1
|
Liu S, Wang B, Ma L, Yang H, Liu M, Song Y, Zhou Z, Lou J, Zhou D, Cao J, Liu Y, Mi W, Ma Y. The Association Between Aspartate Transaminase to Alanine Transaminase Ratio and Perioperative Ischemic Stroke in Patients With Diabetes: A Retrospective Cohort Study. CNS Neurosci Ther 2025; 31:e70223. [PMID: 39838692 PMCID: PMC11751254 DOI: 10.1111/cns.70223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Patients with diabetes are at a high risk for perioperative ischemic stroke (PIS). The use of biomarkers to identify high-risk patients and predict PIS may provide considerable reference value in clinical decision-making. The aspartate transaminase/alanine transaminase ratio (De Ritis ratio) has been proven to be associated with specific diabetic complications. However, the association between the De Ritis ratio and PIS has not been evaluated in this population. This retrospective cohort study aimed to evaluate the association between the preoperative De Ritis ratio and PIS in patients with type 2 diabetes undergoing noncardiovascular surgery. METHODS Data from surgical patients were collected from January 2008 to August 2019. A total of 27,643 patients with type 2 diabetes mellitus (DM) undergoing noncardiovascular surgery under general anesthesia were screened. The optimal De Ritis ratio cutoff value was identified using the receiver operating characteristic (ROC) curve. Logistic regression models were used to evaluate the association between the preoperative De Ritis ratio and PIS. Propensity score matching (PSM), sensitivity analyses, and subgroup analyses were performed to further validate the robustness of this association. RESULTS A total of 151 patients experienced PIS. A De Ritis ratio ≥ 1.04 was associated with an elevated risk of PIS after adjusting for baseline characteristics (OR [95% CI]: 2.25 [1.59-3.21]; p < 0.001), intraoperative parameters (2.50 [1.80-3.49]; p < 0.001), and all confounding variables (2.29 [1.61-3.29]; p < 0.001). In the propensity score-matched cohort, the association between the De Ritis ratio and PIS remained significant (2.04 [1.38-3.05]; p < 0.001). These associations were also consistently maintained in the sensitivity and subgroup analyses. CONCLUSIONS An elevated De Ritis ratio is strongly associated with a higher risk of PIS in patients with type 2 DM undergoing noncardiovascular surgery. This may provide additional information on PIS risk assessment in patients with type 2 DM undergoing noncardiovascular surgery.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for Geriatric DiseasesChinese PLA General HospitalBeijingChina
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Binbin Wang
- National Clinical Research Center for Geriatric DiseasesChinese PLA General HospitalBeijingChina
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Libin Ma
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Huikai Yang
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Min Liu
- Department of AnesthesiologyBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yuxiang Song
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhikang Zhou
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jingsheng Lou
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Daming Zhou
- Department of Infection ControlJILIN Cancer HospitalJilinChina
| | - Jiangbei Cao
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yanhong Liu
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Weidong Mi
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Yulong Ma
- Department of AnesthesiologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| |
Collapse
|
2
|
Gruenbaum BF, Merchant KS, Zlotnik A, Boyko M. Gut Microbiome Modulation of Glutamate Dynamics: Implications for Brain Health and Neurotoxicity. Nutrients 2024; 16:4405. [PMID: 39771027 PMCID: PMC11677762 DOI: 10.3390/nu16244405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/05/2025] Open
Abstract
The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity. Additionally, we examine the role of gut metabolites and their influence on the blood-brain barrier and neurotransmitter systems involved in mood regulation. The therapeutic potential of microbiome-targeted interventions, such as fecal microbiota transplantation, is also highlighted. While much research has explored the role of Glu in major depressive disorders and other neurological diseases, the contribution of gut microbiota in post-neurological depression remains underexplored. Future research should focus on explaining the mechanisms linking the gut microbiota to neuropsychiatric outcomes, particularly in conditions such as post-stroke depression, post-traumatic brain-injury depression, and epilepsy-associated depression. Systematic reviews and human clinical studies are needed to establish causal relationships and assess the efficacy of microbiome-targeted therapies in improving the neuropsychiatric sequalae after neurological insults.
Collapse
Affiliation(s)
- Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Kiran S. Merchant
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.Z.); (M.B.)
