1
|
Müller D, Klotsche J, Kosik MB, Perka C, Buttgereit F, Hoff P, Gaber T. Fracture Fusion on Fast-Forward: Locally Administered Deferoxamine Significantly Enhances Fracture Healing in Animal Models: A Systematic Review and Meta-Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413290. [PMID: 39840407 PMCID: PMC11848589 DOI: 10.1002/advs.202413290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Fractures, with a yearly incidence of 1.2%, can lead to healing complications in up to 10% of cases. The angiogenic stimulant deferoxamine (DFO) is recognized for enhancing bone healing when administered into the fracture gap. This systematic review with meta-analysis investigates the effect of local DFO application on bone healing in rat and mouse models. EMBASE, MEDLINE (PubMed), and Web of Science are systematically searched in January 2024. The study is prospectively registered in PROSPERO (CRD42024492533), and the SYRCLE tool is used to assess study quality and risk of bias. Outcome values contain the primary endpoint bone volume fraction (BV/TV) as well as the secondary endpoints bone volume, tissue volume, bone mineral density, trabecular separation, trabecular thickness, vessel formation and the mechanical properties, assessed by µCT, angiography and mechanical strength tests. Out of 21 included studies, 18 qualify for meta-analysis, involving 539 animals. DFO-treated groups exhibit significantly higher BV/TV values (p < 0.0001) compared to controls, with similarly significant improvements in secondary outcomes. These findings highlight the substantial benefit of DFO in promoting bone healing, especially after radiotherapy. Rapid clinical implementation is recommended to help patients at high risk of fracture healing complications.
Collapse
Affiliation(s)
- Daniel Müller
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Jens Klotsche
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| | - Magdalena B. Kosik
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Carsten Perka
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinCharitéCenter for Orthopedics und Traumatology10117BerlinGermany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| | - Paula Hoff
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- MVZ Endokrinologikum Berlin am Gendarmenmarkt10117BerlinGermany
| | - Timo Gaber
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| |
Collapse
|
2
|
Cook JL, Drager J, Bozynski CC, Stoker AM, Kuroki K, Stannard JP, Felice H, Fahs A, Cook CR, Ramírez-GarcíaLuna JL, Hadidi L, Merle G, Crist BD. Iron Chelators Augment Large Osteochondral Allograft Osseointegration in a Preclinical Canine Model. J Orthop Trauma 2024; 38:S40-S47. [PMID: 39431814 DOI: 10.1097/bot.0000000000002881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVES Osteochondral allograft transplantation (OCAT) can be a successful joint restoration treatment option for large post-traumatic articular defects but is still associated with significant revision and failure rates. Despite recent advances that have improved OCAT success, insufficient osteochondral allograft (OCA) osseointegration remains a major cause of failure. Deferoxamine (DFO) is an effective angiogenic and osteo-anabolic iron chelator that consistently promotes bone neovascularization and regeneration. This study was designed to investigate local delivery of DFO for augmenting OCA osseointegration using a preclinical canine model for OCAT in the knee and hip as commonly affected joints. METHODS On Institutional Animal Care and Use Committee (IACUC) approval, 12 purpose-bred dogs underwent OCAT of the femoral head or femoral condyles with DFO or DFO-free (controls) microspheres in recipient sites. OCA revascularization, cellular repopulation, and integration were evaluated based on functional, diagnostic imaging, microcomputed tomography, histology, and immunohistochemistry outcome measures. RESULTS Local delivery of DFO into OCAT recipient sites was associated with maintained or improved joint function, superior radiographic appearance, significantly greater trabecular thickness, higher bone volume, and new bone ingrowth compared with DFO-free controls. CONCLUSION OCA osseointegration is dependent on cellular repopulation and neovascularization, resulting in new bone ingrowth through creeping substitution, and insufficient osseointegration with resorption and subsidence of the OCA remains a major cause of failure after transplantation. The results of this study suggest that local delivery of DFO using a controlled microsphere release system may reduce resorption and improve revascularization and cellular repopulation to increase new bone ingrowth, potentially expediting OCA osseointegration after transplantation.
Collapse
Affiliation(s)
- James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO
| | - Justin Drager
- Division of Orthopaedic Surgery, McGill University, Montreal, Canada
| | - Chantelle C Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO
| | - Keiichi Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO
| | - James P Stannard
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO
| | - Hilary Felice
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO
| | - Adam Fahs
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO
| | - Cristi R Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO
| | | | - Lina Hadidi
- McGill University, Montreal, Canada
- University of Jordan, Amman, Jordan; and
- Chemical Engineering Department, Polytechnique, Montreal, Canada
| | - Geraldine Merle
- Chemical Engineering Department, Polytechnique, Montreal, Canada
| | - Brett D Crist
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO
| |
Collapse
|
3
|
Sun L, Niu H, Wu Y, Dong S, Li X, Kim BY, Liu C, Ma Y, Jiang W, Yuan Y. Bio-integrated scaffold facilitates large bone regeneration dominated by endochondral ossification. Bioact Mater 2024; 35:208-227. [PMID: 38327823 PMCID: PMC10847751 DOI: 10.1016/j.bioactmat.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Repair of large bone defects caused by severe trauma, non-union fractures, or tumor resection remains challenging because of limited regenerative ability. Typically, these defects heal through mixed routines, including intramembranous ossification (IMO) and endochondral ossification (ECO), with ECO considered more efficient. Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit. Herein, we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2 (rhBMP-2), aiming to induce ECO-dominated repair. Specifically, we apply a mesoporous structure to accelerate iron chelation, this promoting early chondrogenesis via deferoxamine (DFO)-induced hypoxia-inducible factor-1α (HIF-1α). Through the delicate segmentation of click-crosslinked PEGylated Poly (glycerol sebacate) (PEGS) layers, we achieve programmed release of low-dose rhBMP-2, which can facilitate cartilage-to-bone transformation while reducing side effect risks. We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance. Collectively, these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing, paving a promising pave towards its clinical use in addressing large bone defects.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuqiong Wu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Shiyan Dong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
4
|
Shen H, Ma Y, Qiao Y, Zhang C, Chen J, Zhang R. Application of Deferoxamine in Tissue Regeneration Attributed to Promoted Angiogenesis. Molecules 2024; 29:2050. [PMID: 38731540 PMCID: PMC11085206 DOI: 10.3390/molecules29092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.
Collapse
Affiliation(s)
- Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yane Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yi Qiao
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Chun Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Jialing Chen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Ran Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting, Nanjing 210009, China
| |
Collapse
|
5
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
6
|
Mendoza SV, Genetos DC, Yellowley CE. Hypoxia-Inducible Factor-2α Signaling in the Skeletal System. JBMR Plus 2023; 7:e10733. [PMID: 37065626 PMCID: PMC10097641 DOI: 10.1002/jbm4.10733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/13/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent heterodimeric transcription factors that mediate molecular responses to reductions in cellular oxygen (hypoxia). HIF signaling involves stable HIF-β subunits and labile, oxygen-sensitive HIF-α subunits. Under hypoxic conditions, the HIF-α subunit is stabilized, complexes with nucleus-confined HIF-β subunit, and transcriptionally regulates hypoxia-adaptive genes. Transcriptional responses to hypoxia include altered energy metabolism, angiogenesis, erythropoiesis, and cell fate. Three isoforms of HIF-α-HIF-1α, HIF-2α, and HIF-3α-are found in diverse cell types. HIF-1α and HIF-2α serve as transcriptional activators, whereas HIF-3α restricts HIF-1α and HIF-2α. The structure and isoform-specific functions of HIF-1α in mediating molecular responses to hypoxia are well established across a wide range of cell and tissue types. The contributions of HIF-2α to hypoxic adaptation are often unconsidered if not outrightly attributed to HIF-1α. This review establishes what is currently known about the diverse roles of HIF-2α in mediating the hypoxic response in skeletal tissues, with specific focus on development and maintenance of skeletal fitness. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah V Mendoza
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| |
Collapse
|
7
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
8
|
Zeng Y, Huang C, Duan D, Lou A, Guo Y, Xiao T, Wei J, Liu S, Wang Z, Yang Q, Zhou L, Wu Z, Wang L. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomater 2022; 153:108-123. [PMID: 36115651 DOI: 10.1016/j.actbio.2022.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Insufficient vascularization is a major challenge in the repair of critical-sized bone defects. Deferoxamine (DFO) has been reported to play a potential role in promoting the formation of H-type blood vessels, a specialized vascular subtype with coupled angiogenesis and osteogenesis. However, whether DFO promotes the expression of H-type vessels in critical femoral defects with complete periosteal damage remains unknown. Moreover, stable drug loading systems need to be designed owing to the short half-life and high-dose toxic effects of DFO. In this study, we developed an injectable DFO-gelatin microspheres (GMs) hydrogel complex as a stable drug loading system for the treatment of critical femoral defects in rats. Our results showed that sustained release of DFO in critical femoral defects stimulated the generation of functional H-type vessels. The DFO-GMs hydrogel complex effectively promoted proliferation, formation, and migration of human umbilical vein endothelial cells in vitro. In vivo, the application of the DFO-GMs hydrogel complex expanded the distribution range and prolonged the expression time of H-type vessels in the defect area and was positively correlated with the number of osterix+ cells and new bone tissue. Topical application of the HIF-1α inhibitor PX-478 partially blocked the stimulation of H-type vessels by DFO, whereas the osteogenic potential of the latter was also weakened. Our results extended the local application of DFO and provided a theoretical basis for targeting H-type vessels to treat large femoral defects. STATEMENT OF SIGNIFICANCE: Abundant functional blood vessels are essential for bone repair. The H-type blood vessel is a functional subtype with angiogenesis and osteogenesis coupling potential. A drug loading system with long-term controlled release was first used to investigate the formation of H-type blood vessels in critical femoral defects and promotion of bone repair. Our results showed that the application of DFO-GMs hydrogel complex expanded the distribution range and expression time of H-type vessels, and was positively correlated with the number of osteoblasts and volume of new bone tissue. These results expanded the local application approach of DFO and provide a theoretical basis for targeting H-type vessels to treat large femoral defects.
