1
|
Allahham A, Rowe G, Stevenson A, Fear MW, Vallence AM, Wood FM. The impact of burn injury on the central nervous system. BURNS & TRAUMA 2024; 12:tkad037. [PMID: 38312739 PMCID: PMC10835674 DOI: 10.1093/burnst/tkad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 02/06/2024]
Abstract
Burn injuries can be devastating, with life-long impacts including an increased risk of hospitalization for a wide range of secondary morbidities. One area that remains not fully understood is the impact of burn trauma on the central nervous system (CNS). This review will outline the current findings on the physiological impact that burns have on the CNS and how this may contribute to the development of neural comorbidities including mental health conditions. This review highlights the damaging effects caused by burn injuries on the CNS, characterized by changes to metabolism, molecular damage to cells and their organelles, and disturbance to sensory, motor and cognitive functions in the CNS. This damage is likely initiated by the inflammatory response that accompanies burn injury, and it is often long-lasting. Treatments used to relieve the symptoms of damage to the CNS due to burn injury often target inflammatory pathways. However, there are non-invasive treatments for burn patients that target the functional and cognitive damage caused by the burn, including transcranial magnetic stimulation and virtual reality. Future research should focus on understanding the mechanisms that underpin the impact of a burn injury on the CNS, burn severity thresholds required to inflict damage to the CNS, and acute and long-term therapies to ameliorate deleterious CNS changes after a burn.
Collapse
Affiliation(s)
- Amira Allahham
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Grant Rowe
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
| | - Andrew Stevenson
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Mark W Fear
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Ann-Maree Vallence
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch Perth 6150, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B), Level 4, 102-118 Murdoch Drive, Murdoch, Perth, WA 6150, Australia
| | - Fiona M Wood
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
- School of Psychology, College of Health and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
| |
Collapse
|
2
|
Wang Y, Deng K, Qian J, Tan L. Use of extracorporeal membrane oxygenation in children with burn injury: Case report and literature review. Medicine (Baltimore) 2023; 102:e34029. [PMID: 37327291 PMCID: PMC10270491 DOI: 10.1097/md.0000000000034029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
RATIONALE Burns are one of the most debilitating injuries in the world and one of the major causes of accidental disability and death among children. Severe burns can result in irreversible brain damage, placing patients at high risk of brain failure and high mortality. Therefore, timely diagnosis and treatment of burn encephalopathy are crucial for improving prognosis. In recent years, extracorporeal membrane oxygenation (ECMO) has been increasingly used to improve the prognosis of patients with burns. Here, we report a case of ECMO treatment in a child with burns and review the relevant literature. PATIENT CONCERNS A 7-year-old boy with a modified Baux score of 24 presented with asphyxia, loss of consciousness, refractory hypoxemia, and malignant arrhythmia after smoke inhalation for 1 day. Fiberoptic bronchoscopy revealed a large amount of black carbon-like substances aspirated from the trachea. DIAGNOSES Considering that the boy inhaled a large amount of smoke, the clinical manifestation was unclear consciousness, laboratory examination revealed continuous low blood oxygen saturation, and bronchoscopy revealed a large amount of black carbon-like substances in the trachea, thereby leading to the diagnosis of asphyxia, inhalation pneumonia, burn encephalopathy, multiple organ dysfunction syndrome, and malignant arrhythmia. In addition, pulmonary edema and carbon monoxide poisoning are caused by chemical agents, gas fumes, and vapors. INTERVENTIONS The boy's blood oxygen saturation and blood circulation remained unstable despite various ventilation methods and medications, thus we decided to use ECMO. After 8 days of ECMO support, the patient was successfully weaned from the machine. OUTCOMES Under the application of ECMO, the respiratory and circulatory systems significantly improved. Nevertheless, due to the progressive brain injury caused by burns and the poor prognosis, the parents ceased all treatment and the boy passed away. LESSONS This case report demonstrates that brain edema and herniation can arise as phenotypes of burn encephalopathy, which is a challenge to treat in children. Children with confirmed or suspected burn encephalopathy should undergo diagnostic tests completed as soon as possible to confirm the diagnosis. After receiving ECMO treatment, the respiratory and circulatory systems of the burn victims reported significantly improved. Hence, ECMO is a viable alternative for supporting patients with burns.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Surgical intensive care, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Kelei Deng
- Department of Surgical intensive care, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Junjie Qian
- Department of Surgical intensive care, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Linhua Tan
- Department of Surgical intensive care, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
|
5
|
Emery MA, Eitan S. Drug-specific differences in the ability of opioids to manage burn pain. Burns 2019; 46:503-513. [PMID: 31859093 DOI: 10.1016/j.burns.2019.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/17/2022]
Abstract
Burn injury pain is a significant public health problem. Burn injury treatment has improved tremendously in recent decades. However, an unintended consequence is that a larger number of patients now survive more severe injuries, and face intense pain that is very hard to treat. Although many efforts have been made to find alternative treatments, opioids remain the most effective medication available. Burn patients are frequently prescribed opioids in doses and durations that are significantly higher and longer than standard analgesic dosing guidelines. Despite this, many continue to experience unrelieved pain. They are also placed at a higher risk for developing dependence and opioid use disorder. Burn injury profoundly alters the functional state of the immune system. It also alters the expression levels of receptor, effector, and signaling molecules within the spinal cord's dorsal horn. These alterations could explain the reduced potency of opioids. However, recent studies demonstrate that different opioids signal preferentially via differential signaling pathways. This ligand-specific signaling by different opioids implies that burn injury may reduce the antinociceptive potency of opioids to different degrees, in a drug-specific manner. Indeed, recent findings hint at drug-specific differences in the ability of opioids to manage burn pain early after injury, as well as differences in their ability to prevent or treat the development of chronic and neuropathic pain. Here we review the current state of opioid treatment, as well as new findings that could potentially lead to opioid-based pain management strategies that may be significantly more effective than the current solutions.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA.
