1
|
Marya S, Tambe AD, Millner PA, Tsirikos AI. Adolescent idiopathic scoliosis : a review of aetiological theories of a multifactorial disease. Bone Joint J 2022; 104-B:915-921. [PMID: 35909373 DOI: 10.1302/0301-620x.104b8.bjj-2021-1638.r1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article: Bone Joint J 2022;104-B(8):915-921.
Collapse
Affiliation(s)
- Shivan Marya
- Royal Manchester Children's Hospital, Manchester, UK
| | | | | | - Athanasios I Tsirikos
- Scottish National Spine Deformity Centre, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
2
|
Cheng T, Einarsdottir E, Kere J, Gerdhem P. Idiopathic scoliosis: a systematic review and meta-analysis of heritability. EFORT Open Rev 2022; 7:414-421. [PMID: 35638601 PMCID: PMC9257730 DOI: 10.1530/eor-22-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Tian Cheng
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Einarsdottir
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition (BioNut), Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Research Center, Helsinki, Finland
| | - Paul Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Reconstructive Orthopaedics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Vasiliadis ES, Evangelopoulos DS, Kaspiris A, Vlachos C, Pneumaticos SG. Sclerostin and Its Involvement in the Pathogenesis of Idiopathic Scoliosis. J Clin Med 2021; 10:jcm10225286. [PMID: 34830568 PMCID: PMC8618875 DOI: 10.3390/jcm10225286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Idiopathic scoliosis is a disorder of unknown etiology. Bone biopsies from idiopathic scoliosis patients revealed changes at cellular and molecular level. Osteocytic sclerostin is downregulated, and serum level of sclerostin is decreased. Osteocytes in idiopathic scoliosis appear to be less active with abnormal canaliculi network. Differentiation of osteoblasts to osteocytes is decelerated, while Wnt/β-catenin signaling pathway is overactivated and affects normal bone mineralization that leads to inferior mechanical properties of the bone, which becomes susceptible to asymmetrical forces and causes deformity of the spinal column. Targeting bone metabolism during growth by stimulating sclerostin secretion from osteocytes and restoring normal function of Wnt/β-catenin signaling pathway could, in theory, increase bone strength and prevent deterioration of the scoliotic deformity.
Collapse
Affiliation(s)
- Elias S. Vasiliadis
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.S.E.); (C.V.); (S.G.P.)
- Correspondence: ; Tel.: +30-2132-086-000
| | - Dimitrios Stergios Evangelopoulos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.S.E.); (C.V.); (S.G.P.)
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Division for Orthopaedic Research, School of Health Sciences, University of Patras, 26504 Rion, Greece;
| | - Christos Vlachos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.S.E.); (C.V.); (S.G.P.)
| | - Spyros G. Pneumaticos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.S.E.); (C.V.); (S.G.P.)
| |
Collapse
|
4
|
Tang NLS, Dobbs MB, Gurnett CA, Qiu Y, Lam TP, Cheng JCY, Hadley-Miller N. A Decade in Review after Idiopathic Scoliosis Was First Called a Complex Trait-A Tribute to the Late Dr. Yves Cotrel for His Support in Studies of Etiology of Scoliosis. Genes (Basel) 2021; 12:1033. [PMID: 34356049 PMCID: PMC8306836 DOI: 10.3390/genes12071033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is a prevalent and important spine disorder in the pediatric age group. An increased family tendency was observed for a long time, but the underlying genetic mechanism was uncertain. In 1999, Dr. Yves Cotrel founded the Cotrel Foundation in the Institut de France, which supported collaboration of international researchers to work together to better understand the etiology of AIS. This new concept of AIS as a complex trait evolved in this setting among researchers who joined the annual Cotrel meetings. It is now over a decade since the first proposal of the complex trait genetic model for AIS. Here, we review in detail the vast information about the genetic and environmental factors in AIS pathogenesis gathered to date. More importantly, new insights into AIS etiology were brought to us through new research data under the perspective of a complex trait. Hopefully, future research directions may lead to better management of AIS, which has a tremendous impact on affected adolescents in terms of both physical growth and psychological development.
Collapse
Affiliation(s)
- Nelson L. S. Tang
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Functional Genomics and Biostatistical Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Matthew B. Dobbs
- Dobbs Clubfoot Center, Paley Orthopedic and Spine Institute, West Palm Beach, FL 33401, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA;
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - T. P. Lam
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Jack C. Y. Cheng
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80012, USA;
| |
Collapse
|
5
|
Zaydman AM, Strokova EL, Pahomova NY, Gusev AF, Mikhaylovskiy MV, Shevchenko AI, Zaidman MN, Shilo AR, Subbotin VM. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med Hypotheses 2021; 151:110585. [PMID: 33932710 DOI: 10.1016/j.mehy.2021.110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) affects 2-3% of children. Numerous hypotheses on etiologic/causal factors of AIS were investigated, but all failed to identify therapeutic targets and hence failed to offer a cure. Therefore, currently there are only two options to minimize morbidity of the patients suffering AIS: bracing and spinal surgery. From the beginning of 1960th, spinal surgery, both fusion and rod placement, became the standard of management for progressive adolescent idiopathic spine deformity. However, spinal surgery is often associated with complications. These circumstances motivate AIS scientific community to continue the search for new etiologic and causal factors of AIS. While the role of the genetic factors in AIS pathogenesis was investigated intensively and universally recognized, these studies failed to nominate mutation of a particular gene or genes combination responsible for AIS development. More recently epigenetic factors were suggested to play causal role in AIS pathogenesis. Sharing this new approach, we investigated scoliotic vertebral growth plates removed during vertebral fusion (anterior surgery) for AIS correction. In recent publications we showed that cells from the convex side of human scoliotic deformities undergo normal chondrogenic/osteogenic differentiation, while cells from the concave side acquire a neuronal phenotype. Based on these facts we hypothesized that altered neural crest cell migration in early embryogenesis can be the etiological factor of AIS. In particular, we suggested that neural crest cells failed to migrate through the anterior half of somites and became deposited in sclerotome, which in turn produced chondrogenic/osteogenic-insufficient vertebral growth plates. To test this hypothesis we conducted experiments on chicken embryos with arrest neural crest cell migration by inhibiting expression of Paired-box 3 (Pax3) gene, a known enhancer and promoter of neural crest cells migration and differentiation. The results showed that chicken embryos treated with Pax3 siRNA (microinjection into the neural tube, 44 h post-fertilization) progressively developed scoliotic deformity during maturation. Therefore, this analysis suggests that although adolescent idiopathic scoliosis manifests in children around puberty, the real onset of the disease is of epigenetic nature and takes place in early embryogenesis and involves altered neural crest cells migration. If these results confirmed and further elaborated, the hypothesis may shed new light on the etiology and pathogenesis of AIS.
Collapse
Affiliation(s)
- Alla M Zaydman
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Elena L Strokova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Nataliya Y Pahomova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Arkady F Gusev
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Mikhail V Mikhaylovskiy
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Alexander I Shevchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, Russia
| | | | - Andrey R Shilo
- Novosibirsk Zoo named after R.A. Shilo, Novosibirsk, Russia
| | - Vladimir M Subbotin
- Arrowhead Pharmaceuticals Inc., Madison WI, USA; University of Pittsburgh, Pittsburgh PA, USA; University of Wisconsin, Madison WI, USA.
| |
Collapse
|
6
|
Zhang J, Wang Y, Cheng KL, Cheuk K, Lam TP, Hung ALH, Cheng JCY, Qiu Y, Müller R, Christen P, Lee WYW. Association of higher bone turnover with risk of curve progression in adolescent idiopathic scoliosis. Bone 2021; 143:115655. [PMID: 32979537 DOI: 10.1016/j.bone.2020.115655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/03/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Emerging evidence suggest abnormal bone metabolism and defective bone qualities are associated to etipathogenesis of Adolescent Idiopathic Scoliosis (AIS). Systemic low bone mass is important prognosticator to predict risk of curve progression in AIS. The underlying mechanism is still unclear. We hypothesize that aberrant bone turnover correlates with bone qualities in AIS and associates to risk of curve progression. SUBJECTS AND METHODS Two cohorts were included in this study. The case-control study recruited 161 AIS girls and 161 ethnic/age-matched healthy girls. The longitudinal cohort recruited 128 AIS girls with two-year follow-up. Areal bone mineral density (BMD) at femoral necks were measured with dual-energy x-ray absorptiometry (DXA), and bone qualities of distal radius by high-resolution peripheral quantitative computed tomography (HR-pQCT). Time-lapse analysis of registered HR-pQCT images estimated local bone remodeling quantitatively. Serum levels of CTX and P1NP were measured with ELISA kits. RESULTS AIS presented significantly higher serum level of P1NP. In both AIS and control, the negative correlations were consistently observed between serum CTX/P1NP levels and most cortical bone quality parameters after adjustment to age. Significant correlation between serum bone turnover markers and trabecular bone parameters have been observed only in control. Progressive AIS has significant increase of serum P1NP level at first clinic visit. Time lapse register analysis showed high bone resorption and low net bone gain was associated with risk of progression in AIS. CONCLUSIONS Our study characterized AIS with higher serum bone turnover markers, which may contribute to defective bone qualities in AIS. For the first time, we showed that progressive AIS had higher systemic bone turnover markers level and local bone remodeling. This fresh evidence indicated association between disrupted bone turnover and risk of progression of AIS, which set the foundation of new prognostic method and of novel treatment target to curve progression. This study demonstrated the importance of bone metabolism in developing disease management of AIS to achieve goal of early prediction and non-surgical modulation.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yujia Wang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Ka-Lo Cheng
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Kayee Cheuk
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Alec L H Hung
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Jack C Y Cheng
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yong Qiu
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ralph Müller
- Institute for Biomechanics, ETH, Zurich, Zurich, Switzerland
| | - Patrik Christen
- Institute for Biomechanics, ETH, Zurich, Zurich, Switzerland; Institute for Information Systems, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
| | - Wayne Y W Lee
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
7
|
Quantitation Analysis of PCDH10 Methylation in Adolescent Idiopathic Scoliosis Using Pyrosequencing Study. Spine (Phila Pa 1976) 2020; 45:E373-E378. [PMID: 31651684 DOI: 10.1097/brs.0000000000003292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A retrospective and comparative study. OBJECTIVE To evaluate the difference of DNA methylation in protocadherin10 (PCDH10) genes between adolescent idiopathic scoliosis (AIS) and normal controls, and to assess the association between DNA methylation and the etiology of AIS. SUMMARY OF BACKGROUND DATA The PCDH10 gene showed abnormal expression in AIS. However, the mechanism was still unclear. DNA methylation was an important epigenetic mechanism at the interface between genetics and environmental phenotype, seeming to be a suitable epigenetic mark for the abnormal expression of PCDH10 in AIS. METHODS There were 50 AIS patients and 50 healthy controls included in the study. The peripheral blood sample of each participant was taken. The pyrosequencing assay was used to assess the methylation status of PCDH10 promoter and real time PCR (RT-PCR) was used to detect the PCDH10 gene expression. The comparison analysis was performed using independent t test and 2-tailed Pearson coefficients was calculated for the correlation analysis. RESULTS The average methylation level was 4.32 ± 0.73 in AIS patients and 3.14 ± 0.97 in healthy controls (P < 0.001). The PCDH10 gene expression was 0.23 ± 0.04 in AIS patients and 0.36 ± 0.08 in normal controls (P < 0.0001). Statistically significant linear correlation was found between PCDH10 gene methylation level and Cobb angle of major curve (P < 0.001). Besides, a significant negative correlation between PCDH10 methylation and PCDH10 gene expression was found (P < 0.001). CONCLUSION AIS patients were associated with high DNA methylation level and low gene expression of PCDH10 gene rather than normal controls. The high methylation level indicated high Cobb angle of major curves in AIS. The abnormal DNA methylation may widely exist and serve as a potential mechanism for AIS. LEVEL OF EVIDENCE 3.