Collapse
Affiliation(s)
- Yuwei Zeng
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Chuang Huang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Dongming Duan
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Aiju Lou
- Department of Rheumatology, Liwan Central Hospital of Guangzhou, 35 Liwan Road, Guangzhou 510030, China
| | - Yuan Guo
- Department of Stomatology, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Tianhua Xiao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Jianguo Wei
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Song Liu
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Zhao Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Qihao Yang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| | - Zenghui Wu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| | - Le Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| |
Collapse
|
9
|
Optimization of a Tricalcium Phosphate-Based Bone Model Using Cell-Sheet Technology to Simulate Bone Disorders. Processes (Basel) 2022. [DOI: 10.3390/pr10030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone diseases such as osteoporosis, delayed or impaired bone healing, and osteoarthritis still represent a social, financial, and personal burden for affected patients and society. Fully humanized in vitro 3D models of cancellous bone tissue are needed to develop new treatment strategies and meet patient-specific needs. Here, we demonstrate a successful cell-sheet-based process for optimized mesenchymal stromal cell (MSC) seeding on a β-tricalcium phosphate (TCP) scaffold to generate 3D models of cancellous bone tissue. Therefore, we seeded MSCs onto the β-TCP scaffold, induced osteogenic differentiation, and wrapped a single osteogenically induced MSC sheet around the pre-seeded scaffold. Comparing the wrapped with an unwrapped scaffold, we did not detect any differences in cell viability and structural integrity but a higher cell seeding rate with osteoid-like granular structures, an indicator of enhanced calcification. Finally, gene expression analysis showed a reduction in chondrogenic and adipogenic markers, but an increase in osteogenic markers in MSCs seeded on wrapped scaffolds. We conclude from these data that additional wrapping of pre-seeded scaffolds will provide a local niche that enhances osteogenic differentiation while repressing chondrogenic and adipogenic differentiation. This approach will eventually lead to optimized preclinical in vitro 3D models of cancellous bone tissue to develop new treatment strategies.
Collapse
|
10
|
Lang A, Stefanowski J, Pfeiffenberger M, Wolter A, Damerau A, Hemmati-Sadeghi S, Haag R, Hauser AE, Löhning M, Duda GN, Hoff P, Schmidt-Bleek K, Gaber T, Buttgereit F. MIF does only marginally enhance the pro-regenerative capacities of DFO in a mouse-osteotomy-model of compromised bone healing conditions. Bone 2022; 154:116247. [PMID: 34743042 DOI: 10.1016/j.bone.2021.116247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
The initial phase of fracture healing is crucial for the success of bone regeneration and is characterized by an inflammatory milieu and low oxygen tension (hypoxia). Negative interference with or prolongation of this fine-tuned initiation phase will ultimately lead to a delayed or incomplete healing such as non-unions which then requires an effective and gentle therapeutic intervention. Common reasons include a dysregulated immune response, immunosuppression or a failure in cellular adaptation to the inflammatory hypoxic milieu of the fracture gap and a reduction in vascularizing capacity by environmental noxious agents (e.g. rheumatoid arthritis or smoking). The hypoxia-inducible factor (HIF)-1α is responsible for the cellular adaptation to hypoxia, activating angiogenesis and supporting cell attraction and migration to the fracture gap. Here, we hypothesized that stabilizing HIF-1α could be a cost-effective and low-risk prevention strategy for fracture healing disorders. Therefore, we combined a well-known HIF-stabilizer - deferoxamine (DFO) - and a less known HIF-enhancer - macrophage migration inhibitory factor (MIF) - to synergistically induce improved fracture healing. Stabilization of HIF-1α enhanced calcification and osteogenic differentiation of MSCs in vitro. In vivo, only the application of DFO without MIF during the initial healing phase increased callus mineralization and vessel formation in a preclinical mouse-osteotomy-model modified to display a compromised healing. Although we did not find a synergistically effect of MIF when added to DFO, our findings provide additional support for a preventive strategy towards bone healing disorders in patients with a higher risk by accelerating fracture healing using DFO to stabilize HIF-1α.
Collapse
Affiliation(s)
- Annemarie Lang
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| | - Jonathan Stefanowski
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Moritz Pfeiffenberger
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Angelique Wolter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alexandra Damerau
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Max Löhning
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany
| | - Paula Hoff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany
| | - Timo Gaber
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
| | - Frank Buttgereit
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
11
|
Liu J, Kang H, Lu J, Dai Y, Wang F. Experimental study of the effects of hypoxia simulator on osteointegration of titanium prosthesis in osteoporotic rats. BMC Musculoskelet Disord 2021; 22:944. [PMID: 34763682 PMCID: PMC8588664 DOI: 10.1186/s12891-021-04777-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background Poor osseointegration is the key reason for implant failure after arthroplasty,whether under osteoporotic or normal bone conditions. To date, osseointegration remains a major challenge. Recent studies have shown that deferoxamine (DFO) can accelerate osteogenesis by activating the hypoxia signaling pathway. The purpose of this study was to test the following hypothesis: after knee replacement, intra-articular injection of DFO will promote osteogenesis and osseointegration with a 3D printed titanium prosthesis in the bones of osteoporotic rats. Materials and methods Ninety female Sprague–Dawley rats were used for the experiment. Ten rats were used to confirm the successful establishment of the osteoporosis model: five rats in the sham operation group and five rats in the ovariectomy group. After ovariectomy and knee arthroplasty were performed, the remaining 80 rats were randomly divided into DFO and control groups (n = 40 per group). The two groups were treated by intraarticular injection of DFO and saline respectively. After 2 weeks, polymerase chain reaction (PCR) and immunohistochemistry were used to evaluate the levels of HIF-1a, VEGF, and CD31. HIF-1a and VEGF have been shown to promote angiogenesis and bone regeneration, and CD31 is an important marker of angiogenesis. After 12 weeks, the specimens were examined by micro-computed tomography (micro-CT), biomechanics, and histopathology to evaluate osteogenesis and osseointegration. Results The results of PCR showed that the mRNA levels of VEGF and CD31 in the DFO group were significantly higher than those in the control group. The immunohistochemistry results indicated that positive cell expression of HIF-1a, VEGF, and CD31 in the DFO group was also higher. Compared with the control group, the micro-CT parameters of BMD, BV/TV, TB. N, and TB. Th were significantly higher. The maximal pull-out force and the bone-to-implant contact value were also higher. Conclusions The local administration of DFO, which is used to activate the HIF-1a signaling pathway, can promote osteogenesis and osseointegration with a prosthesis in osteoporotic bone.
Collapse
Affiliation(s)
- Jiangfeng Liu
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Huijun Kang
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Jiangfeng Lu
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Yike Dai
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Fei Wang
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China.
| |
Collapse
|
12
|
Chakraborty N, Zamarioli A, Gautam A, Campbell R, Mendenhall SK, Childress PJ, Dimitrov G, Sowe B, Tucker A, Zhao L, Hammamieh R, Kacena MA. Gene-metabolite networks associated with impediment of bone fracture repair in spaceflight. Comput Struct Biotechnol J 2021; 19:3507-3520. [PMID: 34194674 PMCID: PMC8220416 DOI: 10.1016/j.csbj.2021.05.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 01/05/2023] Open
Abstract
Adverse effects of spaceflight on musculoskeletal health increase the risk of bone injury and impairment of fracture healing. Its yet elusive molecular comprehension warrants immediate attention, since space travel is becoming more frequent. Here we examined the effects of spaceflight on bone fracture healing using a 2 mm femoral segmental bone defect (SBD) model. Forty, 9-week-old, male C57BL/6J mice were randomized into 4 groups: 1) Sham surgery on Ground (G-Sham); 2) Sham surgery housed in Spaceflight (FLT-Sham); 3) SBD surgery on Ground (G-Surgery); and 4) SBD surgery housed in Spaceflight (FLT-Surgery). Surgery procedures occurred 4 days prior to launch; post-launch, the spaceflight mice were house in the rodent habitats on the International Space Station (ISS) for approximately 4 weeks before euthanasia. Mice remaining on the Earth were subjected to identical housing and experimental conditions. The right femur from half of the spaceflight and ground groups was investigated by micro-computed tomography (µCT). In the remaining mice, the callus regions from surgery groups and corresponding femoral segments in sham mice were probed by global transcriptomic and metabolomic assays. µCT confirmed escalated bone loss in FLT-Sham compared to G-Sham mice. Comparing to their respective on-ground counterparts, the morbidity gene-network signal was inhibited in sham spaceflight mice but activated in the spaceflight callus. µCT analyses of spaceflight callus revealed increased trabecular spacing and decreased trabecular connectivity. Activated apoptotic signals in spaceflight callus were synchronized with inhibited cell migration signals that potentially hindered the wound site to recruit growth factors. A major pro-apoptotic and anti-migration gene network, namely the RANK-NFκB axis, emerged as the central node in spaceflight callus. Concluding, spaceflight suppressed a unique biomolecular mechanism in callus tissue to facilitate a failed regeneration, which merits a customized intervention strategy.
