1
|
Kamalanathan AS, Agarwal V, Talamini L, Muller S. Autophagy in myositis, a dysregulated pathway, and a target for therapy. Autoimmun Rev 2025; 24:103817. [PMID: 40262692 DOI: 10.1016/j.autrev.2025.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Corticosteroids and immunosuppressants are the mainstay of therapy for idiopathic inflammatory myopathies (IIMs). However, a significant therapeutic challenge extends beyond mitigating inflammation with these agents in achieving meaningful improvements in muscle strength and physical function, a goal that remains largely unmet. IIMs encompass a heterogeneous group of autoimmune disorders, including dermatomyositis, polymyositis, necrotizing autoimmune myopathy, inclusion body myositis, and others, characterized by chronic muscle inflammation, progressive weakness, and fatigue. The etiology of IIMs remains poorly understood, though potential contributors include environmental triggers (e.g., infections, medications, or injury) and genetic predisposition. To advance the development of novel therapeutic strategies, it is critical to elucidate the dysfunctional molecular and cellular pathways underlying IIM pathogenesis. Among these, dysregulated autophagy pathways have emerged as a promising target for therapeutic intervention. Specifically, impairments in lysosomal autophagy and mitophagy have been implicated in IIMs, and modulating these processes through targeted regulatory mechanisms may offer therapeutic benefits. This review provides a comprehensive synthesis of clinical and biological features of IIMs, the current diagnostic approaches and emerging biomarkers, evaluates the utility of existing biomarkers, and examines the relevance of animal models in IIM research. Furthermore, we explore the role of autophagic dysregulation in disease pathogenesis and provide a critical appraisal of current treatment modalities. Finally, we highlight emerging therapeutic targets and regulatory molecules under investigation, with a particular focus on autophagy modulation. Notably, autophagy inhibitors represent a novel and potentially transformative therapeutic avenue for patients with IIMs, offering hope for improved clinical outcomes.
Collapse
Affiliation(s)
- A S Kamalanathan
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Laura Talamini
- CNRS and Strasbourg University Unit Biotechnology and Cell signalling/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Sylviane Muller
- CNRS and Strasbourg University Unit Biotechnology and Cell signalling/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
2
|
Rajalekshmi R, Agrawal DK. Therapeutic Efficacy of Medicinal Plants with Allopathic Medicine in Musculoskeletal Diseases. INTERNATIONAL JOURNAL OF PLANT, ANIMAL AND ENVIRONMENTAL SCIENCES 2024; 14:104-129. [PMID: 39866300 PMCID: PMC11765655 DOI: 10.26502/ijpaes.4490170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Musculoskeletal diseases encompass a diverse array of disorders affecting the muscles, bones, joints, and connective tissues, leading to significant impairments in mobility, function, and quality of life. Affecting over 1.3 billion individuals globally, musculoskeletal diseases represent a major source of disability and economic burden. Conventional treatment modalities, including pharmacological interventions and surgical procedures, are frequently limited by adverse side effects, prolonged recovery periods, and patient dissatisfaction, particularly when focused solely on symptom management. In response, complementary and alternative medicine, particularly the use of medicinal plants, has garnered increasing interest to enhance the management of musculoskeletal diseases. Medicinal plants possess a wide spectrum of pharmacologically active compounds with anti-inflammatory, analgesic, and antioxidant properties, making them promising adjuncts to conventional therapies. This review critically evaluates the potential synergy between medicinal plants and allopathic medicine for the management of musculoskeletal diseases, with an emphasis on integrated therapy that combines both modalities. Specifically, a critical discussion is presented on how medicinal plants with scientifically supported pharmacological properties can augment the therapeutic efficacy of conventional medications, reduce their doses, and mitigate adverse effects. Furthermore, the challenges associated with incorporating herbal medicine into established healthcare systems are discussed, including the need for rigorous clinical validation, standardization, and regulatory frameworks. Overall, the article underscores the potential of integrated therapeutic approaches to improve clinical outcomes, enhance patient well-being, and establish a more sustainable model for the treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Ward JM, Ambatipudi M, O'Hanlon TP, Smith MA, de Los Reyes M, Schiffenbauer A, Rahman S, Zerrouki K, Miller FW, Sanjuan MA, Li JL, Casey KA, Rider LG. Shared and Distinctive Transcriptomic and Proteomic Pathways in Adult and Juvenile Dermatomyositis. Arthritis Rheumatol 2023; 75:2014-2026. [PMID: 37229703 PMCID: PMC10615891 DOI: 10.1002/art.42615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Transcript and protein expression were interrogated to examine gene locus and pathway regulation in the peripheral blood of active adult dermatomyositis (DM) and juvenile DM patients receiving immunosuppressive therapies. METHODS Expression data from 14 DM and 12 juvenile DM patients were compared to matched healthy controls. Regulatory effects at the transcript and protein level were analyzed by multi-enrichment analysis for assessment of affected pathways within DM and juvenile DM. RESULTS Expression of 1,124 gene loci were significantly altered at the transcript or protein levels across DM or juvenile DM, with 70 genes shared. A subset of interferon-stimulated genes was elevated, including CXCL10, ISG15, OAS1, CLEC4A, and STAT1. Innate immune markers specific to neutrophil granules and neutrophil extracellular traps were up-regulated in both DM and juvenile DM, including BPI, CTSG, ELANE, LTF, MPO, and MMP8. Pathway analysis revealed up-regulation of PI3K/AKT, ERK, and p38 MAPK signaling, whose central components were broadly up-regulated in DM, while peripheral upstream and downstream components were differentially regulated in both DM and juvenile DM. Up-regulated components shared by DM and juvenile DM included cytokine:receptor pairs LGALS9:HAVCR2, LTF/NAMPT/S100A8/HSPA1A:TLR4, CSF2:CSF2RA, EPO:EPOR, FGF2/FGF8:FGFR, several Bcl-2 components, and numerous glycolytic enzymes. Pathways unique to DM included sirtuin signaling, aryl hydrocarbon receptor signaling, protein ubiquitination, and granzyme B signaling. CONCLUSION The combination of proteomics and transcript expression by multi-enrichment analysis broadened the identification of up- and down-regulated pathways among active DM and juvenile DM patients. These pathways, particularly those which feed into PI3K/AKT and MAPK signaling and neutrophil degranulation, may be potential therapeutic targets.
