1
|
Gonzalez L, Sébrié C, Laroche S, Vaillend C, Poirier R. Delayed postnatal brain development and ontogenesis of behavior and cognition in a mouse model of intellectual disability. Neurobiol Dis 2023:106163. [PMID: 37270162 DOI: 10.1016/j.nbd.2023.106163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental disorder associated with impaired cognitive and adaptive behaviors and represents a major medical issue. Although ID-patients develop behavioral problems and are diagnosed during childhood, most behavioral studies in rodent models have been conducted in adulthood, missing precocious phenotypes expressed during this critical time-window characterized by intense brain plasticity. Here, we selectively assessed postnatal ontogenesis of behavioral and cognitive processes, as well as postnatal brain development in the male Rsk2-knockout mouse model of the Coffin-Lowry syndrome, an X-linked disorder characterized by ID and neurological abnormalities. While Rsk2-knockout mice were born healthy, a longitudinal MRI study revealed a transient secondary microcephaly and a persistent reduction of hippocampal and cerebellar volumes. Specific behavioral parameters from postnatal day 4 (P4) unveiled delayed acquisition of sensory-motor functions and alterations of spontaneous and cognitive behaviors during adolescence, which together, represent hallmarks of neurodevelopmental disorders. Together, our results suggest for the first time that RSK2, an effector of the MAPK signaling pathways, plays a crucial role in brain and cognitive postnatal development. This study also provides new relevant measures to characterize postnatal cognitive development of mouse models of ID and to design early therapeutic approaches.
Collapse
Affiliation(s)
- Laurine Gonzalez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Catherine Sébrié
- Université Paris-Saclay CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Serge Laroche
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Roseline Poirier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| |
Collapse
|
2
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
3
|
Moreau M, Carmona-Iragui M, Altuna M, Dalzon L, Barroeta I, Vilaire M, Durand S, Fortea J, Rebillat AS, Janel N. DYRK1A and Activity-Dependent Neuroprotective Protein Comparative Diagnosis Interest in Cerebrospinal Fluid and Plasma in the Context of Alzheimer-Related Cognitive Impairment in Down Syndrome Patients. Biomedicines 2022; 10:1380. [PMID: 35740400 PMCID: PMC9219646 DOI: 10.3390/biomedicines10061380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Down syndrome (DS) is a complex genetic condition due to an additional copy of human chromosome 21, which results in the deregulation of many genes. In addition to the intellectual disability associated with DS, adults with DS also have an ultrahigh risk of developing early onset Alzheimer's disease dementia. DYRK1A, a proline-directed serine/threonine kinase, whose gene is located on chromosome 21, has recently emerged as a promising plasma biomarker in patients with sporadic Alzheimer's disease (AD). The protein DYRK1A is truncated in symptomatic AD, the increased truncated form being associated with a decrease in the level of full-length form. Activity-dependent neuroprotective protein (ADNP), a key protein for the brain development, has been demonstrated to be a useful marker for symptomatic AD and disease progression. In this study, we evaluated DYRK1A and ADNP in CSF and plasma of adults with DS and explored the relationship between these proteins. We used mice models to evaluate the effect of DYRK1A overexpression on ADNP levels and then performed a dual-center cross-sectional human study in adults with DS in Barcelona (Spain) and Paris (France). Both cohorts included adults with DS at different stages of the continuum of AD: asymptomatic AD (aDS), prodromal AD (pDS), and AD dementia (dDS). Non-trisomic controls and patients with sporadic AD dementia were included for comparison. Full-form levels of DYRK1A were decreased in plasma and CSF in adults with DS and symptomatic AD (pDS and dDS) compared to aDS, and in patients with sporadic AD compared to controls. On the contrary, the truncated form of DYRK1A was found to increase both in CSF and plasma in adults with DS and symptomatic AD and in patients with sporadic AD with respect to aDS and controls. ADNP levels showed a more complex structure. ADNP levels increased in aDS groups vs. controls, in agreement with the increase in levels found in the brains of mice overexpressing DYRK1A. However, symptomatic individuals had lower levels than aDS individuals. Our results show that the comparison between full-length and truncated-form levels of DYRK1A coupled with ADNP levels could be used in trials targeting pathophysiological mechanisms of dementia in individuals with DS.
Collapse
Affiliation(s)
- Manon Moreau
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, 08029 Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Lorraine Dalzon
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Marie Vilaire
- Institut Médical Jérôme Lejeune, 75015 Paris, France; (M.V.); (S.D.); (A.-S.R.)
| | - Sophie Durand
- Institut Médical Jérôme Lejeune, 75015 Paris, France; (M.V.); (S.D.); (A.-S.R.)
