1
|
Zhang Y, Johannesen PT, Molaee-Ardekani B, Wijetillake A, Attili Chiea R, Hasan PY, Segovia-Martínez M, Lopez-Poveda EA. Comparison of Performance for Cochlear-Implant Listeners Using Audio Processing Strategies Based on Short-Time Fast Fourier Transform or Spectral Feature Extraction. Ear Hear 2025; 46:163-183. [PMID: 39680489 PMCID: PMC11637581 DOI: 10.1097/aud.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/27/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES We compared sound quality and performance for a conventional cochlear-implant (CI) audio processing strategy based on short-time fast-Fourier transform (Crystalis) and an experimental strategy based on spectral feature extraction (SFE). In the latter, the more salient spectral features (acoustic events) were extracted and mapped into the CI stimulation electrodes. We hypothesized that (1) SFE would be superior to Crystalis because it can encode acoustic spectral features without the constraints imposed by the short-time fast-Fourier transform bin width, and (2) the potential benefit of SFE would be greater for CI users who have less neural cross-channel interactions. DESIGN To examine the first hypothesis, 6 users of Oticon Medical Digisonic SP CIs were tested in a double-blind design with the SFE and Crystalis strategies on various aspects: word recognition in quiet, speech-in-noise reception threshold (SRT), consonant discrimination in quiet, listening effort, melody contour identification (MCI), and subjective sound quality. Word recognition and SRTs were measured on the first and last day of testing (4 to 5 days apart) to assess potential learning and/or acclimatization effects. Other tests were run once between the first and last testing day. Listening effort was assessed by measuring pupil dilation. MCI involved identifying a five-tone contour among five possible contours. Sound quality was assessed subjectively using the multiple stimulus with hidden reference and anchor (MUSHRA) paradigm for sentences, music, and ambient sounds. To examine the second hypothesis, cross-channel interaction was assessed behaviorally using forward masking. RESULTS Word recognition was similar for the two strategies on the first day of testing and improved for both strategies on the last day of testing, with Crystalis improving significantly more. SRTs were worse with SFE than Crystalis on the first day of testing but became comparable on the last day of testing. Consonant discrimination scores were higher for Crystalis than for the SFE strategy. MCI scores and listening effort were not substantially different across strategies. Subjective sound quality scores were lower for the SFE than for the Crystalis strategy. The difference in performance with SFE and Crystalis was greater for CI users with higher channel interaction. CONCLUSIONS CI-user performance was similar with the SFE and Crystalis strategies. Longer acclimatization times may be required to reveal the full potential of the SFE strategy.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Research and Technology, Oticon Medical, Vallauris, France
| | - Peter T. Johannesen
- Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | - Aswin Wijetillake
- Department of Research and Technology, Oticon Medical, Smørum, Denmark
| | | | - Pierre-Yves Hasan
- Department of Research and Technology, Oticon Medical, Smørum, Denmark
| | | | - Enrique A. Lopez-Poveda
- Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Zhang F, McGuire K, Skeeters M, Barbara M, Chang PF, Zhang N, Xiang J, Huang B. Cognitive Functions and Subjective Hearing in Cochlear Implant Users. J Audiol Otol 2024; 28:176-185. [PMID: 38685833 PMCID: PMC11273187 DOI: 10.7874/jao.2023.00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES A cochlear implant (CI) is an effective prosthetic device used to treat severe-to-profound hearing loss. The present study examined cognitive function in CI users by employing a web-based cognitive testing platform, i.e., BrainCheck, and explored the correlation between cognitive function and subjective evaluation of hearing. SUBJECTS AND METHODS Forty-two CI users (mean age: 58.90 years) were surveyed in the subjective evaluation of hearing, and 20/42 participated in the BrainCheck cognitive tests (immediate recognition, Trail Making A, Trail Making B, Stroop, digit symbol substitution, and delayed recognition). As controls for cognitive function, young normal-hearing (YNH, mean age=23.83 years) and older normal-hearing (ONH, mean age=52.67 years) listener groups were subjected to Brain-Check testing. RESULTS CI users exhibited poorer cognitive function than the normal hearing groups in all tasks except for immediate and delayed recognition. The highest percentage of CI users who had "possible" and "likely" cognitive impairment, based on BrainCheck scores (ranging from 0-200), was observed in tests assessing executive function. The composite cognitive score across domains tended to be related to subjective hearing (p=0.07). CONCLUSIONS The findings of the current study suggest that CI users had a higher likelihood of cognitive impairment in the executive function domain than in lower-level domains. BrianCheck online cognitive testing affords a convenient and effective tool to self-evaluate cognitive function in CI users.
Collapse
Affiliation(s)
- Fawen Zhang
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Kelli McGuire
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Madeline Skeeters
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Matthew Barbara
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Pamara F. Chang
- Department of Information & Logistics Technology, College of Technology, University of Houston, Houston, TX, USA
| | - Nanhua Zhang
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jing Xiang
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
3
|
Kashani RG, Kocharyan A, Bennion DM, Scheperle RA, Etler C, Oleson J, Dunn CC, Claussen AD, Gantz BJ, Hansen MR. Combining Intraoperative Electrocochleography with Robotics-Assisted Electrode Array Insertion. Otol Neurotol 2024; 45:143-149. [PMID: 38206061 PMCID: PMC10786337 DOI: 10.1097/mao.0000000000004094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
OBJECTIVE To describe the use of robotics-assisted electrode array (EA) insertion combined with intraoperative electrocochleography (ECochG) in hearing preservation cochlear implant surgery. STUDY DESIGN Prospective, single-arm, open-label study. SETTING All procedures and data collection were performed at a single tertiary referral center. PATIENTS Twenty-one postlingually deaf adult subjects meeting Food and Drug Administration indication criteria for cochlear implantation with residual acoustic hearing defined as thresholds no worse than 65 dB at 125, 250, and 500 Hz. INTERVENTION All patients underwent standard-of-care unilateral cochlear implant surgery using a single-use robotics-assisted EA insertion device and concurrent intraoperative ECochG. MAIN OUTCOME MEASURES Postoperative pure-tone average over 125, 250, and 500 Hz measured at initial activation and subsequent intervals up to 1 year afterward. RESULTS Twenty-two EAs were implanted with a single-use robotics-assisted insertion device and simultaneous intraoperative ECochG. Fine control over robotic insertion kinetics could be applied in response to changes in ECochG signal. Patients had stable pure-tone averages after activation with normal impedance and neural telemetry responses. CONCLUSIONS Combining robotics-assisted EA insertion with intraoperative ECochG is a feasible technique when performing hearing preservation implant surgery. This combined approach may provide the surgeon a means to overcome the limitations of manual insertion and respond to cochlear feedback in real-time.
Collapse
Affiliation(s)
- Rustin G. Kashani
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Armine Kocharyan
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Douglas M. Bennion
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Rachel A. Scheperle
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Christine Etler
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Jacob Oleson
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Camille C. Dunn
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Alexander D. Claussen
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Bruce J. Gantz
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Marlan R. Hansen
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
4
|
Kurz A, Herrmann D, Hagen R, Rak K. Using Anatomy-Based Fitting to Reduce Frequency-to-Place Mismatch in Experienced Bilateral Cochlear Implant Users: A Promising Concept. J Pers Med 2023; 13:1109. [PMID: 37511722 PMCID: PMC10381201 DOI: 10.3390/jpm13071109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Fitting cochlear implant (CI) users can be challenging. Anatomy-based fitting (ABF) maps may have the potential to lead to better objective and subjective outcomes than conventional clinically based fitting (CBF) methods. ABF maps were created via information derived from exact electrode contact positions, which were determined via post-operative high-resolution flat panel volume computer tomography and clinical fitting software. The outcome measures were speech understanding in quiet and noise and self-perceived sound quality with the CBF map and with the ABF map. Participants were 10 experienced bilateral CI users. The ABF map provided better speech understanding in quiet and noisy environments compared to the CBF map. Additionally, two approaches of reducing the frequency-to-place mismatch revealed that participants are more likely to accept the ABF map if their electrode array is inserted deep enough to stimulate the apical region of their cochlea. This suggests an Angular Insertion Depth of the most apical contact of around 720°-620°. Participants had better speech understanding in quiet and noise with the ABF map. The maps' self-perceived sound quality was similar. ABF mapping may be an effective tool for compensating the frequency-to-place mismatch in experienced bilateral CI users.
