1
|
Yang T, Yang X, Wang G, Jia D, Li Y. Unraveling the crucial role of SDF-1 in osteoarthritis progression: IL6/HIF-1α positive feedback and chondrocyte ferroptosis. Int Immunopharmacol 2025; 152:114400. [PMID: 40058106 DOI: 10.1016/j.intimp.2025.114400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Osteoarthritis (OA) is a common joint disease with an incompletely understood pathogenesis. SDF-1, a key factor in cartilage matrix degradation, is involved in OA cartilage degeneration, yet its mechanism, especially regarding ferroptosis, remains unclear. This study focuses on elucidating the role of SDF-1-induced chondrocyte ferroptosis and the IL6/HIF-1α signalling axis in OA. METHODS A rabbit OA model was created via SDF-1 induction. Knee cartilage tissues were sequenced and analyzed bioinformatically to identify key genes, and explore critical pathways. Clinical tissue samples were utilized to validate their clinical relevance. Furthermore, cell and rabbit models were constructed through gene interference and pathway blocking. The expression of related genes and proteins was detected by QPCR, ELISA, Western blot, and immunofluorescence. Additionally, OA and ferroptosis indicators such as cell viability, immunohistochemistry, ROS, lipid ROS, Fe2+, MDA, and mitochondrial morphology were evaluated to uncover the molecular mechanism by which SDF-1 regulates the IL6/HIF-1α signalling axis to mediate chondrocyte ferroptosis. RESULTS Bioinformatics revealed that ferroptosis was significantly activated in SDF-1-induced OA, with IL6 and HIF-1 pathways implicated. In vitro and in vivo, SDF-1 increased the expression and secretion of MMP13 but decreased COL2A1 and ACAN in chondrocytes, leading to OA-like changes. It also suppressed the expression levels of SLC7A11 and GPX4, upregulated the gene and protein levels of ACSL4, promoted the accumulation of MDA, Fe2+, and ROS, and caused mitochondrial morphological changes. These ferroptosis manifestations could be alleviated by the ferroptosis inhibitor Fer-1. IL6 was an important mediator of SDF-1-induced ferroptosis, and knocking down IL6 also inhibited chondrocyte ferroptosis changes. Overexpressing IL6 (oeIL6) and using PX478 to inhibit the HIF-1 signalling pathway showed that PX478 could significantly relieve the cytotoxicity produced by the culture of oeIL6 and SDF-1, enhance chondrocyte viability, reverse the decreased expression of SLC7A11 and GPX4 caused by oeIL6, increase the expression of ACSL4, reverse the accumulation of MDA, Fe2+, and ROS. Moreover, PX478 could also significantly reduce the expression and secretion of IL6. CONCLUSION SDF-1 mediates chondrocyte ferroptosis via the IL6/HIF-1α positive feedback, promoting OA.
Collapse
Affiliation(s)
- Tengyun Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xianguang Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Guoliang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Di Jia
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China.
| |
Collapse
|
2
|
Terai K, Kariya R, Ogata-Aoki H, Okada S. Intra-articular administration of naked plasmid DNA with a guide-equipe jet injector in rat knee joints. Int J Pharm 2025; 673:125374. [PMID: 39978702 DOI: 10.1016/j.ijpharm.2025.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Previous studies showed that intradermal delivery of naked plasmid DNA using the needle-free pyro-drive jet injector, Actranza™, significantly enhanced gene expression compared to needle-syringe injections in animals. Here, we targeted intra-articular (IA) tissues, including cartilage in the rat knee joint. In order to accurately deliver the DNA solution to the joint cavity, the Actranza prototype attaching a 30G needle as a guide was used (30G-Acranza). The injection powers are controllable adjusting the amounts of ignition powder (IP) and smokeless powder (SP). Preliminary tests determined an optimal injection site (5 mm depth from the skin surface into the anterior joint cavity with the knee flexed) and injection volume (30 µL). Initial trials with 30G-Actranza-25/40 (IP/SP = 25 mg/40 mg) showed luciferase plasmid (pLuc) expression levels (relative luminescence units, RLU) that were approximately 40 times higher than manual syringe injections 24 h after the administration. Additional Green Fluorescent Protein plasmid (pGFP) experiments detected fluorescence in chondrocytes and cruciate ligament fibroblasts. The higher-powered 30G-Actranza-35/40 further increased pLuc expression compared to syringe injections (∼ 100 times). The expression remained detectable 10 days post-injection, though reduced from day one. Speed-controlled tests indicated that pLuc expression levels increased with injection speed, reaching saturation at 693 µL/s of 30G-Actranza-35/40. Reference data showed transdermal needle-free jet injection favored skin and proximal tissues over IA sites. In conclusion, needle-equipped jet injection effectively transfects naked plasmid DNA into IA tissues like cartilage, synovium, ligaments, and tendons with potential applications for encapsulated tissues such as tumors, broadening prospects for gene therapy, gene editing, and regenerative medicine.
