1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Cocconcelli E, Balestro E, Turato G, Fiorentù G, Bazzan E, Biondini D, Tinè M, Bernardinello N, Pezzuto F, Baraldo S, Calabrese F, Rea F, Sanduzzi Zamparelli A, Spagnolo P, Cosio MG, Saetta M. Tertiary lymphoid structures and B-cell infiltration are IPF features with functional consequences. Front Immunol 2024; 15:1437767. [PMID: 39464888 PMCID: PMC11502372 DOI: 10.3389/fimmu.2024.1437767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
Background Recent literature has shown the presence of B cells and autoantibodies in idiopathic pulmonary fibrosis (IPF) which would imply the presence of tertiary lymphoid structures (TLS, sites where the immune response is triggered), yet TLS are not considered features of the histological characteristics of IPF. Aim This study aims to quantify the presence, size, and degree of activation of TLS in biopsied and explanted lungs from patients with early- and late-IPF, never treated with antifibrotics, and relate their presence and activity to the clinical course, disease progression, and lung inflammation. Methods Immunohistochestry for B cells and CD4, CD8, and CD45 cells was performed in lung tissue from IPF patients: 18 at diagnosis (early), 39 explanted (end-stage), and 12 smoking controls. TLS activation was assessed by CD40 expression. Spirometry along 31 (12-72) months of follow-up was used to characterize end-stage IPF as slow progressors or rapid progressors. Results B cells, along with other inflammatory cells, were higher in early- and end-stage IPF than in controls (p < 0.001). In rapid progressors, all inflammatory cells were higher than in slow progressors (p < 0.05). TLS were present in 100% of early- and end-stage IPF and in 50% of controls. In end-stage IPF, the TLS area and activation score were higher than in early IPF (p < 0.0001; p = 0.005) and controls (p < 0.04; p < 0.002). TLS activation score correlated with FVC decline during follow-up in rapid progressors (r = 0.73; p = 0.007) but not in slow progressors. Conclusions A prominent B-cell infiltration, along with the presence of TLS, the activity of which correlates with FVC decline, is an important component of IPF from the beginning of the disease, likely playing an important role on its mechanism and progression.
Collapse
Affiliation(s)
- Elisabetta Cocconcelli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Giordano Fiorentù
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessandro Sanduzzi Zamparelli
- Respiratory Medicine Unit at the Monaldi Hospital, AO dei Colli, Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Paolo Spagnolo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
3
|
D'Agnano V, Mariniello DF, Pagliaro R, Far MS, Schiattarella A, Scialò F, Stella G, Matera MG, Cazzola M, Bianco A, Perrotta F. Sirtuins and Cellular Senescence in Patients with Idiopathic Pulmonary Fibrosis and Systemic Autoimmune Disorders. Drugs 2024; 84:491-501. [PMID: 38630364 PMCID: PMC11189987 DOI: 10.1007/s40265-024-02021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 06/22/2024]
Abstract
The sirtuin family is a heterogeneous group of proteins that play a critical role in many cellular activities. Several degenerative diseases have recently been linked to aberrant sirtuin expression and activity because of the involvement of sirtuins in maintaining cell longevity and their putative antiaging function. Idiopathic pulmonary fibrosis and progressive pulmonary fibrosis associated with systemic autoimmune disorders are severe diseases characterized by premature and accelerated exhaustion and failure of alveolar type II cells combined with aberrant activation of fibroblast proliferative pathways leading to dramatic destruction of lung architecture. The mechanisms underlying alveolar type II cell exhaustion in these disorders are not fully understood. In this review, we have focused on the role of sirtuins in the pathogenesis of idiopathic and secondary pulmonary fibrosis and their potential as biomarkers in the diagnosis and management of fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Vito D'Agnano
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Raffaella Pagliaro
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Mehrdad Savabi Far
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Angela Schiattarella
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Giulia Stella
- Unit of Respiratory System Diseases, Department of Medical Sciences and Infectious Diseases, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| |
Collapse
|
4
|
Shi B, Tsou PS, Ma F, Mariani MP, Mattichak MN, LeBrasseur NK, Chini EN, Lafyatis R, Khanna D, Whitfield ML, Gudjonsson JE, Varga J. Senescent Cells Accumulate in Systemic Sclerosis Skin. J Invest Dermatol 2023; 143:661-664.e5. [PMID: 36191640 PMCID: PMC10038878 DOI: 10.1016/j.jid.2022.09.652] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Bo Shi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael P Mariani
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire, USA
| | - Megan N Mattichak
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic Rochester, Minnesota, USA
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire, USA
| | | | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Khanna D, Padilla C, Tsoi LC, Nagaraja V, Khanna PP, Tabib T, Kahlenberg JM, Young A, Huang S, Gudjonsson JE, Fox DA, Lafyatis R. Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight 2022; 7:e159566. [PMID: 35943798 PMCID: PMC9536259 DOI: 10.1172/jci.insight.159566] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDSystemic sclerosis (SSc) is an autoimmune, connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs.METHODSWe randomized 15 participants with early diffuse cutaneous SSc to tofacitinib 5 mg twice a day or matching placebo in a phase I/II double-blind, placebo-controlled trial. The primary outcome measure was safety and tolerability at or before week 24. To understand the changes in gene expression associated with tofacitinib treatment in each skin cell population, we compared single-cell gene expression in punch skin biopsies obtained at baseline and 6 weeks following the initiation of treatment.RESULTSTofacitinib was well tolerated; no participants experienced grade 3 or higher adverse events before or at week 24. Trends in efficacy outcome measures favored tofacitnib. Baseline gene expression in fibroblast and keratinocyte subpopulations indicated IFN-activated gene expression. Tofacitinib inhibited IFN-regulated gene expression in SFRP2/DPP4 fibroblasts (progenitors of myofibroblasts) and in MYOC/CCL19, representing adventitial fibroblasts (P < 0.05), as well as in the basal and keratinized layers of the epidermis. Gene expression in macrophages and DCs indicated inhibition of STAT3 by tofacitinib (P < 0.05). No clinically meaningful inhibition of T cells and endothelial cells in the skin tissue was observed.CONCLUSIONThese results indicate that mesenchymal and epithelial cells of a target organ in SSc, not the infiltrating lymphocytes, may be the primary focus for therapeutic effects of a Janus kinase inhibitor.TRIAL REGISTRATIONClinicalTrials.gov NCT03274076.FUNDINGPfizer, NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01 AR070470, NIH/NIAMS K24 AR063120, Taubman Medical Research Institute and NIH P30 AR075043, and NIH/NIAMS K01 AR072129.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristina Padilla
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vivek Nagaraja
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja P Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- VA Medical Center, Ann Arbor, Michigan, USA
| | - Tracy Tabib
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Amber Young
- Division of Rheumatology, Department of Internal Medicine, and
| | - Suiyuan Huang
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, and
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Gniadecki R, Iyer A, Hennessey D, Khan L, O'Keefe S, Redmond D, Storek J, Durand C, Cohen-Tervaert JW, Osman M. Genomic instability in early systemic sclerosis. J Autoimmun 2022; 131:102847. [PMID: 35803104 DOI: 10.1016/j.jaut.2022.102847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is associated with secondary malignancies. Previous studies have suggested that mutated cancer proteins, such as RNA polymerase III, are autoantigens promoting an inflammatory response in SSc. However, it has never been previously investigated whether non-neoplastic tissue in SSc harbors mutations which may play a role in SSc pathogenesis. METHODS Skin biopsies were obtained from 8 sequential patients with a progressive form of early stage SSc (with severe skin and/or lung involvement). Areas of dermal fibrosis were microdissected and analyzed with deep, whole exome sequencing. Gene mutation patterns were compared to autologous buccal mucosal cells as a control. RESULTS SSc skin biopsies were hypermutated with an average of 58 mutations/106 base pairs. The mutational pattern in all samples exhibited a clock-like signature, which is ubiquitous in cancers and in senescent cells. Of the 1997 genes we identified which were mutated in at least two SSc patients, 39 genes represented cancer drivers (i.e. tumor suppressor genes or oncogenes) which are commonly found in gynecological, squamous and gastrointestinal cancer signatures. Of all the mutations, the most common mutated genes were important in regulating pathways related to epigenetic histone modifications, DNA repair and genome integrity. CONCLUSIONS Somatic hypermutation occurs in fibrotic skin in patients with early progressive SSc. Cancer driver gene mutations may potentially play a fundamental role in the pathogenesis of SSc.