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, 08029 Barcelona, Spain
| | | | - Nathalie Janel
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| |
Collapse
|
4
|
Stagni F, Bartesaghi R. The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives. Front Cell Neurosci 2022; 16:903729. [PMID: 35634470 PMCID: PMC9130961 DOI: 10.3389/fncel.2022.903729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer’s disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Renata Bartesaghi,
| |
Collapse
|
5
|
Tayebati SK, Cecchi A, Martinelli I, Carboni E, Amenta F. Pharmacotherapy of Down’s Syndrome: When and Which? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:750-757. [DOI: 10.2174/1871527318666191114092924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
:
Down Syndrome (DS) is an essential genetic disease that involves many other body systems
along with cerebral functions. The postnatal approach to treat this genetic disease includes intervention
on various related disorders (e.g., heart failure, respiratory, oral, ear, and hearing disorders). However,
different proposed treatments do not significantly improve the quality of life of these subjects. Another
approach to the treatment of DS considering the possibility to intervene on the embryo was recently
introduced. As of this, the current study has reviewed different outcomes regarding DS treatment in an
animal model, namely the Ts65Dn mouse. The obtained results encouraged spending more time, efforts,
and resources in this field. Besides, various treatment strategies were tried to include genetic
modification, treatment with vasoactive intestinal peptide derivatives or fluoxetine. However, the main
obstacle to the use of these possible treatments is the ethical issues it raises. The progression of the
pregnancy in spite of awareness that DS affects the unborn and prenatal treatment of DS injured embryo
are relevant dilemmas. Thus, talented researchers should spend more efforts to improve the quality
of life for people affected by DS, which will allow probably a better approach to the ethical issues.
Collapse
Affiliation(s)
- Seyed K. Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | | | - Ilenia Martinelli
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | - Elisa Carboni
- Regional Centre for Prenatal Diagnosis, Loreto, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Zhou WB, Miao ZN, Zhang B, Long W, Zheng FX, Kong J, Yu B. Luteolin induces hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neural Regen Res 2019; 14:613-620. [PMID: 30632501 PMCID: PMC6352604 DOI: 10.4103/1673-5374.248519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Studies have shown that the natural flavonoid luteolin has neurotrophic activity. In this study, we investigated the effect of luteolin in a mouse model of Down syndrome. Ts65Dn mice, which are frequently used as a model of Down syndrome, were intraperitoneally injected with 10 mg/kg luteolin for 4 consecutive weeks starting at 12 weeks of age. The Morris water maze test was used to evaluate learning and memory abilities, and the novel object recognition test was used to assess recognition memory. Immunohistochemistry was performed for the neural stem cell marker nestin, the astrocyte marker glial fibrillary acidic protein, the immature neuron marker DCX, the mature neuron marker NeuN, and the cell proliferation marker Ki67 in the hippocampal dentate gyrus. Nissl staining was used to observe changes in morphology and to quantify cells in the dentate gyrus. Western blot assay was used to analyze the protein levels of brain-derived neurotrophic factor (BDNF) and phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) in the hippocampus. Luteolin improved learning and memory abilities as well as novel object recognition ability, and enhanced the proliferation of neurons in the hippocampal dentate gyrus. Furthermore, luteolin increased expression of nestin and glial fibrillary acidic protein, increased the number of DCX+ neurons in the granular layer and NeuN+ neurons in the subgranular region of the dentate gyrus, and increased the protein levels of BDNF and p-ERK1/2 in the hippocampus. Our findings show that luteolin improves behavioral performance and promotes hippocampal neurogenesis in Ts65Dn mice. Moreover, these effects might be associated with the activation of the BDNF/ERK1/2 pathway.
Collapse
Affiliation(s)
- Wen-Bo Zhou
- Changzhou Women and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Zong-Ning Miao
- The Stem Cell Research Laboratory, Wuxi Third People's Hospital, Wuxi, Jiangsu Province, China
| | - Bin Zhang
- Changzhou Women and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Wei Long
- Changzhou Women and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Fang-Xiu Zheng
- Changzhou Women and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Jing Kong
- Changzhou Women and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Bin Yu
- Changzhou Women and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Developmental excitatory-to-inhibitory GABA polarity switch is delayed in Ts65Dn mice, a genetic model of Down syndrome. Neurobiol Dis 2018; 115:1-8. [PMID: 29550538 DOI: 10.1016/j.nbd.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/23/2022] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABAA agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS.
Collapse
|
8
|
Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18081627. [PMID: 28933765 PMCID: PMC5578018 DOI: 10.3390/ijms18081627] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental brain misconnection syndromes characterized by altered connectivity in local circuits and between brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the regulation of basic neurodevelopmental processes, such as neuronal polarization and migration, neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.
Collapse
|
9
|
Kazim SF, Blanchard J, Bianchi R, Iqbal K. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer's-like memory deficits in the Ts65Dn mouse model of Down syndrome. Sci Rep 2017; 7:45561. [PMID: 28368015 PMCID: PMC5377379 DOI: 10.1038/srep45561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer’s disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain development caused by trisomy 21 contribute significantly to memory deficits in adult life in DS. Prenatal genetic testing to diagnose DS in utero, provides the novel opportunity to initiate early pharmacological treatment to target this critical period of brain development. Here, we report that prenatal to early postnatal treatment with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021), rescued developmental delay in pups and AD-like hippocampus-dependent memory impairments in adult life in Ts65Dn mice. Furthermore, this treatment prevented pre-synaptic protein deficit, decreased glycogen synthase kinase-3beta (GSK3β) activity, and increased levels of synaptic plasticity markers including brain derived neurotrophic factor (BNDF) and phosphorylated CREB, both in young (3-week-old) and adult (~ 7-month-old) Ts65Dn mice. These findings provide novel evidence that providing neurotrophic support during early brain development can prevent developmental delay and AD-like memory impairments in a DS mouse model.