Collapse
Affiliation(s)
- Kazuhiro Terai
- One Time Energy Collaborative Laboratory, Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 Japan; Research Center & Life Science SBU, Tokyo Head Office, Daicel Corporation, 2-18-1 Konan, Minato-ku, Tokyo 108-8230 Japan.
| | - Ryusho Kariya
- One Time Energy Collaborative Laboratory, Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan; Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 Japan.
| | - Hiromi Ogata-Aoki
- One Time Energy Collaborative Laboratory, Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 Japan.
| | - Seiji Okada
- One Time Energy Collaborative Laboratory, Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 Japan.
| |
Collapse
|
3
|
Zheng D, Chen T, Yang K, Yin G, Chen Y, Gui J, Xu C, Lv S. Microfluidic Synthesis of miR-200c-3p Lipid Nanoparticles: Targeting ZEB2 to Alleviate Chondrocyte Damage in Osteoarthritis. Int J Nanomedicine 2025; 20:505-521. [PMID: 39830158 PMCID: PMC11742371 DOI: 10.2147/ijn.s491711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration. Chondrocyte inflammation, apoptosis, and extracellular matrix degradation accelerated OA progression. MicroRNA (miRNA) has the potential to be a therapeutic method for osteoarthritis. However, it is difficult to penetrate the cell to exercise its biological function, and its extracellular effect is unclear. Methods lipo-AgPEI-miR-200c-3p was created by combining miR-200c-3p with silver nitrate polyvinylimine nanoparticles on a microfluidic device. The drug release curve, stability, temperature sensitivity, cytotoxicity, and the impact of lipo-AgPEI-miR-200c-3p on the expression of proteins linked to matrix disintegration, apoptosis, and inflammatory factors were all detected. Results Results showed that the particle size of Lipo-AgPEI-miR-200c-3p was about 130 nm, the Zeta potential was lowered to 1.08±0.12 mV. Lipo-AgPEI-miR-200c-3p could increase cell viability, prevent cell apoptosis, and decrease the expression levels of TNF-α, IL-6, IL-1β, and MCP-1 in ADTC5 cells following LPS stimulation. MMP3, MMP13, and ADAMTS-4 expression was downregulated whereas collagen II expression was upregulated. The ZEB2 expression was greatly elevated following LPS stimulation and dramatically decreased following transfection of miR-200c-3p. Collagen II expression rose following transfection of si-ZEB2, whereas the expression levels of inflammatory factors, apoptosis-related proteins, MMP3, MMP13, and ADAMTS-4 decreased. The dual luciferase experiment demonstrated that ZEB2 was the target gene of miR-200c-3p. Conclusion The synergistic effect of AgPEI and miR-200c-3p can inhibit the inflammatory response, apoptosis, and matrix degradation of chondrocytes. Lipo-AgPEI-miR-200c-3p can also improve transfection efficiency and obtain good physicochemical properties of drugs. miR-200c-3p may be crucial in the development of OA and can influence the target gene ZEB2, control the inflammatory response, apoptosis, and chondrocyte matrix breakdown.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Tong Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Kaiyuan Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Guangrong Yin
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yang Chen
- Changzhou Productivity Development Center, Changzhou, People’s Republic of China
| | - Jianchao Gui
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chao Xu
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, People’s Republic of China
| |
Collapse
|
4
|
Mancino C, Franke M, Greco A, Sontam T, Mcculloch P, Corbo C, Taraballi F. RNA therapies for musculoskeletal conditions. J Control Release 2025; 377:756-766. [PMID: 39617171 DOI: 10.1016/j.jconrel.2024.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Musculoskeletal conditions impact 1.71 billion individuals, posing significant challenges due to their complexity, varying clinical courses, and unclear molecular mechanisms. Conventional spectrum treatments often prove inadequate, underscoring the importance of targeted therapies. Recently, RNA-based technologies have emerged as a groundbreaking approach in therapeutics, showing applications in joint related ailments. This perspective aims to examine endeavors exploring the use of RNA-based treatments in both experimental and clinical contexts for addressing joint issues like osteoarthritis, rheumatoid arthritis, and cartilage injuries. The cited studies demonstrate how mRNA can stimulate the production of proteins that aid in controlling inflammation, fostering tissue regeneration and repairing cartilage damage. In summary, this perspective offers an overview of the progress made in mRNA-based technologies for treating related conditions by highlighting favorable findings from preclinical research and encouraging results from clinical trials. With advancements in the field, mRNA therapeutics have the potential to revolutionize treatment approaches for musculoskeletal disorders, bringing renewed hope to the future of musculoskeletal conditions.