Collapse
|
8
|
Zhang J, Cheuk KY, Xu L, Wang Y, Feng Z, Sit T, Cheng KL, Nepotchatykh E, Lam TP, Liu Z, Hung AL, Zhu Z, Moreau A, Cheng JC, Qiu Y, Lee WY. A validated composite model to predict risk of curve progression in adolescent idiopathic scoliosis. EClinicalMedicine 2020; 18:100236. [PMID: 31922123 PMCID: PMC6948250 DOI: 10.1016/j.eclinm.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In adolescent idiopathic scoliosis (AIS), the continuous search for effective prognostication of significant curve progression at the initial clinical consultation to inform decision for timely treatment and to avoid unnecessary overtreatment remains a big challenge as evidence of the multifactorial etiopathogenic nature is increasingly reported. This study aimed to formulate a composite model composed of clinical parameters and circulating markers in the prediction of curve progression. METHOD This is a two-phase study consisting of an exploration cohort (120 AIS, mean Cobb angle of 25°± 8.5 at their first clinical visit) and a validation cohort (51 AIS, mean Cobb angle of 23° ± 5.0° at the first visit). Patients with AIS were followed-up for a minimum of six years to formulate a composite model for prediction. At the first visit, clinical parameters were collected from routine clinical practice, and circulating markers were assayed from blood. FINDING We constructed the composite predictive model for curve progression to severe Cobb angle > 40° with a high HR of 27.9 (95% CI of 6.55 to 119.16). The area under curve of the composite model is higher than that of individual parameters used in current clinical practice. The model was validated by an independent cohort and achieved a sensitivity of 72.7% and a specificity of 90%. INTERPRETATION This is the first study proposing and validating a prognostic composite model consisting of clinical and circulating parameters which could quantitatively evaluate the probability of curve progression to a severe curvature in AIS at the initial consultation. Further validation in clinic will facilitate application of composite model in assisting objective clinical decision.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ka-yee Cheuk
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Leilei Xu
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yujia Wang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhenhua Feng
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Tony Sit
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ka-lo Cheng
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Evguenia Nepotchatykh
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Tsz-ping Lam
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhen Liu
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Alec L.H. Hung
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zezhang Zhu
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jack C.Y. Cheng
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Co-corresponding author at: Lui Che Woo Clinical Science Bu/F, Lui Che Woo Clinical Science Building, Prince of Wales Hospital, Shatin, Hong Kong, China.
| | - Yong Qiu
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Co-corresponding author at: Spine Surgery, Nanjing Drum Tower Hospital, Nanjing, China.
| | - Wayne Y.W. Lee
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Corresponding author at: Room 904, 9/F, Li Ka Shing Medical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong, China.
| |
Collapse
|
9
|
Jennings W, Hou M, Perterson D, Missiuna P, Thabane L, Tarnopolsky M, Samaan MC. Paraspinal muscle ladybird homeobox 1 (LBX1) in adolescent idiopathic scoliosis: a cross-sectional study. Spine J 2019; 19:1911-1916. [PMID: 31202838 DOI: 10.1016/j.spinee.2019.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Adolescent idiopathic scoliosis (AIS) is the leading cause of spinal deformity in adolescents globally. Recent evidence from genome-wide association studies has implicated variants in or near the ladybird homeobox 1 (LBX1) gene, encoding the ladybird homeobox 1 transcription factor, in AIS development. This gene plays a critical role in guiding embryonic neurogenesis and myogenesis and is vital in muscle mass determination. Despite the confirmation of the role for LBX1 gene variants in the development of AIS, the biological basis of LBX1 contribution to AIS remains mostly unknown. PURPOSE To investigate the potential role of LBX1 in driving spinal curving, curve laterality, and progression through muscle-based mechanisms in AIS patients by analyzing its gene and protein expression. STUDY DESIGN This is a cross-sectional study using clinical data and biological samples from the Immunometabolic CONnections to Scoliosis study (ICONS study). PATIENT SAMPLE Twenty-five patients with AIS provided informed consent. Paraspinal muscle biopsies from the maximal points of concavity and convexity for gene expression and protein analysis were obtained at the start of corrective spinal surgery. OUTCOME MEASURES The outcome measures included the detection of paraspinal muscle LBX1 mRNA abundance and LBX1 protein expression and the correlation of the latter with age, sex, and curve severity. METHODS The measurement of mRNA abundance was done using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, protein lysates from the biopsied muscle samples were probed with a monoclonal LBX1 antibody to compare the muscle protein levels on either side of the scoliotic curve by western blot. This study received funding from the Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada ($39,900 CAN for 2 years). The authors have no conflicts of interest to disclose. RESULTS LBX1 mRNA abundance (concave 2.98±0.87, convex 3.40±1.10, p value 0.73) and protein expression (concave 1.20±0.13, convex 1.21±0.10, p value 0.43) were detected on both sides of the scoliotic curve at equivalent levels. The expression of LBX1 protein did not correlate with age (concave: correlation coefficient 0.32, p value 0.12; convex: correlation coefficient 0.08, p value 0.69), sex (concave: correlation coefficient -0.03, p value 0.08; convex: correlation coefficient 0.07, p value 0.72), or the severity of spinal curving measured using the Cobb angle (concave: correlation coefficient -0.16, p value 0.45; convex: correlation coefficient -0.08, p value 0.69). CONCLUSIONS LBX1 is expressed in erector spinae muscles, and its levels are equal in muscles on both sides of the scoliotic curve in AIS. The expression of LBX1 on the convex and concave sides of the scoliotic curve did not correlate with age, sex, or the severity of spinal curving. The molecular mechanisms by which LBX1contributes to the development and propagation of AIS need to be explored further in muscle and other tissues.
Collapse
Affiliation(s)
- William Jennings
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Maggie Hou
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Devin Perterson
- Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Paul Missiuna
- Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada; Centre for Evaluation of Medicines, St. Joseph's Health Care, Hamilton, Ontario, Canada; Biostatistics Unit, St Joseph's Healthcare-Hamilton, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - M Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Andrusiewicz M, Harasymczuk P, Janusz P, Biecek P, Żbikowska A, Kotwicka M, Kotwicki T. TIMP2 Polymorphisms Association With Curve Initiation and Progression of Thoracic Idiopathic Scoliosis in the Caucasian Females. J Orthop Res 2019; 37:2217-2225. [PMID: 31119800 DOI: 10.1002/jor.24380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 02/04/2023]
Abstract
Idiopathic scoliosis (IS) etiology remains unclear, but strong genetic background is suggested. Previously reported TIMP2 study indicates an association of genic rs8179090 with IS progression in a Han Chinese population. However, there has been a lack of investigation into intragenic TIMP2 polymorphisms in IS patients. We recruited 100 Caucasian females with IS and 100 controls. Patients were subdivided accordingly to: progression rate, curve severity, joint mobility, and curve pattern. Allele-specific-polymerase chain reaction based on fluorescence resonance energy transfer was applied to evaluate nine TIMP2 polymorphisms. Distribution of genotype and allele frequency in only one polymorphism (rs11658743) differed in case-control study. Four of the polymorphisms (rs2277700, rs11077401, rs2376999, and rs4789934) showed non-equal distributions either in genotype or/and allele distributions in the patients of different progression rates. The rs11077401 was related to curve severity patients distinction and the rs8179090 distinguished patients with different joint mobility level. Two polymorphisms either differed statistically in case of curve patterns subgrouping (rs8068674 and rs8179090) or showed a slight tendency toward significance in the recessive model of allele distributions (rs9916809 and rs8179090). The remaining two polymorphisms (rs2377005, rs11658743) showed no association with either clinical or radiographic IS characteristics. The influence of the G allele of the rs8179090 on the clinical course of IS has not yet been confirmed. We identified four TIMP2 polymorphisms (rs11077401, rs2376999, rs2277700, and rs4789934) that were associated with a higher risk of the progressive IS form. Further genetic association studies based on suggested clinical criteria would be necessary to validate TIMP2 polymorphisms associated with the curve progression. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2217-2225, 2019.
Collapse
Affiliation(s)
- Mirosław Andrusiewicz
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Piotr Harasymczuk
- Department of Pediatric Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Piotr Janusz
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, Poznań, Poland
| | - Przemysław Biecek
- Department of Medical Statistics, University of Warsaw, Warsaw, Poland
| | - Aleksandra Żbikowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Małgorzata Kotwicka
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Tomasz Kotwicki
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
11
|
Replication Study for the Association of GWAS-associated Loci With Adolescent Idiopathic Scoliosis Susceptibility and Curve Progression in a Chinese Population. Spine (Phila Pa 1976) 2019; 44:464-471. [PMID: 30234802 DOI: 10.1097/brs.0000000000002866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association (replication) study. OBJECTIVE The aim of this study was to replicate and further evaluate the association among seven genome-wide association studies (GWAS)-identified single nucleotide polymorphisms (SNPs) in Chinese girls with adolescent idiopathic scoliosis (AIS) with disease onset, curve types, and progression. SUMMARY OF BACKGROUND DATA AIS is the most common pediatric spinal deformity with a strong genetic predisposition. Recent GWAS identified 10 new disease predisposition loci for AIS. METHODS Three hundred nineteen female AIS patients with Cobb angle ≥ 10 and 201 healthy controls were studied for the association with disease onset. Seven GWAS-identified SNPs (rs11190870 in LBX1, rs12946942 in SOX9/KCNJ2, rs13398147 in PAX3/EPH4, rs241215 in AJAP1, rs3904778 in BNC2, rs6570507 in GPR126, and rs678741 in LBX1-AS1) were analyzed. In subgroup analysis, AIS patients were subdivided by curve types and disease progression to examine for genotype association. RESULTS We replicated the association with disease onset in four common SNPs rs11190870, rs3904778, rs6570507, and rs678741. In addition, rs1190870 and rs678741 remained significantly associated in the right thoracic curves only subgroup. However, no significant difference was observed with both clinical curve progression or Cobb angle. CONCLUSION This study replicated the associations of four GWAS-associated SNPs with occurrence of AIS in our Chinese population. However, none of these SNPs was associated with curve severity and progression. The results suggest that curve progression may be determined by environmental (nongenetic) factor, but further study with a larger sample size is required to address this issue. LEVEL OF EVIDENCE 4.