Collapse
Affiliation(s)
- Anja Kurz
- Department of Otorhinolaryngology, Head & Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - David Herrmann
- Department of Otorhinolaryngology, Head & Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Head & Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Kristen Rak
- Department of Otorhinolaryngology, Head & Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
5
|
Arias-Vergara T, Batliner A, Rader T, Polterauer D, Högerle C, Müller J, Orozco-Arroyave JR, Nöth E, Schuster M. Adult Cochlear Implant Users Versus Typical Hearing Persons: An Automatic Analysis of Acoustic-Prosodic Parameters. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:4623-4636. [PMID: 36417788 DOI: 10.1044/2022_jslhr-21-00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE The aim of this study was to investigate the speech prosody of postlingually deaf cochlear implant (CI) users compared with control speakers without hearing or speech impairment. METHOD Speech recordings of 74 CI users (37 males and 37 females) and 72 age-balanced control speakers (36 males and 36 females) are considered. All participants are German native speakers and read Der Nordwind und die Sonne (The North Wind and the Sun), a standard text in pathological speech analysis and phonetic transcriptions. Automatic acoustic analysis is performed considering pitch, loudness, and duration features, including speech rate and rhythm. RESULTS In general, duration and rhythm features differ between CI users and control speakers. CI users read slower and have a lower voiced segment ratio compared with control speakers. A lower voiced ratio goes along with a prolongation of the voiced segments' duration in male and with a prolongation of pauses in female CI users. Rhythm features in CI users have higher variability in the duration of vowels and consonants than in control speakers. The use of bilateral CIs showed no advantages concerning speech prosody features in comparison to unilateral use of CI. CONCLUSIONS Even after cochlear implantation and rehabilitation, the speech of postlingually deaf adults deviates from the speech of control speakers, which might be due to changed auditory feedback. We suggest considering changes in temporal aspects of speech in future rehabilitation strategies. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21579171.
Collapse
Affiliation(s)
- Tomás Arias-Vergara
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University of Munich, Germany
- Faculty of Engineering, Universidad de Antioquia, Medellín, Colombia
- Pattern Recognition Lab, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Anton Batliner
- Pattern Recognition Lab, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
- Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
| | - Tobias Rader
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University of Munich, Germany
| | - Daniel Polterauer
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University of Munich, Germany
| | - Catalina Högerle
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University of Munich, Germany
| | - Joachim Müller
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University of Munich, Germany
| | - Juan-Rafael Orozco-Arroyave
- Faculty of Engineering, Universidad de Antioquia, Medellín, Colombia
- Pattern Recognition Lab, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Elmar Nöth
- Pattern Recognition Lab, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Maria Schuster
- Department of Otorhinolaryngology and Head and Neck Surgery, Ludwig Maximilians University of Munich, Germany
| |
Collapse
|
6
|
Gifford RH, Sunderhaus LW, Dawant BM, Labadie RF, Noble JH. Cochlear implant spectral bandwidth for optimizing electric and acoustic stimulation (EAS). Hear Res 2022; 426:108584. [PMID: 35985964 PMCID: PMC10036878 DOI: 10.1016/j.heares.2022.108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023]
Abstract
Cochlear implantation with acoustic hearing preservation is becoming increasingly prevalent allowing cochlear implant (CI) users to combine electric and acoustic stimulation (EAS) in the implanted ears. Despite a growing EAS population, our field does not have definitive guidance regarding EAS technology optimization and the majority of previous studies investigating hearing aid (HA) and cochlear implant (CI) programming for EAS listeners have been mixed. Thus, the purpose of this exploratory study was to explore the effects of various EAS crossover frequencies-defined as the low-frequency (LF) CI cutoff-relative to the underlying spiral ganglion (SG) characteristic frequency associated with the most distal or apical electrode in the array. Speech recognition in semi-diffuse noise and subjective estimates of listening difficulty were measured for 15 adult CI recipients with acoustic hearing preservation in three listening conditions: 1) CI-alone, 2) bimodal (CI+HA), and best-aided EAS (CIHA+HA). The results showed no effect of LF CI cutoff for any of the three listening conditions such that there was no trend for increased performance or less subjective listening difficulty across LF CI cutoffs, referenced to underlying SG-place frequency. Consistent with past studies, the current results were also consistent with significant speech recognition and subject listening difficulty benefits for both bimodal (CI+HA) and best-aided EAS (CIHA+HA) as compared to CI-alone listening as well as significant additional benefits for best-aided EAS (CIHA+HA) compared to bimodal hearing (CI+HA). Future studies are necessary to investigate the efficacy of SG-place-based fittings for i) large samples of experienced EAS listeners for whom perceptual adaptation has occurred to the frequency mismatch provided by standard CI frequency allocations, and ii) EAS users at or close to CI activation as place-based approaches may ultimately yield greater outcomes, particularly for newly activated CI users for whom SG-place-based approaches may afford a steeper trajectory to performance asymptote.
Collapse
Affiliation(s)
- René H Gifford
- Vanderbilt University Medical Center, Department of Hearing and Speech Sciences, Nashville, TN.
| | - Linsey W Sunderhaus
- Vanderbilt University Medical Center, Department of Hearing and Speech Sciences, Nashville, TN
| | - Benoit M Dawant
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, TN
| | - Robert F Labadie
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, TN; Vanderbilt University Medical Center, Department of Otolaryngology-Head and Neck Surgery, Nashville, TN
| | - Jack H Noble
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, TN
| |
Collapse
|
7
|
Soleimanifar S, Staisloff HE, Aronoff JM. The effect of simulated insertion depth differences on the vocal pitches of cochlear implant users. JASA EXPRESS LETTERS 2022; 2:044401. [PMID: 36154233 DOI: 10.1121/10.0010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cochlear implant (CI) users often produce different vocal pitches when using their left versus right CI. One possible explanation for this is that insertion depth differs across the two CIs. The goal of this study was to investigate the role of electrode insertion depth in the production of vocal pitch. Eleven individuals with bilateral CIs used maps simulating differences in insertion depth. Participants produced a sustained vowel and sang Happy Birthday. Approximately half the participants significantly shifted the pitch of their voice in response to different simulated insertion depths. The results suggest insertion depth differences can alter produced vocal pitch.
Collapse
Affiliation(s)
- Simin Soleimanifar
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61801, USA , ,
| | - Hannah E Staisloff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61801, USA , ,
| | - Justin M Aronoff
- Speech and Hearing Science Department, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, Illinois 61801, USA , ,
| |
Collapse
|
8
|
Pieper SH, Hamze N, Brill S, Hochmuth S, Exter M, Polak M, Radeloff A, Buschermöhle M, Dietz M. Considerations for Fitting Cochlear Implants Bimodally and to the Single-Sided Deaf. Trends Hear 2022; 26:23312165221108259. [PMID: 35726211 PMCID: PMC9218456 DOI: 10.1177/23312165221108259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
When listening with a cochlear implant through one ear and acoustically through the other, binaural benefits and spatial hearing abilities are generally poorer than in other bilaterally stimulated configurations. With the working hypothesis that binaural neurons require interaurally matched inputs, we review causes for mismatch, their perceptual consequences, and experimental methods for mismatch measurements. The focus is on the three primary interaural dimensions of latency, frequency, and level. Often, the mismatch is not constant, but rather highly stimulus-dependent. We report on mismatch compensation strategies, taking into consideration the specific needs of the respective patient groups. Practical challenges typically faced by audiologists in the proposed fitting procedure are discussed. While improvement in certain areas (e.g., speaker localization) is definitely achievable, a more comprehensive mismatch compensation is a very ambitious endeavor. Even in the hypothetical ideal fitting case, performance is not expected to exceed that of a good bilateral cochlear implant user.