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.Z.); (M.B.)
| |
Collapse
|
3
|
Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites 2022; 12:metabo12050459. [PMID: 35629963 PMCID: PMC9143347 DOI: 10.3390/metabo12050459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Depression is a significant cause of disability and affects millions worldwide; however, antidepressant therapies often fail or are inadequate. Current medications for treating major depressive disorder can take weeks or months to reach efficacy, have troubling side effects, and are limited in their long-term capabilities. Recent studies have identified a new set of glutamate-based approaches, such as blood glutamate scavengers, which have the potential to provide alternatives to traditional antidepressants. In this review, we hypothesize as to the involvement of the glutamate system in the development of depression. We identify the mechanisms underlying glutamate dysregulation, offering new perspectives on the therapeutic modalities of depression with a focus on its relationship to blood–brain barrier (BBB) permeability. Ultimately, we conclude that in diseases with impaired BBB permeability, such as depression following stroke or traumatic brain injury, or in neurogenerative diseases, the glutamate system should be considered as a pathway to treatment. We propose that drugs such as blood glutamate scavengers should be further studied for treatment of these conditions.
Collapse
|
4
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|
5
|
Bae JH, Kim JM, Lee JM, Song JE, Lee MY, Chung PW, Park KH. Effects of consumption of coffee, tea, or soft drinks on open-angle glaucoma: Korea National Health and Nutrition Examination Survey 2010 to 2011. PLoS One 2020; 15:e0236152. [PMID: 32687521 PMCID: PMC7371211 DOI: 10.1371/journal.pone.0236152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
We sought to investigate the association between consumption of coffee, tea, or soft drinks and risk of open-angle glaucoma (OAG) among Koreans using nationwide population-based data. This cross-sectional survey was performed through the Korea National Health and Nutrition Examination Survey 2010 to 2011. Participants older than 19 years were included in the sample for analysis after excluding those with any missing data. The diagnosis of OAG was based on the International Society of Geographical and Epidemiological Ophthalmology criteria, and participants without glaucomatous optic neuropathy served as controls. The frequency of beverage consumption during the past 12 months was obtained through a questionnaire. Multivariate logistic regression models were used to determine the relationship between consumption of each type of beverage and prevalence of OAG. A total of 6,681 participants was included in the analysis. The prevalence of OAG was 4.4% (n = 323), including 5.4% (n = 169) among men and 3.5% (n = 154) among women. After adjusting for multiple covariates, coffee consumption was significantly associated with OAG, while no significant association was found between consumption of tea or soft drinks and OAG. Participants who drank coffee had a higher risk of having OAG compared with those who did not drink coffee (odds ratio [OR], 2.40; 95% confidence interval [CI], 1.22–4.72; p = 0.011). In sex-stratified analyses, the robust association of coffee consumption with OAG was observed in men (OR, 3.98; 95% CI, 1.71–9.25; p = 0.001) but not in women. Our results suggest that coffee consumption may affect the risk of OAG, particularly in men.
Collapse
Affiliation(s)
- Jeong Hun Bae
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Mo Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| | - Jung Min Lee
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Eun Song
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mi Yeon Lee
- Division of Biostatistics, Department of Medical Information, Kangbuk Samsung Hospital, Seoul, Republic of Korea
| | - Pil-Wook Chung
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki Ho Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Relationship between psychological stress and metabolism in morbidly obese individuals. Wien Klin Wochenschr 2019; 132:139-149. [PMID: 31820100 DOI: 10.1007/s00508-019-01583-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Despite evidence for a bidirectional relationship between obesity and stress-related mental disorders, the general relationship between psychological stress and metabolism is still controversial. Only few studies have addressed this relationship in morbidly obese individuals. METHODS The present study investigated the relationship between psychological distress, health-related quality of life (HRQL), eating behavior, negative emotions and body mass index (BMI), body composition and biomedical parameters of metabolism in an adult sample of 123 (94 females) morbidly obese individuals. RESULTS No significant relationship was found between psychological distress and BMI, body composition or any of the parameters of metabolism; however, there was a strong and robust association between HRQL in the physical domain and BMI, body composition and several biomedical parameters of sugar and fat metabolism. The results also showed an interesting dissociation in the relationship between BMI and HRQL in the physical and psychology domains. Only little evidence was found for a relationship between eating behavior (e.g. restraint) or negative emotions (e.g. anger) and BMI, body composition and parameters of metabolism. There was, however, a significant gender difference in restraint eating. Other commonly reported gender differences in BMI, body composition, fat metabolism and liver values were also observed in this sample of morbidly obese individuals. CONCLUSION Results from the present study highlight the relationship between HRQL in the physical domain and metabolism. Implications of these findings for weight loss treatment are discussed, emphasizing HRQL as an important treatment goal and the need for long-term psychological monitoring.