| |
Collapse
|
6
|
Hamasaki MY, Machado MCC, Pinheiro da Silva F. Animal models of neuroinflammation secondary to acute insults originated outside the brain. J Neurosci Res 2017; 96:371-378. [DOI: 10.1002/jnr.24184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Mike Yoshio Hamasaki
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP; Universidade de São Paulo; São Paulo SP Brazil
| | | | - Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
7
|
Jiang T, Xie L, Lou X, Li D, Chen Z, Xiao H, Ma L. T2 relaxation time measurements in the brains of scalded rats. SCIENCE CHINA-LIFE SCIENCES 2017; 60:5-10. [PMID: 28078505 DOI: 10.1007/s11427-016-0382-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
This study aimed to evaluate the T2 relaxation time of the brain in severely scalded rats using a magnetic resonance (MR) T2 mapping sequence, and to investigate the correlation between T2 relaxation time and plasma glucose level. Twenty-eight Wistar rats were randomly divided into the scalded group (n=21) and control group (n=7). Magnetic resonance scans were performed with T1WI, T2WI, and T2-mapping sequences in the scalded group; the scans were performed 1 day prior to scalding and 1, 3, 5, and 7 days post-scalding; in addition, identical MR scans were performed in the control group at the same time points. T2-maps were generated and T2 relaxation times were acquired from the following brain regions: the hippocampus, thalamus, caudate-putamen, and cerebrum. Pathological changes of the hippocampus were observed. The plasma glucose level of each rat was measured before each MR scan, and a correlation analysis was performed between T2 relaxation time and plasma glucose level. We found that conventional T1WI and T2WI did not reveal any abnormal signals or morphological changes in the hippocampus, thalamus, caudate-putamen, or cerebrum post-scalding. Both the T2 relaxation times of the selected brain regions and plasma glucose levels increased 1, 3, and 5 days post-scalding, and returned to normal levels 7 days post-scalding. The most marked increase of T2 relaxation time was found in the hippocampus; similar changes were also revealed in the thalamus, caudate-putamen, and cerebrum. No correlation was found between T2 relaxation time and plasma glucose level in scalded rats. Pathological observation of the hippocampus showed edema 1, 3, and 5 days post-scalding, with recovery to normal findings at 7 days post-scalding. Thus, we concluded that T2 mapping is a sensitive method for detecting and monitoring scald injury in the rat brain. As the hippocampus is the main region for modulating a stress reaction, it showed significantly increased water content along with an increased plasma glucose level post-scalding.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Radiology, PLA General Hospital, Beijing, 100853, China
- Department of Radiology, PLA 401 Hospital, Qingdao, 266071, China
| | - Liqi Xie
- Department of Radiology, PLA 401 Hospital, Qingdao, 266071, China
| | - Xin Lou
- Department of Radiology, PLA General Hospital, Beijing, 100853, China
| | - Dawei Li
- Department of Burn and Plastic Surgery, PLA 304 Hospital, Beijing, 100048, China
| | - Zhiye Chen
- Department of Radiology, PLA General Hospital, Beijing, 100853, China
| | - Huafeng Xiao
- Department of Radiology, PLA 302 Hospital, Beijing, 100039, China
| | - Lin Ma
- Department of Radiology, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
8
|