Collapse
Affiliation(s)
- Sabrina H. Pieper
- Department of Medical Physics and Acoustic, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - Noura Hamze
- MED-EL Medical Electronics GmbH, Innsbruck, Austria
| | - Stefan Brill
- MED-EL Medical Electronics Germany GmbH, Starnberg, Germany
| | - Sabine Hochmuth
- Division of Otorhinolaryngology, University of Oldenburg, Oldenburg, Germany
| | - Mats Exter
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
| | - Marek Polak
- MED-EL Medical Electronics GmbH, Innsbruck, Austria
| | - Andreas Radeloff
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Division of Otorhinolaryngology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | | | - Mathias Dietz
- Department of Medical Physics and Acoustic, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Abstract
OBJECTIVES Currently, bilateral cochlear implants (CIs) are independently programmed in clinics using frequency allocations based on the relative location of a given electrode from the end of each electrode array. By pairing electrodes based on this method, bilateral CI recipients may have decreased sensitivity to interaural time differences (ITD) and/or interaural level differences (ILD), two cues critical for binaural tasks. There are multiple different binaural measures that can potentially be used to determine the optimal way to pair electrodes across the ears. Previous studies suggest that the optimal electrode pairing between the left and right ears may vary depending on the binaural task used. These studies, however, have only used one reference location or a single bilateral CI user. In both instances, it is difficult to determine if the results that were obtained reflect a measurement error or a systematic difference across binaural tasks. It is also difficult to determine from these studies if the differences between the three cues vary across electrode regions, which could result from differences in the availability of binaural cues across frequency regions. The purpose of this study was to determine if, after experience-dependent adaptation, there are systematic differences in the optimal pairing of electrodes at different points along the array for the optimal perception of ITD, ILD, and pitch. DESIGN Data from seven bilateral Nucleus users was collected and analyzed. Participants were tested with ITD, ILD, and pitch-matching tasks using five different reference electrodes in one ear, spaced across the array. Comparisons were conducted to determine if the optimal bilateral electrode pairs systematically differed in different regions depending on whether they were measured based on ITD sensitivity, ILD sensitivity, or pitch matching, and how those pairs differed from the pairing in the participants' clinical programs. RESULTS Results indicate that there was a significant difference in the optimal pairing depending on the cue measured, but only at the basal end of the array. CONCLUSION The results suggest that optimal electrode pairings differ depending on the cue measured to determine optimal pairing, at least for the basal end of the array. This also suggests that the improvements seen when using optimally paired electrodes may be tied to the particular percept being measured both to determine electrode pairing and to assess performance, at least for the basal end of the array.
Collapse
Affiliation(s)
- Hannah E Staisloff
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | | |
Collapse
|
10
|
Jensen KK, Cosentino S, Bernstein JGW, Stakhovskaya OA, Goupell MJ. A Comparison of Place-Pitch-Based Interaural Electrode Matching Methods for Bilateral Cochlear-Implant Users. Trends Hear 2021; 25:2331216521997324. [PMID: 34057382 PMCID: PMC8182630 DOI: 10.1177/2331216521997324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Interaural place-of-stimulation mismatch for bilateral cochlear-implant (BI-CI) listeners is often evaluated using pitch-comparison tasks that can be susceptible to procedural biases. Bias effects were compared for three sequential interaural pitch-comparison tasks in six BI-CI listeners using single-electrode direct stimulation. The reference (right ear) was a single basal, middle, or apical electrode. The comparison electrode (left ear) was chosen from one of three ranges: basal half, full array, or apical half. In Experiment 1 (discrimination), interaural pairs were chosen randomly (method of constant stimuli). In Experiment 2 (ranking), an efficient adaptive procedure rank ordered 3 reference and 6 or 11 comparison electrodes. In Experiment 3 (matching), listeners adjusted the comparison electrode to pitch match the reference. Each experiment was evaluated for testing-range bias (point of subjective equality [PSE] vs. comparison-range midpoint) and reference-electrode slope bias (PSE vs. reference electrode). Discrimination showed large biases for both metrics; matching showed a smaller but significant reference-electrode bias; ranking showed no significant biases in either dimension. Ranking and matching were also evaluated for starting-point bias (PSE vs. adaptive-track starting point), but neither showed significant effects. A response-distribution truncation model explained a nonsignificant bias for ranking but it could not fully explain the observed biases for discrimination or matching. It is concluded that (a) BI-CI interaural pitch comparisons are inconsistent across test methods; (b) biases must be evaluated in more than one dimension before accepting the results as valid; and (c) of the three methods tested, ranking was least susceptible to biases and therefore emerged as the optimal approach.
Collapse
Affiliation(s)
- Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Stefano Cosentino
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Olga A. Stakhovskaya
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| |
Collapse
|
11
|
Speck I, Ketterer MC, Arndt S, Aschendorff A, Jakob TF, Hassepass F. Comparison of Speech Recognition and Localization Ability in Single-sided Deaf Patients Implanted With Different Cochlear Implant Electrode Array Designs. Otol Neurotol 2021; 42:e22-e32. [PMID: 33026780 DOI: 10.1097/mao.0000000000002864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Choice of electrode array (EA) design and differences in outcome are major concerns both to patients with single-sided deafness (SSD) and to surgeons before cochlear implant (CI) surgery. The present work investigates the effects of EA design on 1) insertion depths, and 2) audiological outcomes of SSD CI recipients. STUDY DESIGN Retrospective study. SETTING Tertiary academic center. PATIENTS Forty patients with acquired SSD matched according to duration of deafness MAIN OUTCOME MEASURES:: Fourteen CI recipients were implanted with a perimodiolar electrode (cochlear perimodiolar [CPM]), 12 with a shorter lateral wall electrode (cochlear lateral wall [CLW]), and 14 with a longer lateral wall electrode array (medEl lateral wall [MLW]). Postoperative rotational tomography was evaluated to determine cochlear size and EA angle of insertion depth (AID). Binaural speech comprehension in noise (in three configuration presentations) and localization ability were assessed 12 months postoperatively with CI. RESULTS AID was significantly deeper in MLW (mean 527.94 degrees) compared with the CPM (mean 366.35 degrees) and CLW groups (mean 367.01 degrees). No significant difference in AID was seen between the CPM and CLW groups (difference 0.66 degrees). Cochlear sizes revealed no significant differences between any groups. All three groups showed significant improvement in head shadow effect (difference on average CPM: 6.3 dB SPL, CLW 5 dB SPL, and MLW 4.05 dB SPL) and localization ability at 12 months postoperatively (difference on average CPM: 19.72 degrees, CLW: 24 degrees, and MLW: 12.9 degrees). No significant difference in the extent of audiological benefit was observed between any groups. CONCLUSION No effect on binaural benefit was apparent from the selection of the three EA designs in SSD CI recipients. Further studies focusing on subjective results, sound quality, and music perception depending on EA design in SSD CI recipients are needed.
Collapse
Affiliation(s)
- Iva Speck
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Dillon MT, Buss E, Rooth MA, King ER, McCarthy SA, Bucker AL, Deres EJ, Richter ME, Thompson NJ, Canfarotta MW, O'Connell BP, Pillsbury HC, Brown KD. Cochlear Implantation in Cases of Asymmetric Hearing Loss: Subjective Benefit, Word Recognition, and Spatial Hearing. Trends Hear 2020; 24:2331216520945524. [PMID: 32808881 PMCID: PMC7586262 DOI: 10.1177/2331216520945524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A prospective clinical trial evaluated the effectiveness of cochlear implantation in adults with asymmetric hearing loss (AHL). Twenty subjects with mild-to-moderate hearing loss in the better ear and moderate-to-profound hearing loss in the poorer ear underwent cochlear implantation of the poorer hearing ear. Subjects were evaluated preoperatively and at 1, 3, 6, 9, and 12 months post-activation. Preoperative performance was evaluated unaided, with traditional hearing aids (HAs) or with a bone-conduction HA. Post-activation performance was evaluated with the cochlear implant (CI) alone or in combination with a contralateral HA (bimodal). Test measures included subjective benefit, word recognition, and spatial hearing (i.e., localization and masked sentence recognition). Significant subjective benefit was reported as early as the 1-month interval, indicating better performance with the CI compared with the preferred preoperative condition. Aided word recognition with the CI alone was significantly improved at the 1-month interval compared with preoperative performance with an HA and continued to improve through the 12-month interval. Subjects demonstrated early, significant improvements in the bimodal condition on the spatial hearing tasks compared with baseline preoperative performance tested unaided. The magnitude of the benefit was reduced for subjects with AHL when compared with published data on CI users with normal hearing in the contralateral ear; this finding may reflect significant differences in age at implantation and hearing sensitivity across cohorts.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Meredith A Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - English R King
- Department of Audiology, UNC Health Care, Chapel Hill, North Carolina, United States
| | - Sarah A McCarthy
- Department of Audiology, UNC Health Care, Chapel Hill, North Carolina, United States
| | - Andrea L Bucker
- Department of Audiology, UNC Health Care, Chapel Hill, North Carolina, United States
| | - Ellen J Deres
- Department of Audiology, UNC Health Care, Chapel Hill, North Carolina, United States
| | - Margaret E Richter
- Division of Speech & Hearing Sciences, Department of Allied Health, University of North Carolina at Chapel Hill
| | - Nicholas J Thompson
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Michael W Canfarotta
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Brendan P O'Connell
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Harold C Pillsbury
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Kevin D Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| |
Collapse
|
13
|
Karoui C, James C, Barone P, Bakhos D, Marx M, Macherey O. Searching for the Sound of a Cochlear Implant: Evaluation of Different Vocoder Parameters by Cochlear Implant Users With Single-Sided Deafness. Trends Hear 2020; 23:2331216519866029. [PMID: 31533581 PMCID: PMC6753516 DOI: 10.1177/2331216519866029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cochlear implantation in subjects with single-sided deafness (SSD) offers a unique opportunity to directly compare the percepts evoked by a cochlear implant (CI) with those evoked acoustically. Here, nine SSD-CI users performed a forced-choice task evaluating the similarity of speech processed by their CI with speech processed by several vocoders presented to their healthy ear. In each trial, subjects heard two intervals: their CI followed by a certain vocoder in Interval 1 and their CI followed by a different vocoder in Interval 2. The vocoders differed either (i) in carrier type-(sinusoidal [SINE], bandfiltered noise [NOISE], and pulse-spreading harmonic complex) or (ii) in frequency mismatch between the analysis and synthesis frequency ranges-(no mismatch, and two frequency-mismatched conditions of 2 and 4 equivalent rectangular bandwidths [ERBs]). Subjects had to state in which of the two intervals the CI and vocoder sounds were more similar. Despite a large intersubject variability, the PSHC vocoder was judged significantly more similar to the CI than SINE or NOISE vocoders. Furthermore, the No-mismatch and 2-ERB mismatch vocoders were judged significantly more similar to the CI than the 4-ERB mismatch vocoder. The mismatch data were also interpreted by comparing spiral ganglion characteristic frequencies with electrode contact positions determined from postoperative computed tomography scans. Only one subject demonstrated a pattern of preference consistent with adaptation to the CI sound processor frequency-to-electrode allocation table and two subjects showed possible partial adaptation. Those subjects with adaptation patterns presented overall small and consistent frequency mismatches across their electrode arrays.