Collapse
Affiliation(s)
- Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Madeline Franke
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
| | - Antonietta Greco
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Tarun Sontam
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
| | - Patrick Mcculloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro, MB, Italy; IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20161 Milan, Italy.
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
6
|
Zhong G, Liu W, Venkatesan JK, Wang D, Madry H, Cucchiarini M. Autologous transplantation of mitochondria/rAAV IGF-I platforms in human osteoarthritic articular chondrocytes to treat osteoarthritis. Mol Ther 2024:S1525-0016(24)00847-5. [PMID: 39741406 DOI: 10.1016/j.ymthe.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Despite various available treatments, highly prevalent osteoarthritis (OA) cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as a platform to deliver recombinant adeno-associated virus (rAAV) gene vectors with potency for OA. For the first time, to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation; up to 8.4-fold difference). The candidate mitochondria/rAAV IGF-I system significantly improved key activities in the transplanted cells (proliferation/survival, extracellular matrix production, mitochondria functions) relative to the control conditions (up to a 9.5-fold difference), including when provided in a pluronic F127 (PF127) hydrogel for reinforced delivery (up to a 5.9-fold difference). Such effects were accompanied by increased levels of cartilage-specific SOX9 and Mfn-1 (mitochondria fusion) and decreased levels of Drp-1 (mitochondria fission) and proinflammatory tumor necrosis factor alpha (TNF-α; up to 4.5-fold difference). This study shows the potential of combining the use of mitochondria with rAAV as a promising approach for human OA.
Collapse
Affiliation(s)
- Gang Zhong
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| |
Collapse
|
7
|
Lee JK, Yeo H, Choi S, Kim KM, Kim H, Lee SS, Lee HI, Jeong Y, An HJ, Lee S. Therapeutic role of aripiprazole in cartilage defects explored through a drug repurposing approach. Sci Rep 2024; 14:31006. [PMID: 39730885 DOI: 10.1038/s41598-024-82177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative. This study aimed to identify a drug capable of improving cartilage defects by analyzing chondrogenesis-related microarray data from the Gene Expression Omnibus (GEO) public database. We utilized datasets GSE69110, GSE107649, GSE111822, and GSE116173 to identify genes associated with cartilage differentiation, employing StringTie for differential gene expression analysis and extracting drug data from the Drug-Gene Interaction database. Additionally, we aimed to verify the cartilage regeneration potential of the identified drug through experiments using cellular and animal models. We evaluated the effects of aripiprazole on adipose-derived mesenchymal stem cells (ADMSCs) and chondrocytes using qRT-PCR and a 3D pellet culture system. In vivo, we assessed cartilage restoration by combining aripiprazole with a scaffold and implanting it into artificially induced cartilage defects in Sprague-Dawley rats. Subsequent mRNA sequencing provided insights into the mechanistic pathways involved. Our results showed that aripiprazole significantly increased mRNA expression of COL2A1 and SOX9, markers of chondrogenesis, and promoted chondrogenic condensation in vitro. Furthermore, aripiprazole effectively enhanced cartilage regeneration in the rat model. KEGG pathway and Gene Ontology Biological Processes (GOBP) analyses of the mRNA sequencing data revealed that aripiprazole upregulated genes related to ribosomes and cytoplasmic translation, thereby facilitating chondrogenesis. In conclusion, our findings suggest that aripiprazole is a promising candidate for improving damaged cartilage, offering a novel approach to cartilage regeneration.