Collapse
Affiliation(s)
- Syed Faraz Kazim
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Julie Blanchard
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Khalid Iqbal
- Department of Neurochemistry, and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR), Staten Island, NY 10314, USA
| |
Collapse
|
10
|
Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome. Neuroscience 2016; 333:277-301. [DOI: 10.1016/j.neuroscience.2016.07.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
|
11
|
Créau N, Cabet E, Daubigney F, Souchet B, Bennaï S, Delabar J. Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models. Brain Res 2016; 1646:342-353. [PMID: 27297494 DOI: 10.1016/j.brainres.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 12/27/2022]
Abstract
Down syndrome, or trisomy 21, has been modeled with various trisomic and transgenic mice to help understand the consequences of an altered gene dosage in brain development and function. Though Down syndrome has been associated with premature aging, little is known about the molecular and cellular alterations that target brain function. To help identify alterations at specific ages, we analyzed the cerebellum of Ts1Cje mice, trisomic for 77 HSA21 orthologs, at three ages-young (4 months), middle-age (12 months), and old (17 months)-compared to age-matched controls. Quantification of neuronal and glial markers (n=11) revealed increases in GFAP, with an age effect, and S100B, with age and genotype effects. The genotype effect on S100B with age was unexpected as Ts1Cje has only two copies of the S100b gene. Interestingly, the different increase in GFAP observed between Ts1Cje (trisomic segment includes Pcp4 gene) and controls was magnified in TgPCP4 mice (1 extra copy of the human PCP4 gene) at the same age. S100B increase was not found in the TgPCP4 confirming a difference of regulation with aging for GFAP and S100B and excluding the calcium signaling regulator, Pcp4, as a potential candidate for increase of S100B in the Ts1Cje. To understand these differences, comparison of GFAP and S100B immunostainings at young and middle-age were performed. Immunohistochemical detection of differences in GFAP and S100B localization with aging implicate S100B+ oligodendrocytes as a new phenotypic target in this specific aging process.
Collapse
Affiliation(s)
- Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France.
| | - Eva Cabet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Benoit Souchet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Soumia Bennaï
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Jean Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| |
Collapse
|
12
|
Abstract
Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.
Collapse
|
13
|
Olmos-Serrano JL, Tyler WA, Cabral HJ, Haydar TF. Longitudinal measures of cognition in the Ts65Dn mouse: Refining windows and defining modalities for therapeutic intervention in Down syndrome. Exp Neurol 2016; 279:40-56. [PMID: 26854932 DOI: 10.1016/j.expneurol.2016.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
Mouse models have provided insights into adult changes in learning and memory in Down syndrome, but an in-depth assessment of how these abnormalities develop over time has never been conducted. To address this shortcoming, we conducted a longitudinal behavioral study from birth until late adulthood in the Ts65Dn mouse model to measure the emergence and continuity of learning and memory deficits in individuals with a broad array of tests. Our results demonstrate for the first time that the pace at which neonatal and perinatal milestones are acquired is correlated with later cognitive performance as an adult. In addition, we find that life-long behavioral indexing stratifies mice within each genotype. Our expanded assessment reveals that diminished cognitive flexibility, as measured by reversal learning, is the most robust learning and memory impairment in both young and old Ts65Dn mice. Moreover, we find that reversal learning degrades with age and is therefore a useful biomarker for studying age-related decline in cognitive ability. Altogether, our results indicate that preclinical studies aiming to restore cognitive function in Ts65Dn should target both neonatal milestones and reversal learning in adulthood. Here we provide the quantitative framework for this type of approach.
Collapse
Affiliation(s)
- J Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord Street, L-1004, Boston, MA 02118, United States.
| | - William A Tyler
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord Street, L-1004, Boston, MA 02118, United States.
| | - Howard J Cabral
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States.
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord Street, L-1004, Boston, MA 02118, United States.
| |
Collapse
|
14
|
Abstract
Down syndrome (DS) is a relatively common genetic condition caused by the triplication of human chromosome 21. No therapies currently exist for the rescue of neurocognitive impairment in DS. This review presents exciting findings showing that it is possible to restore brain development and cognitive performance in mouse models of DS with therapies that can also apply to humans. This knowledge provides a potential breakthrough for the prevention of intellectual disability in DS.
Collapse
|
15
|
Stagni F, Giacomini A, Guidi S, Ciani E, Bartesaghi R. Timing of therapies for Down syndrome: the sooner, the better. Front Behav Neurosci 2015; 9:265. [PMID: 26500515 PMCID: PMC4594009 DOI: 10.3389/fnbeh.2015.00265] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), with a heavy impact on public health. Accumulating evidence shows that DS is characterized by numerous neurodevelopmental alterations among which the reduction of neurogenesis, dendritic hypotrophy and connectivity alterations appear to play a particularly prominent role. Although the mechanisms whereby gene triplication impairs brain development in DS have not been fully clarified, it is theoretically possible to correct trisomy-dependent defects with targeted pharmacotherapies. This review summarizes what we know about the effects of pharmacotherapies during different life stages in mouse models of DS. Since brain alterations in DS start to be present prenatally, the prenatal period represents an optimum window of opportunity for therapeutic interventions. Importantly, recent studies clearly show that treatment during the prenatal period can rescue overall brain development and behavior and that this effect outlasts treatment cessation. Although late therapies are unlikely to exert drastic changes in the brain, they may have an impact on the hippocampus, a brain region where neurogenesis continues throughout life. Indeed, treatment at adult life stages improves or even rescues hippocampal neurogenesis and connectivity and hippocampal-dependent learning and memory, although the duration of these effects still remains, in the majority of cases, a matter of investigation. The exciting discovery that trisomy-linked brain abnormalities can be prevented with early interventions gives us reason to believe that treatments during pregnancy may rescue brain development in fetuses with DS. For this reason we deem it extremely important to expedite the discovery of additional therapies practicable in humans in order to identify the best treatment/s in terms of efficacy and paucity of side effects. Prompt achievement of this goal is the big challenge for the scientific community of researchers interested in DS.
