1
|
Juan C, Bancroft AC, Choi JH, Nunez JH, Pagani CA, Lin YS, Hsiao EC, Levi B. Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification. Biomolecules 2024; 14:349. [PMID: 38540768 PMCID: PMC10968060 DOI: 10.3390/biom14030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP). Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor, inflammatory, and nerve cells, among others, making it a challenging process to understand. Research into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis. Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients. As such, it is necessary to draw on advancements made in the study of tHO and gHO to better diagnose, comprehend, prevent, and treat both.
Collapse
Affiliation(s)
- Conan Juan
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Alec C. Bancroft
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Johanna H. Nunez
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Chase A. Pagani
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Yen-Sheng Lin
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California San Francisco Medical Center, San Francisco, CA 94143, USA;
| | - Benjamin Levi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| |
Collapse
|
2
|
Liu F, Zhao Y, Pei Y, Lian F, Lin H. Role of the NF-kB signalling pathway in heterotopic ossification: biological and therapeutic significance. Cell Commun Signal 2024; 22:159. [PMID: 38439078 PMCID: PMC10910758 DOI: 10.1186/s12964-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process in which ectopic bone develops in soft tissues within the skeletal system. Endochondral ossification can be divided into the following types of acquired and inherited ossification: traumatic HO (tHO) and fibrodysplasia ossificans progressiva (FOP). Nuclear transcription factor kappa B (NF-κB) signalling is essential during HO. NF-κB signalling can drive initial inflammation through interactions with the NOD-like receptor protein 3 (NLRP3) inflammasome, Sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK). In the chondrogenesis stage, NF-κB signalling can promote chondrogenesis through interactions with mechanistic target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/AKT (protein kinase B, PKB) and other molecules, including R-spondin 2 (Rspo2) and SRY-box 9 (Sox9). NF-κB expression can modulate osteoblast differentiation by upregulating secreted protein acidic and rich in cysteine (SPARC) and interacting with mTOR signalling, bone morphogenetic protein (BMP) signalling or integrin-mediated signalling under stretch stimulation in the final osteogenic stage. In FOP, mutated ACVR1-induced NF-κB signalling exacerbates inflammation in macrophages and can promote chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs) through interactions with smad signalling and mTOR signalling. This review summarizes the molecular mechanism of NF-κB signalling during HO and highlights potential therapeutics for treating HO.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yike Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yiran Pei
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Fengyu Lian
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
3
|
Leyder D, Döbele S, Konrads C, Histing T, Fischer CS, Ahrend MD, Ziegler P. Classification and Incidence of Heterotopic Ossifications in Relation to NSAID Prophylaxis after Elbow Trauma. J Clin Med 2024; 13:667. [PMID: 38337359 PMCID: PMC10856632 DOI: 10.3390/jcm13030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Heterotopic ossification (HO) after elbow trauma can be responsible for significant motion restrictions. The study's primary aim was to develop a new X-ray-based classification for HO of the elbow. This retrospective study analyzed elbow injury radiographs from 138 patients aged 6-85 years (mean 45.9 ± 18) who underwent operative treatment. The new classification was applied at 6 weeks, 12 weeks, and 6 months postoperatively. The severity of HO was graded from 0 to 4 and localization was defined as r (radial), p (posterior), u (ulnar) or a (anterior) by two observers. The patients were categorized based on injury location and use of non-steroidal anti-inflammatory drugs (NSAIDs) for HO prophylaxis. The correlations between the generated data sets were analyzed using Chi-square tests (χ2) with a significance level of p < 0.05. The inter- and intraobserver reliability was assessed using Cohen's Kappa. In 50.7% of the evaluated X-rays, the formation of HO could be detected after 12 weeks, and in 60% after 6 months. The analysis showed a significant correlation between the injury's location and the HO's location after 12 weeks (p = 0.003). The use of an NSAID prophylaxis did not show a significant correlation with the severity of HO. The classification showed nearly perfect inter- (κ = 0.951, p < 0.001) and intrareliability (κ = 0.946, p < 0.001) according to the criteria of Landis and Koch. Based on the presented classification, the dimension and localization of HO in the X-ray image can be described in more detail compared to previously established classifications and, thus, can increase the comparability of results across studies.