Collapse
Affiliation(s)
- James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Mythri Ambatipudi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | - Terrance P O'Hanlon
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | | | | | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | - Saifur Rahman
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | | | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Kerry A Casey
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| |
Collapse
|
4
|
Gandolfi S, Pileyre B, Drouot L, Dubus I, Auquit-Auckbur I, Martinet J. Stromal vascular fraction in the treatment of myositis. Cell Death Discov 2023; 9:346. [PMID: 37726262 PMCID: PMC10509179 DOI: 10.1038/s41420-023-01605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Muscle regeneration is a physiological process that converts satellite cells into mature myotubes under the influence of an inflammatory environment progressively replaced by an anti-inflammatory environment, with precise crosstalk between immune and muscular cells. If the succession of these phases is disturbed, the immune system can sometimes become auto-reactive, leading to chronic muscular inflammatory diseases, such as myositis. The triggers of these autoimmune myopathies remain mostly unknown, but the main mechanisms of pathogenesis are partially understood. They involve chronic inflammation, which could be associated with an auto-reactive immune response, and gradually with a decrease in the regenerative capacities of the muscle, leading to its degeneration, fibrosis and vascular architecture deterioration. Immunosuppressive treatments can block the first part of the process, but sometimes muscle remains weakened, or even still deteriorates, due to the exhaustion of its capacities. For patients refractory to immunosuppressive therapies, mesenchymal stem cells have shown interesting effects but their use is limited by their availability. Stromal vascular fraction, which can easily be extracted from adipose tissue, has shown good tolerance and possible therapeutic benefits in several degenerative and autoimmune diseases. However, despite the increasing use of stromal vascular fraction, the therapeutically active components within this heterogeneous cellular product are ill-defined and the mechanisms by which this therapy might be active remain insufficiently understood. We review herein the current knowledge on the mechanisms of action of stromal vascular fraction and hypothesise on how it could potentially respond to some of the unmet treatment needs of refractory myositis.
Collapse
Affiliation(s)
- S Gandolfi
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
- Toulouse University Hospital, Department of Plastic and Reconstructive Surgery, F-31000, Toulouse, France
| | - B Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- Centre Henri Becquerel, Department of Pharmacy, F-76000, Rouen, France.
| | - L Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Dubus
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Auquit-Auckbur
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Plastic, Reconstructive and Hand Surgery, F-76000, Rouen, France
| | - J Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
5
|
Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Brichard SM, Abou-Samra M. Walking down Skeletal Muscle Lane: From Inflammasome to Disease. Cells 2021; 10:cells10113023. [PMID: 34831246 PMCID: PMC8616386 DOI: 10.3390/cells10113023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, innate immune system receptors and sensors called inflammasomes have been identified to play key pathological roles in the development and progression of numerous diseases. Among them, the nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat (LRR-) and pyrin domain-containing protein 3 (NLRP3) inflammasome is probably the best characterized. To date, NLRP3 has been extensively studied in the heart, where its effects and actions have been broadly documented in numerous cardiovascular diseases. However, little is still known about NLRP3 implications in muscle disorders affecting non-cardiac muscles. In this review, we summarize and present the current knowledge regarding the function of NLRP3 in diseased skeletal muscle, and discuss the potential therapeutic options targeting the NLRP3 inflammasome in muscle disorders.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Correspondence:
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| |
Collapse
|
6
|
Borges IBP, de Oliveira DS, Marie SKN, Lenario AM, Oba-Shinjo SM, Shinjo SK. Exercise Training Attenuates Ubiquitin-Proteasome Pathway and Increases the Genes Related to Autophagy on the Skeletal Muscle of Patients With Inflammatory Myopathies. J Clin Rheumatol 2021; 27:S224-S231. [PMID: 34227790 DOI: 10.1097/rhu.0000000000001721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVE The aim of this study was to evaluate the effects of exercise training on the ubiquitin-proteasome system (UPS) and genes related to autophagy on the skeletal muscle of patients with dermatomyositis (DM) and immune-mediated necrotizing myopathies (IMNMs). METHODS Seven DM patients and 6 IMNM patients were treated for 12 weeks with a twice-weekly aerobic and resistance training exercise program. Aerobic capacity, muscle strength, and expression of genes in the skeletal muscle related to UPS and to autophagy were evaluated at the baseline and after the intervention. Moreover, only at the baseline, 10 healthy control individuals were also evaluated. RESULTS The age of DM and IMNM patients was 49.8 and 58.5 years, respectively. Genes related to UPS were upregulated, whereas genes related to autophagy and antioxidative systems were downregulated only in the DM group when compared with control group. After completion of the exercise training program, several genes related to UPS were downregulated, whereas genes related to autophagy, mitochondrial pathways, and antioxidative systems were upregulated in both the DM and IMNM groups. CONCLUSIONS Exercise training can increase genes related to autophagy, mitophagy, and lysosomal biogenesis in the skeletal muscle of patients. These results suggest an increase in the recycling of damaged proteins and organelles, which may also contribute to the performance and endurance of skeletal muscles in these patients. Furthermore, in patients with myositis, exercise training led to a decrease in genes related to UPS and an increase in genes related to antioxidative capacity. Therefore, this may also contribute to an attenuation of skeletal muscle loss and of the deleterious effects of oxidative stress on the skeletal muscle of these patients.
Collapse
Affiliation(s)
| | | | - Suely Kazue Nagahashi Marie
- Laboratory of Molecular and Cellular Biology, Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Marcondes Lenario
- Division of Metabolism, Department of Internal Medicine, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI
| | - Sueli Mieko Oba-Shinjo
- Laboratory of Molecular and Cellular Biology, Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Liu D, Xiao Y, Zhou B, Gao S, Li L, Zhao L, Chen W, Dai B, Li Q, Duan H, Zuo X, Luo H, Zhu H. PKM2-dependent glycolysis promotes skeletal muscle cell pyroptosis by activating the NLRP3 inflammasome in dermatomyositis/polymyositis. Rheumatology (Oxford) 2021; 60:2177-2189. [PMID: 33165604 DOI: 10.1093/rheumatology/keaa473] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Muscle cell necrosis is the most common pathological manifestation of idiopathic inflammatory myopathies. Evidence suggests that glycolysis might participate in it. However, the mechanism is unclear. This study aimed to determine the role of glycolysis in the muscle damage that occurs in DM/PM. METHODS Mass spectrometry was performed on muscle lesions from DM/PM and control subjects. The expression levels of pyruvate kinase isozyme M2 (PKM2), the nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis-related genes in muscle tissues or plasma were determined by real-time PCR, western blot analysis, IF and ELISA. In addition, IFNγ was used to stimulate myotubes, and the relationships among PMK2 expression, NLRP3 inflammasome activation and pyroptosis were investigated. RESULTS Mass spectrometry and bioinformatics analysis suggested that multiple glycolysis processes, the NLRP3 inflammasome and programmed cell death pathway-related proteins were dysregulated in the muscle tissues of DM/PM. PKM2 and the NLRP3 inflammasome were upregulated and positively correlated in the muscle fibres of DM/PM. Moreover, the pyroptosis-related proteins were increased in muscle tissues of DM/PM and were further increased in PM. The levels of PKM2 in muscle tissues and IL-1β in plasma were high in patients with anti-signal recognition particle autoantibody expression. The pharmacological inhibition of PKM2 in IFNγ-stimulated myotubes attenuated NLRP3 inflammasome activation and subsequently inhibited pyroptosis. CONCLUSION Our study revealed upregulated glycolysis in the lesioned muscle tissues of DM/PM, which activated the NLRP3 inflammasome and leaded to pyroptosis in muscle cells. The levels of PKM2 and IL-1β were high in patients with anti-signal recognition particle autoantibody expression. These proteins might be used as new biomarkers for muscle damage.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Yizhi Xiao
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao
| | - Siming Gao
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Beijing
| | - Liya Li
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Lijuan Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Weilin Chen
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review encompasses the main novelties regarding nonimmune mechanisms implicated in the pathogenesis of idiopathic inflammatory myopathies (IIM). RECENT FINDINGS In recent years, growing data support a role for endoplasmic-reticulum (ER) stress as a propagator of muscular damage, together with the release of interferon type I and reactive oxygen species in hypoxemic muscle fibers. Other studies evaluating the relationship between autophagy and Toll-like receptors (TLRs) in IIM subtypes have shown increased TLR3 and TLR4 expression in fibers of IIM patients and colocalization with LC3, an autophagy marker, submitting autophagy as a likely player in IIM pathogenesis. Most novel evidences concern the potential role of denervation of the neuromuscular junction in IIM, possibly connected to hyperexpression of MHC-I, and trafficking of extracellular vesicles, which may represent a connection between nonimmune and immune-mediated mechanisms of muscle inflammation and damage. SUMMARY Nonimmune mechanisms contribute to the pathogenesis of IIM, likely cooperating with immune-mediated inflammation. Consistent data were released for ER stress, autophagy, mitochondrial dysfunction and hypoxia; in addition to, neuromuscular denervation and extracellular vesicles have been proposed as thoughtful links between muscle inflammation, damage and atrophy. Further understanding of nonimmune abnormalities and potential reversible pathways is needed to improve the management of IIM.