Collapse
Affiliation(s)
- Chadlia Karoui
- Centre de Recherche Cerveau et Cognition, Toulouse, France.,Cochlear France SAS, Toulouse, France
| | - Chris James
- Cochlear France SAS, Toulouse, France.,Department of Otology-Neurotology and Skull Base Surgery, Purpan University Hospital, Toulouse, France
| | - Pascal Barone
- Centre de Recherche Cerveau et Cognition, Toulouse, France
| | - David Bakhos
- Université François-Rabelais de Tours, CHRU de Tours, France.,Ear Nose and Throat department, CHUR de Tours, Tours, France
| | - Mathieu Marx
- Centre de Recherche Cerveau et Cognition, Toulouse, France.,Department of Otology-Neurotology and Skull Base Surgery, Purpan University Hospital, Toulouse, France
| | - Olivier Macherey
- Aix Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France
| |
Collapse
|
14
|
Zaleski-King A, Goupell MJ, Barac-Cikoja D, Bakke M. Bimodal Cochlear Implant Listeners' Ability to Perceive Minimal Audible Angle Differences. J Am Acad Audiol 2019; 30:659-671. [PMID: 30417825 PMCID: PMC6561832 DOI: 10.3766/jaaa.17012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Bilateral inputs should ideally improve sound localization and speech understanding in noise. However, for many bimodal listeners [i.e., individuals using a cochlear implant (CI) with a contralateral hearing aid (HA)], such bilateral benefits are at best, inconsistent. The degree to which clinically available HA and CI devices can function together to preserve interaural time and level differences (ITDs and ILDs, respectively) enough to support the localization of sound sources is a question with important ramifications for speech understanding in complex acoustic environments. PURPOSE To determine if bimodal listeners are sensitive to changes in spatial location in a minimum audible angle (MAA) task. RESEARCH DESIGN Repeated-measures design. STUDY SAMPLE Seven adult bimodal CI users (28-62 years). All listeners reported regular use of digital HA technology in the nonimplanted ear. DATA COLLECTION AND ANALYSIS Seven bimodal listeners were asked to balance the loudness of prerecorded single syllable utterances. The loudness-balanced stimuli were then presented via direct audio inputs of the two devices with an ITD applied. The task of the listener was to determine the perceived difference in processing delay (the interdevice delay [IDD]) between the CI and HA devices. Finally, virtual free-field MAA performance was measured for different spatial locations both with and without inclusion of the IDD correction, which was added with the intent to perceptually synchronize the devices. RESULTS During the loudness-balancing task, all listeners required increased acoustic input to the HA relative to the CI most comfortable level to achieve equal interaural loudness. During the ITD task, three listeners could perceive changes in intracranial position by distinguishing sounds coming from the left or from the right hemifield; when the CI was delayed by 0.73, 0.67, or 1.7 msec, the signal lateralized from one side to the other. When MAA localization performance was assessed, only three of the seven listeners consistently achieved above-chance performance, even when an IDD correction was included. It is not clear whether the listeners who were able to consistently complete the MAA task did so via binaural comparison or by extracting monaural loudness cues. Four listeners could not perform the MAA task, even though they could have used a monaural loudness cue strategy. CONCLUSIONS These data suggest that sound localization is extremely difficult for most bimodal listeners. This difficulty does not seem to be caused by large loudness imbalances and IDDs. Sound localization is best when performed via a binaural comparison, where frequency-matched inputs convey ITD and ILD information. Although low-frequency acoustic amplification with a HA when combined with a CI may produce an overlapping region of frequency-matched inputs and thus provide an opportunity for binaural comparisons for some bimodal listeners, our study showed that this may not be beneficial or useful for spatial location discrimination tasks. The inability of our listeners to use monaural-level cues to perform the MAA task highlights the difficulty of using a HA and CI together to glean information on the direction of a sound source.
Collapse
Affiliation(s)
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland College Park, MD 20742
| | | | | |
Collapse
|
15
|
Dillon MT, Buss E, Rooth MA, King ER, Pillsbury HC, Brown KD. Low-Frequency Pitch Perception in Cochlear Implant Recipients With Normal Hearing in the Contralateral Ear. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:2860-2871. [PMID: 31306588 DOI: 10.1044/2019_jslhr-h-18-0409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose Three experiments were carried out to evaluate the low-frequency pitch perception of adults with unilateral hearing loss who received a cochlear implant (CI). Method Participants were recruited from a cohort of CI users with unilateral hearing loss and normal hearing in the contralateral ear. First, low-frequency pitch perception was assessed for the 5 most apical electrodes at 1, 3, 6, and 12 months after CI activation using an adaptive pitch-matching task. Participants listened with a coding strategy that presents low-frequency temporal fine structure (TFS) and compared the pitch to that of an acoustic target presented to the normal hearing ear. Next, participants listened with an envelope-only, continuous interleaved sampling strategy. Pitch perception was compared between coding strategies to assess the influence of TFS cues on low-frequency pitch perception. Finally, participants completed a vocal pitch-matching task to corroborate the results obtained with the adaptive pitch-matching task. Results Pitch matches roughly corresponded to electrode center frequencies (CFs) in the CI map. Adaptive pitch matches exceeded the CF for the most apical electrode, an effect that was larger for continuous interleaved sampling than TFS. Vocal pitch matches were variable but correlated with the CF of the 3 most apical electrodes. There was no evidence that pitch matches changed between the 1- and 12-month intervals. Conclusions Relatively accurate and asymptotic pitch perception was observed at the 1-month interval, indicating either very rapid acclimatization or the provision of familiar place and rate cues. Early availability of appropriate pitch cues could have played a role in the early improvements in localization and masked speech recognition previously observed in this cohort. Supplemental Material https://doi.org/10.23641/asha.8862389.
Collapse
Affiliation(s)
- Margaret T Dillon
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Emily Buss
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Meredith A Rooth
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - English R King
- Department of Audiology, UNC Healthcare, Chapel Hill, NC
| | - Harold C Pillsbury
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| | - Kevin D Brown
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill
| |
Collapse
|
16
|
Pitch Matching Adapts Even for Bilateral Cochlear Implant Users with Relatively Small Initial Pitch Differences Across the Ears. J Assoc Res Otolaryngol 2019; 20:595-603. [PMID: 31385149 DOI: 10.1007/s10162-019-00733-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022] Open
Abstract
There is often a mismatch for bilateral cochlear implant (CI) users between the electrodes in the two ears that receive the same frequency allocation and the electrodes that, when stimulated, yield the same pitch. Studies with CI users who have extreme mismatches between the two ears show that adaptation occurs in terms of pitch matching, reducing the difference between which electrodes receive the same frequency allocation and which ones produce the same pitch. The considerable adaptation that occurs for these extreme cases suggests that adaptation should be sufficient to overcome the relatively minor mismatches seen with typical bilateral CI users. However, even those with many years of bilateral CI use continue to demonstrate a mismatch. This may indicate that adaptation only occurs when there are large mismatches. Alternatively, it may indicate that adaptation occurs regardless of the magnitude of the mismatch, but that adaptation is proportional to the magnitude of the mismatch, and thus never fully counters the original mismatch. To investigate this, six bilateral CI users with initial pitch-matching mismatches of less than 3 mm completed a pitch-matching task near the time of activation, 6 months after activation, and 1 year after activation. Despite relatively small initial mismatches, the results indicated that adaptation still occurred.