Collapse
Affiliation(s)
- Jun-Ku Lee
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10444, Republic of Korea
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyunjeong Yeo
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Kyeong Mi Kim
- Department of Laboratory Medicine, CHA Ilsan Medical Center, CHA University School of Medicine, 100, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hannah Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sung-Sahn Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, 170, Juhwa-ro, Ilsangeo-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Il Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, 170, Juhwa-ro, Ilsangeo-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Younghoon Jeong
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea.
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
8
|
Evans CH, Ghivizzani SC, Robbins PD. The 2024 OREF Clinical Research Award: Progress Toward a Gene Therapy for Arthritis. J Am Acad Orthop Surg 2024; 32:1052-1060. [PMID: 39284030 DOI: 10.5435/jaaos-d-24-00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 10/20/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent, disabling, incurable, and expensive disease that is difficult to treat nonsurgically. The pharmacokinetics of drug delivery to joints are such that it is not possible to target antiarthritic agents, especially biologics, to individual joints with OA at sustained, therapeutic concentrations. More than 30 years ago, we proposed that local, intra-articular gene transfer can overcome this barrier to therapy by engineering articular cells to synthesize antiarthritic gene products endogenously. This article summarizes the progress toward this goal. Initially, a retroviral vector was used to deliver cDNA encoding the interleukin-1 receptor antagonist (IL-1Ra) to the joints of experimental animals. Using an ex vivo strategy, cultures of autologous synovial fibroblasts were genetically modified in cell culture and introduced into joints by means of intra-articular injection. Successful development of this technology led to the first-in-human gene therapy trial for arthritis. This Phase I study targeted metacarpophalangeal joints with rheumatoid arthritis. Although successful, for various reasons, subsequent research targeted OA and used adeno-associated virus as a vector to deliver IL-1Ra by direct in vivo injection into the joint. A Phase I human clinical trial has just been completed successfully in subjects with mid-stage OA of the knee, leading to a Phase Ib study that is in progress.
Collapse
Affiliation(s)
- Christopher H Evans
- From the Departments of Physical Medicine & Rehabilitation, Orthopedic Surgery and Molecular Medicine, Mayo Clinic, Rochester, NY (Evans), the Department of Orthopedics and Rehabilitation, University of Florida College of Medicine, Gainesville, FL (Ghivizzani), and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN (Robbins)
| | | | | |
Collapse
|
9
|
Panichi V, Costantini S, Grasso M, Arciola CR, Dolzani P. Innate Immunity and Synovitis: Key Players in Osteoarthritis Progression. Int J Mol Sci 2024; 25:12082. [PMID: 39596150 PMCID: PMC11594236 DOI: 10.3390/ijms252212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive disease of the joint. Although representing the most frequent cause of disability in the elderly, OA remains partly obscure in its pathogenic mechanisms and is still the orphan of resolutive therapies. The concept of what was once considered a "wear and tear" of articular cartilage is now that of an inflammation-related disease that affects over time the whole joint. The attention is increasingly focused on the synovium. Even from the earliest clinical stages, synovial inflammation (or synovitis) is a crucial factor involved in OA progression and a major player in pain onset. The release of inflammatory molecules in the synovium mediates disease progression and worsening of clinical features. The activation of synovial tissue-resident cells recalls innate immunity cells from the bloodstream, creating a proinflammatory milieu that fuels and maintains a damaging condition of low-grade inflammation in the joint. In such a context, cellular and molecular inflammatory behaviors in the synovium could be the primum movens of the structural and functional alterations of the whole joint. This paper focuses on and discusses the involvement of innate immunity cells in synovitis and their role in the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Silvia Costantini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Merimma Grasso
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Carla Renata Arciola
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
10
|