Collapse
Affiliation(s)
| | | | | | - Lamia Khan
- Division of Rheumatology, University of Alberta, Edmonton, Canada
| | | | - Desiree Redmond
- Division of Rheumatology, University of Alberta, Edmonton, Canada
| | - Jan Storek
- Division of Hematology, University of Calgary, Canada
| | - Caylib Durand
- Division of Rheumatology, University of Calgary, Canada
| | | | - Mohammed Osman
- Division of Rheumatology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
7
|
Wenzel D, Haddadi N, Afshari K, Richmond JM, Rashighi M. Upcoming treatments for morphea. Immun Inflamm Dis 2021; 9:1101-1145. [PMID: 34272836 PMCID: PMC8589364 DOI: 10.1002/iid3.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022] Open
Abstract
Morphea (localized scleroderma) is a rare autoimmune connective tissue disease with variable clinical presentations, with an annual incidence of 0.4-2.7 cases per 100,000. Morphea occurs most frequently in children aged 2-14 years, and the disease exhibits a female predominance. Insights into morphea pathogenesis are often extrapolated from studies of systemic sclerosis due to their similar skin histopathologic features; however, clinically they are two distinct diseases as evidenced by different demographics, clinical features, disease course and prognosis. An interplay between genetic factors, epigenetic modifications, immune and vascular dysfunction, along with environmental hits are considered as the main contributors to morphea pathogenesis. In this review, we describe potential new therapies for morphea based on both preclinical evidence and ongoing clinical trials. We focus on different classes of therapeutics, including antifibrotic, anti-inflammatory, cellular and gene therapy, and antisenolytic approaches, and how these target different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Dan Wenzel
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nazgol‐Sadat Haddadi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Khashayar Afshari
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jillian M. Richmond
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Mehdi Rashighi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
8
|
Del Rey MJ, Meroño C, Municio C, Usategui A, Mittelbrunn M, García-Consuegra I, Criado G, Pablos JL. TFAM-deficient mouse skin fibroblasts - an ex vivo model of mitochondrial dysfunction. Dis Model Mech 2021; 14:271052. [PMID: 34312668 PMCID: PMC8405849 DOI: 10.1242/dmm.048995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction associates with several pathological processes and contributes to chronic inflammatory and ageing-related diseases. Mitochondrial transcription factor A (TFAM) plays a critical role in maintaining mtDNA integrity and function. Taking advantage of Tfamfl/fl UBC-Cre/ERT2+/+ mice to investigate mitochondrial dysfunction in the stromal cell component, we describe an inducible in vitro model of mitochondrial dysfunction by stable depletion of TFAM in primary mouse skin fibroblasts (SK-FBs) after 4-hydroxytamoxifen (4-OHT) administration. Tfam gene deletion caused a sustained reduction in Tfam and mtDNA-encoded mRNA in Cre(+) SK-FBs cultured for low (LP) and high (HP) passages that translated into a loss of TFAM protein. TFAM depletion led to a substantial reduction in mitochondrial respiratory chain complexes that was exacerbated in HP SK-FB cultures. The assembly pattern showed that the respiratory complexes fail to reach the respirasome in 4-OHT-treated Cre(+) SK-FBs. Functionally, mito-stress and glycolysis-stress tests showed that mitochondrial dysfunction developed after long-term 4-OHT treatment in HP Cre(+) SK-FBs and was compensated by an increase in the glycolytic capacity. Finally, expression analysis revealed that 4-OHT-treated HP Cre(+) SK-FBs showed a senescent and pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Manuel J Del Rey
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Carolina Meroño
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Cristina Municio
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Alicia Usategui
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - María Mittelbrunn
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Inés García-Consuegra
- Unidad de Proteómica, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Gabriel Criado
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
9
|
New mechanism-based approaches to treating and evaluating the vasculopathy of scleroderma. Curr Opin Rheumatol 2021; 33:471-479. [PMID: 34402454 DOI: 10.1097/bor.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Utilizing recent insight into the vasculopathy of scleroderma (SSc), the review will highlight new opportunities for evaluating and treating the disease by promoting stabilization and protection of the microvasculature. RECENT FINDINGS Endothelial junctional signaling initiated by vascular endothelial-cadherin (VE-cadherin) and Tie2 receptors, which are fundamental to promoting vascular health and stability, are disrupted in SSc. This would be expected to not only diminish their protective activity, but also increase pathological processes that are normally restrained by these signaling mediators, resulting in pathological changes in vascular function and structure. Indeed, key features of SSc vasculopathy, from the earliest signs of edema and puffy fingers to pathological disruption of hemodynamics, nutritional blood flow, capillary structure and angiogenesis are all consistent with this altered endothelial signaling. It also likely contributes to further progression of the disease including tissue fibrosis, and organ and tissue injury. SUMMARY Restoring protective endothelial junctional signaling should combat the vasculopathy of SSc and prevent further deterioration in vascular and organ function. Indeed, this type of targeted approach has achieved remarkable results in preclinical models for other diseases. Furthermore, tracking this endothelial junctional signaling, for example by assessing vascular permeability, should facilitate insight into disease progression and its response to therapy.