Collapse
|
17
|
Yu F, Li H, Zhou X, Tang X, Galvin III JJ, Fu QJ, Yuan W. Effects of Training on Lateralization for Simulations of Cochlear Implants and Single-Sided Deafness. Front Hum Neurosci 2018; 12:287. [PMID: 30065641 PMCID: PMC6056606 DOI: 10.3389/fnhum.2018.00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
While cochlear implantation has benefitted many patients with single-sided deafness (SSD), there is great variability in cochlear implant (CI) outcomes and binaural performance remains poorer than that of normal-hearing (NH) listeners. Differences in sound quality across ears-temporal fine structure (TFS) information with acoustic hearing vs. coarse spectro-temporal envelope information with electric hearing-may limit integration of acoustic and electric patterns. Binaural performance may also be limited by inter-aural mismatch between the acoustic input frequency and the place of stimulation in the cochlea. SSD CI patients must learn to accommodate these differences between acoustic and electric stimulation to maximize binaural performance. It is possible that training may increase and/or accelerate accommodation and further improve binaural performance. In this study, we evaluated lateralization training in NH subjects listening to broad simulations of SSD CI signal processing. A 16-channel vocoder was used to simulate the coarse spectro-temporal cues available with electric hearing; the degree of inter-aural mismatch was varied by adjusting the simulated insertion depth (SID) to be 25 mm (SID25), 22 mm (SID22) and 19 mm (SID19) from the base of the cochlea. Lateralization was measured using headphones and head-related transfer functions (HRTFs). Baseline lateralization was measured for unprocessed speech (UN) delivered to the left ear to simulate SSD and for binaural performance with the acoustic ear combined with the 16-channel vocoders (UN+SID25, UN+SID22 and UN+SID19). After completing baseline measurements, subjects completed six lateralization training exercises with the UN+SID22 condition, after which performance was re-measured for all baseline conditions. Post-training performance was significantly better than baseline for all conditions (p < 0.05 in all cases), with no significant difference in training benefits among conditions. Given that there was no significant difference between the SSD and the SSD CI conditions before or after training, the results suggest that NH listeners were unable to integrate TFS and coarse spectro-temporal cues across ears for lateralization, and that inter-aural mismatch played a secondary role at best. While lateralization training may benefit SSD CI patients, the training may largely improve spectral analysis with the acoustic ear alone, rather than improve integration of acoustic and electric hearing.
Collapse
Affiliation(s)
- Fei Yu
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hai Li
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqing Zhou
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - XiaoLin Tang
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | - Qian-Jie Fu
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wei Yuan
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Initial Operative Experience and Short-term Hearing Preservation Results With a Mid-scala Cochlear Implant Electrode Array. Otol Neurotol 2017; 37:1549-1554. [PMID: 27755356 DOI: 10.1097/mao.0000000000001238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe our initial operative experience and hearing preservation results with the Advanced Bionics (AB) Mid Scala Electrode (MSE). STUDY DESIGN Retrospective review. SETTING Tertiary referral center. PATIENTS Sixty-three MSE implants in pediatric and adult patients were compared with age- and sex-matched 1j electrode implants from the same manufacturer. All patients were severe to profoundly deaf. INTERVENTION Cochlear implantation with either the AB 1j electrode or the AB MSE. MAIN OUTCOME MEASURES The MSE and 1j electrodes were compared in their angular depth of insertion and pre to postoperative change in hearing thresholds. Hearing preservation was analyzed as a function of angular depth of insertion. Secondary outcome measures included operative time, incidence of abnormal intraoperative impedance and telemetry values, and incidence of postsurgical complications. RESULTS Depth of insertion was similar for both electrodes, but was more consistent for the MSE array and more variable for the 1j array. Patients with MSE electrodes had better hearing preservation. Thresholds shifts at four audiometric frequencies ranging from 250 to 2000 Hz were 10, 7, 2, and 6 dB smaller for the MSE electrode than for the 1j (p < 0.05). Hearing preservation at low frequencies was worse with deeper insertion, regardless of array. Secondary outcome measures were similar for both electrodes. CONCLUSION The MSE electrode resulted in more consistent insertion depth and somewhat better hearing preservation than the 1j electrode. Differences in other surgical outcome measures were small or unlikely to have a meaningful effect.
Collapse
|
19
|
Polonenko MJ, Giannantonio S, Papsin BC, Marsella P, Gordon KA. Music perception improves in children with bilateral cochlear implants or bimodal devices. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4494. [PMID: 28679263 DOI: 10.1121/1.4985123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objectives of this study were to determine if music perception by pediatric cochlear implant users can be improved by (1) providing access to bilateral hearing through two cochlear implants or a cochlear implant and a contralateral hearing aid (bimodal users) and (2) any history of music training. The Montreal Battery of Evaluation of Musical Ability test was presented via soundfield to 26 bilateral cochlear implant users, 8 bimodal users and 16 children with normal hearing. Response accuracy and reaction time were recorded via an iPad application. Bilateral cochlear implant and bimodal users perceived musical characteristics less accurately and more slowly than children with normal hearing. Children who had music training were faster and more accurate, regardless of their hearing status. Reaction time on specific subtests decreased with age, years of musical training and, for implant users, better residual hearing. Despite effects of these factors on reaction time, bimodal and bilateral cochlear implant users' responses were less accurate than those of their normal hearing peers. This means children using bilateral cochlear implants and bimodal devices continue to experience challenges perceiving music that are related to hearing impairment and/or device limitations during development.
Collapse
Affiliation(s)
- Melissa J Polonenko
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Room 6D08, Toronto M5G 1X8, Canada
| | - Sara Giannantonio
- Audiology and Otosurgery Unit, Bambino Gesù Pediatric Hospital, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Room 6D08, Toronto M5G 1X8, Canada
| | - Pasquale Marsella
- Audiology and Otosurgery Unit, Bambino Gesù Pediatric Hospital, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Karen A Gordon
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Room 6D08, Toronto M5G 1X8, Canada
| |
Collapse
|
20
|
Fitzgerald MB, Prosolovich K, Tan CT, Glassman EK, Svirsky MA. Self-Selection of Frequency Tables with Bilateral Mismatches in an Acoustic Simulation of a Cochlear Implant. J Am Acad Audiol 2017; 28:385-394. [PMID: 28534729 PMCID: PMC5563263 DOI: 10.3766/jaaa.15077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Many recipients of bilateral cochlear implants (CIs) may have differences in electrode insertion depth. Previous reports indicate that when a bilateral mismatch is imposed, performance on tests of speech understanding or sound localization becomes worse. If recipients of bilateral CIs cannot adjust to a difference in insertion depth, adjustments to the frequency table may be necessary to maximize bilateral performance. PURPOSE The purpose of this study was to examine the feasibility of using real-time manipulations of the frequency table to offset any decrements in performance resulting from a bilateral mismatch. RESEARCH DESIGN A simulation of a CI was used because it allows for explicit control of the size of a bilateral mismatch. Such control is not available with users of CIs. STUDY SAMPLE A total of 31 normal-hearing young adults participated in this study. DATA COLLECTION AND ANALYSIS Using a CI simulation, four bilateral mismatch conditions (0, 0.75, 1.5, and 3 mm) were created. In the left ear, the analysis filters and noise bands of the CI simulation were the same. In the right ear, the noise bands were shifted higher in frequency to simulate a bilateral mismatch. Then, listeners selected a frequency table in the right ear that was perceived as maximizing bilateral speech intelligibility. Word-recognition scores were then assessed for each bilateral mismatch condition. Listeners were tested with both a standard frequency table, which preserved a bilateral mismatch, or with their self-selected frequency table. RESULTS Consistent with previous reports, bilateral mismatches of 1.5 and 3 mm yielded decrements in word recognition when the standard table was used in both ears. However, when listeners used the self-selected frequency table, performance was the same regardless of the size of the bilateral mismatch. CONCLUSIONS Self-selection of a frequency table appears to be a feasible method for ameliorating the negative effects of a bilateral mismatch. These data may have implications for recipients of bilateral CIs who cannot adapt to a bilateral mismatch, because they suggest that (1) such individuals may benefit from modification of the frequency table in one ear and (2) self-selection of a "most intelligible" frequency table may be a useful tool for determining how the frequency table should be altered to optimize speech recognition.