Collapse
|
7
|
AY O, OI O, FO Y, AM A, IO A, OJ O. Oral Monosodium Glutamate Differentially Affects Open-Field Behaviours, Behavioural Despair and Place Preference in Male and Female Mice. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2211556008666181213160527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background:
Monosodium glutamate (MSG) is a flavour enhancer which induces
behavioural changes in animals. However the influence of sex on the behavioural response
to MSG has not been investigated.
Objective:
The sex-differential effects of MSG on open-field behaviours, anxiety-related
behaviour, behavioural despair, place-preference, and plasma/brain glutamate levels in
adult mice were assessed.
Methods:
Mice were assigned to three groups (1-3), based on the models used to assess
behaviours. Animals in group 1 were for the elevated-plus maze and tail-suspension paradigms,
group 2 for the open-field and forced-swim paradigms, while mice in group 3 were
for observation in the conditioned place preference paradigm. Mice in all groups were further
assigned into five subgroups (10 males and 10 females), and administered vehicle (distilled
water at 10 ml/kg) or one of four doses of MSG (20, 40, 80 and 160 mg/kg) daily for
6 weeks, following which they were exposed to the behavioural paradigms. At the end of
the behavioural tests, the animals were sacrificed, and blood was taken for estimation of
glutamate levels. The brains were also homogenised for estimation of glutamate levels.
Results:
MSG was associated with a reduction in locomotion in males and females (except
at 160 mg/kg, male), an anxiolytic response in females, an anxiogenic response in males,
and decreased behavioural despair in both sexes (females more responsive). Postconditioning
MSG-associated place-preference was significantly higher in females. Plasma/
brain glutamate was not significantly different between sexes.
Conclusion:
Repeated MSG administration alters a range of behaviours in a sex-dependent
manner in mice.
Collapse
Affiliation(s)
- Onaolapo AY
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olawore OI
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Yusuf FO
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adeyemo AM
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adewole IO
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Onaolapo OJ
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
8
|
Honarpisheh P, McCullough LD. Sex as a biological variable in the pathology and pharmacology of neurodegenerative and neurovascular diseases. Br J Pharmacol 2019; 176:4173-4192. [PMID: 30950038 DOI: 10.1111/bph.14675] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of dementia, most commonly caused by cerebrovascular and neurodegenerative diseases, continues to grow as our population ages. Alzheimer disease (AD) and vascular cognitive impairment (VCI) are responsible for more than 80% of all cases of dementia. There are few effective, long-term treatments for AD and VCI-related conditions (e.g., stroke and cerebral amyloid angiopathy (CAA)). This review focuses on AD (as the most common "neurodegenerative" cause of dementia), CAA (as an "emerging" cause of dementia), and stroke (as the most common cause of "vascular" dementia). We will discuss the available literature on the pharmacological therapies that demonstrate sex differences, which refer to any combination of structural, chromosomal, gonadal, or hormonal differences between males and females. We will emphasize the importance of considering sex as a biological variable in the design of preclinical and clinical studies that investigate underlying pathologies or response to pharmacological interventions in dementia. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, Texas
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, Texas
| |
Collapse
|
9
|
Wickens MM, Bangasser DA, Briand LA. Sex Differences in Psychiatric Disease: A Focus on the Glutamate System. Front Mol Neurosci 2018; 11:197. [PMID: 29922129 PMCID: PMC5996114 DOI: 10.3389/fnmol.2018.00197] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alterations in glutamate, the primary excitatory neurotransmitter in the brain, are implicated in several psychiatric diseases. Many of these psychiatric diseases display epidemiological sex differences, with either males or females exhibiting different symptoms or disease prevalence. However, little work has considered the interaction of disrupted glutamatergic transmission and sex on disease states. This review describes the clinical and preclinical evidence for these sex differences with a focus on two conditions that are more prevalent in women: Alzheimer's disease and major depressive disorder, and three conditions that are more prevalent in men: schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. These studies reveal sex differences at multiple levels in the glutamate system including metabolic markers, receptor levels, genetic interactions, and therapeutic responses to glutamatergic drugs. Our survey of the current literature revealed a considerable need for more evaluations of sex differences in future studies examining the role of the glutamate system in psychiatric disease. Gaining a more thorough understanding of how sex differences in the glutamate system contribute to psychiatric disease could provide novel avenues for the development of sex-specific pharmacotherapies.