Collapse
|
10
|
Biopsy in interstitial lung disease: specific diagnosis and the identification of the progressive fibrotic phenotype. Curr Opin Pulm Med 2021; 27:355-362. [PMID: 34397611 DOI: 10.1097/mcp.0000000000000810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The evaluation of progression in fibrotic interstitial lung diseases (ILDs) may require a multidimensional approach. This review will cover the role and usefulness of lung biopsy in diagnosis and assessment of the progressive fibrotic phenotype. RECENT FINDINGS The identification of specific findings and the balance between inflammation and fibrosis on lung biopsy may help distinguishing different disease entities and may likely determine the effect of treatment and possibly prognosis. The fibrotic morphological patterns potentially associated with a progressive phenotype include usual interstitial pneumonia (UIP), fibrotic nonspecific interstitial pneumonia, pleuroparenchymal fibroelastosis, desquamative interstitial pneumonia, fibrotic hypersensitivity pneumonitis and other less common fibrotic variants, with histopathological findings of UIP at the time of diagnosis being predictive of worse outcome compared with other patterns. The prognostic significance of lung biopsy findings has been assessed after both surgical lung biopsy (SLB) and transbronchial lung cryobiopsy (TBLC), the latter becoming a valid alternative to SLB, if performed in experienced centres, due to significantly lower morbidity and mortality. SUMMARY Lung biopsy plays an important role in diagnosis and identification of the progressive fibrotic phenotype. The introduction of less invasive procedures could potentially expand the role of lung sampling, including for example patients with a known diagnosis of ILD or at an earlier stage of the disease.
Collapse
|
11
|
Mancini OK, Acevedo M, Fazez N, Cuillerier A, Ruiz AF, Huynh DN, Burelle Y, Ferbeyre G, Baron M, Servant MJ. Oxidative stress-induced senescence mediates inflammatory and fibrotic phenotypes in fibroblasts from systemic sclerosis patients. Rheumatology (Oxford) 2021; 61:1265-1275. [PMID: 34115840 DOI: 10.1093/rheumatology/keab477] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by inflammation and fibrosis. Although constitutive activation of fibroblasts is proposed to be responsible for the fibrotic and inflammatory features of the disease, the underlying mechanism remains elusive and, effective therapeutic targets are still lacking. The aim of this study was to evaluate the role of oxidative stress-induced senescence and its contribution to the pro-fibrotic and pro-inflammatory phenotypes of fibroblasts from SSc patients. METHODS Dermal fibroblasts were isolated from SSc (n = 13) and healthy (n = 10) donors. Fibroblast's intracellular and mitochondrial reactive oxygen species were determined by flow cytometry. Mitochondrial function measured by Seahorse XF24 analyzer. Fibrotic and inflammatory gene expressions were assessed by qPCR and key pro-inflammatory components of the fibroblasts' secretome (interleukin (IL) 6 and IL8) were quantified by ELISA. RESULTS Compared to healthy fibroblasts, SSc fibroblasts displayed higher levels of both intracellular and mitochondrial ROS. Oxidative stress in SSc fibroblasts induced the expression of fibrotic genes and activated the transforming growth factor-β-activated kinase 1 (TAK1) -IκB kinase β (IKKβ)- interferon regulatory factor 5 (IRF5) inflammatory signaling cascade. These cellular responses paralleled the presence of a DNA damage response, a senescence-associated secretory phenotype and a fibrotic response. Treatment of SSc fibroblasts with ROS scavengers reduced their pro-inflammatory secretome production and fibrotic gene expression. CONCLUSIONS Oxidative stress-induced cellular senescence in SSc fibroblasts underlies their pro-inflammatory and pro-fibrotic phenotypes. Targeting redox imbalance of SSc fibroblasts enhances their in vitro functions and could be of relevance for SSc therapy.
Collapse
Affiliation(s)
| | | | - Nesrine Fazez
- Faculty of Pharmacy, Université de Montréal, Québec, Canada
| | - Alexanne Cuillerier
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Ana Fernandez Ruiz
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - David N Huynh
- Faculty of Pharmacy, Université de Montréal, Québec, Canada
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Gerardo Ferbeyre
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Murray Baron
- McGill University, Jewish General Hospital, Montréal, Québec, Canada
| | - Marc J Servant
- Faculty of Pharmacy, Université de Montréal, Québec, Canada
| |
Collapse
|
12
|
Guimarães GR, Almeida PP, de Oliveira Santos L, Rodrigues LP, de Carvalho JL, Boroni M. Hallmarks of Aging in Macrophages: Consequences to Skin Inflammaging. Cells 2021; 10:cells10061323. [PMID: 34073434 PMCID: PMC8228751 DOI: 10.3390/cells10061323] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is our largest organ and the outermost protective barrier. Its aging reflects both intrinsic and extrinsic processes resulting from the constant insults it is exposed to. Aging in the skin is accompanied by specific epigenetic modifications, accumulation of senescent cells, reduced cellular proliferation/tissue renewal, altered extracellular matrix, and a proinflammatory environment favoring undesirable conditions, including disease onset. Macrophages (Mφ) are the most abundant immune cell type in the skin and comprise a group of heterogeneous and plastic cells that are key for skin homeostasis and host defense. However, they have also been implicated in orchestrating chronic inflammation during aging. Since Mφ are related to innate and adaptive immunity, it is possible that age-modified skin Mφ promote adaptive immunity exacerbation and exhaustion, favoring the emergence of proinflammatory pathologies, such as skin cancer. In this review, we will highlight recent findings pertaining to the effects of aging hallmarks over Mφ, supporting the recognition of such cell types as a driving force in skin inflammaging and age-related diseases. We will also present recent research targeting Mφ as potential therapeutic interventions in inflammatory skin disorders and cancer.
Collapse
Affiliation(s)
- Gabriela Rapozo Guimarães
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Palloma Porto Almeida
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Leandro de Oliveira Santos
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Leane Perim Rodrigues
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia 70790-160, Brazil; (L.P.R.); (J.L.d.C.)
| | - Juliana Lott de Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia 70790-160, Brazil; (L.P.R.); (J.L.d.C.)