Yang J, Li W, Lin X, Liang W. A lactate metabolism-related gene signature to diagnose osteoarthritis based on machine learning combined with experimental validation. Aging (Albany NY) 2024; 16:13076-13103. [PMID: 39418100 PMCID: PMC11552637 DOI: 10.18632/aging.205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lactate is gradually proved as the essential regulator in intercellular signal transduction, energy metabolism reprogramming, and histone modification. This study aims to clarify the diagnosis value of lactate metabolism-related genes in osteoarthritis (OA). METHODS Lactate metabolism-related genes were retrieved from the MSigDB. GSE51588 was downloaded from the Gene Expression Omnibus (GEO) as the training dataset. GSE114007, GSE117999, and GSE82107 datasets were adopted for external validation. Genomic difference detection, protein-protein interaction network analysis, LASSO, SVM-RFE, Boruta, and univariate logistic regression (LR) analyses were used for feature selection. Multivariate LR, Random Forest (RF), Support Vector Machine (SVM), and XGBoost (XGB) were used to develop the multiple-gene diagnosis models. 12 control and 12 OA samples were collected from the local hospital for re-verification. The transfection assays were conducted to explore the regulatory ability of the gene to the apoptosis and vitality of chondrocytes. RESULTS Through the bioinformatical analyses and machine learning algorithms, SLC2A1 and NDUFB9 of the 273 lactate metabolism-related genes were identified as the significant diagnosis biomarkers. The LR, RF, SVM, and XGB models performed impressively in the cohorts (AUC > 0.7). The local clinical samples indicated that SLC2A1 and NDUFB9 were both down-regulated in the OA samples (both P < 0.05). The knockdown of NDUFB9 inhibited the viability and promoted the apoptosis of the CHON-001 cells treated with IL-1beta (both P < 0.05). CONCLUSIONS A lactate metabolism-related gene signature was constructed to diagnose OA, which was validated in multiple independent cohorts, local clinical samples, and cellular functional experiments.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| | - Wenjun Li
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| | - Xuemei Lin
- Department of Pediatric Orthopedics, Guangzhou Women and Children’s Medical Center, Tianhe, Guangzhou 510623, Guangdong Province, China
| | - Wei Liang
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| |
Collapse
|
11
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
12
|
Chen H, Li Z, Li X, Lu J, Chen B, Wang Q, Wu G. Biomaterial-Based Gene Delivery: Advanced Tools for Enhanced Cartilage Regeneration. Drug Des Devel Ther 2023; 17:3605-3624. [PMID: 38076630 PMCID: PMC10706074 DOI: 10.2147/dddt.s432056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Gene therapy has emerged as a promising and innovative approach in cartilage regeneration. Integrating biomaterials into gene therapy offers a unique opportunity to enhance gene delivery efficiency, optimize gene expression dynamics, modulate immune responses, and promote tissue regeneration. Despite the rapid progress in biomaterial-based gene delivery, there remains a deficiency of comprehensive discussions on recent advances and their specific application in cartilage regeneration. Therefore, this review aims to provide a thorough overview of various categories of biomaterials employed in gene delivery, including both viral and non-viral vectors, with discussing their distinct advantages and limitations. Furthermore, the diverse strategies employed in gene therapy are discussed and summarized, such as the utilization of growth factors, anti-inflammatory cytokines, and chondrogenic genes. Additionally, we highlights the significant challenges that hinder biomaterial-based gene delivery in cartilage regeneration, including immune response modulation, gene delivery efficiency, and the sustainability of long-term gene expression. By elucidating the functional properties of biomaterials-based gene therapy and their pivotal roles in cartilage regeneration, this review aims to enhance further advances in the design of sophisticated gene delivery systems for improved cartilage regeneration outcomes.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Zhen Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Xiaoqi Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Jiongjiong Lu
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Beibei Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Qiongchao Wang
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Guangliang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| |
Collapse
|
13
|
Zheng H, Aihaiti Y, Cai Y, Yuan Q, Yang M, Li Z, Xu K, Xu P. The m6A/m1A/m5C-Related Methylation Modification Patterns and Immune Landscapes in Rheumatoid Arthritis and Osteoarthritis Revealed by Microarray and Single-Cell Transcriptome. J Inflamm Res 2023; 16:5001-5025. [PMID: 37933335 PMCID: PMC10625757 DOI: 10.2147/jir.s431076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Abstract