Collapse
|
9
|
Himori K, Ashida Y, Tatebayashi D, Abe M, Saito Y, Chikenji T, Westerblad H, Andersson DC, Yamada T. Eccentric Resistance Training Ameliorates Muscle Weakness in a Mouse Model of Idiopathic Inflammatory Myopathies. Arthritis Rheumatol 2020; 73:848-857. [PMID: 33191613 DOI: 10.1002/art.41594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE High-force eccentric contractions (ECCs) have traditionally been excluded from rehabilitation programs that include patients with idiopathic inflammatory myopathies (IIMs) due to unverified fear of causing muscle damage and inflammation. In an IIM animal model that used mice with experimental autoimmune myositis (EAM), we undertook this study to investigate whether ECC training can safely and effectively be used to counteract muscle weakness in IIM. METHODS EAM was induced in BALB/c mice by immunization with 3 injections of myosin emulsified in Freund's complete adjuvant. Controls (n = 12) and mice with EAM (n = 12) were exposed to either an acute bout of 100 ECCs or 4 weeks of ECC training (20 ECCs every other day). To induce ECCs, plantar flexor muscles were electrically stimulated while the ankle was forcibly dorsiflexed. RESULTS Less cell damage, as assessed by Evans blue dye uptake, was observed in the muscles of mice with EAM, compared to controls, after an acute bout of 100 ECCs (P < 0.05). Maximum Ca2+ -activated force was decreased in skinned gastrocnemius muscle fibers from mice with EAM, and this was accompanied by increased expression of endoplasmic reticulum (ER) stress proteins, including Gsp78 and Gsp94 (P < 0.05). ECC training prevented the decrease in force and the increase in ER stress proteins and also enhanced the expression and myofibrillar binding of small heat-shock proteins (HSPs) (P < 0.05), which can stabilize myofibrillar structure and function. CONCLUSION ECC training protected against the reduction in myofibrillar force-generating capacity in an IIM mouse model, and this occurred via inhibition of ER stress responses and small HSP-mediated myofibrillar stabilization.
Collapse
Affiliation(s)
- Koichi Himori
- Sapporo Medical University, Sapporo, Japan, and the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuki Ashida
- Sapporo Medical University, Sapporo, Japan, and the Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Masami Abe
- Sapporo Medical University, Sapporo, Japan
| | - Yuki Saito
- Sapporo Medical University, Sapporo, Japan
| | - Takako Chikenji
- Sapporo Medical University and Hokkaido University, Sapporo, Japan
| | | | - Daniel C Andersson
- Karolinska Institutet, Stockholm, Sweden, and Karolinska University Hospital, Solna, Sweden
| | | |
Collapse
|
10
|
Abstract
Appropriate autophagy has protective effects on ischemic nerve tissue, while excessive autophagy may cause cell death. The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia. Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke. This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows. (1) Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR, the AMPK pathway, and inhibition of inflammasome activation. (2) Activation of inflammation triggers the formation of autophagosomes, and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1. Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK, reducing the flux and autophagy level, thereby inducing inflammatory activity. (3) By blocking the activation of autophagy, the activation of inflammasomes can alleviate cerebral ischemic injury. Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway, which is beneficial to the recovery of neural tissue after ischemia. Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway. These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yin-Yi Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Yong Liu
- Department of Neurology, Shanghai university of medicine & health Sciences Affiliated Zhoupu hospital, Shanghai, China
| |
Collapse
|
11
|
Liu Y, Gao Y, Yang J, Shi C, Wang Y, Xu Y. MicroRNA-381 reduces inflammation and infiltration of macrophages in polymyositis via downregulating HMGB1. Int J Oncol 2018; 53:1332-1342. [PMID: 29956737 DOI: 10.3892/ijo.2018.4463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/24/2018] [Indexed: 11/06/2022] Open
Abstract
The downregulation of microRNA (miR)-381 has been detected in various diseases. The present study aimed to investigate the effects, and underlying mechanisms of miR-381 on inflammation and macrophage infiltration in polymyositis (PM). A mouse model of experimental autoimmune myositis (EAM) was generated in this study. Hematoxylin and eosin staining was conducted to detect the inflammation of muscle tissues. In addition, ELISA and immunohistochemistry were performed to determine the expression levels of associated factors, and reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the expression levels of related mRNAs and proteins. A luciferase activity assay was used to confirm the binding of miR-381 and high mobility group box 1 (HMGB1) 3' untranslated region. Transwell assays were also performed to assess the migratory ability of macrophages. The results demonstrated that serum creatine kinase (s-CK), HMGB1 and cluster of differentiation (CD)163 expression in patients with PM were increased compared within healthy controls. Conversely, the expression levels of miR-381 were downregulated in patients with PM. Furthermore, high HMGB1 expression was associated with poor survival rate in patients with PM. In the mouse studies, muscle inflammation and CD163 expression were decreased in the anti-IL-17 and anti-HMGB1 groups, compared with in the EAM model group. The expression levels of s-CK, HMGB1, IL-17 and intercellular adhesion molecule (ICAM)-1 were also downregulated in response to anti-IL-17 and anti-HMGB1. These findings indicated that HMGB1 was closely associated with inflammatory responses. In addition, the present study indicated that transfection of macrophages with miR-381 mimics reduced the migration of inflammatory macrophages, and the expression levels of HMGB1, IL-17 and ICAM-1. Conversely, miR-381 inhibition exerted the opposite effects. The effects of miR-381 inhibitors were reversed by HMGB1 small interfering RNA. In conclusion, miR-381 may reduce inflammation and the infiltration of macrophages; these effects were closely associated with the downregulation of HMGB1.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
12
|
Manole E, Bastian AE, Butoianu N, Goebel HH. Myositis non-inflammatory mechanisms: An up-dated review. J Immunoassay Immunochem 2017; 38:115-126. [DOI: 10.1080/15321819.2017.1298525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Emilia Manole
- “Victor Babes” National Institute of Pathology, Bucharest, Romania
- Research Center, Colentina Clinical Hospital, Bucharest, Romania
| | - Alexandra E. Bastian
- Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Niculina Butoianu
- Pediatric Neurology Department, Clinical Hospital “Prof. Dr. Al. Obregia”, Bucharest, Romania
| | - Hans H. Goebel
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Ceribelli A, De Santis M, Isailovic N, Gershwin ME, Selmi C. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review. Clin Rev Allergy Immunol 2017; 52:58-70. [PMID: 26780034 DOI: 10.1007/s12016-016-8527-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Collapse
Affiliation(s)
- Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy.
- BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
De Paepe B. A recipe for myositis: nuclear factor κB and nuclear factor of activated T-cells transcription factor pathways spiced up by cytokines. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Munters LA, Loell I, Ossipova E, Raouf J, Dastmalchi M, Lindroos E, Chen YW, Esbjörnsson M, Korotkova M, Alexanderson H, Nagaraju K, Crofford LJ, Jakobsson PJ, Lundberg IE. Endurance Exercise Improves Molecular Pathways of Aerobic Metabolism in Patients With Myositis. Arthritis Rheumatol 2016; 68:1738-50. [DOI: 10.1002/art.39624] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 01/26/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Li Alemo Munters
- Vanderbilt University, Nashville, Tennessee, and Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Ingela Loell
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Elena Ossipova
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Joan Raouf
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Maryam Dastmalchi
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Eva Lindroos
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Yi-Wen Chen
- George Washington University and Children's National Medical Center; Washington DC
| | - Mona Esbjörnsson
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Marina Korotkova
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Helene Alexanderson
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Kanneboyina Nagaraju
- George Washington University and Children's National Medical Center; Washington DC
| | | | - Per-Johan Jakobsson
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Ingrid E. Lundberg
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| |
Collapse
|
16
|
Bartali B, Semba RD, Araujo AB. Klotho, FGF21 and FGF23: Novel Pathways to Musculoskeletal Health? J Frailty Aging 2016; 2:179-83. [PMID: 27070923 DOI: 10.14283/jfa.2013.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone mineral density, muscle mass and physical function reach their peak between the second and fourth decade of life and then decline steadily with aging. The crucial question is: what factors contribute to or modulate this decline? The aim of this mini-review is to propose a theoretical framework for the potential role of emerging biomarkers such as klotho, fibroblast growth factors (FGF)21 and FGF23 on musculoskeletal health, with a particular focus on decline in muscle mass and function, and calls for future research to examine this proposed link. The identification of new physiological mechanisms underlying these declines may open a potentially important avenue for the development of novel intervention strategies aimed at preventing or reducing their potentially detrimental consequences.
Collapse
Affiliation(s)
- B Bartali
- Benedetta Bartali, PhD, New England Research Institutes, 9 Galen Street Watertown, MA 02472 USA, Phone: +1(617) 972-3350, FAX: +1 (617) 673-9514,
| | | | | |
Collapse
|
17
|
Hornung T, Wenzel J. Innate immune-response mechanisms in dermatomyositis: an update on pathogenesis, diagnosis and treatment. Drugs 2015; 74:981-98. [PMID: 24939511 DOI: 10.1007/s40265-014-0240-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dermatomyositis (DM) is an autoimmune disease mainly affecting muscle and skin. Typical clinical and laboratory findings include muscle weakness with elevated muscle enzymes, characteristic skin lesions (e.g., Gottron papules, heliotrope erythema, Shawl sign), and specific serum autoantibodies. Recent studies have highlighted the activation of the innate immune system, including high expression of interferons (IFNs) and IFN-regulated proteins, as an important pathological hallmark of DM. These findings have changed our understanding of the disease fundamentally, since inappropriate activation of the innate immune system with secondary dysregulation of the adaptive immune response is now considered to be a central pathogenetic feature of DM. In this article, we review current guidelines and standards in diagnosis and treatment. We detail evidence-based and pathophysiology-based treatment strategies, with a focus on skin as well as on muscle lesions. Particularly, we discuss how the recent advances in the understanding of the pathomechanisms of DM have altered our conception of the mode of action of established drugs such as chloroquine and methotrexate. Finally, we outline possible future treatment strategies, with a focus on the innate immune system, e.g., targeting the IFN system with the anti-IFN-α antibody sifalimumab.
Collapse
Affiliation(s)
- Thorsten Hornung
- Department of Dermatology, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | | |
Collapse
|
18
|
New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis. Curr Rheumatol Rep 2015; 16:429. [PMID: 24879535 DOI: 10.1007/s11926-014-0429-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With recommended treatment, a majority with idiopathic inflammatory myopathy (IIM) develop muscle impairment and poor health. Beneficial effects of exercise have been reported on muscle performance, aerobic capacity and health in chronic polymyositis and dermatomyositis and to some extent in active disease and inclusion body myositis (IBM). Importantly, randomized controlled trials (RCTs) indicate that improved health and decreased clinical disease activity could be mediated through increased aerobic capacity. Recently, reports seeking mechanisms underlying effects of exercise in skeletal muscle indicate increased aerobic capacity (i.e. increased mitochondrial capacity and capillary density, reduced lactate levels), activation of genes in aerobic phenotype and muscle growth programs, and down regulation in genes related to inflammation. Altogether, exercise contributes to both systemic and within-muscle adaptations demonstrating that exercise is fundamental to improve muscle performance and health in IIM. There is a need for RCTs to study effects of exercise in active disease and IBM.