Collapse
Affiliation(s)
| | - Ariane Zamarioli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, SP, Brazil
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Ross Campbell
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Stephen K Mendenhall
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul J. Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Bintu Sowe
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- ORISE, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Aamir Tucker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liming Zhao
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
13
|
Hulley PA, Papadimitriou-Olivgeri I, Knowles HJ. Osteoblast-Osteoclast Coculture Amplifies Inhibitory Effects of FG-4592 on Human Osteoclastogenesis and Reduces Bone Resorption. JBMR Plus 2020; 4:e10370. [PMID: 32666021 PMCID: PMC7340438 DOI: 10.1002/jbm4.10370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
The link between bone and blood vessels is regulated by hypoxia and the hypoxia‐inducible transcription factor, HIF, which drives both osteogenesis and angiogenesis. The recent clinical approval of PHD enzyme inhibitors, which stabilize HIF protein, introduces the potential for a new clinical strategy to treat osteolytic conditions such as osteoporosis, osteonecrosis, and skeletal fracture and nonunion. However, bone‐resorbing osteoclasts also play a central role in bone remodeling and pathological osteolysis, and HIF promotes osteoclast activation and bone loss in vitro. It is therefore likely that the result of PHD enzyme inhibition in vivo would be mediated by a balance between increased bone formation and increased bone resorption. It is essential that we improve our understanding of the effects of HIF on osteoclast formation and function and consider the potential contribution of inhibitory interactions with other musculoskeletal cells. The PHD enzyme inhibitor FG‐4592 stabilized HIF protein and stimulated osteoclast‐mediated bone resorption, but inhibited differentiation of human CD14+ monocytes into osteoclasts. Formation of osteoclasts in a more physiologically relevant 3D collagen gel did not affect the sensitivity of osteoclastogenesis to FG‐4592, but increased sensitivity to reduced concentrations of RANKL. Coculture with osteoblasts amplified inhibition of osteoclastogenesis by FG‐4592, whether the osteoblasts were proliferating, differentiating, or in the presence of exogenous M‐CSF and RANKL. Osteoblast coculture dampened the ability of high concentrations of FG‐4592 to increase bone resorption. These data provide support for the therapeutic use of PHD enzyme inhibitors to improve bone formation and/or reduce bone loss for the treatment of osteolytic pathologies and indicate that FG‐4592 might act in vivo to inhibit the formation and activity of the osteoclasts that drive osteolysis. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Philippa A Hulley
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK
| | - Ioanna Papadimitriou-Olivgeri
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK.,Department of Anatomy Histology & Embryology University of Patras Patras Greece
| | - Helen J Knowles
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK
| |
Collapse
|
14
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part II - Modulation of angiogenesis. Clin Hemorheol Microcirc 2020; 73:409-438. [PMID: 31177206 DOI: 10.3233/ch-199103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of critical-size bone defects following complicated fractures, infections or tumor resections is a major challenge. The same applies to fractures in patients with impaired bone healing due to systemic inflammatory and metabolic diseases. Despite considerable progress in development and establishment of new surgical techniques, design of bone graft substitutes and imaging techniques, these scenarios still represent unresolved clinical problems. However, the development of new active substances offers novel potential solutions for these issues. This work discusses therapeutic approaches that influence angiogenesis or hypoxic situations in healing bone and surrounding tissue. In particular, literature on sphingosine-1-phosphate receptor modulators and nitric oxide (NO•) donors, including bi-functional (hybrid) compounds like NO•-releasing cyclooxygenase-2 inhibitors, was critically reviewed with regard to their local and systemic mode of action.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
15
|
Evaluation of zoledronate, cytochalasin-D, and desferrioxamine on osseointegration in an intra-medullary femoral implant model. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:121-127. [PMID: 32131376 PMCID: PMC7104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The rise in primary and revision surgeries utilizing joint replacement implants suggest the need for more reliable means of promoting implant fixation. Zoledronate-(Zol), cytochalasin-D-(cytoD), and desferrioxamine-(DFO) have been shown to enhance mesenchymal stem cell (MSC) differentiation into osteoblasts promoting bone formation. The objective was to determine whether Zol, cytoD, and DFO can improve fixation strength and enhance peri-implant bone volume about intra-medullary femoral implants. METHODS 48 Sprague-Dawley female rats were randomized into four treatments, saline-control or experimental: Zol-(0.8 μg/μL), cytoD-(0.05 μg/μL), DFO-(0.4 μg/μL). Implants were placed bilaterally in the femoral canals following injection of treatment solution and followed for 28 days. Mechanical push-out testing and micro-CT were our primary evaluations, measuring load to failure and bone volume. Qualitative evaluation included histological assessment. Data was analyzed with a one-way ANOVA with Holm-Sidak mean comparison testing. RESULTS Significant results included pushout tests showing an increase in maximum energy for Zol (124%) and cytoD (82%); Zol showed an increase in maximum load by 48%; Zol micro-CT showed increase in BV/TV by 35%. CONCLUSIONS Our findings suggest that locally applied Zol and cytoD enhance implant mechanical stability. Bisphosphonates and actin regulators, like cytoD, might be further investigated as a new strategy for improving osseointegration.
Collapse
|
16
|
Wang Z, Ishihara Y, Ishikawa T, Hoshijima M, Odagaki N, Ei Hsu Hlaing E, Kamioka H. Screening of key candidate genes and pathways for osteocytes involved in the differential response to different types of mechanical stimulation using a bioinformatics analysis. J Bone Miner Metab 2019; 37:614-626. [PMID: 30413886 DOI: 10.1007/s00774-018-0963-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
This study aimed to predict the key genes and pathways that are activated when different types of mechanical loading are applied to osteocytes. mRNA expression datasets (series number of GSE62128 and GSE42874) were obtained from Gene Expression Omnibus database (GEO). High gravity-treated osteocytic MLO-Y4 cell-line samples from GSE62128 (Set1), and fluid flow-treated MLO-Y4 samples from GSE42874 (Set2) were employed. After identifying the differentially expressed genes (DEGs), functional enrichment was performed. The common DEGs between Set1 and Set2 were considered as key DEGs, then a protein-protein interaction (PPI) network was constructed using the minimal nodes from all of the DEGs in Set1 and Set2, which linked most of the key DEGs. Several open source software programs were employed to process and analyze the original data. The bioinformatic results and the biological meaning were validated by in vitro experiments. High gravity and fluid flow induced opposite expression trends in the key DEGs. The hypoxia-related biological process and signaling pathway were the common functional enrichment terms among the DEGs from Set1, Set2 and the PPI network. The expression of almost all the key DEGs (Pdk1, Ccng2, Eno2, Egln1, Higd1a, Slc5a3 and Mxi1) were mechano-sensitive. Eno2 was identified as the hub gene in the PPI network. Eno2 knockdown results in expression changes of some other key DEGs (Pdk1, Mxi1 and Higd1a). Our findings indicated that the hypoxia response might have an important role in the differential responses of osteocytes to the different types of mechanical force.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, 700-8525, Japan
| | | | - Takanori Ishikawa
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Mitsuhiro Hoshijima
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, 700-8525, Japan
| | - Naoya Odagaki
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Ei Ei Hsu Hlaing
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
17
|
Fragogeorgi EA, Rouchota M, Georgiou M, Velez M, Bouziotis P, Loudos G. In vivo imaging techniques for bone tissue engineering. J Tissue Eng 2019; 10:2041731419854586. [PMID: 31258885 PMCID: PMC6589947 DOI: 10.1177/2041731419854586] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bone is a dynamic tissue that constantly undergoes modeling and remodeling. Bone tissue engineering relying on the development of novel implant scaffolds for the treatment of pre-clinical bone defects has been extensively evaluated by histological techniques. The study of bone remodeling, that takes place over several weeks, is limited by the requirement of a large number of animals and time-consuming and labor-intensive procedures. X-ray-based imaging methods that can non-invasively detect the newly formed bone tissue have therefore been extensively applied in pre-clinical research and in clinical practice. The use of other imaging techniques at a pre-clinical level that act as supportive tools is convenient. This review mainly focuses on nuclear imaging methods (single photon emission computed tomography and positron emission tomography), either alone or used in combination with computed tomography. It addresses their application to small animal models with bone defects, both untreated and filled with substitute materials, to boost the knowledge on bone regenerative processes.
