Kee-You AMB, Loveridge-Easther C, Mueller C, Simon N, Good WV. The impact of early exposure to general anesthesia on visual and neurocognitive development. Surv Ophthalmol 2022; 68:539-555. [PMID: 35970232 DOI: 10.1016/j.survophthal.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Every year millions of children are exposed to general anesthesia while undergoing surgical and diagnostic procedures. In the field of ophthalmology, 44,000 children are exposed to general anesthesia annually for strabismus surgery alone. While it is clear that general anesthesia is necessary for sedation and pain minimization during surgical procedures, the possibility of neurotoxic impairments from its exposure is of concern. In animals there is strong evidence linking early anesthesia exposure to abnormal neural development. but in humans the effects of anesthesia are debated. In humans many aspects of vision develop within the first year of life, making the visual system vulnerable to early adverse experiences and potentially vulnerable to early exposure to general anesthesia. We attempt to address whether the visual system is affected by early postnatal exposure to general anesthesia. We first summarize key mechanisms that could account for the neurotoxic effects of general anesthesia on the developing brain and review existing literature on the effects of early anesthesia exposure on the visual system in both animals and humans and on neurocognitive development in humans. Finally, we conclude by proposing future directions for research that could address unanswered questions regarding the impact of general anesthesia on visual development.
Collapse
Affiliation(s)
| | - Cam Loveridge-Easther
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA; University of Auckland, Auckland, New Zealand
| | - Claudia Mueller
- Sutter Health, San Francisco, CA, USA; Stanford Children's Health, Palo Alto, CA, USA
| | | | - William V Good
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
| |
Collapse
|
4
|
Chen K, Lu D, Yang X, Zhou R, Lan L, Wu Y, Wang C, Xu X, Jiang MH, Wei M, Feng X. Enhanced hippocampal neurogenesis mediated by PGC-1α-activated OXPHOS after neonatal low-dose Propofol exposure. Front Aging Neurosci 2022; 14:925728. [PMID: 35966788 PMCID: PMC9363786 DOI: 10.3389/fnagi.2022.925728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background Developing brain is highly plastic and can be easily affected. Growing pediatric usage of anesthetics during painless procedures has raised concerns about the effect of low-dose anesthetics on neurodevelopment. It is urgent to ascertain the neuronal effect of low-dose Propofol, a widely used anesthetic in pediatrics, on developing brains. Methods The behavioral tests after neonatal exposure to low-dose/high-dose Propofol in mice were conducted to clarify the cognitive effect. The nascent cells undergoing proliferation and differentiation stage in the hippocampus and cultured neural stem cells (NSCs) were further identified. In addition, single-nuclei RNA sequencing (snRNA-seq), NSCs bulk RNA-seq, and metabolism trials were performed for pathway investigation. Furthermore, small interfering RNA and stereotactic adenovirus injection were, respectively, used in NSCs and hippocampal to confirm the underlying mechanism. Results Behavioral tests in mice showed enhanced spatial cognitive ability after being exposed to low-dose Propofol. Activated neurogenesis was observed both in hippocampal and cultured NSCs. Moreover, transcriptome analysis of snRNA-seq, bulk RNA-seq, and metabolism trials revealed a significantly enhanced oxidative phosphorylation (OXPHOS) level in NSCs. Furthermore, PGC-1α, a master regulator in mitochondria metabolism, was found upregulated after Propofol exposure both in vivo and in vitro. Importantly, downregulation of PGC-1α remarkably prevented the effects of low-dose Propofol in activating OXPHOS and neurogenesis. Conclusions Taken together, this study demonstrates a novel alteration of mitochondrial function in hippocampal neurogenesis after low-dose Propofol exposure, suggesting the safety, even potentially beneficial effect, of low-dose Propofol in pediatric use.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dihan Lu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Yang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangtian Lan
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Wang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuanxian Xu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Hua Jiang
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, China
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ming Wei
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Ming Wei
| | - Xia Feng
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xia Feng
| |
Collapse
|
5
|
Maksimovic S, Useinovic N, Quillinan N, Covey DF, Todorovic SM, Jevtovic-Todorovic V. General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031889. [PMID: 35163810 PMCID: PMC8836828 DOI: 10.3390/ijms23031889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.