Collapse
|
19
|
Girolamo F, Lia A, Amati A, Strippoli M, Coppola C, Virgintino D, Roncali L, Toscano A, Serlenga L, Trojano M. Overexpression of autophagic proteins in the skeletal muscle of sporadic inclusion body myositis. Neuropathol Appl Neurobiol 2014; 39:736-49. [PMID: 23452291 DOI: 10.1111/nan.12040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/22/2013] [Indexed: 01/01/2023]
Abstract
AIMS Sporadic inclusion body myositis (s-IBM) is characterized by rimmed vacuole formation and misfolded protein accumulation. Intracellular protein aggregates are cleared by autophagy. When autophagy is blocked aggregates accumulate, resulting in abnormal rimmed vacuole formation. This study investigated the autophagy-lysosome pathway contribution to rimmed vacuole accumulation. METHODS Autophagy was studied in muscle biopsy specimens obtained from eleven s-IBM patients, one suspected hereditary IBM patient, nine patients with other inflammatory myopathies and nine non-myopathic patients as controls. The analysis employed morphometric methods applied to immunohistochemistry using the endosome marker Clathrin, essential proteins of the autophagic cascade such as AuTophaGy-related protein ATG5, splicing variants of microtubule-associated protein light chain 3a (LC3a) and LC3b, compared with Beclin 1, the major autophagy regulator of both the initiation phase and late endosome/lysosome fusion of the autophagy-lysosome pathway. RESULTS In muscle biopsies of s-IBM patients, an increased expression of Clathrin, ATG5, LC3a, LC3b and Beclin 1 was shown. Moreover, the inflammatory components of the disease, essentially lymphocytes, were preferentially distributed around the Beclin 1(+) myofibres. These affected myofibres also showed a moderate sarcoplasmic accumulation of SMI-31(+) phospho-tau paired helical filaments. CONCLUSION The overexpression of autophagy markers linked to the decreased clearance of misfolded proteins, including SMI-31, and rimmed vacuoles accumulation may exhaust cellular resources and lead to cell death.
Collapse
Affiliation(s)
- F Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kuncova K, Sedlackova M, Vencovsky J, Mann H, Tomcik M, Wenchich L, Zamecnik J. Inflammatory myopathy associated with statins: report of three cases. Mod Rheumatol 2014; 24:366-71. [PMID: 24593216 DOI: 10.3109/14397595.2013.852848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Statins are well-established lipid-lowering drugs that reduce morbidity and mortality due to cardiovascular disease and cause adverse effects relatively rarely. It is still unclear whether statins are capable of inducing an immune-mediated response directed against skeletal muscle. Here, we present the cases of three patients who developed inflammatory myopathy in the course of statin treatment. Moreover, multiple mitochondrial DNA deletions were found in two of them. The ability of statins to induce an immune-mediated response and their interactions with mitochondrial metabolism pathways are discussed.
Collapse
Affiliation(s)
- Klara Kuncova
- Department of Pathology and Molecular Medicine, Second Medical Faculty and University Hospital Motol, Charles University , Prague 5 , Czech Republic
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu B, Tang J, Zhang J, Li S, Yuan M, Wang R. Autophagy activation aggravates neuronal injury in the hippocampus of vascular dementia rats. Neural Regen Res 2014; 9:1288-96. [PMID: 25221581 PMCID: PMC4160855 DOI: 10.4103/1673-5374.137576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
It remains unclear whether autophagy affects hippocampal neuronal injury in vascular dementia. In the present study, we investigated the effects of autophagy blockade on hippocampal neuronal injury in a rat model of vascular dementia. In model rats, hippocampal CA1 neurons were severely damaged, and expression of the autophagy-related proteins beclin-1, cathepsin B and microtubule-associated protein 1 light chain 3 was elevated compared with that in sham-operated animals. These responses were suppressed in animals that received a single intraperitoneal injection of wortmannin, an autophagy inhibitor, prior to model establishment. The present results confirm that autophagy and autophagy-related proteins are involved in the pathological changes of vascular dementia, and that inhibition of autophagy has neuroprotective effects.
Collapse
Affiliation(s)
- Bin Liu
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Jing Tang
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Jinxia Zhang
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Shiying Li
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Min Yuan
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Ruimin Wang
- First Department of Neurology, the Affliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| |
Collapse
|
22
|
Fanin M, Nascimbeni AC, Angelini C. Muscle atrophy, ubiquitin-proteasome, and autophagic pathways in dysferlinopathy. Muscle Nerve 2014; 50:340-7. [PMID: 24395438 DOI: 10.1002/mus.24167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Muscle fiber atrophy and the molecular pathways underlying this process have not been investigated in dysferlinopathy patients. METHODS In 22 muscles from dysferlinopathy patients we investigated fiber atrophy by morphometry and ubiquitin-proteasome and autophagic pathways using protein and/or transcriptional analysis of atrophy- and autophagy-related genes (MuRF1, atrogin1, LC3, p62, Bnip3). RESULTS Dysferlinopathy showed significant fiber atrophy and higher MuRF-1 protein and mRNA levels, which correlated with fiber size, suggesting activation of the atrophy program by proteasome induction. CONCLUSIONS Some of the MuRF-1 upregulation and proteasome induction may be attributed to the prominent regeneration found. A potential role of impaired autophagy was suggested by p62-positive protein aggregates in atrophic fibers and significantly higher levels of LC3-II and p62 proteins and overexpression of p62 and Bnip3 mRNA. Damaged muscle fibers and prominent inflammatory changes may also enhance autophagy due to the insufficient level of proteasomal degradation of mutant dysferlin.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurosciences, University of Padova, Biomedical Campus "Pietro d'Abano," via Giuseppe Orus 2B, 35129, Padova, Italy
| | | | | |
Collapse
|
23
|
Rayavarapu S, Coley W, Van der Meulen JH, Cakir E, Tappeta K, Kinder TB, Dillingham BC, Brown KJ, Hathout Y, Nagaraju K. Activation of the ubiquitin proteasome pathway in a mouse model of inflammatory myopathy: a potential therapeutic target. ACTA ACUST UNITED AC 2014; 65:3248-58. [PMID: 24022788 DOI: 10.1002/art.38180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Myositis is characterized by severe muscle weakness. We and others have previously shown that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of myositis. The present study was undertaken to identify perturbed pathways and assess their contribution to muscle disease in a mouse myositis model. METHODS Stable isotope labeling with amino acids in cell culture (SILAC) was used to identify alterations in the skeletal muscle proteome of myositic mice in vivo. Differentially altered protein levels identified in the initial comparisons were validated using a liquid chromatography tandem mass spectrometry spike-in strategy and further confirmed by immunoblotting. In addition, we evaluated the effect of a proteasome inhibitor, bortezomib, on the disease phenotype, using well-standardized functional, histologic, and biochemical assessments. RESULTS With the SILAC technique we identified significant alterations in levels of proteins belonging to the ER stress response, ubiquitin proteasome pathway (UPP), oxidative phosphorylation, glycolysis, cytoskeleton, and muscle contractile apparatus categories. We validated the myositis-related changes in the UPP and demonstrated a significant increase in the ubiquitination of muscle proteins as well as a specific increase in ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1) in myositis, but not in muscle affected by other dystrophies or normal muscle. Inhibition of the UPP with bortezomib significantly improved muscle function and also significantly reduced tumor necrosis factor α expression in the skeletal muscle of mice with myositis. CONCLUSION Our findings indicate that ER stress activates downstream UPPs and contributes to muscle degeneration and that UCHL-1 is a potential biomarker for disease progression. UPP inhibition offers a potential therapeutic strategy for myositis.