Collapse
Affiliation(s)
| | | | | | | | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy
| |
Collapse
|
16
|
Kazim SF, Cardenas-Aguayo MDC, Arif M, Blanchard J, Fayyaz F, Grundke-Iqbal I, Iqbal K. Sera from children with autism induce autistic features which can be rescued with a CNTF small peptide mimetic in rats. PLoS One 2015; 10:e0118627. [PMID: 25769033 PMCID: PMC4359103 DOI: 10.1371/journal.pone.0118627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/21/2015] [Indexed: 12/29/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF) small peptide mimetic, Peptide 6 (P6), which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF) expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism.
Collapse
Affiliation(s)
- Syed Faraz Kazim
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
- Neural and Behavioral Science Graduate Program, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- SUNY Downstate/NYSIBR Center for Developmental Neuroscience (CDN), Staten Island, New York, United States of America
| | - Maria del Carmen Cardenas-Aguayo
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Mohammad Arif
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Julie Blanchard
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Fatima Fayyaz
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Inge Grundke-Iqbal
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
| | - Khalid Iqbal
- Inge Grundke-Iqbal Research Floor, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities (NYSIBR), Staten Island, New York, United States of America
- SUNY Downstate/NYSIBR Center for Developmental Neuroscience (CDN), Staten Island, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Chronic P7C3 treatment restores hippocampal neurogenesis in the Ts65Dn mouse model of Down Syndrome [Corrected]. Neurosci Lett 2015; 591:86-92. [PMID: 25668489 DOI: 10.1016/j.neulet.2015.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 02/06/2015] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability and developmental delay. In addition to cognitive dysfunction, DS patients are marked by diminished neurogenesis, a neuropathological feature also found in the Ts65Dn mouse model of DS. Interestingly, manipulations that enhance neurogenesis - like environmental enrichment or pharmacological agents - improve cognition in Ts65Dn mice. P7C3 is a proneurogenic compound that enhances hippocampal neurogenesis, cell survival, and promotes cognition in aged animals. However, this compound has not been tested in the Ts65Dn mouse model of DS. We hypothesized that P7C3 treatment would reverse or ameliorate the neurogenic deficits in Ts65Dn mice. To test this, adult Ts65Dn and age-matched wild-type (WT) mice were administered vehicle or P7C3 twice daily for 3 months. After 3 months, brains were examined for indices of neurogenesis, including quantification of Ki67, DCX, activated caspase-3 (AC3), and surviving BrdU-immunoreactive(+) cells in the granule cell layer (GCL) of the hippocampal dentate gyrus. P7C3 had no effect on total Ki67+, DCX+, AC3+, or surviving BrdU+ cells in WT mice relative to vehicle. GCL volume was also not changed. In keeping with our hypothesis, however, P7C3-treated Ts65Dn mice had a significant increase in total Ki67+, DCX+, and surviving BrdU+ cells relative to vehicle. P7C3 treatment also decreased AC3+ cell number but had no effect on total GCL volume in Ts65Dn mice. Our findings show 3 months of P7C3 is sufficient to restore the neurogenic deficits observed in the Ts65Dn mouse model of DS.