Collapse
Affiliation(s)
- Stefan Maksimovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Correspondence:
| | - Nemanja Useinovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
6
|
van den Bosch GE, Tibboel D, de Graaff JC, El Marroun H, van der Lugt A, White T, van Dijk M. Neonatal Pain, Opioid, and Anesthetic Exposure; What Remains in the Human Brain After the Wheels of Time? Front Pediatr 2022; 10:825725. [PMID: 35633952 PMCID: PMC9132108 DOI: 10.3389/fped.2022.825725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To evaluate possible negative long-term effects of neonatal exposure to pain, opioids and anesthetics in children and adolescents. STUDY DESIGN We studied five unique groups of children recruited from well-documented neonatal cohorts with a history of neonatal exposure to pain, opioids or anesthetics at different points along the continuum from no pain to intense pain and from no opioid exposure to very high opioid exposure in the presence or absence of anesthetics. We evaluated children who underwent major surgery (group 1 and 2), extracorporeal membrane oxygenation (group 3), preterm birth (group 4) and prenatal opioid exposure (group 5) in comparison to healthy controls. Neuropsychological functioning, thermal detection and pain thresholds and high-resolution structural and task-based functional magnetic resonance imaging during pain were assessed. In total 94 cases were included and compared to their own control groups. RESULTS Children and adolescents in groups 3 and 5 showed worse neuropsychological functioning after high opioid exposure. A thicker cortex was found in group 1 (pain, opioid and anesthetic exposure) in only the left rostral-middle-frontal-cortex compared to controls. We found no differences in other brain volumes, pain thresholds or brain activity during pain in pain related brain regions between the other groups and their controls. CONCLUSIONS No major effects of neonatal pain, opioid or anesthetic exposure were observed in humans 8-19 years after exposure in early life, apart from neuropsychological effects in the groups with the highest opioid exposure that warrants further investigation. Studies with larger sample sizes are needed to confirm our findings and test for less pronounced differences between exposed and unexposed children.
Collapse
Affiliation(s)
- Gerbrich E van den Bosch
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Jurgen C de Graaff
- Department of Anesthesiology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Psychology, Education and Child Studies, Erasmus University, Rotterdam, Netherlands
| | | | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Radiology, Erasmus MC, Rotterdam, Netherlands
| | - Monique van Dijk
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
7
|
Walker SM, Malkmus S, Eddinger K, Steinauer J, Roberts AJ, Shubayev VI, Grafe MR, Powell SB, Yaksh TL. Evaluation of neurotoxicity and long-term function and behavior following intrathecal 1 % 2-chloroprocaine in juvenile rats. Neurotoxicology 2021; 88:155-167. [PMID: 34801587 DOI: 10.1016/j.neuro.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023]
Abstract
Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 μL/g at P7, 0.75 μL/g at P14, 0.5 μL/g at P21) and produced motor and sensory block for 10-15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion.
Collapse
Affiliation(s)
- Suellen M Walker
- Department of Anesthesiology, University of California San Diego, CA, USA; Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health and Department of Anaesthesia and Pain Medicine, Great Ormond St Hospital Foundation Trust, London, United Kingdom.