Collapse
Affiliation(s)
- Megan M Wickens
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.,Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Lisa A Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.,Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Bai W, Li W, Ning YL, Li P, Zhao Y, Yang N, Jiang YL, Liang ZP, Jiang DP, Wang Y, Zhang M, Zhou YG. Blood Glutamate Levels Are Closely Related to Acute Lung Injury and Prognosis after Stroke. Front Neurol 2018; 8:755. [PMID: 29403427 PMCID: PMC5785722 DOI: 10.3389/fneur.2017.00755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/29/2017] [Indexed: 11/13/2022] Open
Abstract
Background Acute lung injury (ALI) is a serious complication of stroke that occurs with a high incidence. Our preclinical results indicated that ALI might be related to blood glutamate levels after brain injury. The purpose of this study was to assess dynamic changes in blood glutamate levels in patients with stroke and to determine the correlation between blood glutamate levels, ALI, and long-term prognosis after stroke. Methods Venous blood samples were collected from controls and patients with stroke at admission and on the third and seventh day after the onset of stroke. Patients were followed for 3 months. The correlations among blood glutamate levels, severities of stroke and ALI, and long-term outcomes were analyzed, and the predictive values of blood glutamate levels and severity scores for ALI were assessed. Results In this study, a total of 384 patients with stroke were enrolled, with a median age of 59 years. Patients showed significantly increased blood glutamate levels within 7 days of stroke onset (p < 0.05), and patients with more severe injuries showed higher blood glutamate levels. Moreover, blood glutamate levels were closely related to the occurrence (adjusted odds ratio, 3.022, p = 0.003) and severity (p < 0.001) of ALI and the long-term prognosis after stroke (p < 0.05), and they were a more accurate predictor of ALI than the more commonly used severity scores (p < 0.01). Conclusion These results indicated that an increased blood glutamate level was closely related to the development of ALI and a poor prognosis after stroke. Clinical Trial Registration http://www.chictr.org.cn, identifier ChiCTR-RPC-15006770.
Collapse
Affiliation(s)
- Wei Bai
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Li
- Department of Neurology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ya-Lei Ning
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ping Li
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan Zhao
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Yang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Lin Jiang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ze-Ping Liang
- Department of ICU, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Dong-Po Jiang
- Department of ICU, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Neurology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Meng Zhang
- Department of Neurology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
11
|
Hu QX, Ottestad-Hansen S, Holmseth S, Hassel B, Danbolt NC, Zhou Y. Expression of Glutamate Transporters in Mouse Liver, Kidney, and Intestine. J Histochem Cytochem 2018; 66:189-202. [PMID: 29303644 DOI: 10.1369/0022155417749828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glutamate transport activities have been identified not only in the brain, but also in the liver, kidney, and intestine. Although glutamate transporter distributions in the central nervous system are fairly well known, there are still uncertainties with respect to the distribution of these transporters in peripheral organs. Quantitative information is mostly lacking, and few of the studies have included genetically modified animals as specificity controls. The present study provides validated qualitative and semi-quantitative data on the excitatory amino acid transporter (EAAT)1-3 subtypes in the mouse liver, kidney, and intestine. In agreement with the current view, we found high EAAT3 protein levels in the brush borders of both the distal small intestine and the renal proximal tubules. Neither EAAT1 nor EAAT2 was detected at significant levels in murine kidney or intestine. In contrast, the liver only expressed EAAT2 (but 2 C-terminal splice variants). EAAT2 was detected in the plasma membranes of perivenous hepatocytes. These cells also expressed glutamine synthetase. Conditional deletion of hepatic EAAT2 did neither lead to overt neurological disturbances nor development of fatty liver.
Collapse
Affiliation(s)
- Qiu Xiang Hu
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sigrid Ottestad-Hansen
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Silvia Holmseth
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørnar Hassel
- Department of Complex Neurology and Neurohabilitation, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Bai W, Zhou YG. Homeostasis of the Intraparenchymal-Blood Glutamate Concentration Gradient: Maintenance, Imbalance, and Regulation. Front Mol Neurosci 2017; 10:400. [PMID: 29259540 PMCID: PMC5723322 DOI: 10.3389/fnmol.2017.00400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that glutamate is the most important excitatory neurotransmitter in the central nervous system (CNS). However, there is also a large amount of glutamate in the blood. Generally, the concentration gradient of glutamate between intraparenchymal and blood environments is stable. However, this gradient is dramatically disrupted under a variety of pathological conditions, resulting in an amplifying cascade that causes a series of pathological reactions in the CNS and peripheral organs. This eventually seriously worsens a patient’s prognosis. These two “isolated” systems are rarely considered as a whole even though they mutually influence each other. In this review, we summarize what is currently known regarding the maintenance, imbalance and regulatory mechanisms that control the intraparenchymal-blood glutamate concentration gradient, discuss the interrelationships between these systems and further explore their significance in clinical practice.