Collapse
Affiliation(s)
- Eirini A Fragogeorgi
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece
| | - Maritina Rouchota
- Bioemission Technology Solutions (BIOEMTECH), Athens, Greece / Lefkippos Attica Technology Park, NCSR "Demokritos", Athens, Greece
| | - Maria Georgiou
- Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | - Marisela Velez
- Instituto de Catálisis y Petroleoquímica (CSIC), Madrid, Spain
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece
| | - George Loudos
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety (INRASTES), NCSR "Demokritos", Athens, Greece.,Bioemission Technology Solutions (BIOEMTECH), Athens, Greece / Lefkippos Attica Technology Park, NCSR "Demokritos", Athens, Greece
| |
Collapse
|
18
|
Pearson HB, Mason DE, Kegelman CD, Zhao L, Dawahare JH, Kacena MA, Boerckel JD. Effects of Bone Morphogenetic Protein-2 on Neovascularization During Large Bone Defect Regeneration. Tissue Eng Part A 2019; 25:1623-1634. [PMID: 30973074 DOI: 10.1089/ten.tea.2018.0326] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Insufficient blood vessel supply is a primary limiting factor for regenerative approaches to large bone defect repair. Recombinant bone morphogenetic protein-2 (BMP-2) delivery induces robust bone formation and has been observed to enhance neovascularization, but whether the angiogenic effects of BMP-2 are due to direct endothelial cell stimulation or due to indirect paracrine signaling remain unclear. In this study, we evaluated the effects of BMP-2 delivery on vascularized bone regeneration and tested whether BMP-2 induces neovascularization directly or indirectly. We found that delivery of BMP-2 (5 μg) enhanced both bone formation and neovascularization in critically sized (8 mm) rat femoral bone defects; however, BMP-2 did not directly stimulate angiogenesis in vitro. In contrast, conditioned medium from both mesenchymal progenitor cells and osteoblasts induced endothelial cell migration in vitro, suggesting a paracrine mechanism of BMP-2 action. Consistent with this inference, codelivery of BMP-2 with endothelial colony forming cells to a heterotopic site, distant from the skeletal stem cell-rich bone marrow niche, induced ossification but had no effect on neovascularization. Taken together, these data suggest that paracrine activation of osteoprogenitor cells is an important contributor to neovascularization during BMP-2-mediated bone regeneration. Impact Statement In this study, we show that bone morphogenetic protein-2 (BMP-2) robustly induces neovascularization during tissue-engineered large bone defect regeneration, and we found that BMP-2 induced angiogenesis, in part, through paracrine signaling from osteoprogenitor cells.
Collapse
Affiliation(s)
- Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Devon E Mason
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher D Kegelman
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liming Zhao
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Joel D Boerckel
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Lowe B, Ottensmeyer MP, Xu C, He Y, Ye Q, Troulis MJ. The Regenerative Applicability of Bioactive Glass and Beta-Tricalcium Phosphate in Bone Tissue Engineering: A Transformation Perspective. J Funct Biomater 2019; 10:E16. [PMID: 30909518 PMCID: PMC6463135 DOI: 10.3390/jfb10010016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The conventional applicability of biomaterials in the field of bone tissue engineering takes into consideration several key parameters to achieve desired results for prospective translational use. Hence, several engineering strategies have been developed to model in the regenerative parameters of different forms of biomaterials, including bioactive glass and β-tricalcium phosphate. This review examines the different ways these two materials are transformed and assembled with other regenerative factors to improve their application for bone tissue engineering. We discuss the role of the engineering strategy used and the regenerative responses and mechanisms associated with them.
Collapse
Affiliation(s)
- Baboucarr Lowe
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| | - Mark P Ottensmeyer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Yan He
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Maria J Troulis
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Müller AS, Gashi M, Janjić K, Edelmayer M, Moritz A, Agis H. The impact of clay-based hypoxia mimetic hydrogel on human fibroblasts of the periodontal soft tissue. J Biomater Appl 2019; 33:1277-1284. [PMID: 30760093 DOI: 10.1177/0885328218821042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thixotropic clays have favorable properties for tissue regeneration. Hypoxia mimetic agents showed promising results in pre-clinical models for hard and soft tissue regeneration. It is unclear if clays can be used as carrier for hypoxia mimetic agent in a periodontal regenerative setting. Here, we tested the response of human fibroblasts of the periodontal soft tissue to synthetic clay hydrogels and assessed hypoxia mimetic agent release. Cells were cultured on synthetic clay hydrogels (5.00%-0.15%). We assessed viability and differentiation capacity with resazurin-based toxicity assays, MTT staining, Live-Dead staining, and alkaline phosphatase staining. To reveal the response of fibroblasts to hypoxia mimetic agent-loaded clay hydrogels, cells were exposed to clay supplemented with dimethyloxalylglycine, deferoxamine, l-mimosine, and CoCl2. Supernatants from hypoxia mimetic agent-loaded clay hydrogels were harvested and replaced with medium at hour 1, 3, 6, 24, 48, and 72. To reveal the hypoxia mimetic capacity of supernatants, vascular endothelial growth factor production in the fibroblasts was assessed in the culture medium. Our data show that clay did not induce relevant toxic effects in the fibroblasts which remained capable to differentiate into alkaline phosphatase-positive cells at the relevant concentrations. Fibroblasts cultured on clay hydrogel loaded with dimethyloxalylglycine, deferoxamine, l-mimosine, and CoCl2 remained vital, however, no significant increase in vascular endothelial growth factor levels was found in the culture medium. Only dimethyloxalylglycine-loaded clay supernatants taken in the first hours stimulated vascular endothelial growth factor production in fibroblasts. In conclusion no pronounced toxic effects of synthetic clay were observed. Supplementation with dimethyloxalylglycine leads to hypoxia mimetic activity. This pilot study provides first insights into the impact of synthetic clay on periodontal tissue.
Collapse
Affiliation(s)
- Anna Sonja Müller
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Milot Gashi
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Klara Janjić
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michael Edelmayer
- 2 Austrian Cluster for Tissue Regeneration, Vienna, Austria.,3 Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to promote skeletal repair. RECENT FINDINGS Oxygen sensing in osteocytes can confer a high bone mass phenotype in murine models; common and unique targets of HIF-1α and HIF-2α and lineage-specific deletion of oxygen sensing machinery suggest differentia utilization and requirement of HIF-α proteins in the differentiation from mesenchymal stem cell to osteoblast to osteocyte; oxygen-dependent but HIF-α-independent signaling may contribute to observed skeletal phenotypes. Manipulating oxygen sensing machinery in osteogenic cells influences skeletal phenotype through angiogenesis-dependent and angiogenesis-independent pathways and involves HIF-1α, HIF-2α, or both proteins. Clinically, an FDA-approved iron chelator promotes angiogenesis and osteogenesis, thereby enhancing the rate of fracture repair.
Collapse
Affiliation(s)
- Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Safflower yellow promotes angiogenesis through p-VHL/ HIF-1α/VEGF signaling pathway in the process of osteogenic differentiation. Biomed Pharmacother 2018; 107:1736-1743. [PMID: 30257392 DOI: 10.1016/j.biopha.2018.06.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Safflower yellow (SY) is an active component ofCarthamus tinctorius L. that is widely used in orthopedics. This study aimed to evaluate the role of SY in angiogenesis and osteogenic differentiation. METHODS The migration and in vitro angiogenesis of SY (4.5, 9.0, 18 μg/ml)-treated human umbilical vein endothelial cells (HUVEC-12) were assessed by transwell and tube formation assay, respectively. Osteogenic differentiation ability was detected by alkaline phosphatase (ALP) and Alizarin Red S staining. The mRNA and protein expressions of related markers were determined by RT-qPCR and Western blot. RESULTS The migration and tube formation ability of HUVEC-12 were promoted by SY. Furthermore, SY facilitated the angiogenesis and osteogenic differentiation in the co-culture of HUVEC-12 and BMSCs by increasing hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), Angiopoietin-2 (Ang-2), ALP, runt-related transcription factor 2 (Runx2) and osteopontin-1 (OPN-1) levels. Inhibition of HIF-1α expression by 3-(5-hydroxymethl-2-furyl)-1-benzylindazole (YC-1), restrained SY-induced proliferation, migration and angiogenesis of HUVEC-12 and the increased protein levels of VEGF, Ang-2, ALP, Runx2 and OPN-1. Finally, WD repeat and SOCS box-containing protein-1 (WSB-1)/Von Hippel-Lindau protein (p-VHL) pathway was involved in the beneficial effect of SY. CONCLUSION SY promotes osteogenic differentiation via enhancing angiogenesis by regulating pVHL/HIF-1α/VEGF signaling pathway.
Collapse
|
23
|
Effect of Hypoxia-Inducible Factor 1 α on Early Healing in Extraction Sockets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8210637. [PMID: 30046609 PMCID: PMC6036846 DOI: 10.1155/2018/8210637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/26/2018] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the effect of hypoxia-inducible factor 1α (HIF1A) on the early healing (4 weeks) of extraction sockets exhibiting partial loss of the labial bone. Two extraction sockets of the maxillary incisors from each of six dogs were assigned to two treatment modalities: deproteinized bovine bone mineral (i) with 10% collagen (DBBM-C) soaked with HIF1A and covered by a collagen membrane (CM) (HIF group) or (ii) treated with DBBM-C only and covered by a CM (control group). Microcomputed tomography revealed some degree of collapse of the labial contour. The totally augmented volume and new bone volume did not differ significantly between two groups (P > 0.05). The histological analysis revealed that the apical area of the socket was mostly filled with newly formed bone, while there was less newly formed bone in the coronal area and incomplete cortex formation. The histomorphometric analysis revealed that the area of newly formed bone was significantly larger in the HIF group than the control group (12.16 ± 3.04 versus 9.48 ± 2.01 mm2, P < 0.05), while there was no significant intergroup difference in the total augmented area. In conclusion, even though DBBM-C soaked with HIF1A enhanced histomorphometric bone formation, this intervention did not demonstrate superiority in preventing ridge shrinkage compared to DBBM-C alone. Clinical relevance of these findings should be further studied.