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Correspondence:
| |
Collapse
|
13
|
Sirtuin 1 and Skin: Implications in Intrinsic and Extrinsic Aging-A Systematic Review. Cells 2021; 10:cells10040813. [PMID: 33917352 PMCID: PMC8067363 DOI: 10.3390/cells10040813] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Skin, as the outermost organ of the body, is constantly exposed to both intrinsic and extrinsic causative factors of aging. Intrinsic aging is related to compromised cellular proliferative capacity, and may be accelerated by harmful environmental influences with the greatest significance of ultraviolet radiation exposure, contributing not only to premature aging, but also to skin carcinogenesis. The overall skin cancer burden and steadily increasing global antiaging market provide an incentive for searching novel targets to improve skin resistance against external injury. Sirtuin 1, initially linked to extension of yeast and rodent lifespan, plays a key role in epigenetic modification of proteins, histones, and chromatin by which regulates the expression of genes implicated in the oxidative stress response and apoptosis. The spectrum of cellular pathways regulated by sirtuin 1 suggests its beneficial impact on skin aging. However, the data on its role in carcinogenesis remains controversial. The aim of this review was to discuss the relevance of sirtuin 1 in skin aging, in the context of intrinsic factors, related to genetic premature aging syndromes, as well as extrinsic modifiable ones, with the assessment of its future application. PubMed were searched from inception to 4 January 2021 for relevant papers with further search carried out on ClinicalTrials.gov. The systematic review included 46 eligible original articles. The evidence from numerous studies proves sirtuin 1 significance in both chronological and premature aging as well as its dual role in cancer development. Several botanical compounds hold the potential to improve skin aging symptoms.
Collapse
|
14
|
Association between periodontal disease and tooth loss and mortality in an elderly Chinese population. Aging Clin Exp Res 2020; 32:2375-2382. [PMID: 32020486 DOI: 10.1007/s40520-019-01446-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Poor oral health is a risk indicator of poor quality of life and mortality. However, whether these associations remain potent in elderly subjects after adequately considering the confounding factors is not yet clearly elucidated. The present study aimed to investigate the associations between periodontal disease and tooth loss and total mortality and cardiovascular disease (CVD) outcomes in the elderly > 75 years old. METHODS A total of 1385 individuals, receiving periodontal treatment in Shanghai, participated in this retrospective study. Data on oral status were obtained from radiographs to calculate the proportion of residual bone. The information about mortality was collected from the Shanghai Municipal Center for Disease Control and Prevention (SCDC). Univariate Cox proportional hazards model, multivariable-adjusted model, and competing risk hazard model were used to analyze the association between periodontal disease or tooth loss and mortality. RESULTS Those with severe periodontitis were associated with higher risk of total mortality than healthy individuals [hazard ratio (HR) = 1.48, 95% confidence interval (95% CI) 1.11-1.98]. Further, missing teeth increased the risk of total mortality (HR = 1.02, 95% CI 1.01-1.03). However, no significant difference was detected in the association between periodontitis or tooth loss and CVD mortality. In competing risk hazard model, an increased risk was observed for other-cause mortality, not CVD mortality, in those with severe periodontitis and missing teeth. CONCLUSION Periodontal diseases and tooth loss were the potential predictors of total mortality even after adjustment for confounding factors. However, these were not independent indicators for CVD mortality.
Collapse
|
15
|
Brown KK, Martinez FJ, Walsh SLF, Thannickal VJ, Prasse A, Schlenker-Herceg R, Goeldner RG, Clerisme-Beaty E, Tetzlaff K, Cottin V, Wells AU. The natural history of progressive fibrosing interstitial lung diseases. Eur Respir J 2020; 55:13993003.00085-2020. [PMID: 32217654 PMCID: PMC7315005 DOI: 10.1183/13993003.00085-2020] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/20/2020] [Indexed: 12/31/2022]
Abstract
We used data from the INBUILD and INPULSIS trials to investigate the natural history of progressive fibrosing interstitial lung diseases (ILDs). Subjects in the two INPULSIS trials had a clinical diagnosis of idiopathic pulmonary fibrosis (IPF) while subjects in the INBUILD trial had a progressive fibrosing ILD other than IPF and met protocol-defined criteria for ILD progression despite management. Using data from the placebo groups, we compared the rate of decline in forced vital capacity (FVC) (mL·year−1) and mortality over 52 weeks in the INBUILD trial with pooled data from the INPULSIS trials. The adjusted mean annual rate of decline in FVC in the INBUILD trial (n=331) was similar to that observed in the INPULSIS trials (n=423) (−192.9 mL·year−1 and −221.0 mL·year−1, respectively; nominal p-value=0.19). The proportion of subjects who had a relative decline in FVC >10% predicted at Week 52 was 48.9% in the INBUILD trial and 48.7% in the INPULSIS trials, and the proportion who died over 52 weeks was 5.1% in the INBUILD trial and 7.8% in the INPULSIS trials. A relative decline in FVC >10% predicted was associated with an increased risk of death in the INBUILD trial (hazard ratio 3.64) and the INPULSIS trials (hazard ratio 3.95). These findings indicate that patients with fibrosing ILDs other than IPF, who are progressing despite management, have a subsequent clinical course similar to patients with untreated IPF, with a high risk of further ILD progression and early mortality. Analyses of data from the INBUILD and INPULSIS trials suggest that progressive fibrosing ILDs other than IPF have a clinical course similar to IPF, irrespective of underlying ILD diagnosis or the fibrotic pattern on HRCThttp://bit.ly/3apG0Q5
Collapse
Affiliation(s)
- Kevin K Brown
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Simon L F Walsh
- National Heart and Lung Institute, Imperial College, London, UK
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Antje Prasse
- Dept of Respiratory Medicine, MHH Hannover Medical School and Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Germany
| | | | | | | | - Kay Tetzlaff
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany.,Dept of Sports Medicine, University of Tübingen, Tübingen, Germany
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, Lyon, France
| | - Athol U Wells
- National Heart and Lung Institute, Imperial College, London, UK.,National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The etiology of systemic sclerosis (SSc), which is a rare immune-mediated inflammatory disease characterized by vascular damage and fibrosis, is still unknown. However, different intrinsic (genetics) and extrinsic (environmental) factors play a part in the progression of the disease. This review focuses on the role of aging, mitochondrial dysfunction, and senescence in SSc. RECENT FINDINGS Mitochondrial dysfunction and senescence have been linked to the age-related susceptibility to other interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF). SSc is not regarded as an age-related disease but does show a higher incidence of cardiac events, fibrosis, and mortality at older age. We provide an overview of the current status of the role of aging, mitochondrial dysfunction, and senescence in SSc. Further work is needed to validate some of these pathways in SSc and may allow for new therapeutic interventions focused on restoring mitochondrial homeostasis and the targeted removal of chronic-senescent cells.