Collapse
Affiliation(s)
- Diane Leyder
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Döbele
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
- Medical Faculty, University of Tübingen, 72074 Tübingen, Germany; (C.K.)
| | - Christian Konrads
- Medical Faculty, University of Tübingen, 72074 Tübingen, Germany; (C.K.)
- Department of Orthopaedics and Traumatology, Helios Hanseatic Hospital Stralsund, 18435 Stralsund, Germany
| | - Tina Histing
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Cornelius S. Fischer
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Marc-Daniel Ahrend
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Patrick Ziegler
- Medical Faculty, University of Tübingen, 72074 Tübingen, Germany; (C.K.)
- Department of Orthopaedics and Trauma Surgery, Klinik Gut, 7500 St. Moritz, Switzerland
| |
Collapse
|
4
|
Rowe CJ, Nwaolu U, Salinas D, Hong J, Nunez J, Lansford JL, McCarthy CF, Potter BK, Levi BH, Davis TA. Inhibition of focal adhesion kinase 2 results in a macrophage polarization shift to M2 which attenuates local and systemic inflammation and reduces heterotopic ossification after polysystem extremity trauma. Front Immunol 2023; 14:1280884. [PMID: 38116014 PMCID: PMC10728492 DOI: 10.3389/fimmu.2023.1280884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Heterotopic ossification (HO) is a complex pathology often observed in combat injured casualties who have sustained severe, high energy polytraumatic extremity injuries. Once HO has developed, prophylactic therapies are limited outside of surgical excision. Tourniquet-induced ischemia injury (IR) exacerbates trauma-mediated musculoskeletal tissue injury, inflammation, osteogenic progenitor cell development and HO formation. Others have shown that focal adhesion kinase-2 (FAK2) plays a key role in regulating early inflammatory signaling events. Therefore, we hypothesized that targeting FAK2 prophylactically would mitigate extremity trauma induced IR inflammation and HO formation. Methods We tested whether the continuous infusion of a FAK2 inhibitor (Defactinib, PF-573228; 6.94 µg/kg/min for 14 days) can mitigate ectopic bone formation (HO) using an established blast-related extremity injury model involving femoral fracture, quadriceps crush injury, three hours of tourniquet-induced limb ischemia, and hindlimb amputation through the fracture site. Tissue inflammation, infiltrating cells, osteogenic progenitor cell content were assessed at POD-7. Micro-computed tomography imaging was used to quantify mature HO at POD-56. Results In comparison to vehicle control-treated rats, FAK2 administration resulted in no marked wound healing complications or weight loss. FAK2 treatment decreased HO by 43%. At POD-7, marked reductions in tissue proinflammatory gene expression and assayable osteogenic progenitor cells were measured, albeit no significant changes in expression patterns of angiogenic, chondrogenic and osteogenic genes. At the same timepoint, injured tissue from FAK-treated rats had fewer infiltrating cells. Additionally, gene expression analyses of tissue infiltrating cells resulted in a more measurable shift from an M1 inflammatory to an M2 anti-inflammatory macrophage phenotype in the FAK2 inhibitor-treated group. Discussion Our findings suggest that FAK2 inhibition may be a novel strategy to dampen trauma-induced inflammation and attenuate HO in patients at high risk as a consequence of severe musculoskeletal polytrauma.