Collapse
|
24
|
Yao Q, Liu Y, Selvaratnam B, Koodali RT, Sun H. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release 2018; 279:69-78. [PMID: 29649529 DOI: 10.1016/j.jconrel.2018.04.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Controlled delivery systems play a critical role in the success of bone morphogenetic proteins (i.e., BMP2 and BMP7) for challenged bone repair. Instead of single-drug release that is currently and commonly prevalent, dual-drug delivery strategies are highly desired to achieve effective bone regeneration because natural bone repair process is driven by multiple factors. Particularly, angiogenesis is essential for osteogenesis and requires more than just one factor (e.g., Vascular Endothelial Growth Factor, VEGF). Therefore, we developed a novel mesoporous silicate nanoparticles (MSNs) incorporated-3D nanofibrous gelatin (GF) scaffold for dual-delivery of BMP2 and deferoxamine (DFO). DFO is a hypoxia-mimetic drug that can activate hypoxia-inducible factor-1 alpha (HIF-1α), and trigger subsequent angiogenesis. Sustained BMP2 release system was achieved through encapsulation into large-pored MSNs, while the relative short-term release of DFO was engineered through covalent conjugation with chitosan to reduce its cytotoxicity and elongate its half-life. Both MSNs and DFO were incorporated onto a porous 3D GF scaffold to serve as a biomimetic osteogenic microenvironment. Our data indicated that DFO and BMP2 were released from a scaffold at different release rates (10 vs 28 days) yet maintained their angiogenic and osteogenic ability, respectively. Importantly, our data indicated that the released DFO significantly improved BMP2-induced osteogenic differentiation where the dose/duration was important for its effects in both mouse and human stem cell models. Thus, we developed a novel and tunable MSNs/GF 3D scaffold-mediated dual-drug delivery system and studied the potential application of the both FDA-approved DFO and BMP2 for bone tissue engineering.
Collapse
Affiliation(s)
- Qingqing Yao
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA; School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China; Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yangxi Liu
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Balaranjan Selvaratnam
- Department of Chemistry, University of South Dakota, 414 E. Clark Street, Vermillion 57069, SD, USA
| | - Ranjit T Koodali
- Department of Chemistry, University of South Dakota, 414 E. Clark Street, Vermillion 57069, SD, USA
| | - Hongli Sun
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA.
| |
Collapse
|
25
|
Herrmann M, Zeiter S, Eberli U, Hildebrand M, Camenisch K, Menzel U, Alini M, Verrier S, Stadelmann VA. Five Days Granulocyte Colony-Stimulating Factor Treatment Increases Bone Formation and Reduces Gap Size of a Rat Segmental Bone Defect: A Pilot Study. Front Bioeng Biotechnol 2018; 6:5. [PMID: 29484293 PMCID: PMC5816045 DOI: 10.3389/fbioe.2018.00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
Bone is an organ with high natural regenerative capacity and most fractures heal spontaneously when appropriate fracture fixation is provided. However, additional treatment is required for patients with large segmental defects exceeding the endogenous healing potential and for patients suffering from fracture non-unions. These cases are often associated with insufficient vascularization. Transplantation of CD34+ endothelial progenitor cells (EPCs) has been successfully applied to promote neovascularization of bone defects, however including extensive ex vivo manipulation of cells. Here, we hypothesized, that treatment with granulocyte colony-stimulating factor (G-CSF) may improve bone healing by mobilization of CD34+ progenitor cells into the circulation, which in turn may facilitate vascularization at the defect site. In this pilot study, we aimed to characterize the different cell populations mobilized by G-CSF and investigate the influence of cell mobilization on the healing of a critical size femoral defect in rats. Cell mobilization was investigated by flow cytometry at different time points after five consecutive daily G-CSF injections. In a pilot study, bone healing of a 4.5-mm critical femoral defect in F344 rats was compared between a saline-treated control group and a G-CSF treatment group. In vivo microcomputed tomography and histology were applied to compare bone formation in both treatment groups. Our data revealed that leukocyte counts show a peak increase at the first day after the last G-CSF injection. In addition, we found that CD34+ progenitor cells, including EPCs, were significantly enriched at day 1, and further increased at day 5 and day 11. Upregulation of monocytes, granulocytes and macrophages peaked at day 1. G-CSF treatment significantly increased bone volume and bone density in the defect, which was confirmed by histology. Our data show that different cell populations are mobilized by G-CSF treatment in cell specific patterns. Although in this pilot study no bridging of the critical defect was observed, significantly improved bone formation by G-CSF treatment was clearly shown.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | | |
Collapse
|
26
|
Drager J, Ramirez-GarciaLuna JL, Kumar A, Gbureck U, Harvey EJ, Barralet JE. Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair. Tissue Eng Part A 2017; 23:1372-1381. [DOI: 10.1089/ten.tea.2016.0526] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Justin Drager
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| | | | - Abhishek Kumar
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Edward J. Harvey
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
- Bone Engineering Labs, Research Institute-McGill University Health Centre, Montreal, Canada
| | - Jake E. Barralet
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| |
Collapse
|
27
|
Müller AS, Janjić K, Lilaj B, Edelmayer M, Agis H. Hypoxia-based strategies for regenerative dentistry—Views from the different dental fields. Arch Oral Biol 2017; 81:121-130. [DOI: 10.1016/j.archoralbio.2017.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
|
28
|
Hulley PA, Bishop T, Vernet A, Schneider JE, Edwards JR, Athanasou NA, Knowles HJ. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J Pathol 2017; 242:322-333. [PMID: 28418093 PMCID: PMC5518186 DOI: 10.1002/path.4906] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Osteogenic-angiogenic coupling is promoted by the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, provoking interest in HIF activation as a therapeutic strategy to improve osteoblast mineralization and treat pathological osteolysis. However, HIF also enhances the bone-resorbing activity of mature osteoclasts. It is therefore essential to determine the full effect(s) of HIF on both the formation and the bone-resorbing function of osteoclasts in order to understand how they might respond to such a strategy. Expression of HIF-1α mRNA and protein increased during osteoclast differentiation from CD14+ monocytic precursors, additionally inducing expression of the HIF-regulated glycolytic enzymes. However, HIF-1α siRNA only moderately affected osteoclast differentiation, accelerating fusion of precursor cells. HIF induction by inhibition of the regulatory prolyl-4-hydroxylase (PHD) enzymes reduced osteoclastogenesis, but was confirmed to enhance bone resorption by mature osteoclasts. Phd2+/- murine osteoclasts also exhibited enhanced bone resorption, associated with increased expression of resorption-associated Acp5, in comparison with wild-type cells from littermate controls. Phd3-/- bone marrow precursors displayed accelerated early fusion, mirroring results with HIF-1α siRNA. In vivo, Phd2+/- and Phd3-/- mice exhibited reduced trabecular bone mass, associated with reduced mineralization by Phd2+/- osteoblasts. These data indicate that HIF predominantly functions as a regulator of osteoclast-mediated bone resorption, with little effect on osteoclast differentiation. Inhibition of HIF might therefore represent an alternative strategy to treat diseases characterized by pathological levels of osteolysis. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philippa A Hulley
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aude Vernet
- BHF Experimental MR Unit, University of Oxford, Oxford, UK
| | | | - James R Edwards
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nick A Athanasou
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, UK
| | - Helen J Knowles
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Drager J, Sheikh Z, Zhang YL, Harvey EJ, Barralet JE. Local delivery of iron chelators reduces in vivo remodeling of a calcium phosphate bone graft substitute. Acta Biomater 2016; 42:411-419. [PMID: 27449336 DOI: 10.1016/j.actbio.2016.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Iron chelators are known activators of the Hypoxia Includible Factor-1α (HIF-1α) pathway, a critical cellular pathway involved in angiogenic responses to hypoxia. Local delivery of these chelators has shown promise in bone tissue engineering strategies by inducing angiogenesis and osteogenesis. Hypoxic microenvironments are also a stimulus for osteoclast differentiation and resorptive activity, a process likely mediated by HIF-1α. In vitro, low doses of the iron chelator Deferoxamine (DFO) has shown to induce HIF-1α mediated osteoclast formation and function. However other studies have proposed an opposite in vitro effect likely through HIF independent mechanisms. To investigate use of these medications in bioceramic based bone tissue engineering strategies this study aimed to determine the in vivo effect of local delivery of iron chelators on bioceramic remodeling. A non-weight bearing cranial onlay model was used to assess monetite resorption and new bone formation in the presence or absence of a repeated delivery of two iron chelators, DFO and 1,10 Phenanthroline (PHT) at doses known to induce HIF. We found a marked reduction graft resorption and remodeling associated with iron chelation. This was correlated to a 3-fold reduction in osteoclast number at the bone graft interface. Iron is needed for mitochondrial biogenesis during osteoclastic differentiation and reducing extracellular iron levels may inhibit this process and possibly overpower any HIF induced osteoclast formation. Our findings suggest that these inexpensive and widely available molecules may be used to locally reduce bioceramic scaffold resorption and encourages future investigations of iron chelators as bone anti-resorptive agents in other clinical contexts. STATEMENT OF SIGNIFICANCE Low doses of iron chelators can induce angiogenesis and osteogenesis in repairing bone by stimulating the oxygen sensitive gene; hypoxia inducible factor. These medications have potential to augment bioceramic based bone tissue engineering strategies without the downsides of protein-based growth factors. HIF activation is also known to stimulate osteoclast-mediated resorption and could potentially accelerate remodeling of biocermaics, however we have shown that the local delivery of iron chelation at doses known to induce HIF resulted in a reduction of monetite resorption and a significant decrease in osteoclast number at the bone graft interface. This maybe due to HIF independent mechanism. This is the first study to show a local effect of iron chelators in vivo on osteoclast-mediated resorption. This opens the potential of further study of these bifunctional medications to modulate resorption of biocermaics in environments where a prolonged presence of material is desired for graft site stability. Moreover these safe widely used medications can be explored to locally reduce osteoclasts in pathological bone resorption.