Collapse
Affiliation(s)
- Sree Rayavarapu
- Children's National Medical Center and George Washington University, Washington DC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis. Arthritis Res Ther 2013; 15:R83. [PMID: 23941324 PMCID: PMC3978470 DOI: 10.1186/ar4263] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/13/2013] [Indexed: 01/05/2023] Open
Abstract
Introduction This randomized, controlled study on patients with polymyositis or dermatomyositis was based on three hypotheses: patients display impaired endurance due to reduced aerobic capacity and muscle weakness, endurance training improves their exercise performance by increasing the aerobic capacity, and endurance training has general beneficial effects on their health status. Methods In the first part of this study, we compared 23 patients with polymyositis or dermatomyositis with 12 age- and gender-matched healthy controls. A subgroup of patients were randomized to perform a 12-week endurance training program (exercise group, n = 9) or to a non-exercising control group (n = 6). We measured maximal oxygen uptake (VO2 max) and the associated power output during a progressive cycling test. Endurance was assessed as the cycling time to exhaustion at 65% of VO2 max. Lactate levels in the vastus lateralis muscle were measured with microdialysis. Mitochondrial function was assessed by measuring citrate synthase (CS) and β-hydroxyacyl-CoA dehydrogenase (β-HAD) activities in muscle biopsies. Clinical improvement was assessed according to the International Myositis Assessment and Clinical Studies Group (IMACS) improvement criteria. All assessors were blinded to the type of intervention (that is, training or control). Results Exercise performance and aerobic capacity were lower in patients than in healthy controls, whereas lactate levels at exhaustion were similar. Patients in the exercise group increased their cycling time, aerobic capacity and CS and β-HAD activities, whereas lactate levels at exhaustion decreased. Six of nine patients in the exercise group met the IMACS improvement criteria. Patients in the control group did not show any consistent changes during the 12-week study. Conclusions Polymyositis and dermatomyositis patients have impaired endurance, which could be improved by 12 weeks of endurance training. The clinical improvement corresponds to increases in aerobic capacity and muscle mitochondrial enzyme activities. The results emphasize the importance of endurance exercise in addition to immunosuppressive treatment of patients with polymyositis or dermatomyositis. Trial registration ClinicalTrials.gov: NCT01184625
Collapse
|
26
|
Zong M, Bruton JD, Grundtman C, Yang H, Li JH, Alexanderson H, Palmblad K, Andersson U, Harris HE, Lundberg IE, Westerblad H. TLR4 as receptor for HMGB1 induced muscle dysfunction in myositis. Ann Rheum Dis 2013; 72:1390-9. [PMID: 23148306 DOI: 10.1136/annrheumdis-2012-202207] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Polymyositis and dermatomyositis are characterised by muscle weakness and fatigue even in patients with normal muscle histology via unresolved pathogenic mechanisms. In this study, we investigated the mechanisms by which high mobility group box protein 1 (HMGB1) acts to accelerate muscle fatigue development. METHODS Intact single fibres were dissociated from flexor digitorum brevis (FDB) of wild type, receptor for advanced glycation endproduct (RAGE) knockout and toll like receptor 4 (TLR4) knockout mice and cultured in the absence or presence of recombinant HMGB1. A decrease in sarcoplasmic reticulum Ca(2+) release during a series of 300 tetanic contractions, which reflects the development of muscle fatigue, was determined by measuring myoplasmic free tetanic Ca(2+). TLR4 and major histocompatibility complex (MHC)-class I expression in mouse FDB fibres were investigated by immunofluorescence and confocal microscopy. Immunohistochemistry was used to investigate TLR4, MHC-class I and myosin heavy chain expression in muscle fibres of patients. RESULTS Our results demonstrate that TLR4 is expressed in human and mouse skeletal muscle fibres, and coexpressed with MHC-class I in muscle fibres of patients with myositis. Furthermore, we show that HMGB1 acts via TLR4 but not RAGE to accelerate muscle fatigue and to induce MHC-class I expression in vitro. In order to bind and signal via TLR4, HMGB1 must have a reduced cysteine 106 and a disulphide linkage between cysteine 23 and 45. CONCLUSIONS The HMGB1-TLR4 pathway may play an important role in causing muscle fatigue in patients with polymyositis or dermatomyositis and thus is a potential novel target for future therapy.
Collapse
Affiliation(s)
- Mei Zong
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pluk H, van Hoeve BJA, van Dooren SHJ, Stammen-Vogelzangs J, van der Heijden A, Schelhaas HJ, Verbeek MM, Badrising UA, Arnardottir S, Gheorghe K, Lundberg IE, Boelens WC, van Engelen BG, Pruijn GJM. Autoantibodies to cytosolic 5'-nucleotidase 1A in inclusion body myositis. Ann Neurol 2013; 73:397-407. [PMID: 23460448 DOI: 10.1002/ana.23822] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Sporadic inclusion body myositis (sIBM) is an inflammatory myopathy characterized by both degenerative and autoimmune features. In contrast to other inflammatory myopathies, myositis-specific autoantibodies had not been found in sIBM patients until recently. We used human skeletal muscle extracts as a source of antigens to detect autoantibodies in sIBM and to characterize the corresponding antigen. METHODS Autoantibodies to skeletal muscle antigens were detected by immunoblotting. The target antigen was immunoaffinity-purified from skeletal muscle extracts and characterized by mass spectrometry. A cDNA encoding this protein was cloned and expressed in vitro, and its recognition by patient sera was analyzed in an immunoprecipitation assay. Epitopes were mapped using microarrays of overlapping peptides. RESULTS An Mr 44,000 polypeptide (Mup44) was frequently targeted by sIBM autoantibodies. The target protein was purified, and subsequent mass spectrometry analysis revealed that Mup44 is the cytosolic 5'-nucleotidase 1A (cN1A). By immunoprecipitation of recombinant cN1A, high concentrations of anti-Mup44 autoantibodies were detected in 33% of sIBM patient sera, whereas their prevalence in dermatomyositis, polymyositis, and other neuromuscular disorders appeared to be rare (4.2%, 4.5%, and 3.2%, respectively). Low concentrations of anti-Mup44 antibodies were found in myositis as well as other neuromuscular disorders, but not in healthy controls. Three major autoepitope regions of cN1A were mapped by using microarrays containing a set of overlapping peptides covering the complete cN1A amino acid sequence. INTERPRETATION Anti-Mup44 autoantibodies, which are targeted to cN1A, represent the first serological biomarker for sIBM and may facilitate the diagnosis of this type of myositis.