Valproic acid treatment attenuates caspase-3 activation and improves survival after lethal burn injury in a rodent model. J Burn Care Res 2014; 35:e93-8. [PMID: 23511294 DOI: 10.1097/bcr.0b013e31828a8d32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Burn injury may result in multiple organ dysfunction partially because of apoptotic cell death. The authors have previously shown that valproic acid (VPA) improves survival in a dog burn model. The aim of this study is to examine whether a VPA improves survival in a rodent burn model and whether this was because of inhibition of cell apoptosis. Rats were subjected to third-degree 55% TBSA burns and randomized to treatment with a VPA (300 mg/kg) or normal saline. One group of animals was monitored for 12 hours for survival analysis; another group was killed at 6 hours after injury, and brains, hearts, and blood samples were harvested for examination. Plasma creatine kinase (CK)-MB activities and neuron-specific enolase (NSE) levels were measured to evaluate the cardiac and brain damages. The effects of a VPA on acetylation of histone H3 and caspase-3 activation were also evaluated. Major burn injury resulted in a significant decrease in the acetylation of histone H3, and there was an increase in plasma CK-MB activities, NSE concentrations, and tissue levels of activated caspase-3. A VPA treatment significantly increased the acetylation of histone H3 and survival of the animals after major burn injury. In addition, a VPA treatment significantly attenuated the plasma CK-MB activities, an NSE concentrations, and inhibited caspase-3 activation after major burn injury. These results indicate that a VPA can attenuate cardiac and brain injury, and can improve survival in a rodent model of lethal burn injury. These protective effects may be mediated in part through the inhibition of caspase-3 activation.
Collapse
|
9
|
Carter D, Warsen A, Mandell K, Cuschieri J, Maier RV, Arbabi S. Delayed topical p38 MAPK inhibition attenuates full-thickness burn wound inflammatory signaling. J Burn Care Res 2014; 35:e83-92. [PMID: 23666384 PMCID: PMC4180234 DOI: 10.1097/bcr.0b013e31828a8d6e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inflammatory signaling pathways, such as p38 mitogen-activated protein kinase (MAPK) play a central role in host responses to injury. In previous studies by the authors, topical p38 MAPK inhibitors effectively attenuated inflammatory signaling in a partial-thickness scald burn model, when applied to the burn wound immediately after injury. However, clinically relevant full-thickness scald burn wounds may act as a barrier to topical immune modulators, and delayed application of topical p38 MAPK inhibitors may not be effective. In this study, the authors evaluate the efficacy of topical p38 MAPK inhibition on full-thickness scald burns with immediate and delayed treatment. C57/BL6 mice received "Sham" or 30% TBSA full-thickness scald burn injury. After injury, the burn wounds were treated with a topical p38 MAPK inhibitor or vehicle. The treatment group received topical p38 MAPK inhibitor either immediately after burn or 4 hours (delayed) after injury. All animals were killed at 12 or 24 hours. Burn wounds underwent histological analyses. Skin and plasma were analyzed by enzyme-linked immunosorbent assay or real-time quantitative polymerase chain reaction for cytokine expression. Full-thickness scald burns resulted from immersion in 62°C water for 25 seconds. Topical p38 MAPK inhibitor attenuated dermal interleukin (IL)-6, MIP-2, and IL-1β expression and plasma IL-6 and MIP-2 cytokine expression. In addition, delayed application of topical p38 MAPK inhibitors significantly reduced dermal and plasma cytokine expression compared with vehicle control. Topical p38 MAPK inhibitors remain potent in reducing full-thickness burn wound inflammatory signaling, even when treatment is delayed by several hours postinjury. Topical application of p38 MAPK inhibitor may be a clinically viable treatment after burn injury.