Collapse
Affiliation(s)
- Justin Drager
- Division of Orthopaedics, McGill University Health Center, 1650 Cedar Ave, Montreal, Qc H3G 1A4, Canada.
| | - Zeeshan Sheikh
- Faculty of Dentistry, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Yu Ling Zhang
- Division of Orthopaedics, McGill University Health Center, 1650 Cedar Ave, Montreal, Qc H3G 1A4, Canada; Faculty of Dentistry, McGill University, 3640, Rue University, Montreal, Qc H3A 0C7, Canada.
| | - Edward J Harvey
- Division of Orthopaedics, McGill University Health Center, 1650 Cedar Ave, Montreal, Qc H3G 1A4, Canada.
| | - Jake E Barralet
- Division of Orthopaedics, McGill University Health Center, 1650 Cedar Ave, Montreal, Qc H3G 1A4, Canada; Faculty of Dentistry, McGill University, 3640, Rue University, Montreal, Qc H3A 0C7, Canada.
| |
Collapse
|
30
|
Li L, Qu Y, Jin X, Guo XQ, Wang Y, Qi L, Yang J, Zhang P, Li LZ. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis. Sci Rep 2016; 6:32131. [PMID: 27558909 PMCID: PMC4997314 DOI: 10.1038/srep32131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/03/2016] [Indexed: 12/02/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling.
Collapse
Affiliation(s)
- Ling Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China.,Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ye Qu
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Xin Jin
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Xiao Qin Guo
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China.,Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Lin Qi
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Jing Yang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Peng Zhang
- Department of Orthopaedics, Affiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ling Zhi Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China.,Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| |
Collapse
|
31
|
Repair of segmental radial defects in dogs using tailor-made titanium mesh cages with plates combined with calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. J Artif Organs 2016; 20:91-98. [PMID: 27485094 DOI: 10.1007/s10047-016-0918-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/02/2016] [Indexed: 12/26/2022]
Abstract
Repair of large segmental defects of long bones are a tremendous challenge that calls for a novel approach to supporting immediate weight bearing and bone regeneration. This study investigated the functional and biological characteristics of a combination of a tailor-made titanium mesh cage with a plate (tTMCP) with tetrapod-shaped alpha tricalcium phosphate granules (TB) and basic fibroblast growth factor (bFGF)-binding ion complex gel (f-IC gel) to repair 20-mm segmental radial defects in dogs. The defects were created surgically in 18 adult beagle dogs and treated by implantation of tTMCPs with TB with (TB-gel group) or without (TB group) f-IC gel. Each tTMCP fitted the defect well, and all dogs could bear weight on the affected limb immediately after surgery. Dogs were euthanized 4, 8 and 24 weeks after implantation. Histomorphometry showed greater infiltration of new vessels and higher bone union rate in the TB-gel group than in the TB group. The lamellar bone volume and mineral apposition rate did not differ significantly between the groups, indicating that neovascularization may be the primary effect of f-IC gel on bone regeneration. This combination method which is tTMCP combined with TB and f-IC gel, would be useful for the treatment of segmental long bone defects.
Collapse
|
32
|
Jia P, Chen H, Kang H, Qi J, Zhao P, Jiang M, Guo L, Zhou Q, Qian ND, Zhou HB, Xu YJ, Fan Y, Deng LF. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis. J Biomed Mater Res A 2016; 104:2515-27. [PMID: 27227768 DOI: 10.1002/jbm.a.35793] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/18/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Peng Jia
- Department of Orthopaedics; San Xiang Road 1055, The Second Affiliated Hospital of Soochow University; Suzhou Jiangsu Province 215004 China
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Hao Chen
- Department of Orthopaedics; Shanghai Jiao Tong University School of Medicine, Shanghai Ren Ji Hospital; Pu Jian Road 160 Shanghai 200120 China
| | - Hui Kang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Jin Qi
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Peng Zhao
- Nursing Department; The Second Affiliated Hospital of Soochow University; San Xiang Road 1055 Suzhou Jiangsu Province China 215004
| | - Min Jiang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Lei Guo
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Nian Dong Qian
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - Han Bing Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| | - You Jia Xu
- Department of Orthopaedics; San Xiang Road 1055, The Second Affiliated Hospital of Soochow University; Suzhou Jiangsu Province 215004 China
| | - Yongqian Fan
- Department of Orthopaedics; Huadong Hospital Affiliated Fudan University; Yan'an Western Road 221 Shanghai 200040 China
| | - Lian Fu Deng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese Western Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; Rui Jin Er Road 197 Shanghai 200020 China
| |
Collapse
|
33
|
Rassu G, Salis A, Porcu EP, Giunchedi P, Roldo M, Gavini E. Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases. Carbohydr Polym 2016; 136:1338-47. [DOI: 10.1016/j.carbpol.2015.10.048] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/28/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
|
34
|
Esfahani M, Karimi F, Afshar S, Niknazar S, Sohrabi S, Najafi R. Prolyl hydroxylase inhibitors act as agents to enhance the efficiency of cell therapy. Expert Opin Biol Ther 2015; 15:1739-55. [PMID: 26325448 DOI: 10.1517/14712598.2015.1084281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION In stem cell-based therapy as a subtype of regenerative medicine, stem cells can be used to replace or repair injured tissue and cells in order to treat disease. Stem cells have the ability to integrate into injured areas and produce new cells via processes of proliferation and differentiation. Several studies have demonstrated that hypoxia increases self-renewal, proliferation and post-homing differentiation of stem cells through the regulation of hypoxia-inducible factor-1 (HIF-1)-mediated gene expression. Thus, pharmacological interventions including prolyl hydroxylase (PHD) inhibitors are considered as promising solutions for stem cell-based therapy. PHD inhibitors stabilize the HIF-1 and activate its pathway through preventing proteasomal degradation of HIF-1. AREAS COVERED This review focuses on the role of hypoxia, HIF-1 and especially PHD inhibitors on cell therapy. PHD structure and function are discussed as well as their inhibitors. In addition, we have investigated several preclinical studies in which PHD inhibitors improved the efficiency of cell-based therapies. EXPERT OPINION The data reviewed here suggest that PHD inhibitors are effective operators in improving stem cell therapy. However, because of some limitations, these compounds should be properly examined before clinical application.
Collapse
Affiliation(s)
- Maryam Esfahani
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Fatemeh Karimi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Saeid Afshar
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Somayeh Niknazar
- b 2 Shahid Beheshti University of Medical Science, Hearing Disorders Research Center , Tehran, the Islamic Republic of Iran
| | - Sareh Sohrabi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Rezvan Najafi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| |
Collapse
|
35
|
Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res 2015; 56:175-94. [PMID: 25803622 DOI: 10.3109/03008207.2015.1027341] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Collapse
Affiliation(s)
- Amin Bigham-Sadegh
- Faculty of Veterinary Medicine, Department of Veterinary Surgery and Radiology, Shahrekord University , Shahrekord , Iran and
| | | |
Collapse
|
36
|
Abstract
Hypoxia-inducible factor (HIF) signalling is intricately involved in coupling angiogenesis and osteogenesis during bone development and repair. Activation of HIFs in response to a hypoxic bone micro-environment stimulates the transcription of multiple genes with effects on angiogenesis, precursor cell recruitment and differentiation. Substantial progress has been made in our understanding of the molecular mechanisms by which oxygen content regulates the levels and activity of HIFs. In particular, the discovery of the role of oxygen-dependent hydroxylase enzymes in modulating the activity of HIF-1α has sparked interest in potentially promising therapeutic strategies in multiple clinical fields and most recently bone healing. Several small molecules, termed hypoxia mimics, have been identified as activators of the HIF pathway and have demonstrated augmentation of both bone vascularity and bone regeneration in vivo. In this review we discuss key elements of the hypoxic signalling pathway and its role in bone regeneration. Current strategies for the manipulation of this pathway for enhancing bone repair are presented with an emphasis on recent pre-clinical in vivo investigations. These findings suggest promising approaches for the development of therapies to improve bone repair and tissue engineering strategies.
Collapse
|
37
|
Machado EG, Issa JPM, Figueiredo FATD, Santos GRD, Galdeano EA, Alves MC, Chacon EL, Ferreira Junior RS, Barraviera B, Cunha MRD. A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects. Acta Histochem 2015; 117:288-96. [PMID: 25825118 DOI: 10.1016/j.acthis.2015.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 01/20/2023]
Abstract
Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5μg rhBMP-2), P-1 (defect filled with 5μg P-1), FS (defect filled with 8μg FS), FS/rhBMP-2 (defect filled with 8μg FS and 5μg rhBMP-2), FS/P-1 (defect filled with 8μg FS and 5μg P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p<0.05), except for the rhBMP-2 and FS/rhBMP-2 groups (p>0.05). A statistically significant difference (p<0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery.