Collapse
|
18
|
Abstract
OBJECTIVE To evaluate whether peptides given to adult mice with Down syndrome prevent learning deficits, and to delineate the mechanisms behind the protective effect. METHODS Ts65Dn mice were treated for 9 days with peptides D-NAPVSIPQ (NAP)+D-SALLRSIPA (SAL) or placebo, and wild-type animals were treated with placebo. Beginning on treatment day 4, the mice were tested for learning using the Morris watermaze. Probe tests for long-term memory were performed on treatment day 9 and 10 days after treatment stopped. Open-field testing was performed before and after the treatment. Calibrator-normalized relative real-time polymerase chain reaction (PCR) with glyceraldehyde-3-phosphate dehydrogenase (GAPD) standardization was performed on the whole brain and hippocampus for activity-dependent neuroprotective protein, vasoactive intestinal peptide (VIP), glial fibrillary acidic protein (GFAP), NR2B, NR2A, and γ-aminobutyric acid type A (GABAA)-α5. Statistics included analysis of variance and the Fisher protected least significant difference, with P<.05 significant. RESULTS The Ts65Dn plus placebo animals did not learn over the 5-day period compared with the controls (P<.001). The Ts65Dn +(D-NAP+D-SAL) learned significantly better than the Ts65Dn plus placebo (P<.05), and they retained learning similar to controls on treatment day 9, but not after 10 days of no treatment. Treatment with D-NAP+D-SAL prevented the Ts65Dn hyperactivity. Adult administration of D-NAP+D-SAL prevented changes in activity-dependent neuroprotective protein, intestinal peptide, and NR2B with levels similar to controls (all P<.05). CONCLUSION Adult treatment with D-NAP+D-SAL prevented learning deficit in Ts65Dn, a model of Down syndrome. Possible mechanisms of action include reversal of vasoactive intestinal peptide and activity-dependent neuroprotective protein dysregulation, as well as increasing expression of NR2B, thus facilitating learning.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Down syndrome affects more than 5 million people globally. During the last 10 years, there has been a dramatic increase in the research efforts focused on therapeutic interventions to improve learning and memory in Down syndrome. RECENT FINDINGS This review summarizes the different functional abnormalities targeted by researchers in mouse models of Down syndrome. Three main strategies have been used: neural stem cell implantation; environmental enrichment and physical exercise; and pharmacotherapy. Pharmacological targets include the choline pathway, GABA and NMDA receptors, DYRK1A protein, oxidative stress and pathways involved in development and neurogenesis. Many strategies have improved learning and memory as well as electrophysiological and molecular alterations in affected animals. To date, eight molecules have been tested in human adult clinical trials. No studies have yet been performed on infants. However, compelling studies reveal that permanent brain alterations originate during fetal life in Down syndrome. Early prenatal diagnosis offers a 28 weeks window to positively impact brain development and improve postnatal cognitive outcome in affected individuals. Only a few approaches (Epigallocatechine gallate, NAP/SAL, fluoxetine, and apigenin) have been used to treat mice in utero; these showed therapeutic effects that persisted to adulthood. SUMMARY In this article, we discuss the challenges, recent progress, and lessons learned that pave the way for new therapeutic approaches in Down syndrome.
Collapse
Affiliation(s)
- Fayçal Guedj
- aMother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts, USA bUniv Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, Adaptive Functional Biology, Paris, France
| | | | | |
Collapse
|
20
|
Abstract
Down syndrome (DS), which results from an extra copy of chromosome 21 (trisomy 21), is the most common genetically defined cause of intellectual disability. Although no pharmacotherapy aimed at counteracting the cognitive and adaptive deficits associated with this genetic disorder has been approved at present, there have been several new promising studies on pharmacological agents capable of rescuing learning/memory deficits seen in mouse models of DS. Here, we will review the available mouse models for DS and provide a comprehensive, albeit not exhaustive review of the following preclinical research strategies: (1) SOD1 and antioxidant agents; (2) APP and γ-secretase inhibitors; (3) DYRK1A and the polyphenol epigallocatechin gallate (EGCG); (4) GIRK2 and fluoxetine; (5) adrenergic receptor agonists; (6) modulation of GABAA and GABAB receptors; (7) agonism of the hedgehog signaling pathway; (8) nerve growth factor (NGF) and other neurotrophic factors; (9) anticholinesterase (AChE) agents; and (10) antagonism of NMDA receptors. Finally, we will review briefly five different strategies in DS that have led to clinical studies that either have been concluded or are currently underway: (1) antioxidant therapy; (2) AChE therapy; (3) green tea extract therapy; (4) RG1662 therapy; and (5) memantine therapy. These are exciting times in DS research. Within a decade or so, it is well into the realm of possibility that new forms of pharmacotherapies might become valuable tools in the armamentarium of developmental clinicians, as adjutants to more traditional and proven forms of habilitative interventions aimed at improving the quality of life of individuals with DS.
Collapse
|
21
|
Incerti M, Horowitz K, Roberson R, Abebe D, Toso L, Caballero M, Spong CY. Prenatal treatment prevents learning deficit in Down syndrome model. PLoS One 2012; 7:e50724. [PMID: 23209818 PMCID: PMC3510191 DOI: 10.1371/journal.pone.0050724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/23/2012] [Indexed: 12/04/2022] Open
Abstract
Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 µg +SAL 20 µg) daily. Learning was assessed in the offspring (8–10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. Statistical analysis: two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, P<0.05 was used to denote statistical significance. Trisomic mice who prenatally received placebo (Down syndrome -placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome -placebo (p<0.01), and similar to control-placebo (n = 33) and control-peptide (n = 30). In conclusion prenatal treatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.
Collapse
Affiliation(s)
- Maddalena Incerti
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ruparelia A, Pearn ML, Mobley WC. Cognitive and pharmacological insights from the Ts65Dn mouse model of Down syndrome. Curr Opin Neurobiol 2012; 22:880-6. [PMID: 22658745 PMCID: PMC3434300 DOI: 10.1016/j.conb.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is a multi-faceted condition resulting in the most common genetic form of intellectual disability. Mouse models of DS, especially the Ts65Dn model, have been pivotal in furthering our understanding of the genetic, molecular and neurobiological mechanisms that underlie learning and memory impairments in DS. Cognitive and pharmacological insights from the Ts65Dn mouse model have led to remarkable translational progress in the development of therapeutic targets and in the emergence of DS clinical trials. Unravelling the pathogenic role of trisomic genes on human chromosome 21 and the genotype-phenotype relationship still remains a pertinent goal for tackling cognitive deficits in DS.
Collapse
Affiliation(s)
- Aarti Ruparelia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Matthew L Pearn
- Department of Anaesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, 3350 La Jolla Village Drive 9125, San Diego, CA 92161-9125, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Molecular and cellular alterations in Down syndrome: toward the identification of targets for therapeutics. Neural Plast 2012; 2012:171639. [PMID: 22848846 PMCID: PMC3403492 DOI: 10.1155/2012/171639] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/25/2022] Open
Abstract
Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.