Collapse
Affiliation(s)
- Helma Pluk
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Alger HM, Raben N, Pistilli E, Francia DL, Rawat R, Getnet D, Ghimbovschi S, Chen YW, Lundberg IE, Nagaraju K. The role of TRAIL in mediating autophagy in myositis skeletal muscle: a potential nonimmune mechanism of muscle damage. ACTA ACUST UNITED AC 2013; 63:3448-57. [PMID: 21769834 DOI: 10.1002/art.30530] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Multinucleated cells are relatively resistant to classic apoptosis, and the factors initiating cell death and damage in myositis are not well defined. We hypothesized that nonimmune autophagic cell death may play a role in muscle fiber damage. Recent reports indicate that TRAIL may induce both NF-κB activation and autophagic cell death in other systems. We undertook this study to investigate the role of TRAIL in cell death and pathogenesis in vitro and in vivo, using myositis muscle tissues from humans and mice. METHODS Gene expression profiling was performed in myositis patient and control muscle specimens. Immunohistochemistry analysis was performed to confirm the gene array findings. We also analyzed TRAIL-induced cell death (apoptosis and autophagy) and NF-κB activation in vitro in cultured cells. RESULTS TRAIL was expressed predominantly in myositis muscle fibers, but not in biopsy specimens from normal or other dystrophic-diseased muscle. Autophagy markers were up-regulated in humans with myositis and in mouse models of myositis. TRAIL expression was restricted to regenerating/atrophic areas of muscle fascicles, blood vessels, and infiltrating lymphocytes. TRAIL induced NF-κB activation and IκB degradation in cultured cells that are resistant to TRAIL-induced apoptosis but that undergo autophagic cell death. CONCLUSION Our data demonstrate that TRAIL is expressed in myositis muscle and may mediate both activation of NF-κB and autophagic cell death in myositis. Thus, this nonimmune pathway may be an attractive target for therapeutic intervention in myositis.
Collapse
Affiliation(s)
- Heather M Alger
- Children's National Medical Center and George Washington University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kuncova K, Sedlackova M, Vencovsky J, Mann H, Tomcik M, Wenchich L, Zamecnik J. Inflammatory myopathy associated with statins: report of three cases. Mod Rheumatol 2012. [DOI: 10.1007/s10165-012-0778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Anti-SAE antibodies in autoimmune myositis: Identification by unlabelled protein immunoprecipitation in an Italian patient cohort. J Immunol Methods 2012; 384:128-34. [DOI: 10.1016/j.jim.2012.07.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 11/30/2022]
|
31
|
Ghirardello A, Zampieri S, Tarricone E, Iaccarino L, Gorza L, Doria A. Cutting edge issues in polymyositis. Clin Rev Allergy Immunol 2012; 41:179-89. [PMID: 21191666 DOI: 10.1007/s12016-010-8238-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Skeletal muscle is the target tissue of immunoflogistic processes in patients affected with idiopathic inflammatory myopathies (IIM). IIM are classified into three major forms: polymyositis (PM), dermatomyositis (DM), and inclusion body myositis. Recent data suggest that, in the major subsets of myositis, antigens in muscles drive a B-cell antigen-specific immune response. Moreover, some non-immunological mechanisms have been advocated. In this regard, an increased expression of Jo-1 and Mi-2 in muscle biopsies from PM and DM patients compared to normal muscle has been demonstrated; these candidate autoantigens in myositis are expressed at high levels in regenerating muscle cells rather than in mature myotubes. Myositis autoantigen upregulation has also been observed in neoplastic tissues, thus representing a potential link between cancer and autoimmunity in myositis. Myositis-specific autoantibodies (MSA) are disease markers and target intracellular proteins involved in key processes such as translocation and nuclear transcription. Myositis target antigens encompass aminoacyl-tRNA synthetases, the Mi-2 helicase/histone deacetylase protein complex, the signal recognition particle ribonucleoprotein, together with novel target antigens including p155/140, CADM-140, and SAE. Despite their high specificity for autoimmune myositis, MSA target non-muscle restricted proteins ubiquitary to all cell types, making the specific muscle involvement difficult to explain. Non-immunological mechanisms also seem to contribute to the pathogenesis of IIM; activation of endoplasmic reticulum stress response due to muscle regeneration and inflammation but independent to MHC-1 up-regulation has been recently reported in patients with myositis.
Collapse
Affiliation(s)
- Anna Ghirardello
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Autophagy: cellular defense to excessive inflammation. Microbes Infect 2011; 14:119-25. [PMID: 21924374 DOI: 10.1016/j.micinf.2011.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 01/01/2023]
Abstract
Autophagy can orchestrate a variety of cellular responses to dangerous stimuli. Our understanding of the physiologic roles of autophagy has recently expanded; in addition to its other roles, autophagy now appears to play an essential role in regulating inflammatory responses. This review describes recent findings concerning the roles and mechanisms of autophagy in controlling excessive inflammation.
Collapse
|
34
|
Jeudy S, Wardrop KE, Alessi A, Dominov JA. Bcl-2 inhibits the innate immune response during early pathogenesis of murine congenital muscular dystrophy. PLoS One 2011; 6:e22369. [PMID: 21850221 PMCID: PMC3151242 DOI: 10.1371/journal.pone.0022369] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022] Open
Abstract
Laminin α2 (LAMA2)-deficient congenital muscular dystrophy is a severe, early-onset disease caused by abnormal levels of laminin 211 in the basal lamina leading to muscle weakness, transient inflammation, muscle degeneration and impaired mobility. In a Lama2-deficient mouse model for this disease, animal survival is improved by muscle-specific expression of the apoptosis inhibitor Bcl-2, conferred by a MyoD-hBcl-2 transgene. Here we investigated early disease stages in this model to determine initial pathological events and effects of Bcl-2 on their progression. Using quantitative immunohistological and mRNA analyses we show that inflammation occurs very early in Lama2-deficient muscle, some aspects of which are reduced or delayed by the MyoD-hBcl-2 transgene. mRNAs for innate immune response regulators, including multiple Toll-like receptors (TLRs) and the inflammasome component NLRP3, are elevated in diseased muscle compared with age-matched controls expressing Lama2. MyoD-hBcl-2 inhibits induction of TLR4, TLR6, TLR7, TLR8 and TLR9 in Lama2-deficient muscle compared with non-transgenic controls, and leads to reduced infiltration of eosinophils, which are key death effector cells. This congenital disease model provides a new paradigm for investigating cell death mechanisms during early stages of pathogenesis, demonstrating that interactions exist between Bcl-2, a multifunctional regulator of cell survival, and the innate immune response.
Collapse
Affiliation(s)
- Sheila Jeudy
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Katherine E. Wardrop
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Amy Alessi
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Janice A. Dominov
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Nagaraju K, Lundberg IE. Polymyositis and dermatomyositis: pathophysiology. Rheum Dis Clin North Am 2011; 37:159-71, v. [PMID: 21444017 DOI: 10.1016/j.rdc.2011.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent advances have increased the understanding of the pathogenesis of polymyositis and dermatomyositis. Clearly, the pathogenesis is complex, and adaptive (eg, autoimmune) and innate and nonimmune pathways play a role in the disease mechanisms, but the relative contribution may vary between patients and in different phases of the disease. Phenotyping patients using autoantibody profiling has resulted in information on molecular pathways that may be relevant in certain subsets of patients with polymyositis or dermatomyositis, but combining the autoantibody profiles with molecular signatures of innate and nonimmune mechanisms would enhance our ability to classify, diagnose, and treat these disorders more effectively.