Collapse
Affiliation(s)
- Matthew B. Fitzgerald
- Department of Otolaryngology – Head and Neck Surgery, Stanford Ear Institute, Stanford University, Palo Alto, CA
- Department of Otolaryngology, New York University School of Medicine, New York, NY
| | - Ksenia Prosolovich
- Department of Otolaryngology, University of Southern California, Los Angeles, CA
| | - Chin-Tuan Tan
- Department of Otolaryngology, New York University School of Medicine, New York, NY
| | | | - Mario A. Svirsky
- Department of Otolaryngology, New York University School of Medicine, New York, NY
| |
Collapse
|
21
|
|
22
|
Aronoff JM, Padilla M, Stelmach J, Landsberger DM. Clinically Paired Electrodes Are Often Not Perceived as Pitch Matched. Trends Hear 2016; 20:20/0/2331216516668302. [PMID: 27641682 PMCID: PMC5029799 DOI: 10.1177/2331216516668302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For bilateral cochlear implant (CI) patients, electrodes that receive the same frequency allocation often stimulate locations in the left and right ear that do not yield the same perceived pitch, resulting in a pitch mismatch. This pitch mismatch may be related to degraded binaural abilities. Pitch mismatches have been found for some bilateral CI users and the goal of this study was to determine whether pitch mismatches are prevalent in bilateral CI patients, including those with extensive experience with bilateral CIs. To investigate this possibility, pitch matching was conducted with 16 bilateral CI patients. For 14 of the 16 participants, there was a significant difference between those electrodes in the left and right ear that yielded the same pitch and those that received the same frequency allocation in the participant’s clinical map. The results suggest that pitch mismatches are prevalent with bilateral CI users. The results also indicated that pitch mismatches persist even with extended bilateral CI experience. Such mismatches may reduce the benefits patients receive from bilateral CIs.
Collapse
Affiliation(s)
- Justin M Aronoff
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, IL, USA Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, IL, USA Communication and Neuroscience Division, House Ear Institute, Los Angeles, CA, USA
| | - Monica Padilla
- Communication and Neuroscience Division, House Ear Institute, Los Angeles, CA, USA Department of Otolaryngology, New York University School of Medicine, NY, USA USC Tina and Rick Caruso Department of Otolaryngology, Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Julia Stelmach
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, IL, USA
| | - David M Landsberger
- Communication and Neuroscience Division, House Ear Institute, Los Angeles, CA, USA Department of Otolaryngology, New York University School of Medicine, NY, USA
| |
Collapse
|
23
|
Reiss LAJ, Eggleston JL, Walker EP, Oh Y. Two Ears Are Not Always Better than One: Mandatory Vowel Fusion Across Spectrally Mismatched Ears in Hearing-Impaired Listeners. J Assoc Res Otolaryngol 2016; 17:341-56. [PMID: 27220769 PMCID: PMC4940290 DOI: 10.1007/s10162-016-0570-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/24/2016] [Indexed: 10/21/2022] Open
Abstract
Hearing loss and auditory prostheses can alter auditory processing by inducing large pitch mismatches and broad pitch fusion between the two ears. Similar to integration of incongruent inputs in other sensory modalities, the mismatched, fused pitches are often averaged across ears for simple stimuli. Here, we measured parallel effects on complex stimulus integration using a new technique based on vowel classification in five bilateral hearing aid users and eight bimodal cochlear implant users. Continua between five pairs of synthetic vowels were created by varying the first formant spectral peak while keeping the second formant constant. Comparison of binaural and monaural vowel classification functions for each vowel pair continuum enabled visualization of the following frequency-dependent integration trends: (1) similar monaural and binaural functions, (2) ear dominance, (3) binaural averaging, and (4) binaural interference. Hearing aid users showed all trends, while bimodal cochlear implant users showed mostly ear dominance or interference. Interaural pitch mismatches, frequency ranges of binaural pitch fusion, and the relative weightings of pitch averaging across ears were also measured using tone and/or electrode stimulation. The presence of both large interaural pitch mismatches and broad pitch fusion was not sufficient to predict vowel integration trends such as binaural averaging or interference. The way that pitch averaging was weighted between ears also appears to be important for determining binaural vowel integration trends. Abnormally broad spectral fusion and the associated phoneme fusion across mismatched ears may underlie binaural speech perception interference observed in hearing aid and cochlear implant users.
Collapse
Affiliation(s)
- Lina A J Reiss
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Jessica L Eggleston
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Emily P Walker
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yonghee Oh
- Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
24
|
Staisloff HE, Lee DH, Aronoff JM. Perceptually aligning apical frequency regions leads to more binaural fusion of speech in a cochlear implant simulation. Hear Res 2016; 337:59-64. [PMID: 27208791 DOI: 10.1016/j.heares.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
For bilateral cochlear implant users, the left and right arrays are typically not physically aligned, resulting in a degradation of binaural fusion, which can be detrimental to binaural abilities. Perceptually aligning the two arrays can be accomplished by disabling electrodes in one ear that do not have a perceptually corresponding electrode in the other side. However, disabling electrodes at the edges of the array will cause compression of the input frequency range into a smaller cochlear extent, which may result in reduced spectral resolution. An alternative approach to overcome this mismatch would be to only align one edge of the array. By aligning either only the apical or basal end of the arrays, fewer electrodes would be disabled, potentially causing less reduction in spectral resolution. The goal of this study was to determine the relative effect of aligning either the basal or apical end of the electrode with regards to binaural fusion. A vocoder was used to simulate cochlear implant listening conditions in normal hearing listeners. Speech signals were vocoded such that the two ears were either predominantly aligned at only the basal or apical end of the simulated arrays. The experiment was then repeated with a spectrally inverted vocoder to determine whether the detrimental effects on fusion were related to the spectral-temporal characteristics of the stimuli or the location in the cochlea where the misalignment occurred. In Experiment 1, aligning the basal portion of the simulated arrays led to significantly less binaural fusion than aligning the apical portions of the simulated array. However, when the input was spectrally inverted, aligning the apical portion of the simulated array led to significantly less binaural fusion than aligning the basal portions of the simulated arrays. These results suggest that, for speech, with its predominantly low frequency spectral-temporal modulations, it is more important to perceptually align the apical portion of the array to better preserve binaural fusion. By partially aligning these arrays, cochlear implant users could potentially increase their ability to fuse speech sounds presented to the two ears while maximizing spectral resolution.
Collapse
Affiliation(s)
- Hannah E Staisloff
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St, Champaign, IL 61820, USA.
| | - Daniel H Lee
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St, Champaign, IL 61820, USA.
| | - Justin M Aronoff
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St, Champaign, IL 61820, USA.
| |
Collapse
|
25
|
Measurement of Cochlear Implant Electrode Position From Intraoperative Post-insertion Skull Radiographs: A Validation Study. Otol Neurotol 2016; 36:1486-91. [PMID: 26375970 DOI: 10.1097/mao.0000000000000852] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To validate a method of measuring angular depth of insertion (aDOI) as well as positional depth of each electrode contact in a cochlear implant by using intraoperative postinsertion skull radiographs. STUDY DESIGN Retrospective review. SETTING Tertiary referral center. PATIENTS Intraoperative postinsertion radiographs obtained from 18 cochlear implant recipients were chosen for analysis. One high-resolution computer tomography scan of the head with the electrode in place was also analyzed. One cadaveric temporal bone with an inserted electrode provided additional data for analysis. INTERVENTION aDOI and position of each electrode contact were measured from the radiographs using readily available software. High-resolution computer tomography imaging of the cochlea and electrode were reconstructed in three dimensions and used to simulate head rotation during intraoperative radiographs. The cadaveric temporal bone was imaged by x-ray at various acquisition angles. MAIN OUTCOME MEASURES We evaluated the error introduced in measuring aDOI by assessing intra- and inter-rater variability. We also evaluated the error introduced by x-ray acquisition at nonstandardized angles by analyzing the three-dimensional construct and the cadaveric temporal bone. RESULTS The concordance correlation coefficients for intrarater (0.991) and inter-rater (0.996) variability in aDOI measurement were excellent. The error introduced by nonstandardized x-ray acquisition angles was only -12.5 degrees to +15.8 degrees even at the limits of clinically relevant head rotation. CONCLUSIONS The intraoperative postinsertion radiograph is sufficient for estimating positional depth of electrode contacts and the aDOI. This measure is robust in the face of nonstandardized x-ray acquisition angles, and shows good intra- and inter-rater variability.