Collapse
|
24
|
Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012; 2012:584071. [PMID: 22685678 PMCID: PMC3364589 DOI: 10.1155/2012/584071] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of mental disability. Based on the homology of Hsa21 and the murine chromosomes Mmu16, Mmu17 and Mmu10, several mouse models of DS have been developed. The most commonly used model, the Ts65Dn mouse, has been widely used to investigate the neural mechanisms underlying the mental disabilities seen in DS individuals. A wide array of neuromorphological alterations appears to compromise cognitive performance in trisomic mice. Enhanced inhibition due to alterations in GABA(A)-mediated transmission and disturbances in the glutamatergic, noradrenergic and cholinergic systems, among others, has also been demonstrated. DS cognitive dysfunction caused by neurodevelopmental alterations is worsened in later life stages by neurodegenerative processes. A number of pharmacological therapies have been shown to partially restore morphological anomalies concomitantly with cognition in these mice. In conclusion, the use of mouse models is enormously effective in the study of the neurobiological substrates of mental disabilities in DS and in the testing of therapies that rescue these alterations. These studies provide the basis for developing clinical trials in DS individuals and sustain the hope that some of these drugs will be useful in rescuing mental disabilities in DS individuals.
Collapse
|
25
|
Rachubinski AL, Crowley SK, Sladek JR, Maclean KN, Bjugstad KB. Effects of neonatal neural progenitor cell implantation on adult neuroanatomy and cognition in the Ts65Dn model of Down syndrome. PLoS One 2012; 7:e36082. [PMID: 22558337 PMCID: PMC3338504 DOI: 10.1371/journal.pone.0036082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/26/2012] [Indexed: 12/13/2022] Open
Abstract
As much of the aberrant neural development in Down syndrome (DS) occurs postnatally, an early opportunity exists to intervene and influence life-long cognitive development. Recent success using neural progenitor cells (NPC) in models of adult neurodegeneration indicate such therapy may be a viable option in diseases such as DS. Murine NPC (mNPC, C17.2 cell line) or saline were implanted bilaterally into the dorsal hippocampus of postnatal day 2 (PND 2) Ts65Dn pups to explore the feasibility of early postnatal treatment in this mouse model of DS. Disomic littermates provided karyotype controls for trisomic pups. Pups were monitored for developmental milestone achievement, and then underwent adult behavior testing at 14 weeks of age. We found that implanted mNPC survived into adulthood and migrated beyond the implant site in both karyotypes. The implantation of mNPC resulted in a significant increase in the density of dentate granule cells. However, mNPC implantation did not elicit cognitive changes in trisomic mice either neonatally or in adulthood. To the best of our knowledge, these results constitute the first assessment of mNPC as an early intervention on cognitive ability in a DS model.
Collapse
Affiliation(s)
- Angela L. Rachubinski
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Shannon K. Crowley
- Departments of Exercise Science, and Neuropsychiatry and Behavioral Science, University of South Carolina, Columbia, South Carolina, United States of America
| | - John R. Sladek
- Department of Neurology and Center for Neuroscience, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kenneth N. Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kimberly B. Bjugstad
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
26
|
Abstract
OBJECTIVE Neuroprotective peptides (NAP+SAL) can prevent some alcohol-induced damage in fetal alcohol syndrome(FAS). Fractalkine, a chemokine constitutively expressed in the CNS reduces neuronal death from activated microglia. Using a model of FAS we evaluated if fractalkine is altered and if NAP+SAL work through fractalkine. STUDY DESIGN Using a FAS model, C57BL6/J-mice were treated on gestational day 8 with alcohol (0.03 mL/g), placebo or alcohol+peptides. Embryos were harvested after 6h(E8) and 10 days later(E18). Fractalkine was measured in the protein lysate (Luminex xMAP). Statistical analysis included Kruskal-Wallis. RESULTS Fractalkine was significantly elevated at 6h (median 341 pg/ml, range 263-424 pg/ml) vs. controls (median 228 pg/ml, range 146-332 pg/ml; P<.001). NAP+SAL prevented the alcohol-induced increase (median 137, range 97-255 pg/ml, P<.001). At E18, fractalkine levels were similar in all groups (P=0.7). CONCLUSION Prenatal alcohol exposure acutely elevates fractalkine, perhaps in an effort to counter the alcohol toxicity. Pre-treatment with NAP+SAL prevents the acute increase in fractalkine.