| | - Shelle Malkmus
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Kelly Eddinger
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Joanne Steinauer
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Amanda J Roberts
- Animal Models Core, Scripps Research Institute, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Susan B Powell
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, CA, USA
| |
Collapse
|
8
|
陈 明, 欧 梦, 郝 学, 黄 瀚, 张 东, 陈 媛, 梁 鹏, 周 诚, 李 羽. [Effect of Long-time Postnatal Exposure to Sevoflurane on Causing Attention-deficit/Hyperactivity Disorder in Rats]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:207-215. [PMID: 33829693 PMCID: PMC10408931 DOI: 10.12182/20210360601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether long-term exposure to inhaled sevoflurane, a volatile anesthetic, causes abnormal activities and memory impairment related to attention-deficit/hyperactivity disorder (ADHD) in neonatal rats. METHODS On postnatal day 5 (P5), Sprague-Dawley rats were randomly assigned to two sevoflurane subgroups and two control subgroups and underwent experimental intervention. The two sevoflurane (SEVO) subgroups were exposed to 3% sevoflurane for 2 h and 4 h respectively, while the two control subgroups were given pure oxygen for the same amount and duration. Behavioral tests, including open-field test (OFT), five-choice serial reaction time task (5-CSRTT), fear-conditioning (FC) and Morris water maze (MWM), were applied to evaluate changes in cognition, memory, anxiety and ADHD-related behavioral changes in the rats in adolescence (-P25) and in adulthood (-P65). RESULTS In OFT, the SEVO 2 h and SEVO 4 h subgroups displayed activity level and exploratory behaviors similar to those of the control subgroups on P21 and P61, with no statistically significant difference identified in the data. 5-CSRTT results on P25 and P65 indicated no statistically significant difference between the SEVO subgroups and the control subgroups in regard to ADHD-related abnormal behaviors, including number of immature reaction, rate of correct response and omission rate. In the FC experiment, SEVO 4 h group had a shorter freezing period and longer period of freezing latency ( P=0.029) in comparison to the control groups. The results of the MWM test showed that the escape latency period of rats in the SEVO 4 h group was significantly prolonged on the second day and the third day, compared to the control groups ( P<0.05). The average swimming speed of SEVO groups did no exhibit any statistically significant difference on P69 or P76. The time the SEVO 4 h group spent in the target quadrant was significantly shorter than that of the control group ( P=0.039) and percentage of distance traveled in the target quadrant was significantly reduced compared to that the control group ( P=0.048). CONCLUSION The findings suggest that four hours of inhaled sevoflurane exposure in neonate rats may cause memory impairment, but does no increase risks for ADHD-related abnormal activities.
Collapse
Affiliation(s)
- 明凯 陈
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 梦婵 欧
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 学超 郝
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 瀚 黄
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 东航 张
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 媛媛 陈
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 鹏 梁
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 诚 周
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 羽 李
- 四川大学华西医院 麻醉科 (成都 610041)Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
[Near-infrared spectroscopy : Technique, development, current use and perspectives]. Anaesthesist 2020; 70:190-203. [PMID: 32930804 DOI: 10.1007/s00101-020-00837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Near-infrared spectroscopy (NIRS) has been available in research and clinical practice for more than four decades. Recently, there have been numerous publications and substantial developments in the field. This article describes the clinical application of NIRS in relation to current guidelines, with a focus on pediatric and cardiac anesthesia. It discusses technical and physiological principles, pitfalls in clinical use and presents (patho)physiological influencing factors and derived variables, such as fractional oxygen extraction (FOE) and the cerebral oxygen index (COx). Recommendations for the interpretation of NIRS values in connection with influencing factors, such as oxygen transport capacity, gas exchange and circulation as well as an algorithm for cardiac anesthesia are presented. Limitations of the method and the lack of comparability of values from different devices as well as generally accepted standard values are explained. Technical differences and advantages compared to pulse oxymetry and transcranial Doppler sonography are illuminated. Finally, the prognostic significance and requirements for future clinical studies are discussed.