Collapse
|
12
|
Haller G, McCall K, Jenkitkasemwong S, Sadler B, Antunes L, Nikolov M, Whittle J, Upshaw Z, Shin J, Baschal E, Cruchaga C, Harms M, Raggio C, Morcuende JA, Giampietro P, Miller NH, Wise C, Gray RS, Solnica-Krezel L, Knutson M, Dobbs MB, Gurnett CA. A missense variant in SLC39A8 is associated with severe idiopathic scoliosis. Nat Commun 2018; 9:4171. [PMID: 30301978 PMCID: PMC6177404 DOI: 10.1038/s41467-018-06705-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Genetic factors predictive of severe adolescent idiopathic scoliosis (AIS) are largely unknown. To identify genetic variation associated with severe AIS, we performed an exome-wide association study of 457 severe AIS cases and 987 controls. We find a missense SNP in SLC39A8 (p.Ala391Thr, rs13107325) associated with severe AIS (P = 1.60 × 10-7, OR = 2.01, CI = 1.54-2.62). This pleiotropic SNP was previously associated with BMI, blood pressure, cholesterol, and blood manganese level. We replicate the association in a second cohort (841 cases and 1095 controls) resulting in a combined P = 7.02 × 10-14, OR = 1.94, CI = 1.63-2.34. Clinically, the minor allele of rs13107325 is associated with greater spinal curvature, decreased height, increased BMI and lower plasma manganese in our AIS cohort. Functional studies demonstrate reduced manganese influx mediated by the SLC39A8 p.Ala391Thr variant and vertebral abnormalities, impaired growth, and decreased motor activity in slc39a8 mutant zebrafish. Our results suggest the possibility that scoliosis may be amenable to dietary intervention.
Collapse
Affiliation(s)
- Gabe Haller
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Kevin McCall
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Brooke Sadler
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Lilian Antunes
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Momchil Nikolov
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Julia Whittle
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Zachary Upshaw
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erin Baschal
- Department of Orthopaedic Surgery, University of Colorado, Denver, CO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Matthew Harms
- Department of Neurology, Columbia University, New York, NY, USA
| | | | - Jose A Morcuende
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | | | - Nancy H Miller
- Department of Orthopaedic Surgery, University of Colorado, Denver, CO, USA
| | - Carol Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- Departments of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Ryan S Gray
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Matthew B Dobbs
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospital for Children, St. Louis, MO, USA
| | - Christina A Gurnett
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.
- Department of Neurology, Washington University, St. Louis, MO, USA.
- Department of Pediatrics, Washington University, St. Louis, MO, USA.
| |
Collapse
|
13
|
Zhang J, Chen H, Leung RKK, Choy KW, Lam TP, Ng BKW, Qiu Y, Feng JQ, Cheng JCY, Lee WYW. Aberrant miR-145-5p/β-catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. FASEB J 2018; 32:fj201800281. [PMID: 29906249 DOI: 10.1096/fj.201800281] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Recently, noncoding RNAs have been thought to play important roles in the sporadic occurrence of spinal deformity of adolescent idiopathic scoliosis (AIS). As a prognostic factor for curve progression, low bone mass has been hypothesized to crosstalk with AIS pathogenesis. Abnormal osteoblasts activities are reported in AIS without a clear mechanism. In this study, bone biopsies from patients with AIS and control subjects and the primary osteoblasts derived from those samples were used to identify the potential microRNA (miRNA) candidates that interfere with osteoblasts and osteocytes function. Microarray analysis identified miRNA-145-5p (miR-145) as a potential upstream regulator. miR-145 and β-catenin mRNA ( CTNNB1) were overexpressed in AIS bone tissues and primary osteoblasts, and their expression correlated positively in AIS. Knockdown of miR-145 restored impaired osteocyte activity through the down-regulation of active β-catenin expression and its transcriptional activity. Significant negative correlations between circulating miR-145 and serum sclerostin, osteopontin, and osteoprotegerin were noted in patients with AIS, which was in line with our cellular findings. This is the first study to demonstrate the effect of aberrant miRNA expression and its effect on osteocyte function in AIS, which may contribute to the low bone mass. Our findings also provide insight into the development of circulating microRNAs as a bone quality biomarker or even a prognostic biomarker for AIS.-Zhang, J., Chen, H., Leung, R. K. K., Choy, K. W., Lam, T. P., Ng, B. K. W., Qiu,Y., Feng, J. Q., Cheng, J. C. Y., Lee, W. Y. W. Aberrant miR-145-5p/β-catenin signal impairs osteocyte function in adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Huanxiong Chen
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Orthopaedic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ross K K Leung
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bobby K W Ng
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yong Qiu
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, USA
| | - Jack C Y Cheng
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wayne Y W Lee
- Department of Orthopaedics and Traumatology, S. H. Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Joint Scoliosis Research Center, The Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
14
|
Abstract
Does scoliosis severity increase scoliosis risk or severity in relatives? In a cohort of 1257 severe idiopathic scoliosis patients, the percentage with at least one affected relative was compared across the categories of patient sex, major curve severity (Cobb angle), and treatment method. In total, 138 (11%) of 1257 patients had at least one affected first-degree relative and 59 (5%) had at least one affected second-degree relative. As expected, males were more likely to have affected first-degree relatives than females (18 vs. 10% with a risk difference of -0.0864) [95% confidence interval (CI): -0.14 to -0.03; P=0.0002]. However, the major curve severity of the patient (<25°, 25°-49°, and ≥50°) did not impact the prevalence of having at least one affected relative (P=0.69). Surgically treated patients had no greater risk than nonsurgically treated patients of having either an affected relative or a surgically treated relative [11 vs. 11% (odds ratio: 0.912; 95% CI: 0.640-1.299, P=0.61), 6 vs. 5% (OR: 0.788; 95% CI: 0.485-1.280, P=0.34), respectively]. Therefore, our data suggest that scoliosis severity does not independently influence the risk of either scoliosis or its severity in family members.
Collapse
|
15
|
Gao W, Chen C, Zhou T, Yang S, Gao B, Zhou H, Lian C, Wu Z, Qiu X, Yang X, Alattar E, Liu W, Su D, Sun S, Chen Y, Cheung KMC, Song Y, Luk KKD, Chan D, Sham PC, Xing C, Khor CC, Liu G, Yang J, Deng Y, Hao D, Huang D, Li Q, Xu C, Su P. Rare coding variants in
MAPK7
predispose to adolescent idiopathic scoliosis. Hum Mutat 2017; 38:1500-1510. [PMID: 28714182 DOI: 10.1002/humu.23296] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/14/2017] [Accepted: 07/08/2017] [Indexed: 01/01/2023]
|
16
|
Wren TAL, Ponrartana S, Gilsanz V. Vertebral cross-sectional area: an orphan phenotype with potential implications for female spinal health. Osteoporos Int 2017; 28:1179-1189. [PMID: 27975301 DOI: 10.1007/s00198-016-3832-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022]
Abstract
A high priority in imaging-based research is the identification of the structural basis that confers greater risk for spinal disorders. New evidence indicates that factors related to sex influence the fetal development of the axial skeleton. Girls are born with smaller vertebral cross-sectional area compared to boys-a sexual dimorphism that is present throughout life and independent of body size. The smaller female vertebra is associated with greater flexibility of the spine that could represent the human adaptation to fetal load. It also likely contributes to the higher prevalence of spinal deformities, such as exaggerated lordosis and progressive scoliosis in adolescent girls when compared to boys, and to the greater susceptibility for spinal osteoporosis and vertebral fractures in elderly women than men.
Collapse
Affiliation(s)
- T A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - S Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - V Gilsanz
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Radiology, Children's Hospital Los Angeles, MS no. 81, 4650 Sunset Boulevard, Los Angeles, CA, 90027, USA.
| |
Collapse
|
17
|
Moreau A. The next personalized medicine evolution in orthopedics: how diagnosing and treating scoliosis are about to change. Per Med 2017; 14:89-92. [PMID: 28757885 PMCID: PMC5480784 DOI: 10.2217/pme-2016-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022]
Affiliation(s)
- Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, 3175 Cote-Ste-Catherine Road, Montreal, Québec, H3T 1C5, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Department of Biochemistry & Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
18
|
Samaan MC, Missiuna P, Peterson D, Thabane L. Understanding the role of the immune system in adolescent idiopathic scoliosis: Immunometabolic CONnections to Scoliosis (ICONS) study protocol. BMJ Open 2016; 6:e011812. [PMID: 27401365 PMCID: PMC4947809 DOI: 10.1136/bmjopen-2016-011812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Adolescent idiopathic scoliosis (AIS) affects up to 3% of children around the world. There is limited knowledge of AIS aetiopathogenesis, and this evidence is needed to develop new management strategies. Paraspinal muscle in AIS demonstrates evidence of differential fibrosis based on curve sidedness. Fibrosis is the hallmark of macrophage-driven inflammation and tissue remodelling, yet the mechanisms of fibrosis in paraspinal muscle in AIS are poorly understood. OBJECTIVES The primary objective of this study is to determine the influence of curve sidedness on paraspinal muscle inflammation. Secondary objectives include defining the mechanisms of macrophage homing to muscle, and determining muscle-macrophage crosstalk in muscle fibrosis in AIS. METHODS AND ANALYSIS This is a cross-sectional study conducted in a tertiary paediatric centre in Hamilton, Ontario, Canada. We will recruit boys and girls, 10-17 years of age, who are having surgery to correct AIS. We will exclude children who have an active infection or are on immunosuppressive therapies within 2 weeks of surgery, smokers and pregnant girls. Paraspinal muscle biopsies will be obtained at the start of surgery. Also, blood and urine samples will be collected from participants, who will fill questionnaires about their lifestyle. Anthropometric measures will also be collected including height, weight, waist and hip circumferences. ETHICS AND DISSEMINATION This study has received ethics authorisation by the institutional review board. This work will be published in peer-reviewed journals and will be presented in oral and poster formats at scientific meetings. DISCUSSION This study will explore the mechanisms of paraspinal muscle inflammation, remodelling and fibrosis in AIS. This will help identify pathways and molecules as potential therapeutic targets to treat and prevent AIS. It may also yield markers that predict scoliosis progression and response to treatment in these children.