Collapse
|
17
|
Duer M, Cobb AM, Shanahan CM. DNA Damage Response: A Molecular Lynchpin in the Pathobiology of Arteriosclerotic Calcification. Arterioscler Thromb Vasc Biol 2020; 40:e193-e202. [PMID: 32404005 DOI: 10.1161/atvbaha.120.313792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature. Unexpectedly, a posttranslational modification, PAR (poly[ADP-ribose]), which is a byproduct of the DNA damage response, initiates biomineralization by acting to concentrate calcium into spheroidal structures that can nucleate apatitic mineral on the ECM (extracellular matrix). As we start to dissect the molecular mechanisms driving aging-associated vascular calcification, novel treatment strategies to promote healthy aging and delay pathological change are being unmasked. Drugs targeting the DNA damage response and senolytics may provide new avenues to tackle this detrimental and intractable pathology.
Collapse
Affiliation(s)
- Melinda Duer
- From the Department of Chemistry, University of Cambridge, United Kingdom (M.D.)
| | - Andrew M Cobb
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| |
Collapse
|
18
|
Talotta R, Sarzi-Puttini P, Laska MJ, Atzeni F. Retrotransposons shuttling genetic and epigenetic information from the nuclear to the mitochondrial compartment: Do they play a pathogenetic role in scleroderma? Cytokine Growth Factor Rev 2019; 49:42-58. [PMID: 31677967 DOI: 10.1016/j.cytogfr.2019.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Endogenous retroelements are a class of ancient defective viral insertions contained in the genome of host cells, where they account for up to 40% of all DNA. Centuries of co-existence in host genome have led to the development of immunotolerance to endogenous retroelements, most of which are defective and unable to replicate or transcribe functional proteins. However, given their capacity to move across the nuclear and mitochondrial genome and recombine, they could mix phenotypes and give rise to infections that may trigger innate and adaptive immune responses by sensing receptors capable of recognising foreign nucleic acids and proteins. It has recently been suggested that they play a role in the pathogenesis of autoimmune diseases on the grounds of their partial reactivation or the epigenetic control of host gene transcription. A number of studies have confirmed their contribution to the development of rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus, but there is still a lack of data concerning systemic sclerosis (SSc). Their role in the pathogenesis of SSc can be hypothesised on the basis of mitochondrial and nuclear chromatinic damage, and hyper-activation of the immune pathway involved in antiviral defense. SSc is characterised by genetic and immunological evidence of a viral infection but, as no viral agent has yet been isolated from SSc patients, the hypothesis that partial reactivation of endogenous retroviruses may trigger the disease cannot be excluded and deserves further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, University of Messina, Azienda Ospedaliera Gaetano Martino, Via Consolare Valeria 1, 98100 Messina, Italy.
| | - Piercarlo Sarzi-Puttini
- Rheumatology Unit, University Hospital ASST-Fatebenefratelli-Sacco, Via G.B Grassi 74, 20157 Milan, Italy.
| | | | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Azienda Ospedaliera Gaetano Martino, Via Consolare Valeria 1, 98100 Messina, Italy.
| |
Collapse
|
19
|
Ock SA, Choi I, Im GS, Yoo JG. Whole Blood Transcriptome Analysis for Lifelong Monitoring in Elite Sniffer Dogs Produced by Somatic Cell Nuclear Transfer. Cell Reprogram 2019; 21:301-313. [PMID: 31633381 DOI: 10.1089/cell.2019.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reproductive cloning by somatic cell nuclear transfer (SCNT) is a valuable method to propagate service dogs with desirable traits because of higher selection rates in cloned dogs. However, incomplete reprogramming is a major barrier to SCNT, and the assessment of reprogramming is limited to preimplantation embryos and tissues from dead and/or adult tissue. Thus, lifelong monitoring in SCNT dogs can be useful to evaluate the SCNT service dogs for propagation. We applied microarray and qRT-PCR to profile of mRNA and miRNA in whole blood samples collected from four cloned dogs (S), three age-matched control dogs (A), and a donor dog (D). In the analysis of differentially expressed genes in S-A, A-D, and S-D pairs, most genomes were completely reprogrammed and rejuvenated in the cloned offspring. However, several RNAs were differentially expressed. Interestingly, the altered genes are associated with aging and senescence. Furthermore, we identified potential biomarkers such as mirR-223 (NFIB; CLIC4), miRN-494 (ARHGEF12), miR-106b (PPP1R3B; CC2D1A), miR-20a (CC2D1A; PPP1R3B), miR-30e (IGJ; HIRA), and miR-19a (TNRC6A) by miRNA-target mRNA pairing for monitoring rejuvenation, aging/senescence, and reprogramming in cloned dogs. The novel comparative transcriptomic information about SCNT and age-matched dogs can be used to assess the lifelong health of cloned dogs and to facilitate the selection of training animals with minimal invasive procedures.
Collapse
Affiliation(s)
- Sun-A Ock
- National Institute of Animal Science, Rural Development Administration, Isero-myeon, Wanju-gun, Republic of Korea
| | - Inchul Choi
- Division of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Chungnam National University, Daejon, Republic of Korea
| | - Gi-Sun Im
- National Institute of Animal Science, Rural Development Administration, Isero-myeon, Wanju-gun, Republic of Korea
| | - Jae Gyu Yoo
- National Institute of Animal Science, Rural Development Administration, Isero-myeon, Wanju-gun, Republic of Korea
| |
Collapse
|
20
|
Elko EA, Mahoney JM, Vacek P, van der Vliet A, Anathy V, van der Velden JLJL, Janssen-Heininger YMW, Seward DJ. Age-dependent dysregulation of redox genes may contribute to fibrotic pulmonary disease susceptibility. Free Radic Biol Med 2019; 141:438-446. [PMID: 31315063 PMCID: PMC6820706 DOI: 10.1016/j.freeradbiomed.2019.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Aging is associated with enhanced oxidative stress and increased susceptibility to numerous diseases. This relationship is particularly striking with respect to the incidence of fibrotic lung disease. To identify potential mechanisms underlying the association between aging and susceptibility to fibrotic lung disease we analyzed transcriptome data from 342 disease-free human lung samples as a function of donor age. Our analysis reveals that aging in lung is accompanied by modest yet progressive changes in genes modulating redox homeostasis, the TGF-beta 1 signaling axis, and the extracellular matrix (ECM), pointing to an aging lung functional network (ALFN). Further, the transcriptional changes we document are tissue-specific, with age-dependent gene expression patterns differing across organ systems. Our findings suggest that the age-associated increased incidence of fibrotic pulmonary disease occurs in the context of tissue-specific, age-dependent transcriptional changes. Understanding the relationship between age-associated gene expression and susceptibility to fibrotic pulmonary disease may allow for more accurate risk stratification and effective therapeutic interventions within this challenging clinical space.