Collapse
|
10
|
Jin M, Zhang J, Shao H, Liu J, Zhao T, Huang Y. Percutaneous endoscopic-assisted direct repair of pars defect without general anesthesia could be a satisfying treatment alternative for young patient with symptomatic lumbar spondylolysis: a technique note with case series. BMC Musculoskelet Disord 2020; 21:340. [PMID: 32487055 PMCID: PMC7268338 DOI: 10.1186/s12891-020-03365-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Multiple surgical procedures are applied in young patients with symptomatic lumbar spondylolysis when conservative treatments fail. Although the optimal surgical procedure option is controversial, the treatment paradigm has shifted from open surgery to minimally invasive spine surgery. To date, a limited number of studies on the feasibility of percutaneous endoscopic-assisted direct repair of pars defect have been carried out. Herein, for the first time, we retrospectively explore the outcomes of pars defect via percutaneous endoscopy. Methods We retrospectively examined young patients with spondylolysis treated using the percutaneous endoscopic-assisted direct repair of pars defect supplemented with autograft as well as percutaneous pedicle screw fixation between September 2014 and December 2018. Six patients with a mean age of 18.8 years were enrolled in the study. We used preoperatively computed tomographic (CT) scans to evaluate the size of pars defect, and graded disc degeneration using Pfirrmann’s classification through magnetic resonance images (MRI). We assessed the clinical outcomes using the Oswestry Disability Index (ODI), 36-Item Short-Form Health Survey (SF-36) as well as Visual Analogue Scale for back pain (VAS-B). Results Our findings revealed that pain intensity and function outcomes, including VAS-B, ODI, and SF-36 (PCS and MCS) scores, were markedly improved after surgery and at the final follow-up visit. The change in the gap distance of the pars defect was remarkably significant after surgery and during the follow-up period. Only one of the 12 pars repaired was reported as a non-union at the final follow-up visit. Moreover, no surgery-related complications were reported in any of the cases. Conclusion Percutaneous endoscopic-assisted direct repair of pars defect without general anesthesia, a minimally invasive treatment option, supplemented with autograft and percutaneous pedicle screw fixation, could be a satisfying treatment alternative for young patients with symptomatic lumbar spondylolysis.
Collapse
Affiliation(s)
- Mengran Jin
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Shangtang Road No. 158, Hangzhou, 310014, Zhejiang Province, China.,People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Shangtang Road No. 158, Hangzhou, 310014, Zhejiang Province, China.,People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang Province, China
| | - Haiyu Shao
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Shangtang Road No. 158, Hangzhou, 310014, Zhejiang Province, China.,People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang Province, China
| | - Jianwen Liu
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Shangtang Road No. 158, Hangzhou, 310014, Zhejiang Province, China.,People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang Province, China
| | - Tingxiao Zhao
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Shangtang Road No. 158, Hangzhou, 310014, Zhejiang Province, China.,People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang Province, China
| | - Yazeng Huang
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Shangtang Road No. 158, Hangzhou, 310014, Zhejiang Province, China. .,People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang Province, China.
| |
Collapse
|
11
|
Abstract
This review is intended to provide a summary of the literature pertaining to the perioperative care of neurosurgical patients and patients with neurological diseases. General topics addressed in this review include general neurosurgical considerations, stroke, neurological monitoring, and perioperative disorders of cognitive function.
Collapse
|
12
|
Eckenhoff RG, Maze M, Xie Z, Culley DJ, Goodlin SJ, Zuo Z, Wei H, Whittington RA, Terrando N, Orser BA, Eckenhoff MF. Perioperative Neurocognitive Disorder: State of the Preclinical Science. Anesthesiology 2020; 132:55-68. [PMID: 31834869 PMCID: PMC6913778 DOI: 10.1097/aln.0000000000002956] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this article is to provide a succinct summary of the different experimental approaches that have been used in preclinical postoperative cognitive dysfunction research, and an overview of the knowledge that has accrued. This is not intended to be a comprehensive review, but rather is intended to highlight how the many different approaches have contributed to our understanding of postoperative cognitive dysfunction, and to identify knowledge gaps to be filled by further research. The authors have organized this report by the level of experimental and systems complexity, starting with molecular and cellular approaches, then moving to intact invertebrates and vertebrate animal models. In addition, the authors' goal is to improve the quality and consistency of postoperative cognitive dysfunction and perioperative neurocognitive disorder research by promoting optimal study design, enhanced transparency, and "best practices" in experimental design and reporting to increase the likelihood of corroborating results. Thus, the authors conclude with general guidelines for designing, conducting and reporting perioperative neurocognitive disorder rodent research.