Collapse
Affiliation(s)
- M Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Paul Missiuna
- Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Devin Peterson
- Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Lehana Thabane
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
- Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicines, Hamilton, Ontario, Canada
- Biostatistics unit, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Association Study between Promoter Polymorphism of TPH1 and Progression of Idiopathic Scoliosis. J Biomark 2016; 2016:5318239. [PMID: 27293961 PMCID: PMC4884859 DOI: 10.1155/2016/5318239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/10/2016] [Accepted: 05/03/2016] [Indexed: 12/02/2022] Open
Abstract
The concept of disease-modifier genes as an element of genetic heterogeneity has been widely accepted and reported. The aim of the current study is to investigate the association between the promoter polymorphism TPH1 (rs10488682) and progression of idiopathic scoliosis (IS) in Eastern European population sample. A total of 105 patients and 210 healthy gender-matched controls were enrolled in this study. The TPH1 promoter polymorphism was genotyped by amplification followed by restriction. The statistical analysis was performed by Fisher's Exact Test. The results indicated that the genotypes and alleles of TPH1 (rs10488682) are not correlated with curve severity, curve pattern, or bracing. Therefore, the examined polymorphic variant could not be considered as a genetic factor with modifying effect of IS. In conclusion, this case-control study revealed no statistically significant association between TPH1 (rs10488682) and progression of IS in Eastern European population sample. These preliminary results should be replicated in extended population studies including larger sample sizes. The identification of molecular markers for IS could be useful for a more accurate prognosis of the risk for a rapid progression of the curve. That would permit early stage treatment of the patient with the least invasive procedures.
Collapse
|
20
|
Association Between IL-6 and MMP3 Common Genetic Polymorphisms and Idiopathic Scoliosis in Bulgarian Patients: A Case-control Study. Spine (Phila Pa 1976) 2016; 41:785-91. [PMID: 26656061 DOI: 10.1097/brs.0000000000001360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A case-control study was performed on 105 patients with idiopathic scoliosis (IS) and 210 unrelated gender-matched controls from Bulgarian population. OBJECTIVE Investigation of the association between common genetic polymorphisms of IL-6 and MMP3 genes and the etiology and progression of IS among Bulgarian patients. SUMMARY OF BACKGROUND DATA The IL-6 and MMP3 genes have been considered as candidate genes of IS in Caucasian population. METHODS Molecular detection of the promoter polymorphisms of IL-6 and MMP3 was performed by polymerase chain reaction followed by restriction fragment length polymorphism. The statistical analysis was performed by χ test with a value of P < 0.05 as statistically significant. The combinatorial effect of the candidate genes was also examined. RESULTS This case-control study revealed statistically significant association between the IL-6 (rs1800795) functional polymorphism and susceptibility to IS (χ = 16.055; P < 0.0001). In addition, a significant association between IL-6 (rs1800795) and curve severity was detected (χ = 16.87; P < 0.0001). No genotype or allele of MMP3 (rs3025058) was found to be correlated to the onset or progression of IS (P > 0.05). One IL-6-MMP3 genotype combination was associated with the susceptibility to IS. CONCLUSION IL-6 gene could be considered as a susceptibility and modifying factor of IS. The identification of molecular markers with diagnostic and prognostic value could be useful for early detection of children at risk for the development of IS and for prognosis of the risk for a rapid deformity progression. That would facilitate the therapy decisions and early stage treatment of the patient with the least invasive procedures. LEVEL OF EVIDENCE 4.
Collapse
|
21
|
Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, Gurnett CA, Luk KD, Moreau A, Newton PO, Stokes IA, Weinstein SL, Burwell RG. Adolescent idiopathic scoliosis. Nat Rev Dis Primers 2015; 1:15030. [PMID: 27188385 DOI: 10.1038/nrdp.2015.30] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of structural spinal deformities that have a radiological lateral Cobb angle - a measure of spinal curvature - of ≥10(°). AIS affects between 1% and 4% of adolescents in the early stages of puberty and is more common in young women than in young men. The condition occurs in otherwise healthy individuals and currently has no recognizable cause. In the past few decades, considerable progress has been made towards understanding the clinical patterns and the three-dimensional pathoanatomy of AIS. Advances in biomechanics and technology and their clinical application, supported by limited evidence-based research, have led to improvements in the safety and outcomes of surgical and non-surgical treatments. However, the definite aetiology and aetiopathogenetic mechanisms that underlie AIS are still unclear. Thus, at present, both the prevention of AIS and the treatment of its direct underlying cause are not possible.
Collapse
Affiliation(s)
- Jack C Cheng
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Joint Scoliosis Research Centre of The Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - René M Castelein
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Winnie C Chu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Aina J Danielsson
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthew B Dobbs
- Departments of Orthopaedic Surgery Neurology and Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Theodoros B Grivas
- Trauma and Orthopaedic Department, Tzaneio General Hospital of Piraeus, Athens, Greece
| | - Christina A Gurnett
- Department of Neurology, Division of Pediatric Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Keith D Luk
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, Quebéc, Canada.,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, Quebéc, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebéc, Canada
| | - Peter O Newton
- Department of Orthopedic Surgery, University of California, San Diego, California, USA.,Rady Children's Hospital, San Diego, California, USA
| | - Ian A Stokes
- Department of Orthopedics and Rehabilitation, University of Vermont, Burlington, Vermont, USA
| | - Stuart L Weinstein
- Department of Orthopedic Surgery, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
| | - R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals NHS Trust - Queen's Medical Centre Campus, Nottingham, UK
| |
Collapse
|
22
|
Zhu Z, Tang NLS, Xu L, Qin X, Mao S, Song Y, Liu L, Li F, Liu P, Yi L, Chang J, Jiang L, Ng BKW, Shi B, Zhang W, Qiao J, Sun X, Qiu X, Wang Z, Wang F, Xie D, Chen L, Chen Z, Jin M, Han X, Hu Z, Zhang Z, Liu Z, Zhu F, Qian BP, Yu Y, Wang B, Lee KM, Lee WY, Lam TP, Qiu Y, Cheng JCY. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun 2015; 6:8355. [PMID: 26394188 PMCID: PMC4595747 DOI: 10.1038/ncomms9355] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/13/2015] [Indexed: 02/05/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a structural deformity of the spine affecting millions of children. As a complex disease, the genetic aetiology of AIS remains obscure. Here we report the results of a four-stage genome-wide association study (GWAS) conducted in a sample of 4,317 AIS patients and 6,016 controls. Overall, we identify three new susceptibility loci at 1p36.32 near AJAP1 (rs241215, Pcombined=2.95 × 10(-9)), 2q36.1 between PAX3 and EPHA4 (rs13398147, Pcombined=7.59 × 10(-13)) and 18q21.33 near BCL-2 (rs4940576, Pcombined=2.22 × 10(-12)). In addition, we refine a previously reported region associated with AIS at 10q24.32 (rs678741, Pcombined=9.68 × 10(-37)), which suggests LBX1AS1, encoding an antisense transcript of LBX1, might be a functional variant of AIS. This is the first GWAS investigating genetic variants associated with AIS in Chinese population, and the findings provide new insight into the multiple aetiological mechanisms of AIS.
Collapse
Affiliation(s)
- Zezhang Zhu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Nelson Leung-Sang Tang
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Leilei Xu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Xiaodong Qin
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Saihu Mao
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yueming Song
- Department of Orthopaedic, The West China Hospital, Sichuan University, Chengdu 610000, China
| | - Limin Liu
- Department of Orthopaedic, The West China Hospital, Sichuan University, Chengdu 610000, China
| | - Fangcai Li
- Department of Orthopaedic, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Peng Liu
- Department of Orthopaedic, China-Japan Union Hospital of Jilin University, Changchun 130022, China
| | - Long Yi
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Long Jiang
- Department of Orthopaedic, Yixing People Hospital, Wuxi 214200, China
| | - Bobby Kin-Wah Ng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Benlong Shi
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wen Zhang
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jun Qiao
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Xu Sun
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Xusheng Qiu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Zhou Wang
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Fei Wang
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dingding Xie
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ling Chen
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhonghui Chen
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mengran Jin
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiao Han
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zongshan Hu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhen Zhang
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhen Liu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Feng Zhu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Bang-ping Qian
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Yang Yu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Bing Wang
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - K. M. Lee
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Y.W. Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - T. P. Lam
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Qiu
- Department of Spine Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
| | - Jack Chun-Yiu Cheng
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing 210008, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
In Search of Biomarkers for Idiopathic Scoliosis: Leptin and BMP4 Functional Polymorphisms. J Biomark 2015; 2015:425310. [PMID: 26317037 PMCID: PMC4537721 DOI: 10.1155/2015/425310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 02/04/2023] Open
Abstract
Idiopathic scoliosis (IS) is the most common spinal disorder in children and adolescents. The current consensus on IS maintains that it has a multifactorial etiology with genetic predisposition factors. In the present study the association of two functional polymorphisms of leptin (rs7799039) and BMP4 (rs4898820) with susceptibility to IS and curve severity was investigated in a Bulgarian population sample. The molecular detection of the genotypes was performed by amplification followed by restriction technology. The statistical analysis was performed by Pearson's chi-squared test. This case-control study revealed no statistically significant association between the functional polymorphisms of leptin and BMP4 and susceptibility to IS or curve progression (p > 0.05). On the basis of these results the examined polymorphic variants of leptin and BMP4 could not be considered as genetic variants with predisposition effect or as risk factors for the progression of the curve. In addition, these results do not exclude a synergistic effect of the promoter polymorphisms of leptin and BMP4 in the etiology and pathogenesis of IS. The identification of molecular markers for IS could be useful for early detection and prognosis of the risk for a rapid progression of the curve. That would permit early stage treatment of the patient with the least invasive procedures.
Collapse
|
24
|
Association Study between Idiopathic Scoliosis and Polymorphic Variants of VDR, IGF-1, and AMPD1 Genes. GENETICS RESEARCH INTERNATIONAL 2015; 2015:852196. [PMID: 26380113 PMCID: PMC4561981 DOI: 10.1155/2015/852196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Idiopathic scoliosis (IS) is a complex genetic disorder of the musculoskeletal system, characterized by three-dimensional rotation of the spine with unknown etiology. For the aims of the current study we selected 3 single nucleotide polymorphisms with a low incidence of the polymorphic allele in Bulgarian population, AMPD1 (rs17602729), VDR (rs2228670), and IGF-1 (rs5742612), trying to investigate the association between these genetic polymorphisms and susceptibility to and progression of IS. The polymorphic regions of the genes were amplified by polymerase chain reaction (PCR). The PCR products were cleaved with the appropriate restriction enzymes. The statistical analysis was performed by Pearson's chi-squared test. A value of p < 0.05 was considered to be statistically significant. In conclusion, this case-control study revealed no statistically significant association between the VDR, IGF-1, and AMPD1 polymorphisms and the susceptibility to IS or curve severity in Bulgarian patients. Replication case-control studies will be needed to examine the association between these candidate-genes and IS in different populations. The identification of molecular markers for IS could be useful for early detection and prognosis of the risk for a rapid progression of the curve. That would permit early stage treatment of the patient with the least invasive procedures.