Collapse
Affiliation(s)
- Evan A Elko
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA
| | - J Matthew Mahoney
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, 05405, USA
| | - Pamela Vacek
- Medical Biostatistics, The University of Vermont, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA
| | - Jos L J L van der Velden
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA
| | | | - David J Seward
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
21
|
Korman B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl Res 2019; 209:77-89. [PMID: 30876809 PMCID: PMC6545260 DOI: 10.1016/j.trsl.2019.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 01/11/2023]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex multisystem disease characterized by autoimmunity, vasculopathy, and most notably, fibrosis. Multiple lines of evidence demonstrate a variety of emerging cellular and molecular pathways which are relevant to fibrosis in SSc. The myofibroblast remains the key effector cell in SSc. Understanding the development, differentiation, and function of the myofibroblast is therefore crucial to understanding the fibrotic phenotype of SSc. Studies now show that (1) multiple cell types give rise to myofibroblasts, (2) fibroblasts and myofibroblasts are heterogeneous, and (3) that a large number of (primarily immune) cells have important influences on the transition of fibroblasts to an activated myofibroblasts. In SSc, this differentiation process involves multiple pathways, including well known signaling cascades such as TGF-β and Wnt/β-Catenin signaling, as well as epigenetic reprogramming and a number of more recently defined cellular pathways. After reviewing the major and emerging cellular and molecular mechanisms underlying SSc, this article looks to identify clinical applications where this new molecular knowledge may allow for targeted treatment and personalized medicine approaches.
Collapse
Affiliation(s)
- Benjamin Korman
- Division of Allergy/Immunology & Rheumatology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
22
|
Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol 2019; 165:181-195. [DOI: 10.1016/j.bcp.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/09/2023]
|
23
|
Cameli P, Bargagli E, Bergantini L, Refini RM, Pieroni M, Sestini P, Rottoli P. Evaluation of multiple-flows exhaled nitric oxide in idiopathic and non-idiopathic interstitial lung disease. J Breath Res 2019; 13:026008. [DOI: 10.1088/1752-7163/ab0233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Henrot P, Truchetet ME, Fisher G, Taïeb A, Cario M. CCN proteins as potential actionable targets in scleroderma. Exp Dermatol 2018; 28:11-18. [PMID: 30329180 DOI: 10.1111/exd.13806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin features, which give their name to the disease and are considered as diagnostic as well as prognostic markers, have not been thoroughly investigated in terms of therapeutic targets. CCN proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3 as CCN4-5-6) are a family of secreted matricellular proteins implicated in major cellular processes such as cell growth, migration, differentiation. They have already been implicated in key pathophysiological processes of SSc, namely fibrosis, vasculopathy and inflammation. In this review, we discuss the possible implication of CCN proteins in SSc pathogenesis, with a special focus on skin features, and identify the potential actionable CCN targets.
Collapse
Affiliation(s)
- Pauline Henrot
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Rheumatology, National Reference Center for Rare Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, National Reference Center for Rare Diseases, Bordeaux University Hospital, Bordeaux, France.,University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Gary Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alain Taïeb
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Muriel Cario
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| |
Collapse
|
25
|
Svegliati S, Spadoni T, Moroncini G, Gabrielli A. NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radic Biol Med 2018; 125:90-97. [PMID: 29694853 DOI: 10.1016/j.freeradbiomed.2018.04.554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by damage of small vessels, immune abnormalities and exaggerated production of extracellular matrix. The etiology of the disease is unknown and the pathogenesis ill defined. However, there is consistent evidence that oxidative stress contributes to the establishment and progression of the disease. This review examines the most relevant research regarding the involvement of free radicals and of nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidases; NOX) in the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Silvia Svegliati
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Italy
| | - Tatiana Spadoni
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Italy
| | - Gianluca Moroncini
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Italy
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Italy.
| |
Collapse
|
26
|
Wells AU, Brown KK, Flaherty KR, Kolb M, Thannickal V. What's in a name? That which we call IPF, by any other name would act the same. Eur Respir J 2018; 51:13993003.00692-2018. [DOI: 10.1183/13993003.00692-2018] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a truly idiopathic fibrotic disease, with a modest genetic predilection and candidate triggers but no overall explanation for the development of disease in non-familial cases. Agreement on terminology has contributed to major clinical and translational advances since the millennium. It is likely that the entity currently captured by the term “IPF” will be radically reclassified over the next decade, either through “splitting” (into IPF subgroups responding selectively to individual disease-modifying agents) or through “lumping” of IPF with other forms of progressive fibrotic lung disease (with shared pathogenetic mechanisms and IPF-like disease behaviour). In this perspective, we summarise the clinical and pathogenetic justification for a focus on “the progressive fibrotic phenotype” in future clinical and translational research. By this means, we can hope to address the needs of non-IPF patients with inexorably progressive fibrotic disease, currently disenfranchised by lack of access to agents that are efficacious in IPF. In this regard, ongoing trials of anti-fibrotic therapies in non-IPF patients with progressive fibrosis may be highly influential. Future revision of IPF nomenclature may be warranted if there are major conceptual changes but without compelling justification, the benefits of renaming IPF are likely to be outweighed by the resulting confusion.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Premature activation of aging-associated molecular mechanisms is emerging as an important contributor to many diseases, including scleroderma. Among central regulators of the aging process are a group of histone deacetylases called sirtuins (SIRTs). Recent findings implicate these molecules as pathophysiological players in scleroderma skin and lung fibrosis. The goal of this article is to review recent studies on the involvement of SIRTs in scleroderma from the perspective of aging-related molecular mechanisms. RECENT FINDINGS Despite a degree of controversy in this rapidly developing field, the majority of data suggest that SIRT levels are decreased in tissues from patients with scleroderma compared to healthy controls as well as in animal models of scleroderma. Molecular studies reveal several mechanisms through which declining SIRT levels contribute to fibrosis, with the most attention given to modulation of the TGF-β signaling pathway. Activation of SIRTs in cell culture and in animal models elicits antifibrotic effects. Declining SIRT levels and activity are emerging as pathophysiological contributors to scleroderma. Restoration of SIRTs may be therapeutic in patients with scleroderma.