Collapse
|
26
|
Abstract
OBJECTIVES Pitch plasticity has been observed in Hybrid cochlear implant (CI) users. Does pitch plasticity also occur in bimodal CI users with traditional long-electrode CIs, and is pitch adaptation pattern associated with electrode discrimination or speech recognition performance? The goals of this study were to characterize pitch adaptation patterns in long-electrode CI users, to correlate these patterns with electrode discrimination and speech perception outcomes, and to analyze which subject factors are associated with the different patterns. DESIGN Electric-to-acoustic pitch matches were obtained in 19 subjects over time from CI activation to at least 12 months after activation, and in a separate group of 18 subjects in a single visit after at least 24 months of CI experience. Audiometric thresholds, electrode discrimination performance, and speech perception scores were also measured. RESULTS Subjects measured over time had pitch adaptation patterns that fit one of the following categories: (1) "Pitch-adapting," that is, the mismatch between perceived electrode pitch and the corresponding frequency-to-electrode allocations decreased; (2) "Pitch-dropping," that is, the pitches of multiple electrodes dropped and converged to a similar low-pitch; and (3) "Pitch-unchanging," that is, the electrode pitches did not change. Subjects measured after CI experience had a parallel set of adaptation patterns: (1) "Matched-pitch," that is, the electrode pitch was matched to the frequency allocation; (2) "Low-pitch," that is, the pitches of multiple electrodes were all around the lowest frequency allocation; and (3) "Nonmatched-pitch," that is, the pitch patterns were compressed relative to the frequency allocations and did not fit either the matched-pitch or low-pitch categories. Unlike Hybrid CI users which were mostly in the pitch-adapting or matched-pitch category, the majority of bimodal CI users were in the latter two categories, pitch-dropping/low-pitch or pitch-unchanging/nonmatched-pitch. Subjects with pitch-adapting or matched-pitch patterns tended to have better low-frequency thresholds than subjects in the latter categories. Changes in electrode discrimination over time were not associated with changes in pitch differences between electrodes. Reductions in speech perception scores over time showed a weak but nonsignificant association with dropping-pitch patterns. CONCLUSIONS Bimodal CI users with more residual hearing may have somewhat greater similarity to Hybrid CI users and be more likely to adapt pitch perception to reduce mismatch with the frequencies allocated to the electrodes and the acoustic hearing. In contrast, bimodal CI users with less residual hearing exhibit either no adaptation, or surprisingly, a third pattern in which the pitches of the basal electrodes drop to match the frequency range allocated to the most apical electrode. The lack of association of electrode discrimination changes with pitch changes suggests that electrode discrimination does not depend on perceived pitch differences between electrodes, but rather on some other characteristics such as timbre. In contrast, speech perception may depend more on pitch perception and the ability to distinguish pitch between electrodes, especially since during multielectrode stimulation, cues such as timbre may be less useful for discrimination.
Collapse
|
27
|
Guo W, Hight AE, Chen JX, Klapoetke NC, Hancock KE, Shinn-Cunningham BG, Boyden ES, Lee DJ, Polley DB. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway. Sci Rep 2015; 5:10319. [PMID: 26000557 PMCID: PMC4441320 DOI: 10.1038/srep10319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022] Open
Abstract
Optogenetics provides a means to dissect the organization and function of neural circuits. Optogenetics also offers the translational promise of restoring sensation, enabling movement or supplanting abnormal activity patterns in pathological brain circuits. However, the inherent sluggishness of evoked photocurrents in conventional channelrhodopsins has hampered the development of optoprostheses that adequately mimic the rate and timing of natural spike patterning. Here, we explore the feasibility and limitations of a central auditory optoprosthesis by photoactivating mouse auditory midbrain neurons that either express channelrhodopsin-2 (ChR2) or Chronos, a channelrhodopsin with ultra-fast channel kinetics. Chronos-mediated spike fidelity surpassed ChR2 and natural acoustic stimulation to support a superior code for the detection and discrimination of rapid pulse trains. Interestingly, this midbrain coding advantage did not translate to a perceptual advantage, as behavioral detection of midbrain activation was equivalent with both opsins. Auditory cortex recordings revealed that the precisely synchronized midbrain responses had been converted to a simplified rate code that was indistinguishable between opsins and less robust overall than acoustic stimulation. These findings demonstrate the temporal coding benefits that can be realized with next-generation channelrhodopsins, but also highlight the challenge of inducing variegated patterns of forebrain spiking activity that support adaptive perception and behavior.
Collapse
Affiliation(s)
- Wei Guo
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, Massachusetts 02215
| | - Ariel E. Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114
- Program in Speech Hearing Bioscience and Technology, Harvard Medical School (HMS), Boston MA 02115
| | - Jenny X. Chen
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114
- New Pathway MD Program, HMS 02115
| | - Nathan C. Klapoetke
- The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Kenneth E. Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114
- Department of Otology and Laryngology, HMS, Boston MA, 02114
| | - Barbara G. Shinn-Cunningham
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, Massachusetts 02215
- Department of Biomedical Engineering, Boston University 02215
| | - Edward S. Boyden
- The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Daniel J. Lee
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114
- Department of Otology and Laryngology, HMS, Boston MA, 02114
| | - Daniel B. Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston, Massachusetts 02215
- Department of Otology and Laryngology, HMS, Boston MA, 02114
| |
Collapse
|
28
|
Svirsky MA, Fitzgerald MB, Sagi E, Glassman EK. Bilateral cochlear implants with large asymmetries in electrode insertion depth: implications for the study of auditory plasticity. Acta Otolaryngol 2015; 135:354-63. [PMID: 25719506 DOI: 10.3109/00016489.2014.1002052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION The human frequency-to-place map may be modified by experience, even in adult listeners. However, such plasticity has limitations. Knowledge of the extent and the limitations of human auditory plasticity can help optimize parameter settings in users of auditory prostheses. OBJECTIVES To what extent can adults adapt to sharply different frequency-to-place maps across ears? This question was investigated in two bilateral cochlear implant users who had a full electrode insertion in one ear, a much shallower insertion in the other ear, and standard frequency-to-electrode maps in both ears. METHODS Three methods were used to assess adaptation to the frequency-to-electrode maps in each ear: (1) pitch matching of electrodes in opposite ears, (2) listener-driven selection of the most intelligible frequency-to-electrode map, and (3) speech perception tests. Based on these measurements, one subject was fitted with an alternative frequency-to-electrode map, which sought to compensate for her incomplete adaptation to the standard frequency-to-electrode map. RESULTS Both listeners showed remarkable ability to adapt, but such adaptation remained incomplete for the ear with the shallower electrode insertion, even after extended experience. The alternative frequency-to-electrode map that was tested resulted in substantial increases in speech perception for one subject in the short insertion ear.
Collapse
Affiliation(s)
- Mario A Svirsky
- Department of Otolaryngology-HNS, New York University School of Medicine , New York, NY , USA
| | | | | | | |
Collapse
|
29
|
Venail F, Mathiolon C, Menjot de Champfleur S, Piron JP, Sicard M, Villemus F, Vessigaud MA, Sterkers-Artieres F, Mondain M, Uziel A. Effects of Electrode Array Length on Frequency-Place Mismatch and Speech Perception with Cochlear Implants. Audiol Neurootol 2015; 20:102-11. [DOI: 10.1159/000369333] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
Frequency-place mismatch often occurs after cochlear implantation, yet its effect on speech perception outcome remains unclear. In this article, we propose a method, based on cochlea imaging, to determine the cochlear place-frequency map. We evaluated the effect of frequency-place mismatch on speech perception outcome in subjects implanted with 3 different lengths of electrode arrays. A deeper insertion was responsible for a larger frequency-place mismatch and a decreased and delayed speech perception improvement by comparison with a shallower insertion, for which a similar but slighter effect was noticed. Our results support the notion that selecting an electrode array length adapted to each individual's cochlear anatomy may reduce frequency-place mismatch and thus improve speech perception outcome.