Collapse
|
27
|
Structure of three Humanin peptides with different activities upon interaction with liposome. Int J Biol Macromol 2011; 48:360-3. [DOI: 10.1016/j.ijbiomac.2010.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022]
|
28
|
Bartesaghi R, Guidi S, Ciani E. Is it possible to improve neurodevelopmental abnormalities in Down syndrome? Rev Neurosci 2011; 22:419-55. [DOI: 10.1515/rns.2011.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Ruparelia A, Wiseman F, Sheppard O, Tybulewicz VL, Fisher EM. Down syndrome and the molecular pathogenesis resulting from trisomy of human chromosome 21. J Biomed Res 2010; 24:87-99. [PMID: 23554618 PMCID: PMC3596542 DOI: 10.1016/s1674-8301(10)60016-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Indexed: 01/12/2023] Open
Abstract
Chromosome copy number aberrations, anueploidies, are common in the human population but generally lethal. However, trisomy of human chromosome 21 is compatible with life and people born with this form of aneuploidy manifest the features of Down syndrome, named after Langdon Down who was a 19(th) century British physician who first described a group of people with this disorder. Down syndrome includes learning and memory deficits in all cases, as well as many other features which vary in penetrance and expressivity in different people. While Down syndrome clearly has a genetic cause - the extra dose of genes on chromosome 21 - we do not know which genes are important for which aspects of the syndrome, which biochemical pathways are disrupted, or, generally how design therapies to ameliorate the effects of these disruptions. Recently, with new insights gained from studying mouse models of Down syndrome, specific genes and pathways are being shown to be involved in the pathogenesis of the disorder. This is opening the way for exciting new studies of potential therapeutics for aspects of Down syndrome, particularly the learning and memory deficits.
Collapse
Affiliation(s)
- Aarti Ruparelia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Frances Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Olivia Sheppard
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | | | - Elizabeth M.C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
30
|
Reversal of alcohol-induced learning deficits in the young adult in a model of fetal alcohol syndrome. Obstet Gynecol 2010; 115:350-356. [PMID: 20093910 DOI: 10.1097/aog.0b013e3181cb59da] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate whether treatment with neuroprotective peptides to young adult mice prenatally exposed to alcohol reverses alcohol-induced learning deficits in a mouse model of fetal alcohol syndrome, whether the mechanism involves the N-methyl-d-aspartate (NMDA) and gamma-aminobutyric acid type A (GABAA) receptors, and whether it is related to glial cells. METHODS C57Bl6/J mice were treated with alcohol (0.03 ml/g) or placebo on gestational day 8. On day 40, male mice exposed to alcohol in utero were treated daily for 10 days with D-NAPVSIPQ and D-SALLRSIPA (n=20) or placebo (n=13); and control offspring were treated with placebo (n=46), with the treatment blinded. Learning evaluation began after 3 days using the Morris watermaze and the T-maze. The hippocampus, cortex, and cerebellum were isolated. Expression of NR2A, NR2B, GABAAbeta3, GABAAalpha5, vasoactive intestinal peptide (VIP), activity-dependent neuroprotective protein, and glial fibrillary acidic protein was measured using calibrator-normalized relative real-time polymerase chain reaction. Statistical analysis included analysis of variance and Fisher's protected least significant difference. RESULTS Treatment with D-NAPVSIPQ and D-SALLRSIPA reversed the alcohol-induced learning deficit in both learning tests as well as the NR2A and NR2B down-regulation in the hippocampus and the up-regulation of NR2A in the cortex and NR2B in the cortex and cerebellum (all P<.05). No significant differences were found in GABAA expression. Moreover, the peptides changed activity-dependent neuroprotective protein expression in the cortex (P=.016) but not the down-regulation of VIP (P=.883), probably because the peptides are downstream from VIP. CONCLUSION Alcohol-induced learning deficit was reversed and expression of NR2A and NR2B was restored in the hippocampus and cortex of young adult mice treated with D-NAPVSIPQ and D-SALLRSIPA. Given the role of NMDA receptors in learning, this may explain in part the mechanism of prevention of alcohol-induced learning deficits by D-NAPVSIPQ and D-SALLRSIPA.
Collapse
|
31
|
Gardiner KJ. Molecular basis of pharmacotherapies for cognition in Down syndrome. Trends Pharmacol Sci 2010; 31:66-73. [PMID: 19963286 PMCID: PMC2815198 DOI: 10.1016/j.tips.2009.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/27/2009] [Accepted: 10/30/2009] [Indexed: 12/18/2022]
Abstract
Intellectual disability in Down syndrome (DS) ranges from low normal to severely impaired and has a significant impact on the quality-of-life of the individuals affected and their families. Because the incidence of DS remains at approximately 1 in 700 live births and the lifespan is now >50 years, development of pharmacotherapies for cognitive deficits is an important goal. DS is due to an extra copy of human chromosome 21 and has often been considered too complex a genetic abnormality to be amenable to intervention. However, recent successes in rescuing learning/memory impairments in a mouse model of DS suggest that this negative outlook may not be justified. In this contribution, we first review the DS phenotype, chromosome 21 gene content and mouse models. We then discuss recent successes and the remaining challenges in the identification of targets for and preclinical evaluation of potential therapeutics.
Collapse
Affiliation(s)
- Katheleen J Gardiner
- Department of Pediatrics, Intellectual and Developmental Disability Research Center, Human Medical Genetics and Neuroscience Programs, University of Colorado Denver, 12800 E 19(th) Avenue, Aurora, Colorado 80045, USA.