Collapse
|
28
|
Artlett CM. The IL-1 family of cytokines. Do they have a role in scleroderma fibrosis? Immunol Lett 2018; 195:30-37. [DOI: 10.1016/j.imlet.2017.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
|
29
|
Guastafierro T, Bacalini MG, Marcoccia A, Gentilini D, Pisoni S, Di Blasio AM, Corsi A, Franceschi C, Raimondo D, Spanò A, Garagnani P, Bondanini F. Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clin Epigenetics 2017; 9:92. [PMID: 28861129 PMCID: PMC5577832 DOI: 10.1186/s13148-017-0389-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Werner syndrome is a progeroid disorder characterized by premature age-related phenotypes. Although it is well established that autosomal recessive mutations in the WRN gene is responsible for Werner syndrome, the molecular alterations that lead to disease phenotype remain still unidentified. Results To address whether epigenetic changes can be associated with Werner syndrome phenotype, we analysed genome-wide DNA methylation profile using the Infinium MethylationEPIC BeadChip in the whole blood from three patients affected by Werner syndrome compared with three age- and sex-matched healthy controls. Hypermethylated probes were enriched in glycosphingolipid biosynthesis, FoxO signalling and insulin signalling pathways, while hypomethylated probes were enriched in PI3K-Akt signalling and focal adhesion pathways. Twenty-two out of 47 of the differentially methylated genes belonging to the enriched pathways resulted differentially expressed in a publicly available dataset on Werner syndrome fibroblasts. Interestingly, differentially methylated regions identified CERS1 and CERS3, two members of the ceramide synthase family. Moreover, we found differentially methylated probes within ITGA9 and ADAM12 genes, whose methylation is altered in systemic sclerosis, and within the PRDM8 gene, whose methylation is affected in dyskeratosis congenita and Down syndrome. Conclusions DNA methylation changes in the peripheral blood from Werner syndrome patients provide new insight in the pathogenesis of the disease, highlighting in some cases a functional correlation of gene expression and methylation status. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0389-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Guastafierro
- UOC of Clinical Biochemistry, Sandro Pertini Hospital, Rome, Italy.,CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy
| | - M G Bacalini
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - A Marcoccia
- CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy.,UOSD Ischemic Microangiopathy and Sclerodermic Ulcers, Sandro Pertini Hospital, Rome, Italy
| | - D Gentilini
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - S Pisoni
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - A M Di Blasio
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - A Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - C Franceschi
- IRCCS Institute of Neurological Sciences, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy
| | - D Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - A Spanò
- UOC of Clinical Biochemistry, Sandro Pertini Hospital, Rome, Italy
| | - P Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Huddinge University Hospital, S-141 86 Stockholm, Sweden.,CNR Institute for Molecular Genetics, Unit of Bologna, Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - F Bondanini
- CRIIS (Interdisciplinary, Interdepartmental and Specialistic Reference Center for Early Diagnosis of Scleroderma, Treatment of Sclerodermic Ulcers and Videocapillaroscopy), Sandro Pertini Hospital, Rome, Italy.,UOC of Clinical Pathology, Saint' Eugenio Hospital, Rome, Italy
| |
Collapse
|
30
|
Measurement of Serum Klotho in Systemic Sclerosis. DISEASE MARKERS 2017; 2017:9545930. [PMID: 28912623 PMCID: PMC5585626 DOI: 10.1155/2017/9545930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Background The aim of our study was to evaluate the serum concentration of klotho in a cohort of systemic sclerosis (SSc) patients compared to that of healthy controls and to correlate its levels with the degree and the kind of organ involvement. Methods Blood samples obtained from both patients and controls were collected and analysed by an ELISA test for the determination of human soluble klotho. Scleroderma patients were evaluated for disease activity through clinical, laboratory, and instrumental assessment. Results Our cohort consisted of 81 SSc patients (74 females, mean age 63.9 ± 13.1 years) and 136 healthy controls (78 females, mean age 50.5 ± 10.7 years). When matched for age, serum klotho concentration significantly differed between controls and patients (p < 0.001). However, in SSc patients, we did not find any significant association between serum klotho and clinical, laboratory, and instrumental findings. Lower serum levels of klotho were detected in 4 patients who were anticitrullinated peptide antibody (ACPA) positive (p = 0.005). Conclusions Our data show a lower concentration of klotho in the serum of SSc patients compared to that of healthy controls, without any significant association with clinical manifestations and laboratory and instrumental findings. The association between serum klotho and ACPA positivity requires further investigation.
Collapse
|
31
|
Sosulski ML, Gongora R, Feghali-Bostwick C, Lasky JA, Sanchez CG. Sirtuin 3 Deregulation Promotes Pulmonary Fibrosis. J Gerontol A Biol Sci Med Sci 2017; 72:595-602. [PMID: 27522058 DOI: 10.1093/gerona/glw151] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
Oxidative stress leads to alveolar epithelial cell injury and fibroblast-myofibroblast differentiation (FMD), key events in the pathobiology of pulmonary fibrosis (PF). Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase regulator of antioxidant response and mitochondrial homeostasis. Here, we demonstrate reduced SIRT3 expression in the lungs of old mice compared to young mice, as well as in two murine models of PF. The analysis of the pattern of SIRT3 expression in the lungs of patients with PF revealed low SIRT3 staining within the fibrotic regions. We also demonstrated, using murine models of PF and human lung fibroblasts, that reduced SIRT3 expression in response to transforming growth factor beta 1 (TGFβ1) promotes acetylation (inactivation) of major oxidative stress response regulators, such as SOD2 and isocitrate dehydrogenase 2. Reduction of SIRT3 in human lung fibroblasts promoted FMD. By contrast, overexpression of SIRT3 attenuated TGFβ1-mediated FMD and significantly reduced the levels of SMAD family member 3 (SMAD3). Resveratrol induced SIRT3 expression and ameliorated acetylation changes induced by TGFβ1. We demonstrated that SIRT3-deficient mice are more susceptible to PF compared to control mice, and concomitantly exhibit enhanced SMAD3 expression. Collectively, these data define a SIRT3/TGFβ1 interaction during aging that may play a significant role in the pathobiology of PF.