Collapse
Affiliation(s)
- Wei Bai
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
13
|
Blood Glutamate Reducing Effect of Hemofiltration in Critically Ill Patients. Neurotox Res 2017; 33:300-308. [PMID: 28836163 DOI: 10.1007/s12640-017-9791-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Glutamate toxicity plays a well-established role in secondary brain damage following acute and chronic brain insults. Previous studies have demonstrated the efficacy of hemodialysis and peritoneal dialysis in reducing blood glutamate levels. However, these methods are not viable options for hemodynamically unstable patients. Given more favorable hemodynamics, longer treatment, and less needed anticoagulation, we investigated whether hemofiltration could be effective in lowering blood glutamate levels. Blood samples were taken from 10 critically ill patients immediately before initiation of hemofiltration and after 1, 2, 4, 6, and 12 h, for a total of 6 blood samples. Samples were sent for determination of glutamate, glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), hemoglobin, hematocrit, urea, creatinine, glucose, sodium, potassium, platelet, and white blood cell (WBC) levels. There was a statistically significant reduction in blood glutamate levels at all time points compared to baseline levels. There was no difference in levels of GOT or GPT. Hemofiltration can be a promising method of reducing blood glutamate levels, especially in critically ill patients where hemodialysis and peritoneal dialysis may be contraindicated.
Collapse
|
14
|
Abstract
Inflammation is an immune activity designed to protect the host from pathogens and noxious agents. In its low-intensity form, presence of an inflammatory process must be inferred from appropriate biomarkers. Occult neuroinflammation is not just secondary to Alzheimer's disease (AD) but may contribute to its pathogenesis and promote its progression. A leaky blood-brain barrier (BBB) has been observed in early AD and may play a role in its initiation and development. Studies of the temporal evolution of AD's biomarkers have shown that, in AD, the brain's amyloid burden correlates poorly with cognitive decline. In contrast, cognitive deficits in AD correlate well with synapse loss. Oligomeric forms of amyloid-beta (oAβs) can be synaptotoxic and evidence of their deposition inside synaptic terminals of cognition-associated neurons explains early memory loss in AD better than formation of extracellular Aβ plaques. Among innate immune cells that reside in the brain, microglia sense danger signals represented by proteins like oAβ and become activated by neuronal damage such as that caused by bacterial endotoxins. The resulting reactive microgliosis has been implicated in generating the chronic form of microglial activation believed to promote AD's development. Genome-wide association studies (GWASs) have yielded data from patients with sporadic AD indicating that its causes include genetic variation in the innate immune system. Recent preclinical studies have reported that β-hydroxybutyrate (βOHB) may protect the brain from the adverse effects of both the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and the deacetylation of histone. Consequently, there is an urgent need for clinical investigations designed to test whether an orally administered βOHB preparation, such as a ketone ester, can have a similar beneficial effect in human subjects.
Collapse
|
15
|
Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M. Neuroprotection by Estrogen and Progesterone in Traumatic Brain Injury and Spinal Cord Injury. Curr Neuropharmacol 2017; 14:641-53. [PMID: 26955967 PMCID: PMC4981744 DOI: 10.2174/1570159x14666160309123554] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/31/2015] [Accepted: 02/25/2016] [Indexed: 12/25/2022] Open
Abstract
In recent years there has been a growing body of clinical and laboratory evidence demonstrating the neuroprotective effects of estrogen and progesterone after traumatic brain injury (TBI) and spinal cord injury (SCI). In humans, women have been shown to have a lower incidence of morbidity and mortality after TBI compared with age-matched men. Similarly, numerous laboratory studies have demonstrated that estrogen and progesterone administration is associated with a mortality reduction, improvement in neurological outcomes, and a reduction in neuronal apoptosis after TBI and SCI. Here, we review the evidence that supports hormone-related neuroprotection and discuss possible underlying mechanisms. Estrogen and progesterone-mediated neuroprotection are thought to be related to their effects on hormone receptors, signaling systems, direct antioxidant effects, effects on astrocytes and microglia, modulation of the inflammatory response, effects on cerebral blood flow and metabolism, and effects on mediating glutamate excitotoxicity. Future laboratory research is needed to better determine the mechanisms underlying the hormones' neuroprotective effects, which will allow for more clinical studies. Furthermore, large randomized clinical control trials are needed to better assess their role in human neurodegenerative conditions.