Collapse
|
25
|
Abstract
Scoliotic human nuclei pulposi can respond to exogenous proinflammatory stimuli by secreting increased amounts of interleukin-6 (IL-6). The G/C polymorphism of the promoter region of IL-6 gene influences levels and functional activity of the IL-6 protein. We conducted a case-control study of eighty patients with idiopathic scoliosis (IS) and one hundred sixty healthy unrelated gender-matched controls trying to investigate the association between IS and the IL-6 promoter polymorphism at -174 position (rs1800795 G/C) in Bulgarian population. Molecular detection of the IL-6 genotypes was performed by amplification followed by restriction technology. The statistical analysis was performed by Pearson's chi-squared test. Our case-control study revealed a statistically significant association between the IL-6 (-174 G/C) functional polymorphism and susceptibility to IS. In addition, a significant association between the IL-6 (-174 G/C) polymorphism and curve severity was detected. IL-6 gene could be considered as susceptibility and modifying factor of idiopathic scoliosis. The identification of molecular markers with diagnostic and prognostic value could be useful for early detection of children at risk for the development of scoliosis and for prognosis of the risk for a rapid deformity progression. That would facilitate the therapy decisions and early stage treatment of the patient with the least invasive procedures.
Collapse
|
26
|
Nikolova S, Yablanski V, Vlaev E, Stokov L, Savov A, Kremensky I. Association between Estrogen Receptor Alpha Gene Polymorphisms and Susceptibility to Idiopathic Scoliosis in Bulgarian Patients: A Case-Control Study. Open Access Maced J Med Sci 2015; 3:278-82. [PMID: 27275235 PMCID: PMC4877867 DOI: 10.3889/oamjms.2015.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND: The current consensus on idiopathic scoliosis maintains that it has a multifactorial etiology with genetic predisposing factors. AIM: Estrogen receptor alpha gene has been considered as candidate gene of idiopathic scoliosis. MATERIAL AND METHODS: We conducted a case-control study of Bulgarian population samples (eighty patients with idiopathic scoliosis and one hundred-sixty healthy unrelated gender-matched controls) trying to investigate the association between common genetic polymorphisms of estrogen receptor alpha and the susceptibility to idiopathic scoliosis. Molecular detection of the restriction polymorphisms XbaI and PvuII was performed by polymerase chain reaction following by restriction fragment length polymorphism. The statistical analysis was performed by Pearson’s chi-squared test. RESULTS: Our case-control study showed statistically significant association between the PvuII polymorphism and susceptibility to idiopathic scoliosis and curve progression. No genotype or allele of XbaI polymorphism was found to be correlated with the onset or severity of the disease. CONCLUSIONS: The identification of molecular markers with diagnostic and prognostic value could be useful for early detection of children at risk for the development of scoliosis and for prognosis of the risk for a rapid deformity progression. That would facilitate the therapy decisions and early stage treatment of the patient with the least invasive procedures.
Collapse
Affiliation(s)
- Svetla Nikolova
- Medical University-Sofia, National Genetic Laboratory, Sofia, Bulgaria
| | - Vasil Yablanski
- Tokuda Hospital Sofia, Orthopedic and Traumatology Clinic, Sofia, Bulgaria
| | - Evgeni Vlaev
- Tokuda Hospital Sofia, Orthopedic and Traumatology Clinic, Sofia, Bulgaria
| | - Luben Stokov
- University Orthopedic Hospital "Prof. Boycho Boychev", Orthopedic and Traumatology, Sofia, Bulgaria
| | - Alexey Savov
- Medical University-Sofia, National Genetic Laboratory, Sofia, Bulgaria
| | - Ivo Kremensky
- Medical University-Sofia, National Genetic Laboratory, Sofia, Bulgaria
| |
Collapse
|
27
|
Abstract
Extreme lordosis, also called swayback, lowback or softback, can occur as a congenital trait or as a degenerative trait associated with ageing. In this study, the hereditary aspect of congenital swayback was investigated using whole genome association studies of 20 affected and 20 unaffected American Saddlebred (ASB) Horses for 48,165 single-nucleotide polymorphisms (SNPs). A statistically significant association was identified on ECA20 (corrected P=0.017) for SNP BIEC2-532523. Of the 20 affected horses, 17 were homozygous for this SNP when compared to seven homozygotes among the unaffected horses, suggesting a major gene with a recessive mode of inheritance. The result was confirmed by testing an additional 13 affected horses and 166 unaffected horses using 35 SNPs in this region of ECA20 (corrected P=0.036). Combined results for 33 affected horses and 287 non-affected horses allowed identification of a region of homozygosity defined by four SNPs in the region. Based on the haplotype defined by these SNPs, 80% of the 33 affected horses were homozygous, 21% heterozygous and 9% did not possess the haplotype. Among the non-affected horses, 15% were homozygous, 47% heterozygous and 38% did not possess the haplotype. The differences between the two groups were highly significant (P<0.00001). The region defined by this haplotype includes 53 known and predicted genes. Exons from three candidate genes, TRERF1, RUNX2 and CNPY3 were sequenced without finding distinguishing SNPs. The mutation responsible for swayback may lie in other genes or in regulatory regions outside exons. This information can be used by breeders to reduce the occurrence of swayback among their livestock. This condition may serve as a model for investigation of congenital skeletal deformities in other species.
Collapse
Affiliation(s)
- D Cook
- Department of Veterinary Science, MH Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA
| | | | | |
Collapse
|
28
|
Chettier R, Nelson L, Ogilvie JW, Albertsen HM, Ward K. Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis. PLoS One 2015; 10:e0117708. [PMID: 25675428 PMCID: PMC4326419 DOI: 10.1371/journal.pone.0117708] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a clinically significant disorder with high heritability that affects 2–4% of the population. Genome-wide association studies have identified LBX1 as a strong susceptibility locus for AIS in Asian and Caucasian populations. Here we further dissect the genetic association with AIS in a Caucasian population. To identify genetic markers associated with AIS we employed a genome-wide association study (GWAS) design comparing 620 female Caucasian patients who developed idiopathic scoliosis during adolescence with 1,287 ethnically matched females who had normal spinal curves by skeletal maturity. The genomic region around LBX1 was imputed and haplotypes investigated for genetic signals under different inheritance models. The strongest signal was identified upstream of LBX1 (rs11190878, Ptrend = 4.18×10-9, OR = 0.63[0.54–0.74]). None of the remaining SNPs pass the genome-wide significance threshold. We found rs11190870, downstream of LBX1 and previously associated with AIS in Asian populations, to be in modest linkage disequilibrium (LD) with rs11190878 (r2 = 0.40, D' = 0.81). Haplotype analysis shows that rs11190870 and rs11190878 track a single risk factor that resides on the ancestral haplotype and is shared across ethnic groups. We identify six haplotypes at the LBX1 locus including two strongly associated haplotypes; a recessive risk haplotype (TTA, Controlfreq = 0.52, P = 1.25×10-9, OR = 1.56), and a co-dominant protective haplotype (CCG, Controlfreq = 0.28, P = 2.75×10-7, OR = 0.65). Together the association signals from LBX1 explain 1.4% of phenotypic variance. Our results identify two clinically relevant haplotypes in the LBX1-region with opposite effects on AIS risk. The study demonstrates the utility of haplotypes over un-phased SNPs for individualized risk assessment by more strongly delineating individuals at risk for AIS without compromising the effect size.
Collapse
Affiliation(s)
- Rakesh Chettier
- Affiliated Genetics, Inc., Salt Lake City, Utah, 84109, United States of America
| | - Lesa Nelson
- Affiliated Genetics, Inc., Salt Lake City, Utah, 84109, United States of America
| | - James W. Ogilvie
- Lucina Foundation, Salt Lake City, Utah, 84109, United States of America
| | - Hans M. Albertsen
- Juneau Biosciences, LLC., Salt Lake City, Utah, 84109, United States of America
| | - Kenneth Ward
- Affiliated Genetics, Inc., Salt Lake City, Utah, 84109, United States of America
- Juneau Biosciences, LLC., Salt Lake City, Utah, 84109, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zhu F, Qiao J, Qiu X, Xu L, Liu Z, Zhu Z, Qian B, Sun X, Qiu Y. Lack of association between suppressor of cytokine signaling-3 gene polymorphism and susceptibility and curve severity of adolescent idiopathic scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:2432-2436. [PMID: 25034082 DOI: 10.1007/s00586-014-3452-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To explore whether the suppressor of cytokine signaling-3 (SOCS3) gene polymorphisms are associated with the susceptibility and abnormal growth pattern of adolescent idiopathic scoliosis (AIS). METHODS Three hundred and ninety eight AIS girls aged 10-18 years old were enrolled, and 367 age-matched healthy girls were recruited as controls. Only patients who had Cobb angles larger than 20º were included in this study. Anthropometric parameters including body weight, height, and body mass index (BMI) were measured for AIS girls. Rs4969198 was selected as tagSNP to cover all of the related polymorphisms on SOCS3. Genotyping was performed using PCR-based Invader assay with the probe sets designed and synthesized by third wave. The genotyping results were read with an ABI PRISM7900HT sequence detection system (Applied Biosystems, Foster City, CA). A subgroup of 322 skeletally mature AIS patients who did not received bracing or any other conservative treatment previously were analyzed to define the contribution of rs4969168 on curve severity, body height, body weight, and BMI. RESULTS Rs4969198 was successfully genotyped. No significant difference of genotype frequencies from the Hardy-Weinberg equilibrium (HWE) test was noted for the AIS patients or the normal controls. Neither the genotype nor the allele frequencies of rs49691968 were significantly different between the AIS patients and the normal controls. Rs4969168 was not found to be associated with age, curve severity of scoliosis, and body height. AIS patients with AA genotype had significantly higher body weight and BMI than the patients with AG and GG genotype (P = 0.014). CONCLUSIONS The SOCS3 gene polymorphisms are not associated with the occurrence of AIS, but the gene polymorphism (rs4969168) is associated with abnormal growth pattern of AIS, indicating that SOCS3 gene might be a disease-modifying gene of AIS.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nowak R, Kwiecien M, Tkacz M, Mazurek U. Transforming growth factor-beta (TGF- β) signaling in paravertebral muscles in juvenile and adolescent idiopathic scoliosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:594287. [PMID: 25313366 PMCID: PMC4181945 DOI: 10.1155/2014/594287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/19/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
Abstract
Most researchers agree that idiopathic scoliosis (IS) is a multifactorial disease influenced by complex genetic and environmental factors. The onset of the spinal deformity that determines the natural course of the disease, usually occurs in the juvenile or adolescent period. Transforming growth factors β (TGF-βs) and their receptors, TGFBRs, may be considered as candidate genes related to IS susceptibility and natural history. This study explores the transcriptional profile of TGF-βs, TGFBRs, and TGF-β responsive genes in the paravertebral muscles of patients with juvenile and adolescent idiopathic scoliosis (JIS and AIS, resp.). Muscle specimens were harvested intraoperatively and grouped according to the side of the curve and the age of scoliosis onset. The results of microarray and qRT-PCR analysis confirmed significantly higher transcript abundances of TGF-β2, TGF-β3, and TGFBR2 in samples from the curve concavity of AIS patients, suggesting a difference in TGF-β signaling in the pathogenesis of juvenile and adolescent curves. Analysis of TGF-β responsive genes in the transcriptomes of patients with AIS suggested overrepresentation of the genes localized in the extracellular region of curve concavity: LTBP3, LTBP4, ITGB4, and ITGB5. This finding suggests the extracellular region of paravertebral muscles as an interesting target for future molecular research into AIS pathogenesis.