Collapse
|
30
|
Aronoff JM, Shayman C, Prasad A, Suneel D, Stelmach J. Unilateral spectral and temporal compression reduces binaural fusion for normal hearing listeners with cochlear implant simulations. Hear Res 2014; 320:24-9. [PMID: 25549574 DOI: 10.1016/j.heares.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Patients with single sided deafness have recently begun receiving cochlear implants in their deaf ear. These patients gain a significant benefit from having a cochlear implant. However, despite this benefit, they are considerably slower to develop binaural abilities such as summation compared to bilateral cochlear implant patients. This suggests that these patients have difficulty fusing electric and acoustic signals. Although this may reflect inherent differences between electric and acoustic stimulation, it may also reflect properties of the processor and fitting system, which result in spectral and temporal compression. To examine the possibility that unilateral spectral and temporal compression can adversely affect binaural fusion, this study tested normal hearing listeners' binaural fusion through the use of vocoded speech with unilateral spectral and temporal compression. The results indicate that unilateral spectral and temporal compression can each hinder binaural fusion and thus may adversely affect binaural abilities in patients with single sided deafness who use a cochlear implant in their deaf ear.
Collapse
Affiliation(s)
- Justin M Aronoff
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St., Champaign, IL 61820, USA.
| | - Corey Shayman
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St., Champaign, IL 61820, USA; Department of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA.
| | - Akila Prasad
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St., Champaign, IL 61820, USA.
| | - Deepa Suneel
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St., Champaign, IL 61820, USA.
| | - Julia Stelmach
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 S. 6th St., Champaign, IL 61820, USA.
| |
Collapse
|
31
|
Abnormal binaural spectral integration in cochlear implant users. J Assoc Res Otolaryngol 2014; 15:235-48. [PMID: 24464088 DOI: 10.1007/s10162-013-0434-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022] Open
Abstract
Bimodal stimulation, or stimulation of a cochlear implant (CI) together with a contralateral hearing aid (HA), can improve speech perception in noise However, this benefit is variable, and some individuals even experience interference with bimodal stimulation. One contributing factor to this variability may be differences in binaural spectral integration (BSI) due to abnormal auditory experience. CI programming introduces interaural pitch mismatches, in which the frequencies allocated to the electrodes (and contralateral HA) differ from the electrically stimulated cochlear frequencies. Previous studies have shown that some, but not all, CI users adapt pitch perception to reduce this mismatch. The purpose of this study was to determine whether broadened BSI may also reduce the perception of mismatch. Interaural pitch mismatches and dichotic pitch fusion ranges were measured in 21 bimodal CI users. Seventeen subjects with wide fusion ranges also conducted a task to pitch match various fused electrode-tone pairs. All subjects showed abnormally wide dichotic fusion frequency ranges of 1-4 octaves. The fusion range size was weakly correlated with the interaural pitch mismatch, suggesting a link between broad binaural pitch fusion and large interaural pitch mismatch. Dichotic pitch averaging was also observed, in which a new binaural pitch resulted from the fusion of the original monaural pitches, even when the pitches differed by as much as 3-4 octaves. These findings suggest that abnormal BSI, indicated by broadened fusion ranges and spectral averaging between ears, may account for speech perception interference and nonoptimal integration observed with bimodal compared with monaural hearing device use.
Collapse
|
32
|
Reiss LAJ, Turner CW, Karsten SA, Gantz BJ. Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation. Neuroscience 2014; 256:43-52. [PMID: 24157931 PMCID: PMC3893921 DOI: 10.1016/j.neuroscience.2013.10.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
Under normal conditions, the acoustic pitch percept of a pure tone is determined mainly by the tonotopic place of the stimulation along the cochlea. Unlike acoustic stimulation, electric stimulation of a cochlear implant (CI) allows for the direct manipulation of the place of stimulation in human subjects. CI sound processors analyze the range of frequencies needed for speech perception and allocate portions of this range to the small number of electrodes distributed in the cochlea. Because the allocation is assigned independently of the original resonant frequency of the basilar membrane associated with the location of each electrode, CI users who have access to residual hearing in either or both ears often have tonotopic mismatches between the acoustic and electric stimulation. Here we demonstrate plasticity of place pitch representations of up to three octaves in Hybrid CI users after experience with combined electro-acoustic stimulation. The pitch percept evoked by single CI electrodes, measured relative to acoustic tones presented to the non-implanted ear, changed over time in directions that reduced the electro-acoustic pitch mismatch introduced by the CI programming. This trend was particularly apparent when the allocations of stimulus frequencies to electrodes were changed over time, with pitch changes even reversing direction in some subjects. These findings show that pitch plasticity can occur more rapidly and on a greater scale in the mature auditory system than previously thought possible. Overall, the results suggest that the adult auditory system can impose perceptual order on disordered arrays of inputs.
Collapse
Affiliation(s)
- L A J Reiss
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA; Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA.
| | - C W Turner
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA; Department of Otolaryngology, University of Iowa, Iowa City, IA, USA
| | - S A Karsten
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - B J Gantz
- Department of Otolaryngology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
33
|
van Besouw RM, Forrester L, Crowe ND, Rowan D. Simulating the effect of interaural mismatch in the insertion depth of bilateral cochlear implants on speech perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1348-1357. [PMID: 23927131 DOI: 10.1121/1.4812272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A bilateral advantage for diotically presented stimuli has been observed for cochlear implant (CI) users and is suggested to be dependent on symmetrical implant performance. Studies using CI simulations have not shown a true "bilateral" advantage, but a "better ear" effect and have demonstrated that performance decreases with increasing basalward shift in insertion depth. This study aimed to determine whether there is a bilateral advantage for CI simulations with interaurally matched insertions and the extent to which performance is affected by interaural insertion depth mismatch. Speech perception in noise and self-reported ease of listening were measured using matched bilateral, mismatched bilateral and unilateral CI simulations over four insertion depths for seventeen normal hearing listeners. Speech scores and ease of listening reduced with increasing basalward shift in (interaurally matched) insertion depth. A bilateral advantage for speech perception was only observed when the insertion depths were interaurally matched and deep. No advantage was observed for small to moderate interaural insertion-depth mismatches, consistent with a better ear effect. Finally, both measures were poorer than expected for a better ear effect for large mismatches, suggesting that misalignment of the electrode arrays may prevent a bilateral advantage and detrimentally affect perception of diotically presented speech.
Collapse
Affiliation(s)
- Rachel M van Besouw
- Institute of Sound and Vibration Research, University of Southampton, Southampton, Hampshire, SO17 1BJ, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Reiss LAJ, Perreau AE, Turner CW. Effects of lower frequency-to-electrode allocations on speech and pitch perception with the hybrid short-electrode cochlear implant. Audiol Neurootol 2012; 17:357-72. [PMID: 22907151 PMCID: PMC3519932 DOI: 10.1159/000341165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Because some users of a Hybrid short-electrode cochlear implant (CI) lose their low-frequency residual hearing after receiving the CI, we tested whether increasing the CI speech processor frequency allocation range to include lower frequencies improves speech perception in these individuals. A secondary goal was to see if pitch perception changed after experience with the new CI frequency allocation. Three subjects who had lost all residual hearing in the implanted ear were recruited to use an experimental CI frequency allocation with a lower frequency cutoff than their current clinical frequency allocation. Speech and pitch perception results were collected at multiple time points throughout the study. In general, subjects showed little or no improvement for speech recognition with the experimental allocation when the CI was worn with a hearing aid in the contralateral ear. However, all 3 subjects showed changes in pitch perception that followed the changes in frequency allocations over time, consistent with previous studies showing that pitch perception changes upon provision of a CI.
Collapse
Affiliation(s)
- Lina A J Reiss
- Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
35
|
Zhou N, Pfingst BE. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:994-1008. [PMID: 22894220 PMCID: PMC3427365 DOI: 10.1121/1.4730907] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/21/2012] [Accepted: 06/01/2012] [Indexed: 05/26/2023]
Abstract
The ability to perceive important features of electrical stimulation varies across stimulation sites within a multichannel implant. The aim of this study was to optimize speech processor MAPs for bilateral implant users by identifying and removing sites with poor psychophysical performance. The psychophysical assessment involved amplitude-modulation detection with and without a masker, and a channel interaction measure quantified as the elevation in modulation detection thresholds in the presence of the masker. Three experimental MAPs were created on an individual-subject basis using data from one of the three psychophysical measures. These experimental MAPs improved the mean psychophysical acuity across the electrode array and provided additional advantages such as increasing spatial separations between electrodes and/or preserving frequency resolution. All 8 subjects showed improved speech recognition in noise with one or more experimental MAPs over their everyday-use clinical MAP. For most subjects, phoneme and sentence recognition in noise were significantly improved by a dichotic experimental MAP that provided better mean psychophysical acuity, a balanced distribution of selected stimulation sites, and preserved frequency resolution. The site-selection strategies serve as useful tools for evaluating the importance of psychophysical acuities needed for good speech recognition in implant users.
Collapse
Affiliation(s)
- Ning Zhou
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan 48109-5616, USA.
| | | |
Collapse
|