Collapse
Affiliation(s)
- Evgeni Brotfain
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
16
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
17
|
Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm (Vienna) 2014; 121:971-9. [PMID: 24623040 DOI: 10.1007/s00702-014-1181-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022]
Abstract
It is well known that abnormally elevated glutamate levels in the brain are associated with secondary brain injury following acute and chronic brain insults. As such, a tight regulation of brain glutamate concentrations is of utmost importance in preventing the neurodegenerative effects of excess glutamate. There has been much effort in recent years to better understand the mechanisms by which glutamate is reduced in the brain to non-toxic concentrations, and in how to safely accelerate these mechanisms. Blood glutamate scavengers such as oxaloacetate, pyruvate, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase have been shown to reduce blood glutamate concentrations, thereby increasing the driving force of the brain to blood glutamate efflux and subsequently reducing brain glutamate levels. In the past decade, blood glutamate scavengers have gained increasing international interest, and its uses have been applied to a wide range of experimental contexts in animal models of traumatic brain injury, ischemic stroke, subarachnoid hemorrhage, epilepsy, migraine, and malignant gliomas. Although glutamate scavengers have not yet been used in humans, there is increasing evidence that their use may provide effective and exciting new therapeutic modalities. Here, we review the laboratory evidence for the use of blood glutamate scavengers. Other experimental neuroprotective treatments thought to scavenge blood glutamate, including estrogen and progesterone, beta-adrenergic activation, hypothermia, insulin and glucagon, and hemodialysis and peritoneal dialysis are also discussed. The evidence reviewed here will hopefully pave the way for future clinical trials.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Faculty of Health Sciences, Soroka Medical Center Ben Gurion University of the Negev, Beer Sheba, Israel
| | | | | | | | | |
Collapse
|
18
|
Zhou Y, Waanders LF, Holmseth S, Guo C, Berger UV, Li Y, Lehre AC, Lehre KP, Danbolt NC. Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mice. J Biol Chem 2013; 289:1329-44. [PMID: 24280215 DOI: 10.1074/jbc.m113.529065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Islet function is incompletely understood in part because key steps in glutamate handling remain undetermined. The glutamate (excitatory amino acid) transporter 2 (EAAT2; Slc1a2) has been hypothesized to (a) provide islet cells with glutamate, (b) protect islet cells against high extracellular glutamate concentrations, (c) mediate glutamate release, or (d) control the pH inside insulin secretory granules. Here we floxed the EAAT2 gene to produce the first conditional EAAT2 knock-out mice. Crossing with Nestin-cyclization recombinase (Cre) eliminated EAAT2 from the brain, resulting in epilepsy and premature death, confirming the importance of EAAT2 for brain function and validating the genetic construction. Crossing with insulin-Cre lines (RIP-Cre and IPF1-Cre) to obtain pancreas-selective deletion did not appear to affect survival, growth, glucose tolerance, or β-cell number. We found (using TaqMan RT-PCR, immunoblotting, immunocytochemistry, and proteome analysis) that the EAAT2 levels were too low to support any of the four hypothesized functions. The proteome analysis detected more than 7,000 islet proteins of which more than 100 were transporters. Although mitochondrial glutamate transporters and transporters for neutral amino acids were present at high levels, all other transporters with known ability to transport glutamate were strikingly absent. Glutamate-metabolizing enzymes were abundant. The level of glutamine synthetase was 2 orders of magnitude higher than that of glutaminase. Taken together this suggests that the uptake of glutamate by islets from the extracellular fluid is insignificant and that glutamate is intracellularly produced. Glutamine synthetase may be more important for islets than assumed previously.
Collapse
Affiliation(s)
- Yun Zhou
- From The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tsesis S, Gruenbaum BF, Ohayon S, Boyko M, Gruenbaum SE, Shapira Y, Weintraub A, Zlotnik A. The effects of estrogen and progesterone on blood glutamate levels during normal pregnancy in women. Gynecol Endocrinol 2013; 29:912-6. [PMID: 23862584 DOI: 10.3109/09513590.2013.813467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to examine whether changes in estrogen and progesterone levels observed during normal pregnancy influence blood glutamate levels. One-hundred and sixteen pregnant women were divided into three groups based on gestational age: group 1 included women in their first trimester, group 2 included women in their second trimester, and group 3 included women in their third trimester. A single venous blood sample was collected and analyzed for concentrations of estrogen, progesterone, glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetate transaminase (GOT), and glutamate. Concentrations of blood glutamate were significantly lower during the second trimester (p < 0.001) and third trimester (p < 0.001). Blood glutamate levels were inversely correlated with levels of estrogen and progesterone throughout pregnancy (p < 0.001). Levels of GOT and GPT remained stable during the course of pregnancy, apart from a moderate reduction in GPT during the third trimester. Increases in estrogen and progesterone levels during advanced stages of pregnancy were inversely correlated with maternal blood glutamate concentrations. Once a maximal blood glutamate-reducing effect was achieved, any additional estrogen and progesterone had a negligible effect on blood glutamate. This study demonstrates the glutamate-reducing effects of estrogen and progesterone, which is most likely not mediated by a GOT/GPT conversion mechanism.