Collapse
Affiliation(s)
- Roman Nowak
- Department of Orthopedics, School of Medicine with the Division of Dentistry, Medical University of Silesia, Wojewódzki Szpital Specjalistyczny nr 5 Plac Medyków 1, 41-200 Sosnowiec, Poland
| | - Magdalena Kwiecien
- Department of Molecular Biology, Medical University of Silesia, Ulica Narcyzów 1, 41-100 Sosnowiec, Poland
| | - Magdalena Tkacz
- Institute of Computer Science, Division of Information Systems, University of Silesia, Ulica Będzińska 39, 41-200 Sosnowiec, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Ulica Narcyzów 1, 41-100 Sosnowiec, Poland
| |
Collapse
|
31
|
Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, Willing MC, Grange DK, Braverman AC, Miller NH, Morcuende JA, Tang NLS, Lam TP, Ng BKW, Cheng JCY, Dobbs MB, Gurnett CA. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet 2014; 23:5271-82. [PMID: 24833718 DOI: 10.1093/hmg/ddu224] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) causes spinal deformity in 3% of children. Despite a strong genetic basis, few genes have been associated with AIS and the pathogenesis remains poorly understood. In a genome-wide rare variant burden analysis using exome sequence data, we identified fibrillin-1 (FBN1) as the most significantly associated gene with AIS. Based on these results, FBN1 and a related gene, fibrillin-2 (FBN2), were sequenced in a total of 852 AIS cases and 669 controls. In individuals of European ancestry, rare variants in FBN1 and FBN2 were enriched in severely affected AIS cases (7.6%) compared with in-house controls (2.4%) (OR = 3.5, P = 5.46 × 10(-4)) and Exome Sequencing Project controls (2.3%) (OR = 3.5, P = 1.48 × 10(-6)). Scoliosis severity in AIS cases was associated with FBN1 and FBN2 rare variants (P = 0.0012) and replicated in an independent Han Chinese cohort (P = 0.0376), suggesting that rare variants may be useful as predictors of curve progression. Clinical evaluations revealed that the majority of AIS cases with rare FBN1 variants do not meet diagnostic criteria for Marfan syndrome, though variants are associated with tall stature (P = 0.0035) and upregulation of the transforming growth factor beta pathway. Overall, these results expand our definition of fibrillin-related disorders to include AIS and open up new strategies for diagnosing and treating severe AIS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alan C Braverman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nancy H Miller
- Department of Orthopaedic Surgery, University of Colorado, Denver, CO 80202, USA
| | - Jose A Morcuende
- Department of Orthopaedic Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Tsz-Ping Lam
- The Chinese University of Hong Kong, Hong Kong, China and
| | | | | | - Matthew B Dobbs
- Department of Orthopaedic Surgery St. Louis Shriners Hospital for Children, St. Louis, MO 63131, USA
| | - Christina A Gurnett
- Department of Orthopaedic Surgery Department of Neurology Department of Pediatrics,
| |
Collapse
|
32
|
Patient selection in genetic association studies in idiopathic scoliosis. SCOLIOSIS 2013. [PMCID: PMC3675422 DOI: 10.1186/1748-7161-8-s1-o2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Moon ES, Kim HS, Sharma V, Park JO, Lee HM, Moon SH, Chong HS. Analysis of single nucleotide polymorphism in adolescent idiopathic scoliosis in Korea: for personalized treatment. Yonsei Med J 2013; 54:500-9. [PMID: 23364988 PMCID: PMC3575984 DOI: 10.3349/ymj.2013.54.2.500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The incidence of adolescent idiopathic scoliosis (AIS) has rapidly increased, and with it, physician consultations and expenditures (about one and a half times) in the last 5 years. Recent etiological studies reveal that AIS is a complex genetic disorder that results from the interaction of multiple gene loci and the environment. For personalized treatment of AIS, a tool that can accurately measure the progression of Cobb's angle would be of great use. Gene analysis utilizing single nucleotide polymorphism (SNP) has been developed as a diagnostic tool for use in Caucasians but not Koreans. Therefore, we attempted to reveal AIS-related genes and their relevance in Koreans, exploring the potential use of gene analysis as a diagnostic tool for personalized treatment of AIS therein. MATERIALS AND METHODS A total of 68 Korean AIS and 35 age- and sex-matched, healthy adolescents were enrolled in this study and were examined for 10 candidate scoliosis gene SNPs. RESULTS This study revealed that the SNPs of rs2449539 in lysosomal-associated transmembrane protein 4 beta (LAPTM4B) and rs5742612 in upstream and insulin-like growth factor 1 (IGF1) were associated with both susceptibility to and curve severity in AIS. The results suggested that both LAPTM4B and IGF1 genes were important in AIS predisposition and progression. CONCLUSION Thus, on the basis of this study, if more SNPs or candidate genes are studied in a larger population in Korea, personalized treatment of Korean AIS patients might become a possibility.
Collapse
Affiliation(s)
- Eun Su Moon
- Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hak Sun Kim
- Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Veushj Sharma
- Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Oh Park
- Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hwan Mo Lee
- Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hwan Moon
- Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyon Su Chong
- Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Gao W, Peng Y, Liang G, Liang A, Ye W, Zhang L, Sharma S, Su P, Huang D. Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population. PLoS One 2013; 8:e53234. [PMID: 23308168 PMCID: PMC3537668 DOI: 10.1371/journal.pone.0053234] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 11/29/2012] [Indexed: 12/22/2022] Open
Abstract
Background Adolescent idiopathic scoliosis (AIS) is one of the most common spinal deformities found in adolescent populations. Recently, a genome-wide association study (GWAS) in a Japanese population indicated that three single nucleotide polymorphisms (SNPs), rs11190870, rs625039 and rs11598564, all located near the LBX1 gene, may be associated with AIS susceptibility [1]. This study suggests a novel AIS predisposition candidate gene and supports the hypothesis that somatosensory functional disorders could contribute to the pathogenesis of AIS. These findings warrant replication in other populations. Methodology/Principal Findings First, we conducted a case-control study consisting of 953 Chinese Han individuals from southern China (513 patients and 440 healthy controls), and the three SNPs were all found to be associated with AIS predisposition. The ORs were observed as 1.49 (95% CI 1.23–1.80, P = 5.09E-5), 1.70 (95% CI 1.42–2.04, P = 1.17E-8) and 1.52 (95% CI 1.27–1.83, P = 5.54E-6) for rs625039, rs11190870 and rs11598564, respectively. Second, a case-only study including a subgroup of AIS patients (N = 234) was performed to determine the effects of these variants on the severity of the condition. However, we did not find any association between these variants and the severity of curvature. Conclusion This study shows that the genetic variants near the LBX1 gene are associated with AIS susceptibility in Chinese Han population. It successfully replicates the results of the GWAS, which was performed in a Japanese population.
Collapse
Affiliation(s)
- Wenjie Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guoyan Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Ye
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangming Zhang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Swarkar Sharma
- Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, United States of America
- School of Biology and Chemistry, Shri Mata Vaishno Devi University, Katra, India
| | - Peiqiang Su
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
- * E-mail: (DH); (PS)
| | - Dongsheng Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (DH); (PS)
| |
Collapse
|
35
|
Tang NLS, Yeung HY, Hung VWY, Di Liao C, Lam TP, Yeung HM, Lee KM, Ng BKW, Cheng JCY. Genetic epidemiology and heritability of AIS: A study of 415 Chinese female patients. J Orthop Res 2012; 30:1464-9. [PMID: 22362628 DOI: 10.1002/jor.22090] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/02/2012] [Indexed: 02/04/2023]
Abstract
Recent familial segregation studies supported a multifactorial genetic model for the etiology of adolescent idiopathic scoliosis (AIS). However, the extent of quantitative genetic effects, such as heritability, have not been fully evaluated. This genetic epidemiology study examined the sibling recurrent risk and heritability of AIS in first-degree relatives of 415 Chinese female patients, which is up to now the largest cohort. They were first diagnosed by community screening program and compared to 203 age-matched normal controls. Out of the total 531 sibs of AIS cases, 94 sibs had scoliosis (sibling recurrence risk = 17.7%). The prevalence of AIS among male and female sibs of an index case were 11.5% (95% CI = 7.5-15.5) and 23.0% (95% CI = 18.1-27.9), respectively. Female sibs of an index case had an increased risk of 8.9-fold (95% CI = 3.2-34.4) for developing AIS. These recurrent risks were significantly higher than the risk in the control group (p < 0.0001). Overall, heritability was estimated to be 87.5 ± 11.1%. The results confirmed the prevailing impression of strong genetic influence on the risk of AIS. Here we provided a large-scale study for the genetic aggregation estimates in an Asian population for the first time. The finding also positioned AIS among other common disease or complex traits with a high heritability.
Collapse
Affiliation(s)
- Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yilmaz H, Zateri C, Uludag A, Bakar C, Kosar S, Ozdemir O. Single-nucleotide polymorphism in Turkish patients with adolescent idiopathic scoliosis: curve progression is not related with MATN-1, LCT C/T-13910, and VDR BsmI. J Orthop Res 2012; 30:1459-63. [PMID: 22278929 DOI: 10.1002/jor.22075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/05/2012] [Indexed: 02/04/2023]
Abstract
The role of genetics in the etiopathogenesis of adolescent idiopathic scoliosis (AIS) is unclear. In this study, we investigated the relationship between AIS and polymorphisms in MATN-1, LCT C/T-13910, and VDR BsmI genes. 53 Turkish adolescents with diagnosed AIS and 54 healthy adult individuals were included in the study. MATN-1, LCT C/T-13910, and VDR BsmI gene mutations were analyzed with real-time PCR. We did not detect a statistically significant difference between AIS and control groups in respect to those three different gene polymorphisms (p < 0.05). We next evaluated the associations of all three SNPs with scoliosis curve severity. There was no significant difference between curve severity and gene polymorphisms (p < 0.05). In terms of gene polymorphisms, AIS patients with a family history of AIS did not significantly differ from AIS patients who did not have history (p < 0.05). AIS might be caused by many different gene mutations, biomechanical mechanisms that have been modified by environmental factors, different biological interactions, modulation of growth, or a synergy of different factors causing abnormal control of growth. However, the existing knowledge is still not enough to explain the etiopathogenesis of AIS.