Collapse
Affiliation(s)
- Meredith L Sosulski
- Division of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Rafael Gongora
- Division of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston
| | - Joseph A Lasky
- Division of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Cecilia G Sanchez
- Division of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
32
|
Wei J, Zhu H, Lord G, Bhattachayya M, Jones BM, Allaway G, Biswal SS, Korman B, Marangoni RG, Tourtellotte WG, Varga J. Nrf2 exerts cell-autonomous antifibrotic effects: compromised function in systemic sclerosis and therapeutic rescue with a novel heterocyclic chalcone derivative. Transl Res 2017; 183:71-86.e1. [PMID: 28027929 PMCID: PMC7205471 DOI: 10.1016/j.trsl.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) governs antioxidant, innate immune and cytoprotective responses and its deregulation is prominent in chronic inflammatory conditions. To examine the hypothesis that Nrf2 might be implicated in systemic sclerosis (SSc), we investigated its expression, activity, and mechanism of action in SSc patient samples and mouse models of fibrosis and evaluated the effects of a novel pharmacologic Nrf2 agonist. We found that both expression and activity of Nrf2 were significantly reduced in SSc patient skin biopsies and showed negative correlation with inflammatory gene expression. In skin fibroblasts, Nrf2 mitigated fibrotic responses by blocking canonical transforming growth factor-β (TGF-β)-Smad signaling, whereas silencing Nrf2 resulted in constitutively elevated collagen synthesis, spontaneous myofibroblast differentiation, and enhanced TGF-ß responses. Bleomycin treatment of Nrf2-null mice resulted in exaggerated fibrosis. In wild-type mice, treatment with a novel pharmacologic Nrf2 agonist 2-trifluoromethyl-2'-methoxychalcone prevented dermal fibrosis induced by TGF-β. These findings are the first to identify Nrf2 as a cell-intrinsic antifibrotic factor with key roles in maintaining extracellular matrix homeostasis and a pathogenic role in SSc. Pharmacologic reactivation of Nrf2, therefore, represents a novel therapeutic strategy toward effective treatment of fibrosis in SSc.
Collapse
Affiliation(s)
- Jun Wei
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill.
| | - Hongyan Zhu
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | - Gabriel Lord
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | - Mitra Bhattachayya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | | | | | - Shyam S Biswal
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Md
| | - Benjamin Korman
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill
| | | | - Warren G Tourtellotte
- Department of Pathology, Feinberg School of Medicine, Chicago, Ill; Department of Neurology, Feinberg School of Medicine, Chicago, Ill
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
33
|
Wyman AE, Noor Z, Fishelevich R, Lockatell V, Shah NG, Todd NW, Atamas SP. Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 312:L945-L958. [PMID: 28385812 DOI: 10.1152/ajplung.00473.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/08/2017] [Accepted: 03/29/2017] [Indexed: 01/10/2023] Open
Abstract
Pulmonary fibrosis is a severe condition with no cure and limited therapeutic options. A better understanding of its pathophysiology is needed. Recent studies have suggested that pulmonary fibrosis may be driven by accelerated aging-related mechanisms. Sirtuins (SIRTs), particularly SIRT1, SIRT3, and SIRT6, are well-known mediators of aging; however, limited data exist on the contribution of sirtuins to lung fibrosis. We assessed the mRNA and protein levels of all seven known sirtuins in primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-associated interstitial lung disease (SSc-ILD) in comparison with lung fibroblasts from healthy controls. These unbiased tests revealed a tendency for all sirtuins to be expressed at lower levels in fibroblasts from patients compared with controls, but the greatest decrease was observed with SIRT7. Similarly, SIRT7 was decreased in lung tissues of bleomycin-challenged mice. Inhibition of SIRT7 with siRNA in cultured lung fibroblasts resulted in an increase in collagen and α-smooth muscle actin (α-SMA). Reciprocally, overexpression of SIRT7 resulted in lower basal and TGF-β-induced levels of COL1A1, COL1A2, COL3A1, and α-SMA mRNAs, as well as collagen and α-SMA proteins. Induced changes in SIRT7 had no effect on endogenous TGF-β mRNA levels or latent TGF-β activation, but overexpression of SIRT7 reduced the levels of Smad3 mRNA and protein. In conclusion, the decline in SIRT7 in lung fibroblasts has a profibrotic effect, which is mediated by changes in Smad3 levels.
Collapse
Affiliation(s)
- Anne E Wyman
- Geriatric Research Education and Clinical Center, Veterans Affairs Maryland Health Care Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; .,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zahid Noor
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rita Fishelevich
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Virginia Lockatell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nirav G Shah
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nevins W Todd
- Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sergei P Atamas
- Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Sheppard DP, Iudicello JE, Morgan EE, Kamat R, Clark LR, Avci G, Bondi MW, Woods SP. Accelerated and accentuated neurocognitive aging in HIV infection. J Neurovirol 2017; 23:492-500. [PMID: 28321696 DOI: 10.1007/s13365-017-0523-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/16/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
Abstract
There is debate as to whether the neurocognitive changes associated with HIV infection represent an acceleration of the typical aging process or more simply reflect a greater accentuated risk for age-related declines. We aimed to determine whether accelerated neurocognitive aging is observable in a sample of older HIV-infected individuals compared to age-matched seronegatives and older old (i.e., aged ≥65) seronegative adults. Participants in a cross-sectional design included 48 HIV-seronegative (O-) and 40 HIV-positive (O+) participants between the ages of 50-65 (mean ages = 55 and 56, respectively) and 40 HIV-seronegative participants aged ≥65 (OO-; mean age = 74) who were comparable for other demographics. All participants were administered a brief neurocognitive battery of attention, episodic memory, speeded executive functions, and confrontation naming (i.e., Boston Naming Test). The O+ group performed more poorly than the O- group (i.e., accentuated aging), but not differently from the OO- on digit span and initial recall of a supraspan word list, consistent with an accelerating aging profile. However, the O+ group's performance was comparable to the O- group on all other neurocognitive tests (ps > 0.05). These data partially support a model of accelerated neurocognitive aging in HIV infection, which was observed in the domain of auditory verbal attention, but not in the areas of memory, language, or speeded executive functions. Future studies should examine whether HIV-infected adults over 65 evidence accelerated aging in downstream neurocognitive domains and subsequent everyday functioning outcomes.
Collapse
Affiliation(s)
- David P Sheppard
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Jennifer E Iudicello
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Erin E Morgan
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Rujvi Kamat
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Lindsay R Clark
- Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA.,Department of Medicine, University of Wisconsin-Madison School of Medicine & Public Health, Madison, WI, USA
| | - Gunes Avci
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Mark W Bondi
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego (SDSU/UCSD), San Diego, CA, USA.,Psychology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | | |
Collapse
|