Collapse
Affiliation(s)
- Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center and Department of Integrative Systems Biology, The George Washington University Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This review will highlight recent advances in developing strategies to accelerate muscle regeneration and to slow muscle degeneration in myositis, focusing primarily on inclusion body myositis (IBM). RECENT FINDINGS Therapies for accelerating muscle regeneration, primarily through inhibition of myostatin, have shown promise in the laboratory and are now entering clinical trials. Recent studies have implicated autophagy, a key cellular process involved in clearance of ubiquitinated aggregates, in the pathogenesis of familial and sporadic inclusion body myositis (sIBM). IBM has joined a growing list of diseases known as TDP-43 proteinopathies, in which this protein becomes mislocalized to the cytoplasm; however, it is unclear whether these protein aggregates or others are pathogenic in this disease. SUMMARY New discoveries of biomarkers in sIBM and new insights into the pathogenesis of familial IBM are opening novel therapeutic pathways for these disorders. In particular, drugs that stimulate autophagy, already in development for cancer and neurodegenerative diseases, are candidates for clinical trials. These disease-specific therapies combined with novel therapies to accelerate muscle regeneration hold promise for future therapy for this devastating disease.
Collapse
|
37
|
Shull GE, Miller ML, Prasad V. Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction. Biofactors 2011; 37:150-8. [PMID: 21674634 PMCID: PMC3338190 DOI: 10.1002/biof.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 01/15/2023]
Abstract
In mammalian tissues, uptake of Ca(2+) and Mn(2+) by Golgi membranes is mediated by the secretory pathway Ca(2+) -ATPases, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes. Loss of one copy of the ATP2C1 gene, which causes SPCA1 haploinsufficiency, leads to squamous cell tumors of keratinized epithelia in mice and to Hailey-Hailey disease, an acantholytic skin disease, in humans. Although the disease phenotypes resulting from SPCA1 haploinsufficiency in mice and humans are quite different, each species-specific phenotype is remarkably similar to those arising as a result of null mutations in one copy of the ATP2A2 gene, encoding SERCA2, the endoplasmic reticulum (ER) Ca(2+) pump. SERCA2 haploinsufficiency, like SPCA1 haploinsufficiency, causes squamous cell tumors in mice and Darier's disease, also an acantholytic skin disease, in humans. The phenotypic similarities between SPCA1 and SERCA2 haploinsufficiency in the two species, and the general functions of the two pumps in consecutive compartments of the secretory pathway, suggest that the underlying disease mechanisms are similar. In this review, we discuss evidence supporting the view that chronic Golgi stress and/or ER stress resulting from Ca(2+) pump haploinsufficiencies leads to activation of cellular stress responses in keratinocytes, with the predominance of proapoptotic pathways (although not necessarily apoptosis itself) leading to acantholytic skin disease in humans and the predominance of prosurvival pathways leading to tumors in mice.
Collapse
Affiliation(s)
- Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, OH, USA.
| | | | | |
Collapse
|
38
|
Zong M, Lundberg IE. Pathogenesis, classification and treatment of inflammatory myopathies. Nat Rev Rheumatol 2011; 7:297-306. [DOI: 10.1038/nrrheum.2011.39] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Soejima M, Kang EH, Gu X, Katsumata Y, Clemens PR, Ascherman DP. Role of innate immunity in a murine model of histidyl-transfer RNA synthetase (Jo-1)-mediated myositis. ARTHRITIS AND RHEUMATISM 2011; 63:479-87. [PMID: 21280002 PMCID: PMC3035731 DOI: 10.1002/art.30113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Previous studies in humans and in animal models support a key role of histidyl-transfer RNA synthetase (HisRS; also known as Jo-1) in the pathogenesis of idiopathic inflammatory myopathy. While most investigations have focused on the ability of HisRS to trigger adaptive immune responses, in vitro studies clearly indicate that HisRS possesses intrinsic chemokine-like properties capable of activating the innate immune system. The purpose of this study was therefore to examine the ability of HisRS to direct innate immune responses in a murine model of myositis. METHODS Following intramuscular immunization with soluble HisRS in the absence of exogenous adjuvant, selected strains of mice were evaluated at different time points for histopathologic evidence of myositis. Enzyme-linked immunosorbent assay-based assessment of autoantibody formation and carboxyfluorescein succinimidyl ester proliferation studies provided complementary measures of B cell and T cell responses triggered by HisRS immunization. RESULTS Compared to appropriate control proteins, a murine HisRS fusion protein induced robust, statistically significant muscle inflammation in multiple congenic strains of C57BL/6 and NOD mice. Time course experiments revealed that this inflammatory response occurred as early as 7 days postimmunization and persisted for up to 7 weeks. Parallel immunization strategies in DO11.10/RAG-2(-/-) and C3H/HeJ (TLR-4(-/-) ) mice indicated that the ability of murine HisRS to drive muscle inflammation was not dependent on B cell receptor or T cell receptor recognition and did not require Toll-like receptor 4 signaling. CONCLUSION Collectively, the findings of these experiments support a model in which HisRS can trigger both innate and adaptive immune responses that culminate in severe muscle inflammation that is the hallmark of idiopathic inflammatory myopathy.
Collapse
Affiliation(s)
- Makoto Soejima
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Eun Ha Kang
- Department of Medicine, Division of Rheumatology, Seoul National University, Bundang Hospital, Seoul, Korea
| | - Xinyan Gu
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Yasuhiro Katsumata
- Institute of Rheumatology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Paula R. Clemens
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | - Dana P. Ascherman
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
40
|
Alger HM, Rayavarapu S, Nagaraju K. Measurement of activation of the endoplasmic reticulum stress response in autoimmune myositis. Methods Enzymol 2011; 489:207-25. [PMID: 21266232 DOI: 10.1016/b978-0-12-385116-1.00012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evidence suggests that both immune (cell-mediated and humoral) and nonadaptive immune (endoplasmic reticulum (ER) stress and autophagy) mechanisms play a role in muscle fiber damage and dysfunction in idiopathic inflammatory myopathies (IIM). More recently, the ER stress response pathway, the activation of unfolded protein response, and the ER overload response are being studied to understand their contribution in the progression of IIM. A variety of qualitative and quantitative techniques are used to measure the activation of the endoplasmic reticulum stress response in myopathy. Accurately assessing the activation of ER stress response pathway would not only help in the understanding of disease pathogenesis but would also help to assess the response to therapy. Here, we describe common techniques such as western blotting, immunohistochemistry, immunofluorescence, and determination of mRNA levels for the gene of interest to monitor the ER stress in skeletal muscle tissues.
Collapse
Affiliation(s)
- Heather M Alger
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
41
|
Current world literature. Curr Opin Rheumatol 2010; 22:704-12. [PMID: 20881793 DOI: 10.1097/bor.0b013e3283404094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|