Collapse
Affiliation(s)
- Hurriyet Yilmaz
- Departments of Physical Medicine, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey.
| | | | | | | | | | | |
Collapse
|
37
|
Abnormal skeletal growth patterns in adolescent idiopathic scoliosis--a longitudinal study until skeletal maturity. Spine (Phila Pa 1976) 2012; 37:E1148-54. [PMID: 22565390 DOI: 10.1097/brs.0b013e31825c036d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional and prospective longitudinal study on the anthropometric parameters and growth pattern of girls with adolescent idiopathic scoliosis (AIS). OBJECTIVE To investigate the growth pattern of girls with AIS with different severities, using cross-sectional and prospective longitudinal data set in comparison with age-matched healthy controls. SUMMARY OF BACKGROUND DATA AIS occurs in children during their pubertal growth spurt. Although there is no clear consensus on the difference in body height between girls with AIS and healthy controls, it is generally thought that the development and curve progression in girls with AIS is closely associated with their growth rate. There is no concrete prospective longitudinal study to document clearly the growth pattern and growth rate of subjects with AIS . METHODS A total of 611 girls with AIS and 296 healthy age-matched controls were included in the study and among them, 194 girls with AIS and 116 healthy controls were followed up until skeletal maturity. The girls with AIS were grouped into moderate (AIS20) and severe curve (AIS40) groups on the basis of maximum curve magnitude at skeletal maturity. Clinical data and detailed anthropometric parameters were recorded. In the cross-sectional analysis, the groups of subjects were compared within different age groups (from the age of 12-16 yr). In the longitudinal study, linear mixed modeling with respect to age or years since menarche was employed to formulate the growth trajectory of different anthropometric parameters. RESULTS In the cross-sectional analysis, the girls with AIS were generally taller, with longer arm span and lower body mass index than the healthy controls. The girls with AIS40 were found to be significantly shorter in height (P = 0.006) and arm span (P = 0.025) at the age of 12 years but caught up and overtook the control group at the age of 14 to 16 years. In the longitudinal study, the average growth rate of arm span in girls with AIS40 was significantly higher than that in girls with AIS20 (> 30%) (P = 0.004) and controls (> 70%) (P = 0.0004). The age of menarche of girls with AIS40 was significantly delayed by 5.9 months and 3.8 months when compared with the control group and girls with AIS20, respectively (P < 0.05). CONCLUSION The growth patterns of girls with AIS with confirmed curve severities were significantly different from healthy age-matched controls. Girls with severe AIS had delayed menarche with faster skeletal growth rate during the age of 12 to 16 years. Monitoring the rate of change of arm span of girls with AIS could be an important additional clinical parameter in helping predict curve severity in girls with AIS.
Collapse
|
38
|
Liang G, Gao W, Liang A, Ye W, Peng Y, Zhang L, Sharma S, Su P, Huang D. Normal leptin expression, lower adipogenic ability, decreased leptin receptor and hyposensitivity to Leptin in Adolescent Idiopathic Scoliosis. PLoS One 2012; 7:e36648. [PMID: 22615788 PMCID: PMC3352937 DOI: 10.1371/journal.pone.0036648] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/11/2012] [Indexed: 01/16/2023] Open
Abstract
Leptin has been suggested to play a role in the etiology of Adolescent Idiopathic Scoliosis (AIS), however, the leptin levels in AIS girls are still a discrepancy, and no in vitro study of leptin in AIS is reported. We took a series of case-control studies, trying to understand whether Leptin gene polymorphisms are involved in the etiology of the AIS or the change in leptin level is a secondary event, to assess the level of leptin receptor, and to evaluate the differences of response to leptin between AIS cases and controls. We screened all exons of Leptin gene in 45 cases and 45 controls and selected six tag SNPs to cover all the observed variations. Association analysis in 446 AIS patients and 550 healthy controls showed no association between the polymorphisms of Leptin gene and susceptibility/severity to AIS. Moreover, adipogenesis assay of bone mesenchymal stem cells (MSCs) suggested that the adipogenic ability of MSCs from AIS girls was lower than controls. After adjusting the differentiation rate, expressions of leptin and leptin receptor were similar between two groups. Meanwhile, osteogenesis assay of MSC showed the leptin level was similar after adjusting the differentiation rate, but the leptin receptor level was decreased in induced AIS osteoblasts. Immunocytochemistry and western blot analysis showed less leptin receptors expressed in AIS group. Furthermore, factorial designed studies with adipogenesis and osteogenesis revealed that the MSCs from patients have no response to leptin treatment. Our results suggested that Leptin gene variations are not associated with AIS and low serum leptin probably is a secondary outcome which may be related to the low capability of adipogenesis in AIS. The decreased leptin receptor levels may lead to the hyposensitivity to leptin. These findings implied that abnormal peripheral leptin signaling plays an important role in the pathological mechanism of AIS.
Collapse
Affiliation(s)
- Guoyan Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangming Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Swarkar Sharma
- Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, United States of America
| | - Peiqiang Su
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (DH); (PS)
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (DH); (PS)
| |
Collapse
|
39
|
de Sèze M, Cugy E. Pathogenesis of idiopathic scoliosis: A review. Ann Phys Rehabil Med 2012; 55:128-38. [DOI: 10.1016/j.rehab.2012.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 01/02/2012] [Accepted: 01/05/2012] [Indexed: 11/30/2022]
|
40
|
A promoter polymorphism of tissue inhibitor of metalloproteinase-2 gene is associated with severity of thoracic adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2012; 37:41-7. [PMID: 21228746 DOI: 10.1097/brs.0b013e31820e71e3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene with adolescent idiopathic scoliosis (AIS) in a Chinese population. OBJECTIVE To determine whether a promoter polymorphism of the TIMP-2 gene correlates with the occurrence and curve severity of AIS patients. SUMMARY OF BACKGROUND DATA Previous studies have suggested that genetic factors play an important role in the etiology of AIS. The relative anterior spinal column overgrowth due to abnormal endochondral ossification has been considered to be a significant factor in the etiopathogenesis of AIS. The specific role of matrix metalloproteases (MMPs) and their activity inhibitors, TIMPs, during endochondral ossification has been documented. The TIMP-2 is the major TIMP expressed during bone development and is located in one of the chromosomal regions linked to AIS. Therefore, the TIMP-2 gene is a potential candidate gene for AIS. METHODS This study included a total of 570 female AIS patients, who were divided into 2 groups according to curve patterns. Of them, 354 patients with right thoracic curve were in group A (326 cases with Lenke 1 type and 28 cases with Lenke 2 type), whereas 216 patients with a single lumbar curve were in group B (216 cases with Lenke 5 type). A total of 210 age-matched healthy girls were recruited as normal controls. One single-nucleotide polymorphism, -418G/C (rs8179090), in the promoter region was selected for the TIMP-2 gene. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism in each group. RESULTS No significant differences of genotype and allele frequency distribution were found between AIS patients and normal controls either in group A or in group B. The frequency of C allele was significantly higher in patients with Cobb angle 40° or more than in those with Cobb angle less than 40° in group A (P < 0.05), while this difference was not noted in group B (P > 0.05). Among the patients who reached skeletal maturity without any interference of natural history, a significantly higher average maximum Cobb angle was found in patients with C allele than in those without C allele in group A (P < 0.05). However, in group B, the mean maximum Cobb angle was similar between patients with different genotypes in both cases with left-side curves and cases with right-side curves (P > 0.05). Furthermore, for the patients whose values of thoracic kyphosis were recorded, those with C allele had smaller average thoracic kyphosis than those without C allele in group A (P < 0.05). However, such significant difference was not observed in group B. CONCLUSION The single-nucleotide polymorphism SNP-418G/C (rs8179090) in the promoter region of the TIMP-2 gene was not associated with the occurrence of AIS. However, it may predict curve severity of thoracic AIS. Hence, the TIMP-2 gene is a disease-modifier gene of thoracic AIS.
Collapse
|
41
|
Burwell RG, Dangerfield PH, Moulton A, Grivas TB. Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy. SCOLIOSIS 2011; 6:26. [PMID: 22136338 PMCID: PMC3293085 DOI: 10.1186/1748-7161-6-26] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/02/2011] [Indexed: 12/22/2022]
Abstract
Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-based medical therapy for AIS cannot be assessed at present, and must await new research derived from the evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis.
Collapse
Affiliation(s)
- R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Derby Road, Nottingham, NG7 2UH, UK
| | - Peter H Dangerfield
- University of Liverpool, Ashton Street, L69 3GE, UK
- Staffordshire University, Leek Road, Stoke-on-Trent, ST4 2DF. UK
- Royal Liverpool Children's Hospital, Eaton Road, Liverpool, L12 2AP, UK
| | - Alan Moulton
- Department of Orthopaedic Surgery, King's Mill Hospital, Sutton Road, Mansfield NG17 4JL, UK
| | - Theodoros B Grivas
- Department of Trauma and Orthopedics, "Tzanio" General Hospital, Tzani and Afendouli 1 st, Piraeus 18536, Greece.co.uk
| |
Collapse
|
42
|
Xu L, Qiu X, Sun X, Mao S, Liu Z, Qiao J, Qiu Y. Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:1757-1764. [PMID: 21691901 PMCID: PMC3175878 DOI: 10.1007/s00586-011-1874-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/12/2011] [Accepted: 06/02/2011] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate whether the predisposition genes previously reported to be associated with the occurrence or curve severity of adolescent idiopathic scoliosis (AIS) play a role in the effectiveness of brace treatment. METHOD A total of 312 AIS patients treated with bracing were enrolled in this study. The Cobb angle of the main curve was recorded at the beginning of brace treatment as well as at each follow-up. The patients were divided into two groups according to the outcome of brace treatment (success/failure). The failure of brace treatment was defined as a curve progression of more than 5° compared to the initial Cobb angle or surgical intervention because of curve progression. Single nucleotide polymorphism (SNP) sites in the genes for estrogen receptor α (ERα), estrogen receptor β (ERβ), tryptophan hydroxylase 1 (TPH-1), melatonin receptor 1B (MTNR1B) and matrillin-1 (MATN1), which were previously identified to be predisposition genes for AIS, were selected for genotyping by the PCR-RFLP method. Differences of genotype and allele distribution between the two groups were compared by the χ(2) test. A logistic regression analysis was used to figure out the independent predictors of the outcome of brace treatment. RESULTS There were 90 cases (28.8%) in the failure group and 222 cases (71.2%) in the success group. Patients in the failure group were associated with the genotype GA (50.9 vs. 17.9% p < 0.001) and the G allele (27.1 vs. 12.0%, p < 0.001) at SNP rs9340799 of the ERα gene. Similarly, they were also associated with the genotype AT (33.3 vs. 13.0%, p = 0.002) and the A allele (16.7 vs. 9.6%, p = 0.033) at SNP rs10488682 of the TPH-1 gene. For MTNR1B, the difference of genotype distribution between the two groups was found to be statistically significant, while the difference of allele distribution between the two groups was found to be marginally statistically significant; for the MATN1 and ERβ genes, we found no significant differences of the genotype or allele distribution between the two groups. In the logistic regression analysis, ERα and TPH-1 were demonstrated to be independent factors predictive of bracing effectiveness. CONCLUSIONS ERα and TPH-1 might be potential genetic markers that could predict the outcome of brace treatment. Patients with the G allele at the rs9340799 site of the ERα gene and the A allele at the rs10488682 site of the TPH-1 gene are prone to be resistant to brace treatment.