Collapse
Affiliation(s)
- Damien Carter
- From Department of Surgery, Harborview Medical Center, University of Washington, Seattle
| | | | | | | | | | | |
Collapse
|
10
|
Zhang QH, Chen Q, Kang JR, Liu C, Dong N, Zhu XM, Sheng ZY, Yao YM. Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury. J Neuroinflammation 2011; 8:118. [PMID: 21936896 PMCID: PMC3191361 DOI: 10.1186/1742-2094-8-118] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/21/2011] [Indexed: 12/25/2022] Open
Abstract
Background Burn survivors develop long-term cognitive impairment with increased inflammation and apoptosis in the brain. Gelsolin, an actin-binding protein with capping and severing activities, plays a crucial role in the septic response. We investigated if gelsolin infusion could attenuate neural damage in burned mice. Methods Mice with 15% total body surface area burns were injected intravenously with bovine serum albumin as placebo (2 mg/kg), or with low (2 mg/kg) or high doses (20 mg/kg) of gelsolin. Samples were harvested at 8, 24, 48 and 72 hours postburn. The immune function of splenic T cells was analyzed. Cerebral pathology was examined by hematoxylin/eosin staining, while activated glial cells and infiltrating leukocytes were detected by immunohistochemistry. Cerebral cytokine mRNAs were further assessed by quantitative real-time PCR, while apoptosis was evaluated by caspase-3. Neural damage was determined using enzyme-linked immunosorbent assay of neuron-specific enolase (NSE) and soluble protein-100 (S-100). Finally, cerebral phospho-ERK expression was measured by western blot. Results Gelsolin significantly improved the outcomes of mice following major burns in a dose-dependent manner. The survival rate was improved by high dose gelsolin treatment compared with the placebo group (56.67% vs. 30%). Although there was no significant improvement in outcome in mice receiving low dose gelsolin (30%), survival time was prolonged against the placebo control (43.1 ± 4.5 h vs. 35.5 ± 5.0 h; P < 0.05). Burn-induced T cell suppression was greatly alleviated by high dose gelsolin treatment. Concurrently, cerebral abnormalities were greatly ameliorated as shown by reduced NSE and S-100 content of brain, decreased cytokine mRNA expressions, suppressed microglial activation, and enhanced infiltration of CD11b+ and CD45+ cells into the brain. Furthermore, the elevated caspase-3 activity seen following burn injury was remarkably reduced by high dose gelsolin treatment along with down-regulation of phospho-ERK expression. Conclusion Exogenous gelsolin infusion improves survival of mice following major burn injury by partially attenuating inflammation and apoptosis in brain, and by enhancing peripheral T lymphocyte function as well. These data suggest a novel and effective strategy to combat excessive neuroinflammation and to preserve cognition in the setting of major burns.
Collapse
Affiliation(s)
- Qing-Hong Zhang
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gatson JW, Maass DL, Simpkins JW, Idris AH, Minei JP, Wigginton JG. Estrogen treatment following severe burn injury reduces brain inflammation and apoptotic signaling. J Neuroinflammation 2009; 6:30. [PMID: 19849845 PMCID: PMC2774304 DOI: 10.1186/1742-2094-6-30] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/22/2009] [Indexed: 11/22/2022] Open
Abstract
Background Patients with severe burn injury experience a rapid elevation in multiple circulating pro-inflammatory cytokines, with the levels correlating with both injury severity and outcome. Accumulations of these cytokines in animal models have been observed in remote organs, however data are lacking regarding early brain cytokine levels following burn injury, and the effects of estradiol on these levels. Using an experimental animal model, we studied the acute effects of a full-thickness third degree burn on brain levels of TNF-α, IL-1β, and IL-6 and the protective effects of acute estrogen treatment on these levels. Additionally, the acute administration of estrogen on regulation of inflammatory and apoptotic events in the brain following severe burn injury were studied through measuring the levels of phospho-ERK, phospho-Akt, active caspase-3, and PARP cleavage in the placebo and estrogen treated groups. Methods In this study, 149 adult Sprague-Dawley male rats received 3rd degree 40% total body surface area (TBSA) burns. Fifteen minutes following burn injury, the animals received a subcutaneous injection of either placebo (n = 72) or 17 beta-estradiol (n = 72). Brains were harvested at 0.5, 1, 2, 4, 6, 8, 12, 18, and 24 hours after injury from the control (n = 5), placebo (n = 8/time point), and estrogen treated animals (n = 8/time point). The brain cytokine levels were measured using the ELISA method. In addition, we assessed the levels of phosphorylated-ERK, phosphorylated-Akt, active caspase-3, and the levels of cleaved PARP at the 24 hour time-point using Western blot analysis. Results In burned rats, 17 beta-estradiol significantly decreased the levels of brain tissue TNF-α (~25%), IL-1β (~60%), and IL-6 (~90%) when compared to the placebo group. In addition, we determined that in the estrogen-treated rats there was an increase in the levels of phospho-ERK (p < 0.01) and Akt (p < 0.05) at the 24 hour time-point, and that 17 beta-estradiol blocked the activation of caspase-3 (p < 0.01) and subsequent cleavage of PARP (p < 0.05). Conclusion Following severe burn injury, estrogens decrease both brain inflammation and the activation of apoptosis, represented by an increase in the levels of phospho-Akt and inhibition of caspase-3 activation and PARP cleavage. Results from these studies will help further our understanding of how estrogens protect the brain following burn injury, and may provide a novel, safe, and effective clinical treatment to combat remote secondary burn injury in the brain and to preserve cognition.
Collapse
Affiliation(s)
- Joshua W Gatson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | | | | | |
Collapse
|