Collapse
Affiliation(s)
- Cassie J. Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Uloma Nwaolu
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Daniela Salinas
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jonathan Hong
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, United States
| | - Johanna Nunez
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, United States
| | - Jefferson L. Lansford
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
| | - Conor F. McCarthy
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
| | - Benjamin K. Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
| | - Benjamin H. Levi
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, United States
| | - Thomas A. Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
5
|
Salga M, Samuel SG, Tseng HW, Gatin L, Girard D, Rival B, Barbier V, Bisht K, Shatunova S, Debaud C, Winkler IG, Paquereau J, Dinh A, Genêt G, Kerever S, Abback PS, Banzet S, Genêt F, Lévesque JP, Alexander KA. Bacterial Lipopolysaccharides Exacerbate Neurogenic Heterotopic Ossification Development. J Bone Miner Res 2023; 38:1700-1717. [PMID: 37602772 DOI: 10.1002/jbmr.4905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Neurogenic heterotopic ossifications (NHO) are heterotopic bones that develop in periarticular muscles after severe central nervous system (CNS) injuries. Several retrospective studies have shown that NHO prevalence is higher in patients who suffer concomitant infections. However, it is unclear whether these infections directly contribute to NHO development or reflect the immunodepression observed in patients with CNS injury. Using our mouse model of NHO induced by spinal cord injury (SCI) between vertebrae T11 to T13 , we demonstrate that lipopolysaccharides (LPS) from gram-negative bacteria exacerbate NHO development in a toll-like receptor-4 (TLR4)-dependent manner, signaling through the TIR-domain-containing adapter-inducing interferon-β (TRIF/TICAM1) adaptor rather than the myeloid differentiation primary response-88 (MYD88) adaptor. We find that T11 to T13 SCI did not significantly alter intestinal integrity nor cause intestinal bacteria translocation or endotoxemia, suggesting that NHO development is not driven by endotoxins from the gut in this model of SCI-induced NHO. Relevant to the human pathology, LPS increased expression of osteoblast markers in cultures of human fibro-adipogenic progenitors isolated from muscles surrounding NHO biopsies. In a case-control retrospective study in patients with traumatic brain injuries, infections with gram-negative Pseudomonas species were significantly associated with NHO development. Together these data suggest a functional association between gram-negative bacterial infections and NHO development and highlights infection management as a key consideration to avoid NHO development in patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Marjorie Salga
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Selwin G Samuel
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, India
| | - Hsu-Wen Tseng
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Laure Gatin
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
- Department of Orthopedic Surgery, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Bastien Rival
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Valérie Barbier
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kavita Bisht
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Svetlana Shatunova
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Charlotte Debaud
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Ingrid G Winkler
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Julie Paquereau
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Aurélien Dinh
- Department of Infectious Diseases, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Guillaume Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Sébastien Kerever
- Department of Anesthesiology and Critical Care, Lariboisière University Hospital, AP-HP, Paris, France
| | - Paer-Sélim Abback
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP, Clichy, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - François Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Jean-Pierre Lévesque
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kylie A Alexander
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
6
|
Rowe CJ, Mang J, Huang B, Dommaraju K, Potter BK, Schobel SA, Gann ER, Davis TA. Systemic inflammation induced from remote extremity trauma is a critical driver of secondary brain injury. Mol Cell Neurosci 2023; 126:103878. [PMID: 37451414 DOI: 10.1016/j.mcn.2023.103878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Blast exposure, commonly experienced by military personnel, can cause devastating life-threatening polysystem trauma. Despite considerable research efforts, the impact of the systemic inflammatory response after major trauma on secondary brain injury-inflammation is largely unknown. The aim of this study was to identify markers underlying the susceptibility and early onset of neuroinflammation in three rat trauma models: (1) blast overpressure exposure (BOP), (2) complex extremity trauma (CET) involving femur fracture, crush injury, tourniquet-induced ischemia, and transfemoral amputation through the fracture site, and (3) BOP+CET. Six hours post-injury, intact brains were harvested and dissected to obtain biopsies from the prefrontal cortex, striatum, neocortex, hippocampus, amygdala, thalamus, hypothalamus, and cerebellum. Custom low-density microarray datasets were used to identify, interpret and visualize genes significant (p < 0.05 for differential expression [DEGs]; 86 neuroinflammation-associated) using a custom python-based computer program, principal component analysis, heatmaps and volcano plots. Gene set and pathway enrichment analyses of the DEGs was performed using R and STRING for protein-protein interaction (PPI) to identify and explore key genes and signaling networks. Transcript profiles were similar across all regions in naïve brains with similar expression levels involving neurotransmission and transcription functions and undetectable to low-levels of inflammation-related mediators. Trauma-induced neuroinflammation across all anatomical brain regions correlated with injury severity (BOP+CET > CET > BOP). The most pronounced differences in neuroinflammatory-neurodegenerative gene regulation were between blast-associated trauma (BOP, BOP+CET) and CET. Following BOP, there were few DEGs detected amongst all 8 brain regions, most were related to cytokines/chemokines and chemokine receptors, where PPI analysis revealed Il1b as a potential central hub gene. In contrast, CET led to a more excessive and diverse pro-neuroinflammatory reaction in which Il6 was identified as the central hub gene. Analysis of the of the BOP+CET dataset, revealed a more global heightened response (Cxcr2, Il1b, and Il6) as well as the expression of additional functional regulatory networks/hub genes (Ccl2, Ccl3, and Ccl4) which are known to play a critical role in the rapid recruitment and activation of immune cells via chemokine/cytokine signaling. These findings provide a foundation for discerning pathophysiological consequences of acute extremity injury and systemic inflammation following various forms of trauma in the brain.