Collapse
Affiliation(s)
- Leilei Xu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Xusheng Qiu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Xu Sun
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Saihu Mao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Zhen Liu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Jun Qiao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Yong Qiu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| |
Collapse
|
43
|
A novel statistical morphometry imaging method for differentiating long bone geometry: methodological development and application with adolescent idiopathic scoliosis (AIS) patients. Med Eng Phys 2011; 33:1103-7. [PMID: 21696991 DOI: 10.1016/j.medengphy.2011.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 04/12/2011] [Accepted: 04/23/2011] [Indexed: 11/24/2022]
Abstract
Non-invasive quantification of bone shape is crucial in orthopaedic research. The primary objective of this study was to develop an automated statistical morphometry method for comparing the cross-sectional images of normal and diseased bones. The secondary objective involved demonstrating the effectiveness of the proposed method in distinguishing AIS patients from normal controls. This framework is composed of bone segmentation followed by measurements of maximum and minimum bone diameters, inter-group and intra-group statistical morphometry, and statistical analysis of bone thickness. The proposed framework was applied to detect bone morphological abnormality in adolescent idiopathic scoliosis (AIS) patients. The forearm bones in cross-sectional peripheral quantitative computed tomography (pQCT) images from 23 AIS patients and 16 normal controls were analyzed. The radius outer contour was found to be rounder and the radius cortical bone was thinner in AIS patients compared to normal controls.
Collapse
|
44
|
Gorman KF, Christians JK, Parent J, Ahmadi R, Weigel D, Dreyer C, Breden F. A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC Genet 2011; 12:16. [PMID: 21269476 PMCID: PMC3039624 DOI: 10.1186/1471-2156-12-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 01/26/2011] [Indexed: 01/14/2023] Open
Abstract
Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis) accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL) affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts.
Collapse
Affiliation(s)
- Kristen F Gorman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
45
|
Association study of BMP4, IL6, Leptin, MMP3, and MTNR1B gene promoter polymorphisms and adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2011; 36:E123-30. [PMID: 21228692 DOI: 10.1097/brs.0b013e318a511b0e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN a genetic association study was performed on 126 patients with adolescent idiopathic scoliosis and 197 healthy controls from independent Hungarian pedigrees. OBJECTIVE to reveal implication of promoter polymorphisms of bone morphogenetic protein 4 (BMP4), interleukin-6 (IL6), leptin, matrix metalloproteinase-3 (MMP3), melatonin 1B receptor (MTNR1B) genes in adolescent idiopathic scoliosis (AIS). Combinatorial association of these candidate genes was also studied to detect additive effect of certain single-nucleotide polymorphism (SNP) patterns. SUMMARY OF BACKGROUND DATA it was previously unraveled that IL6, MMP3, and MTNR1B genes could be considered as predisposition genes of AIS. Since BMP4 and leptin play a central role in bone formation and remodeling and are in direct interaction with melatonin, IL6, and MMP3, these also can be potential predisposition genes. METHODS the genotyping was determined by polymerase chain reaction-restriction fragment length polymorphism. RESULTS at a single gene level, no significant differences were found for allele and genotype frequencies of the polymorphisms of these genes between cases or controls; therefore, the formerly detected association of IL6, MMP3, and MTNR1B with AIS was not confirmed in the Hungarian population by independent SNP analysis. However, significantly increased AIS risk was observed at particular combinations of genotypes of paired SNPs of the candidate genes. CONCLUSIONS the genetic effect of promoter polymorphisms of BMP4, IL6, leptin, MMP3, and MTNR1B can be synergistic for susceptibility to AIS. The combinatorial effect can modulate the final biological impact of many susceptibility polymorphisms; therefore, this should be considered at the comparison of results from case-control studies of different populations.
Collapse
|
46
|
Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2010; 35:E1455-64. [PMID: 21102273 DOI: 10.1097/brs.0b013e3181ed2de1] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Validation of a prognostic DNA marker panel. OBJECTIVE The goals of this study were to develop and test the negative predictive value of a prognostic DNA test for adolescent idiopathic scoliosis (AIS) and to establish clinically meaningful endpoints for the test. SUMMARY OF BACKGROUND DATA Clinical features do not adequately predict which children diagnosed with minimal or mild AIS will have the progressive form of the disease; genetic markers associated with curve progression might offer clinically useful prognostic insights. METHODS Logistic regression was used to develop an algorithm to predict spinal curve progression incorporating genotypes for 53 single nucleotide polymorphisms and the patient's presenting spinal curve (Cobb angle). Three cohorts with known AIS outcomes were selected to reflect intended-use populations with various rates of AIS progression: 277 low-risk females representing a screening cohort, 257 females representing higher risk patients followed at referral centers, and 163 high risk males. DNA was extracted from saliva, and genotypes were determined using TaqMan assays. AIS Prognostic Test scores ranging from 1 to 200 were calculated. RESULTS Low-risk scores (<41) had negative predictive values of 100%, 99%, and 97%, respectively, in the tested populations. In the risk model, we used cutoff scores of 50 and 180 to identify 75% of patients as low-risk (<1% risk of progressing to a surgical curve), 24% as intermediate-risk, and 1% as high-risk. CONCLUSION Prognostic testing for AIS has the potential to reduce psychological trauma, serial exposure to diagnostic radiation, unnecessary treatments, and direct and indirect costs-of-care related to scoliosis monitoring in low-risk patients. Further improvements in test performance are expected as the optimal markers for each locus are identified and the underlying biologic pathways are better understood. The validity of the test applies only to white AIS patients; versions of the test optimized for AIS patients of other races have yet to be developed.
Collapse
|
47
|
Lack of association between the promoter polymorphisms of MMP-3 and IL-6 genes and adolescent idiopathic scoliosis: a case-control study in a Chinese Han population. Spine (Phila Pa 1976) 2010; 35:1701-5. [PMID: 20436380 DOI: 10.1097/brs.0b013e3181c6ba13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-control study. OBJECTIVE This study is to replicate the association between the promoter polymorphisms of matrix metalloproteinase (MMP)-3 (-1171 5A/6A rs3025058) and interleukin (IL)-6 genes (-174G/C rs1800795) and adolescent idiopathic scoliosis (AIS) in a Chinese Han population. SUMMARY OF BACKGROUND DATA Recently, promoter polymorphisms in MMP-3 and IL-6 have been reported to be associated with AIS. Such genetic association, if confirmed by replication in other samples, would point to a primary degenerative defect in the disc or nucleus pulposus and inflammation as the key pathogenic mechanisms of AIS. METHODS A total of 487 Chinese girls with AIS and 494 healthy age-matched adolescent girls were recruited consecutively during a 3-year period. The same genotyping technique as the original report was used to detect promoter polymorphisms of the MMP-3 and IL-6 genes. Statistical analysis of genotype frequencies between AIS patients and normal controls were performed by chi test. RESULTS In this association study of the MMP-3 polymorphism and the risk of scoliosis, no significant difference was found between cases and controls, both in term of allelic association (6A: 81.2% in cases vs. 81.8% in controls, 5A: 18.8% in cases vs. 18.2% in controls, P = 0.745) or genotype association (6A/6A: 65.9% in cases vs. 66.2% in controls, 5A/6A: 30.6% in cases vs. 31.2% in controls, and 5A/5A: 3.5% in cases vs. 2.6% in controls; P = 0.733). Among AIS patients, the maximal Cobb angles were also not different among MMP-3 genotypes (6A/6A: 31.1 degrees +/- 9.7 degrees, 5A/6A: 29.1 degrees +/- 10.5 degrees, and 5A/5A: 29.4 degrees +/- 11.2 degrees; P = 0.392). As for IL-6 polymorphism, -174G/C polymorphism was not found in the Chinese AIS patients, and all 100 AIS patients and 100 normal controls were found to carry the G/G wild type. CONCLUSION This study did not find any significant association of promoter polymorphisms of the MMP-3 (-1171 5A/6A rs3025058) and IL-6 gene (-174G/C rs1800795) with AIS. The results indicate that the MMP-3 promoter polymorphism is not associated with AIS in the Chinese population. Further studies, however, are needed to rule out the potential association with other promoter polymorphisms in IL-6.
Collapse
|
48
|
Ward K, Ogilvie J, Argyle V, Nelson L, Meade M, Braun J, Chettier R. Polygenic inheritance of adolescent idiopathic scoliosis: A study of extended families in Utah. Am J Med Genet A 2010; 152A:1178-88. [DOI: 10.1002/ajmg.a.33145] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Burwell RG, Aujla RK, Grevitt MP, Dangerfield PH, Moulton A, Randell TL, Anderson SI. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. SCOLIOSIS 2009; 4:24. [PMID: 19878575 PMCID: PMC2781798 DOI: 10.1186/1748-7161-4-24] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 10/31/2009] [Indexed: 12/24/2022]
Abstract
Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans.
Collapse
Affiliation(s)
- R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham, UK
| | - Ranjit K Aujla
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham, UK
| | - Michael P Grevitt
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham, UK
| | | | - Alan Moulton
- Department of Orthopaedic Surgery, King's Mill Hospital, Mansfield, UK
| | - Tabitha L Randell
- Department of Child Health, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham, UK
| | - Susan I Anderson
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
50
|
Yang Y, Wu Z, Zhao T, Wang H, Zhao D, Zhang J, Wang Y, Ding Y, Qiu G. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics 2009; 32:411. [PMID: 19634821 DOI: 10.3928/01477447-20090511-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of adolescent idiopathic scoliosis is undetermined despite years of research. A number of hypotheses have been postulated to explain its development, including growth abnormalities. The irregular expression of growth hormone and insulin-like growth factor-1 (IGF-1) may disturb hormone metabolism, result in a gross asymmetry, and promote the progress of adolescent idiopathic scoliosis. Initial association studies in complex diseases have demonstrated the power of candidate gene association. Prior to our study, 1 study in this field had a negative result. A replicable study is vital for reliability. To determine the relationship of growth hormone receptor and IGF-1 genes with adolescent idiopathic scoliosis, a population-based association study was performed. Single nucleotide polymorphisms with potential function were selected from candidate genes and a distribution analysis was performed. A conclusion was made confirming the insufficiency of an association between adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes in Han Chinese.
Collapse
Affiliation(s)
- Yong Yang
- Chinese Academy of Medical Sciences, Department of Orthopedics, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|