Collapse
|
38
|
Matsumoto T, Sato S. Stimulating angiogenesis mitigates the unloading-induced reduction in osteogenesis in early-stage bone repair in rats. Physiol Rep 2015; 3:e12335. [PMID: 25780087 PMCID: PMC4393168 DOI: 10.14814/phy2.12335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 11/24/2022] Open
Abstract
Accelerating fracture healing during bed rest allows early mobilization and avoids prolonged fracture healing times. We tested the hypothesis that stimulating angiogenesis with deferoxamine (DFO) mitigates the unloading-induced reduction in early-stage bone repair. Rats aged 12 weeks were subjected to cortical drilling on their tibial diaphysis under anesthesia and treated with hindlimb unloading (HU), HU and DFO administration (DFOHU), or weight bearing (WB) for 5 or 10 days (HU5/10, DFOHU5/10, WB5/10; n = 8 per groups) until sacrifice for vascular casting with a zirconium dioxide-based contrast agent. Taking advantage of its absorption discontinuity at the K-absorption edge, vascular and bone images in the drill-hole defects were acquired by synchrotron radiation subtraction CT. Bone repair was reduced in HU rats. The bone volume fraction (B.Vf) was 88% smaller in HU5 and 42% smaller in HU10 than in WB5/10. The bone segment densities (B.Seg) were 97% smaller in HU5 and 141% larger in HU10 than in WB5/10, and bone thickness (B.Th) was 38% smaller in HU10 than in WB10. The vascular volume fraction (V.Vf) was 35% and the mean vessel diameter (V.D) was 13% smaller in HU10 than in WB10. When compared according to categorized vessel sizes, V.Vf in the diameter ranges 20-30, 30-40, and >40 μm were smaller in HU10 than in WB10, and V.Seg in the diameter range >40 μm was smaller in HU10 than in WB10. In contrast, there was no difference in B.Vf between DFOHU5/10 and WB5/10 and in V.Vf between DFOHU10 and WB10, though B.Seg remained 86% smaller in DFOHU5 and 94% larger in DFOHU10 than in WB5/10, and B.Th and V.D were 23% and 14% lower in DFOHU10 than in WB10. Vessel size-specific V.Vf in the diameter ranges 10-20 and 20-30 μm was larger in DFOHU5 than in HU5. In conclusion, the enhanced angiogenic ingrowth mitigates the reduction in bone repair during mechanical unloading.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Bioengineering Division, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| | - Shota Sato
- Bioengineering Division, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| |
Collapse
|
39
|
Gilbert SR, Camara J, Camara R, Duffy L, Waites K, Kim H, Zinn K. Contaminated open fracture and crush injury: a murine model. Bone Res 2015; 3:14050. [PMID: 26273534 PMCID: PMC4472147 DOI: 10.1038/boneres.2014.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 12/27/2022] Open
Abstract
Modern warfare has caused a large number of severe extremity injuries, many of which become infected. In more recent conflicts, a pattern of co-infection with Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus has emerged. We attempted to recreate this pattern in an animal model to evaluate the role of vascularity in contaminated open fractures. Historically, it has been observed that infected bones frequently appear hypovascular, but vascularity in association with bone infection has not been examined in animal models. Adult rats underwent femur fracture and muscle crush injury followed by stabilization and bacterial contamination with A. baumannii complex and methicillin-resistant Staphylococcus aureus. Vascularity and perfusion were assessed by microCT angiography and SPECT scanning, respectively, at 1, 2 and 4 weeks after injury. Quantitative bacterial cultures were also obtained. Multi-bacterial infections were successfully created, with methicillin-resistant S. aureus predominating. There was overall increase in blood flow to injured limbs that was markedly greater in bacteria-inoculated limbs. Vessel volume was greater in the infected group. Quadriceps atrophy was seen in both groups, but was greater in the infected group. In this animal model, infected open fractures had greater perfusion and vascularity than non-infected limbs.
Collapse
Affiliation(s)
- Shawn R Gilbert
- Department of Surgery, University of Alabama at Birmingham , AL USA
| | | | | | - Lynn Duffy
- Departments of Pathology, University of Alabama at Birmingham , AL USA
| | - Ken Waites
- Departments of Pathology, University of Alabama at Birmingham , AL USA
| | - Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham , AL USA
| | - Kurt Zinn
- Department of Radiology, University of Alabama at Birmingham , AL USA
| |
Collapse
|
40
|
Peng J, Lai ZG, Fang ZL, Xing S, Hui K, Hao C, Jin Q, Qi Z, Shen WJ, Dong QN, Bing ZH, Fu DL. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS One 2014; 9:e112744. [PMID: 25394221 PMCID: PMC4231053 DOI: 10.1371/journal.pone.0112744] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/12/2014] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-inducible factor 1-α (HIF-1α) plays a critical role in angiogenesis-osteogenesis coupling during bone development and bone regeneration. Previous studies have shown that 17β-estradiol activates the HIF-1α signaling pathway and that mice with conditional activation of the HIF-1α signaling pathway in osteoblasts are protected from ovariectomy (OVX)-induced bone loss. In addition, it has been shown that hypoxia facilitates the osteogenic differentiation of mesenchymal stem cells (MSCs) and modulates Wnt/β-catenin signaling. Therefore, we hypothesized that activation of the HIF-1α signaling pathway by hypoxia-mimicking agents would prevent bone loss due to estrogen deficiency. In this study, we confirmed the effect of dimethyloxalylglycine (DMOG), a hypoxia-mimicking agent, on the HIF-1α signaling pathway and investigated the effect of DMOG on MSC osteogenic differentiation and the Wnt/β-catenin signaling pathway. We then investigated the effect of DMOG treatment on OVX-induced bone loss. Female C57BL/6J mice were divided into sham, OVX, OVX+L-DMOG (5 mg/kg/day), and OVX+H-DMOG (20 mg/kg/day) groups. At sacrifice, static and dynamic bone histomorphometry were performed with micro computed tomography (micro-CT) and undecalcified sections, respectively. Bone strength was assessed with the three-point bending test, and femur vessels were reconstructed and analyzed by micro-CT. Serum vascular endothelial growth factor (VEGF), osteocalcin, and C-terminal telopeptides of collagen type(CTX) were measured by ELISA. Tartrate-resistant acid phosphatase staining was used to assess osteoclast formation. Alterations in the HIF-1α and Wnt/β-catenin signaling pathways in the bone were detected by western blot. Our results showed that DMOG activated the HIF-1α signaling pathway, which further activated the Wnt/β-catenin signaling pathway and enhanced MSC osteogenic differentiation. The micro-CT results showed that DMOG treatment improved trabecular bone density and restored the bone microarchitecture and blood vessels in OVX mice. Bone strength was also partly restored in DMOG-treated OVX mice. Dynamic bone histomorphometric analysis of the femur metaphysic revealed that DMOG increased the mineralizing surface, mineral apposition rate, and bone formation rate. The serum levels of VEGF and osteocalcin were higher in DMOG-treated OVX mice. However, there were no significant differences in serum CTX or in the number of tartrate-resistant acid phosphatase-stained cells between DMOG-treated OVX mice and OVX mice. Western blot results showed that DMOG administration partly rescued the decrease in HIF-1α and β-catenin expression following ovariectomy. Collectively, these results indicate that DMOG prevents bone loss due to ovariectomy in C57BL/6J mice by enhancing angiogenesis and osteogenesis, which are associated with activated HIF-1α and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Jia Peng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo Gui Lai
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, Qian Fo Shan Hospital, Shang Dong University, Ji Nan, China
| | - Zhang Lian Fang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Xing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Hui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Hao
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Qi
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Jin Shen
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Nian Dong
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Han Bing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Lian Fu
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Li J, Fan L, Yu Z, Dang X, Wang K. The effect of deferoxamine on angiogenesis and bone repair in steroid-induced osteonecrosis of rabbit femoral heads. Exp Biol Med (Maywood) 2014; 240:273-80. [PMID: 25294892 DOI: 10.1177/1535370214553906] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we examined whether local deferoxamine (DFO) administration can promote angiogenesis and bone repair in steroid-induced osteonecrosis of the femoral head (ONFH). Steroid-induced ONFH was induced in 65 mature male New Zealand white rabbits by methylprednisolone in combination with lipopolysaccharide. Six weeks later, the rabbits received no treatment (model group, N = 15), bilateral core decompression (CD group, N = 20) or CD in combination with local DFO administration (DFO group, N = 20). Six weeks after the surgery, vascularization in the femoral head was evaluated by ink artery infusion angiography and immunohistochemical staining for von Willebrand Factor (vWF). Bone repair was assessed by histologic analysis and micro-computed tomography (micro-CT). Immunohistochemical staining was performed to analyze the expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN). Ink artery infusion angiography and microvessel analysis by immuohistochemical staining for vWF showed more blood vessels in the DFO group than other groups. The expression of HIF-1α, VEGF, BMP-2, and OCN, indicated by immunohistochemical staining, was higher in the DFO group compared with other groups. Micro-CT scanning results indicated that the DFO group had larger volume of newly formed bone than the CD group. This work indicated that local DFO administration improved angiogenesis and bone repair of early stage ONFH in rabbit model, and it may offer an efficient, economic, and simple therapy for early stage ONFH.