Collapse
Affiliation(s)
- Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Josef Mang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Benjamin Huang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Kalpana Dommaraju
- Student Bioinformatics Initiative (SBI), Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Benjamin K Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Seth A Schobel
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Eric R Gann
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
7
|
Liu H, Li J, Hu Y, Guo J, Lou T, Luo G, Chen S, Wang W, Ruan H, Sun Z, Fan C. Association Between Tranexamic Acid Use and Heterotopic Ossification Prevalence After Elbow Trauma Surgery: A Propensity-Score-Matched Cohort Study. J Bone Joint Surg Am 2023; 105:1093-1100. [PMID: 37339180 DOI: 10.2106/jbjs.22.01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) is a common complication of elbow trauma that can affect limb mobility. Inflammation is an initiating factor for HO formation. Tranexamic acid (TXA) can reduce the inflammatory response after orthopaedic surgery. However, evidence regarding the effectiveness of TXA use for HO prevention after elbow trauma surgery is lacking. METHODS This retrospective observational propensity-score-matched (PSM) cohort study was conducted from July 1, 2019, to June 30, 2021, at the National Orthopedics Clinical Medical Center, Shanghai, People's Republic of China. A total of 640 patients who underwent surgery following elbow trauma were evaluated. The present study excluded patients with an age of <18 years; those with a history of elbow fracture; those with a central nervous system injury, spinal cord injury, burn injury, or destructive injury; and those who had been lost to follow-up. After 1:1 matching on the basis of sex, age, dominant arm, injury type, open injury, comminuted fracture, ipsilateral trauma, time from injury to surgery, and nonsteroidal anti-inflammatory drug use, the TXA group and the no-TXA group comprised 241 patients each. RESULTS In the PSM population, the prevalence of HO was 8.71% in the TXA group and 16.18% in the no-TXA group (with rates of 2.07% and 5.80% for clinically important HO, respectively). Logistic regression analyses showed that TXA use was associated with a lower rate of HO (odds ratio [OR], 0.49; 95% CI, 0.28 to 0.86; p = 0.014) than no TXA use, as well as with a lower rate of clinically important HO (OR, 0.34; 95% CI, 0.11 to 0.91; p = 0.044). None of the baseline covariates significantly affected the relationship between TXA use and HO rate (p > 0.05 for all). Sensitivity analyses supported these findings. CONCLUSIONS TXA prophylaxis may be an appropriate method for the prevention of HO following elbow trauma. LEVEL OF EVIDENCE Therapeutic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Hang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| | - Yuehao Hu
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tengfei Lou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| | - Gang Luo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| | - Shuai Chen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| | - Wei Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| | - Hongjiang Ruan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| | - Ziyang Sun
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Hou J, Chen J, Fan J, Tang Z, Zhou W, Lin H. Inhibition of NF-κB Signaling-Mediated Crosstalk Between Macrophages and Preosteoblasts by Metformin Alleviates Trauma-Induced Heterotopic Ossification. Inflammation 2023:10.1007/s10753-023-01817-2. [PMID: 37115368 DOI: 10.1007/s10753-023-01817-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Heterotopic ossification (HO) is a pathological condition that occurs in soft tissues following severe trauma. The exact pathogenesis of HO remains unclear. Studies have shown that inflammation predisposes patients to the development of HO and triggers ectopic bone formation. Macrophages are crucial mediators of inflammation and are involved in HO development. The present study investigated the inhibitory effect and underlying mechanism of metformin on macrophage infiltration and traumatic HO in mice. Our results found that abundant levels of macrophages were recruited to the injury site during early HO progression and that early administration of metformin prevented traumatic HO in mice. Furthermore, we found that metformin attenuated macrophage infiltration and the NF-κB signaling pathway in injured tissue. The monocyte-to-macrophage transition in vitro was suppressed by metformin and this event was mediated by AMPK. Finally, we showed that inflammatory mediator's regulation by macrophages targeted preosteoblasts, leading to elevated BMP signaling, and osteogenic differentiation and driving HO formation, and this effect was blocked after the activation of AMPK in macrophages. Collectively, our study suggests that metformin prevents traumatic HO by inhibiting of NF-κB signaling in macrophages and subsequently attenuating BMP signaling and osteogenic differentiation in preosteoblasts. Therefore, metformin may serve as a therapeutic drug for traumatic HO by targeting NF-κB signaling in macrophages.