Collapse
Affiliation(s)
- Roderic G Eckenhoff
- From Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (R.G.E., H.W., M.F.E.) Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California (M.M.) Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (Z.X.) Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts (D.J.C.) Harvard Medical School, Boston, Massachusetts (Z.X., D.J.C.) Department of Medicine, Oregon Health and Science University and Veterans Administration Portland Health Care System, Portland, Oregon (S.J.G.) Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia (Z.Z.) Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York (R.A.W.) Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (N.T.) Department of Anesthesia, University of Toronto, Toronto, Canada (B.A.O.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Serial casting in early onset scoliosis: syndromic scoliosis is no contraindication. BMC Musculoskelet Disord 2019; 20:554. [PMID: 31747883 PMCID: PMC6868715 DOI: 10.1186/s12891-019-2938-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/08/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Serial casting is a treatment for early onset scoliosis (EOS) in young children to achieve curve correction before bracing or to postpone initial surgical treatment until the patient is older. Good results have been reported for patients with idiopathic early onset scoliosis (IS). However, there are few reports of results in non-idiopathic cases, and the benefits of non-surgical methods in the syndromic-associated early onset scoliosis subgroup are unknown. METHODS Retrospective single-institution study of patient charts and X-rays of all cases of sustained serial casting for EOS. Staged correction was obtained by applying three consecutive casts under general anaesthesia. These were changed every 4 weeks, followed by the implementation of a custom-made full-time Chêneau brace. Correction was measured by Cobb angle (CA) and rib-vertebra angle difference (RVAD) on whole spine anterior-posterior radiographs. Statistical analysis was performed via ANOVA. RESULTS The study group consisted of 6 patiens with IS and 10 with non-idiopathic scoliosis (NIS) - exclusively syndromic-associated. The mean age at onset of treatment was 35 months (±15). The mean follow up was 21 months (±15). In IS patients average CA/RVAD before treatment was 46°(±8)/20°(±12). In NIS patients average CA/RVAD before treatment was 55°(±15)/24°(±14). After application of the third cast, the CA/RVAD was reduced to 20°(±11)/11°(±10) in IS patients. Whereas in NIS patients average CA/RVAD after the thrid cast was 28°(±12)/18°(±13). At latest follow-up the CA/RVAD was 16°(±7)/9°(±8) in IS patients and 31°(±11)/17° (±15) in NIS patients. CONCLUSION Syndromic etiology is not a contraindication for serial casting in EOS. Our results show a curve correction, measured in CA, of 65% in IS patients and 44% in NIS patients. Significant reduction in the morphologic deformity, measured in RVAD, was achieved in the IS cohort, but not in the NIS cohort. In all cases surgical treatment could be delayed.
Collapse
|
14
|
Abstract
This review provides a summary of the literature pertaining to the perioperative care of neurosurgical patients and patients with neurological diseases. General topics addressed in this review include general neurosurgical considerations, stroke, traumatic brain injury, neuromonitoring, neurotoxicity, and perioperative disorders of cognitive function.
Collapse
|
15
|
Armstrong R, Riaz S, Hasan S, Iqbal F, Rice T, Syed N. Mechanisms of Anesthetic Action and Neurotoxicity: Lessons from Molluscs. Front Physiol 2018; 8:1138. [PMID: 29410627 PMCID: PMC5787087 DOI: 10.3389/fphys.2017.01138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
Anesthesia is a prerequisite for most surgical procedures in both animals and humans. Significant strides have been made in search of effective and safer compounds that elicit rapid induction and recovery from anesthesia. However, recent studies have highlighted possible negative effects of several anesthetic agents on the developing brain. The precise nature of this cytotoxicity remains to be determined mainly due to the complexity and the intricacies of the mammalian brain. Various invertebrates have contributed significantly toward our understanding of how both local and general anesthetics affect intrinsic membrane and synaptic properties. Moreover, the ability to reconstruct in vitro synapses between individually identifiable pre- and postsynaptic neurons is a unique characteristic of molluscan neurons allowing us to ask fundamental questions vis-à-vis the long-term effects of anesthetics on neuronal viability and synaptic connectivity. Here, we highlight some of the salient aspects of various molluscan organisms and their contributions toward our understanding of the fundamental mechanisms underlying the actions of anesthetic agents as well as their potential detrimental effects on neuronal growth and synaptic connectivity. We also present some novel preliminary data regarding a newer anesthetic agent, dexmedetomidine, and its effects on synaptic transmission between Lymnaea neurons. The findings presented here underscore the importance of invertebrates for research in the field of anesthesiology while highlighting their relevance to both vertebrates and humans.
Collapse
Affiliation(s)
- Ryden Armstrong
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sean Hasan
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tiffany Rice
- Department of Anesthesia, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Naweed Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|