Collapse
Affiliation(s)
- Jia Li
- The First Department of Orthopedics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi Province 710004, China
| | - Lihong Fan
- The First Department of Orthopedics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi Province 710004, China
| | - Zefeng Yu
- The First Department of Orthopedics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi Province 710004, China
| | - Xiaoqian Dang
- The First Department of Orthopedics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi Province 710004, China
| | - Kunzheng Wang
- The First Department of Orthopedics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi Province 710004, China
| |
Collapse
|
42
|
Kuchler U, Keibl C, Fügl A, Schwarze UY, Tangl S, Agis H, Gruber R. Dimethyloxalylglycine lyophilized onto bone substitutes increase vessel area in rat calvarial defects. Clin Oral Implants Res 2014; 26:485-91. [DOI: 10.1111/clr.12474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Ulrike Kuchler
- Department of Oral Surgery; Medical University of Vienna; Vienna Austria
- Department of Oral Surgery and Stomatology; University of Berne; Berne Switzerland
| | - Claudia Keibl
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Vienna Austria
| | - Alexander Fügl
- Department of Oral Surgery; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Uwe Y. Schwarze
- Department of Oral Surgery; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research; Department of Oral Surgery; Medical University of Vienna; Vienna Austria
| | - Stefan Tangl
- Department of Oral Surgery; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research; Department of Oral Surgery; Medical University of Vienna; Vienna Austria
| | - Hermann Agis
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Conservative Dentistry and Periodontology; Medical University of Vienna; Vienna Austria
| | - Reinhard Gruber
- Department of Oral Surgery; Medical University of Vienna; Vienna Austria
- Department of Oral Surgery and Stomatology; University of Berne; Berne Switzerland
- Laboratory of Oral Cell Biology; School of Dental Medicine; University of Berne; Berne Switzerland
| |
Collapse
|
43
|
Abstract
Angiogenesis is a vital component of bone healing. The formation of the new blood vessels at the fracture site restores the hypoxia and nutrient deprivation found at the early stages after fracture whilst at a later stage facilitates osteogenesis by the activity of the osteoprogenitor cells. Emerging evidence suggests that there are certain molecules and gene therapies that could promote new blood vessel formation and as a consequence enhance the local bone healing response. This article summarizes the current in vivo evidence on therapeutic approaches aiming at the augmentation of the angiogenic signalling during bone repair.
Collapse
|
44
|
The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239356. [PMID: 24895555 PMCID: PMC4034436 DOI: 10.1155/2014/239356] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/23/2014] [Accepted: 02/16/2014] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs). PHD inhibitors (PHIs) activate the HIF pathway by preventing degradation of HIF-α via inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF), are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.
Collapse
|
45
|
Honnami M, Choi S, Liu IL, Kamimura W, Taguchi T, Hojo H, Shimohata N, Ohba S, Koyama H, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Bone regeneration by the combined use of tetrapod-shaped calcium phosphate granules with basic fibroblast growth factor-binding ion complex gel in canine segmental radial defects. J Vet Med Sci 2014; 76:955-61. [PMID: 24670963 PMCID: PMC4143656 DOI: 10.1292/jvms.14-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The effect of tetrapod-shaped alpha tricalcium phosphate granules (Tetrabones(®) [TB]) in combination with basic fibroblast growth factor (bFGF)-binding ion complex gel (f-IC gel) on bone defect repair was examined. Bilateral segmental defects 20-mm long were created in the radius of 5 dogs, stabilized with a plate and screws and implanted with 1 of the following: TB (TB group), TB and bFGF solution (TB/f group), and TB and f-IC gel (TB/f-IC group). Dogs were euthanized 4 weeks after surgery. Radiographs showed well-placed TB granules in the defects and equal osseous callus formation in all the groups. Histomorphometry revealed that the number of vessels and volume of new bone in the TB/f-IC group were significantly higher than those in the other groups. However, no significant differences in neovascularization and new bone formation were observed between the TB/f and TB groups. Furthermore, no significant difference in the lamellar bone volume or rate of mineral apposition was observed among groups. These results suggest that increased bone formation might have been because of the promotion of neovascularization by the f-IC gel. Therefore, the combinatorial method may provide a suitable scaffold for bone regeneration in large segmental long bone defects.
Collapse
Affiliation(s)
- Muneki Honnami
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Popa NL, Wergedal JE, Lau KHW, Mohan S, Rundle CH. Urokinase plasminogen activator gene deficiency inhibits fracture cartilage remodeling. J Bone Miner Metab 2014; 32:124-35. [PMID: 23700285 DOI: 10.1007/s00774-013-0475-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 04/18/2013] [Indexed: 01/08/2023]
Abstract
Urokinase plasminogen activator (uPA) regulates a proteolytic cascade of extracellular matrix degradation that functions in tissue development and tissue repair. The development and remodeling of the skeletal extracellular matrix during wound healing suggests that uPA might regulate bone development and repair. To determine whether uPA functions regulate bone development and repair, we examined the basal skeletal phenotype and endochondral bone fracture repair in uPA-deficient mice. The skeletal phenotype of uPA knockout mice was compared with that of control mice under basal conditions by dual-energy X-ray absorptiometry and micro-CT analysis, and during femur fracture repair by micro-CT and histological examination of the fracture callus. No effects of uPA gene deficiency were observed in the basal skeletal phenotype of the whole body or the femur. However, uPA gene deficiency resulted in increased fracture callus cartilage abundance during femur fracture repair at 14 days healing. The increase in cartilage corresponded to reduced tartrate-resistant acid phosphatase (TRAP) staining for osteoclasts in the uPA knockout fracture callus at this time, consistent with impaired osteoclast-mediated remodeling of the fracture cartilage. CD31 staining was reduced in the knockout fracture tissues at this time, suggesting that angiogenesis was also reduced. Osteoclasts also colocalized with CD31 expression in the endothelial cells of the fracture tissues during callus remodeling. These results indicate that uPA promotes remodeling of the fracture cartilage by osteoclasts that are associated with angiogenesis and suggest that uPA promotes angiogenesis and remodeling of the fracture cartilage at this time of bone fracture repair.
Collapse
Affiliation(s)
- Nicoleta L Popa
- Musculoskeletal Disease Center, Research Service (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | | | | | | | | |
Collapse
|
47
|
Kim JK, Kim SE, Shim KM, Bae CS, Choi SH, Kang SS. Effects of mesenchymal stem cells treated with BMP-2 and VEGF on regeneration of large bone defects. J Biomed Res 2014. [DOI: 10.12729/jbr.2014.15.1.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Grewal BS, Keller B, Weinhold P, Dahners LE. Evaluating effects of deferoxamine in a rat tibia critical bone defect model. J Orthop 2013; 11:5-9. [PMID: 24719526 DOI: 10.1016/j.jor.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/07/2013] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Evaluate the use of deferoxamine in a calcium sulfate carrier to promote fracture healing in a critical bone defect model. METHODS 43 female retired breeders were divided randomly into Control, Carrier, DFO and BMP groups and appropriate agents placed at the osteotomy site. RESULTS There was a significant difference in the mean gap between groups Control vs DFO and Control vs BMP. A higher mean number of cortices were bridged in the DFO group as compared to the Control group. CONCLUSIONS Our study demonstrated that DFO helped reduce the gap in this critical tibia defect.
Collapse
Affiliation(s)
- Bikramjit S Grewal
- Department of Orthopaedics, University of North Carolina Hospitals, NC 27514, USA
| | - Benjamin Keller
- Joint Department of Biomedical Engineering, University of North Carolina, NC 27599, USA
| | - Paul Weinhold
- Department of Orthopaedics, University of North Carolina Hospitals, NC 27514, USA ; Joint Department of Biomedical Engineering, University of North Carolina, NC 27599, USA
| | - Laurence E Dahners
- Department of Orthopaedics, University of North Carolina Hospitals, NC 27514, USA
| |
Collapse
|
49
|
Honnami M, Choi S, Liu IL, Kamimura W, Taguchi T, Hojo H, Shimohata N, Ohba S, Koyama H, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Repair of rabbit segmental femoral defects by using a combination of tetrapod-shaped calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. Biomaterials 2013; 34:9056-62. [DOI: 10.1016/j.biomaterials.2013.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/07/2013] [Indexed: 12/29/2022]
|
50
|
Page JM, Harmata AJ, Guelcher SA. Design and development of reactive injectable and settable polymeric biomaterials. J Biomed Mater Res A 2013; 101:3630-3645. [PMID: 23661623 DOI: 10.1002/jbm.a.34665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 01/07/2025]
Abstract
Injectable and settable biomaterials are a growing class of therapeutic technologies within the field of regenerative medicine. These materials offer advantages compared to prefabricated implants because of their ability to be utilized as part of noninvasive surgical procedures, fill complex defect shapes, cure in situ, and incorporate cells and other active biologics. However, there are significant technical barriers to clinical translation of injectable and settable biomaterials, such as achieving clinically relevant handling properties and benign reaction conditions. This review focuses on the engineering challenges associated with the design and development of injectable and chemically settable polymeric biomaterials. Additionally, specific examples of the diverse chemistries utilized to overcome these challenges are covered. The future translation of injectable and settable biomaterials is anticipated to improve patient outcomes for a number of clinical conditions.
Collapse
Affiliation(s)
- Jonathan M Page
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|