Collapse
Affiliation(s)
- Svetlana Tsesis
- Department of Anesthesiology and General Intensive Care, Division of Anesthesiology, Soroka Medical Center, Rager Blvd., Beer Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
The effects of hemodialysis on blood glutamate levels in chronic renal failure: implementation for neuroprotection. J Crit Care 2012; 27:743.e1-7. [PMID: 23084134 DOI: 10.1016/j.jcrc.2012.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 06/29/2012] [Accepted: 07/01/2012] [Indexed: 11/22/2022]
Abstract
PURPOSE The purpose of the present study is to investigate whether hemodialysis (HD) is effective in lowering blood glutamate levels. In addition, we examined the effect of HD on glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels in the blood and described the rate and pattern of blood glutamate clearance during HD. MATERIALS AND METHODS Blood samples were taken from 45 patients with stage V chronic kidney disease immediately after initiation of HD and hourly, for a total of 5 blood samples. Samples were sent for determination of glutamate, glucose, GOT, GPT, hemoglobin, hematocrit, urea, and creatinine levels. A blood sample from 25 healthy volunteers without chronic renal failure was used as a control for the determination of baseline blood levels of glutamate, GOT, and GPT. RESULTS Glutamate and GPT levels in patients on HD were higher at baseline compared with healthy controls (P < .001). In the first 3 hours after HD, there was a decrease in blood glutamate levels compared with baseline levels (P < .00001). At the fourth hour, there was an increase in blood glutamate levels compared with the third hour (P < .05). CONCLUSIONS Hemodialysis may be a promising method of reducing blood glutamate levels.
Collapse
|
21
|
Zlotnik A, Tsesis S, Gruenbaum BF, Ohayon S, Gruenbaum SE, Boyko M, Sheiner E, Brotfain E, Shapira Y, Teichberg VI. Relationship between glutamate, GOT and GPT levels in maternal and fetal blood: a potential mechanism for fetal neuroprotection. Early Hum Dev 2012; 88:773-8. [PMID: 22633534 DOI: 10.1016/j.earlhumdev.2012.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/11/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Excess glutamate in the brain is thought to be implicated in the pathophysiology of fetal anoxic brain injury, yet little is known about the mechanisms by which glutamate is regulated in the fetal brain. This study examines whether there are differences between maternal and fetal glutamate concentrations, and whether a correlation between them exists. METHODS 10 ml of venous blood was extracted from 87 full-term (>37 weeks gestation) pregnant women in active labor. Immediately after delivery of the neonate, 10 ml of blood from the umbilical artery and vein was extracted. Samples were analyzed for levels of glutamate, glutamate-oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT). RESULTS Fetal blood glutamate concentrations in both the umbilical artery and vein were found to be significantly higher than maternal blood (p<0.001). Similarly, fetal serum GOT levels in the umbilical artery and vein were found to be significantly higher than maternal GOT levels (p<0.001). The difference in GPT levels between maternal and fetal serum was not statistically significant. There was no difference in fetal glutamate, GOT or GPT between the umbilical artery and vein. There was an association observed between glutamate levels in maternal blood and glutamate levels in both venous (R=0.32, p<0.01) and arterial (R=0.33, p<0.05) fetal blood. CONCLUSIONS This study demonstrated that higher baseline concentrations of blood glutamate are present in fetal blood compared with maternal blood, and this was associated with elevated GOT, but not GPT levels. An association was observed between maternal and fetal blood glutamate levels.
Collapse
Affiliation(s)
- Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Leibowitz A, Boyko M, Shapira Y, Zlotnik A. Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci 2012; 13:10041-10066. [PMID: 22949847 PMCID: PMC3431845 DOI: 10.3390/ijms130810041] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/18/2012] [Accepted: 07/30/2012] [Indexed: 11/16/2022] Open
Abstract
Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain's extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.