Purpose The goal of this study was to explore the expression characteristics of RNA modification-related genes, reveal immune landscapes and identify novel potential diagnostic biomarkers in osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Patients and Methods RNA microarray and single-cell sequencing (scRNA-seq) data were downloaded from gene expression omnibus (GEO) database. Differentially expressed RNA modification-related genes were identified and then functionally annotated. Univariate logistic regression and lasso regression analysis were used to identify primary disease genes for OA and RA. Validation was done using scRNA-seq analysis and immunohistochemistry (IHC) in human knee synovial tissues and a murine destabilization of the medial meniscus (DMM) model. Through WGCNA analysis, genes associated with cell pyroptosis or autophagy in OA and RA were identified, which were then combined with differentially expressed RNA modification-related genes to construct a PPI interaction network. Furthermore, hub genes were selected for ceRNA interaction network analysis, correlation analysis with OA and RA molecular subtypes, as well as correlation analysis with 22 immune cells. Results Six RNA modification-related genes (ADAMDEC1, IGHM, OGN, TNFRSF11B, SCARA3 and PTN) were identified as potential OA and RA pathogenesis biomarkers. Their expression was validated in human knee synovial tissues and a murine DMM model. Functional enrichment of differentially expressed RNA modification-related genes between RA and OA was analyzed using GO, KEGG, GSEA, and GSVA. Based on WGCNA and PPI analysis, the six hub genes related to pyroptosis and RNA modification (CXCL10, CXCL9, CCR7, CCL5, CXCL1, and CCR2) were identified as central nodes for ceRNA interaction, correlation with OA and RA molecular subtypes, and association with 22 immune cells. Conclusion Our research revealed the significance of RNA modification-related genes in the development of OA and RA pathogenesis, thereby providing a novel research direction for understanding the mechanisms, diagnosis, and treatment of OA and RA.
Collapse
Affiliation(s)
- Haishi Zheng
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zheng Li
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Peng Xu
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
14
|
Affiliation(s)
- Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
15
|
Uebelhoer M, Lambert C, Grisart J, Guse K, Plutizki S, Henrotin Y. Interleukins, growth factors, and transcription factors are key targets for gene therapy in osteoarthritis: A scoping review. Front Med (Lausanne) 2023; 10:1148623. [PMID: 37077668 PMCID: PMC10106745 DOI: 10.3389/fmed.2023.1148623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Objective Osteoarthritis (OA) is the most common degenerative joint disease, characterized by a progressive loss of cartilage associated with synovitis and subchondral bone remodeling. There is however no treatment to cure or delay the progression of OA. The objective of this manuscript was to provide a scoping review of the preclinical and clinical studies reporting the effect of gene therapies for OA. Method This review followed the JBI methodology and was reported in accordance with the PRISMA-ScR checklist. All research studies that explore in vitro, in vivo, or ex vivo gene therapies that follow a viral or non-viral gene therapy approach were considered. Only studies published in English were included in this review. There were no limitations to their date of publication, country of origin, or setting. Relevant publications were searched in Medline ALL (Ovid), Embase (Elsevier), and Scopus (Elsevier) in March 2023. Study selection and data charting were performed by two independent reviewers. Results We found a total of 29 different targets for OA gene therapy, including studies examining interleukins, growth factors and receptors, transcription factors and other key targets. Most articles were on preclinical in vitro studies (32 articles) or in vivo animal models (39 articles), while four articles were on clinical trials related to the development of TissueGene-C (TG-C). Conclusion In the absence of any DMOAD, gene therapy could be a highly promising treatment for OA, even though further development is required to bring more targets to the clinical stage.
Collapse
Affiliation(s)
| | - Cécile Lambert
- musculoSKeletal Innovative Research Lab (mSKIL), Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | | | - Kilian Guse
- GeneQuine Biotherapeutics GmbH, Hamburg, Germany
| | | | - Yves Henrotin
- Artialis S.A., Liège, Belgium
- musculoSKeletal Innovative Research Lab (mSKIL), Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|