| |
Collapse
|
32
|
Communication breaks-Down: from neurodevelopment defects to cognitive disabilities in Down syndrome. Prog Neurobiol 2010; 91:1-22. [PMID: 20097253 DOI: 10.1016/j.pneurobio.2010.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 12/31/2022]
Abstract
Down syndrome (DS) is the leading cause of genetically-defined intellectual disability and congenital birth defects. Despite being one of the first genetic diseases identified, only recently, thanks to the phenotypic analysis of DS mouse genetic models, we have begun to understand how trisomy may impact cognitive function. Cognitive disabilities in DS appear to result mainly from two pathological processes: neurogenesis impairment and Alzheimer-like degeneration. In DS brain, suboptimal network architecture and altered synaptic communication arising from neurodevelopmental impairment are key determinants of cognitive defects. Hypocellularity and hypoplasia start at early developmental stages and likely depend upon impaired proliferation of neuronal precursors, resulting in reduction of numbers of neurons and synaptic contacts. The impairment of neuronal precursor proliferation extends to adult neurogenesis and may affect learning and memory. Neurodegenerative mechanisms also contribute to DS cognitive impairment. Early onset Alzheimer disease occurs with extremely high incidence in DS patients and is causally-related to overexpression of beta-amyloid precursor protein (betaAPP), which is one of the triplicated genes in DS. In this review, we will survey the available findings on neurodevelopmental and neurodegenerative changes occurring in DS throughout life. Moreover, we will discuss the potential mechanisms by which defects in neurogenesis and neurodegenerative processes lead to altered formation of neural circuits and impair cognitive function, in connection with findings on pharmacological treatments of potential benefit for DS.
Collapse
|
33
|
Vink J, Incerti M, Toso L, Roberson R, Abebe D, Spong CY. Prenatal NAP+SAL prevents developmental delay in a mouse model of Down syndrome through effects on N-methyl-D-aspartic acid and gamma-aminobutyric acid receptors. Am J Obstet Gynecol 2009; 200:524.e1-4. [PMID: 19327737 DOI: 10.1016/j.ajog.2009.01.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/20/2009] [Accepted: 01/29/2009] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Down syndrome (DS) affects 1/800 infants. Prenatal NAPVSIPQ (NAP) and SALLRSIPA (SAL) (NAP+SAL) prevent developmental delay in Ts65Dn mice, a mouse model of DS. We investigated whether this finding involves N-methyl-D-aspartic acid and gamma-aminobutyric acid (GABA) receptor subunits. STUDY DESIGN Pregnant Ts65Dn mice were treated with placebo or NAP+SAL on gestational days 8-12. After developmental delay prevention was shown, 4 trisomic (Ts), 4 control, and 3 Ts+NAP+SAL adult offspring brains (from 3 litters) were collected. Calibrator-normalized real-time polymerase chain reaction was performed using primers for N-methyl-D-aspartic acid subunits NR2A and NR2B, and for GABA subunits GABA(A)alpha5 and GABA(A)beta3 with glyceraldehyde-3-phosphate dehydrogenase standardization. Statistics included analysis of variance and Fisher PLSD with P < .05 as significant. RESULTS NR2A, NR2B, and GABA(A)beta3 levels were decreased in Ts vs control (all P < .05). Prenatal NAP+SAL increased NR2A, NR2B, and GABA(A)beta3 to levels similar to control (all P < .05). A significant difference in GABA(A)alpha5 levels was not found. CONCLUSION Prenatal NAP+SAL increases NR2A, NR2B, and GABA(A)beta3 expression in adult DS mice to levels similar to controls. This may explain how NAP+SAL improve developmental milestone achievement.
Collapse
Affiliation(s)
- Joy Vink
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
34
|
Wiseman FK, Alford KA, Tybulewicz VLJ, Fisher EMC. Down syndrome--recent progress and future prospects. Hum Mol Genet 2009; 18:R75-83. [PMID: 19297404 PMCID: PMC2657943 DOI: 10.1093/hmg/ddp010] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and is associated with a number of deleterious phenotypes, including learning disability, heart defects, early-onset Alzheimer's disease and childhood leukaemia. Individuals with DS are affected by these phenotypes to a variable extent; understanding the cause of this variation is a key challenge. Here, we review recent research progress in DS, both in patients and relevant animal models. In particular, we highlight exciting advances in therapy to improve cognitive function in people with DS and the significant developments in understanding the gene content of Hsa21. Moreover, we discuss future research directions in light of new technologies. In particular, the use of chromosome engineering to generate new trisomic mouse models and large-scale studies of genotype–phenotype relationships in patients are likely to significantly contribute to the future understanding of DS.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London, UK.
| | | | | | | |
Collapse
|
35
|
Arakawa T, Niikura T, Arisaka F, Kita Y. Short neuroprotective peptides, ADNF9 and NAP, are structurally disordered and monomeric in PBS. Int J Biol Macromol 2009; 45:8-11. [PMID: 19447252 DOI: 10.1016/j.ijbiomac.2009.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 10/21/2022]
Abstract
Activity-dependent neurotrophic factor 9 (ADNF9) and NAP are nine and eight amino acid peptides, which exhibit neuroprotective activity at femtomolar concentrations against cell toxic agents. We have here characterized their structures and interactions with dodecylphosphocholine (DPC) in phosphate-buffered saline (PBS). Circular dichroism analysis showed that ADNF9 and NAP are structurally disordered in PBS independent of peptide concentration and temperature, but appear to assume different secondary structure at increasing temperature. Sedimentation equilibrium analysis showed that both ADNF9 and NAP are monomeric at 37 degrees C, suggesting no self-association under physiological conditions. No secondary structure changes were observed in the presence of DPC, suggesting that ADNF9 and NAP do not interact with lipids.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 3957 Corte Cancion, Thousand Oaks, CA 91360, USA.
| | | | | | | |
Collapse
|