Collapse
Affiliation(s)
- Akiva Leibowitz
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +972-8-6400262; Fax: +972-8-6403795
| | | | - Yoram Shapira
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University, Beer Sheva 84894, Israel; E-Mails: (M.B.); (Y.S.); (A.Z.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University, Beer Sheva 84894, Israel; E-Mails: (M.B.); (Y.S.); (A.Z.)
| |
Collapse
|
23
|
Boyko M, Stepensky D, Gruenbaum BF, Gruenbaum SE, Melamed I, Ohayon S, Glazer M, Shapira Y, Zlotnik A. Pharmacokinetics of glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase and their blood glutamate-lowering activity in naïve rats. Neurochem Res 2012; 37:2198-205. [PMID: 22846966 DOI: 10.1007/s11064-012-0843-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) and stroke lead to elevated levels of glutamate in the brain that negatively affect the neurological outcomes in both animals and humans. Intravenous administration of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) enzymes can be used to lower the blood glutamate levels and to improve the neurological outcome following TBI and stroke. The objective of this study was to analyze the pharmacokinetics and to determine the glutamate-lowering effects of GOT and GPT enzymes in naïve rats. We determined the time course of serum GOT, GPT, and glutamate levels following a single intravenous administration of two different doses of each one of the studied enzymes. Forty-six male rats were randomly assigned into one of 5 treatment groups: saline (control), human GOT at dose 0.03 and 0.06 mg/kg and porcine GPT at dose 0.6 and 1.2 mg/kg. Blood samples were collected at baseline, 5 min, and 2, 4, 8, 12, and 24 h after the drug injection and GOT, GPT and glutamate levels were determined. The pharmacokinetics of both GOT and GPT followed one-compartment model, and both enzymes exhibited substantial glutamate-lowering effects following intravenous administration. Analysis of the pharmacokinetic data indicated that both enzymes were distributed predominantly in the blood (central circulation) and did not permeate to the peripheral organs and tissues. Several-hour delay was present between the time course of the enzyme levels and the glutamate-lowering effects (leading to clock-wise hysteresis on concentration-effect curves), apparently due to the time that is required to affect the pool of serum glutamate. We conclude that the interaction between the systemically-administered enzymes (GOT and GPT) and the glutamate takes place in the central circulation. Thus, glutamate-lowering effects of GOT and GPT apparently lead to redistribution of the excess glutamate from the brain's extracellular fluid into the blood and can reduce secondary brain injury due to glutamate neurotoxicity. The outcomes of this study regarding the pharmacokinetic and pharmacodynamic properties of the GOT and GPT enzymes will be subsequently verified in clinical studies that can lead to design of effective neuroprotective treatment strategies in patients with traumatic brain diseases and stroke.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Tu WJ, Chen H. Prognosis value of the blood transaminase in acute ischaemic stroke: gender factors should be considered. Clin Sci (Lond) 2012; 122:251-252. [PMID: 21961766 DOI: 10.1042/cs20110426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Zlotnik A, Leibowitz A, Gurevich B, Ohayon S, Boyko M, Klein M, Knyazer B, Shapira Y, Teichberg VI. Effect of estrogens on blood glutamate levels in relation to neurological outcome after TBI in male rats. Intensive Care Med 2011; 38:137-44. [PMID: 22124768 DOI: 10.1007/s00134-011-2401-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
PURPOSE Estrogen has been shown to possess neuroprotective properties both in vitro and in vivo. Traumatic brain injury (TBI) in ovulating females results in favorable neurological outcomes when compared to males with similar insults. The brain-to-blood glutamate gradient removes excess glutamate from brain extracellular fluids (ECF). Enhancing this gradient leads to improved neurological outcomes following TBI. In this study we investigate the effect of female gonadal steroids on blood glutamate levels and neurological outcomes. METHODS Forty male Sprague-Dawley rats were assigned to one of five groups: (1) sham, (2) Premarin treatment, (3) TBI, (4) TBI + Premarin treatment, and (5) TBI + Premarin pretreatment. TBI was induced, and estrogen and glutamate levels were determined at 0, 60, 120, 135, and 150 min. Neurological recovery was evaluated using the Neurological Severity Score (NSS) at 1 h and reassessed at 24 h post TBI. RESULTS Premarin treatment groups demonstrated a decline in blood glutamate levels by 60 min. This decline was found to be more pronounced in the TBI + Premarin group, which maintained the decline throughout the experiment. At 120 min, the difference between groups was most pronounced (TBI + Premarin 99 ± 36 μM/l vs. control 200 ± 46 μM/l, p < 0.01). Neurological recovery was significantly better in the Premarin treatment group (NSS at 24 h 6 ± 1 vs. control 11 ± 1). CONCLUSIONS Premarin injected into male rats significantly decreases blood glutamate levels in rats suffering TBI. This decrease is associated with improved neurological outcomes, thus implicating the role of estrogen in neuroprotection.
Collapse
Affiliation(s)
- Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Prognosis value of the blood transaminase in acute ischaemic stroke: gender factors should be considered. Clin Sci (Lond) 2011. [DOI: 10.1042/cs20110493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|