Collapse
Affiliation(s)
- Jia Hou
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jie Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jingjing Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhimin Tang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenwen Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Xu Z, Rao ZZ, Tang ZW, Song ZQ, Zeng M, Gong HL, Wen J. Post-traumatic heterotopic ossification in front of the ankle joint for 23 years: A case report and review of literature. World J Clin Cases 2023; 11:193-200. [PMID: 36687178 PMCID: PMC9846978 DOI: 10.12998/wjcc.v11.i1.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Heterotopic ossification (HO) refers to the formation of new bone in non-skeletal tissues such as muscles, tendons or other soft tissues. Severe muscle and soft tissue injury often lead to the formation of HO. However, anterior HO of the ankle is rarely reported. CASE SUMMARY We report a patient with massive HO in front of the ankle joint for 23 years. In 1998, the patient was injured by a falling object on the right lower extremity, which gradually formed a massive heterotopic bone change in the right calf and dorsum of the foot. The patient did not develop gradual ankle function limitations until nearly 36 mo ago, and underwent resection of HO. Even after 23 years and resection of HO, the ankle joint was still able to move. CONCLUSION It is recommended that the orthopedist should be aware of HO and distinguish it from bone tumor.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhou-Zhou Rao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, Hunan Province, China
| | - Zhong-Wen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhen-Qi Song
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Ming Zeng
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Hao-Li Gong
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha 410013, Hunan, China
| |
Collapse
|
10
|
Bozzay JD, Walker PF, Atwood RE, DeSpain RW, Parker WJ, Chertow DS, Mares JA, Leonhardt CL, Elster EA, Bradley MJ. Development, refinement, and characterization of a nonhuman primate critical care environment. PLoS One 2023; 18:e0281548. [PMID: 36930612 PMCID: PMC10022766 DOI: 10.1371/journal.pone.0281548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/17/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Systemic inflammatory response remains a poorly understood cause of morbidity and mortality after traumatic injury. Recent nonhuman primate (NHP) trauma models have been used to characterize the systemic response to trauma, but none have incorporated a critical care phase without the use of general anesthesia. We describe the development of a prolonged critical care environment with sedation and ventilation support, and also report corresponding NHP biologic and inflammatory markers. METHODS Eight adult male rhesus macaques underwent ventilation with sedation for 48-96 hours in a critical care setting. Three of these NHPs underwent "sham" procedures as part of trauma control model development. Blood counts, chemistries, coagulation studies, and cytokines/chemokines were collected throughout the study, and histopathologic analysis was conducted at necropsy. RESULTS Eight NHPs were intentionally survived and extubated. Three NHPs were euthanized at 72-96 hours without extubation. Transaminitis occurred over the duration of ventilation, but renal function, acid-base status, and hematologic profile remained stable. Chemokine and cytokine analysis were notable for baseline fold-change for Il-6 and Il-1ra (9.7 and 42.7, respectively) that subsequently downtrended throughout the experiment unless clinical respiratory compromise was observed. CONCLUSIONS A NHP critical care environment with ventilation support is feasible but requires robust resources. The inflammatory profile of NHPs is not profoundly altered by sedation and mechanical ventilation. NHPs are susceptible to the pulmonary effects of short-term ventilation and demonstrate a similar bioprofile response to ventilator-induced pulmonary pathology. This work has implications for further development of a prolonged care NHP model.
Collapse
Affiliation(s)
- Joseph D. Bozzay
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Patrick F. Walker
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Rex E. Atwood
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Robert W. DeSpain
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - William J. Parker
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Daniel S. Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Mares
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Crystal L. Leonhardt
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Eric A. Elster
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Matthew J. Bradley
- Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
11
|
Spreadborough PJ, Strong AL, Mares J, Levi B, Davis TA. Tourniquet use following blast-associated complex lower limb injury and traumatic amputation promotes end organ dysfunction and amplified heterotopic ossification formation. J Orthop Surg Res 2022; 17:422. [PMID: 36123728 PMCID: PMC9484189 DOI: 10.1186/s13018-022-03321-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic heterotopic ossification (tHO) is characterized by ectopic bone formation in extra-skeletal sites leading to impaired wound healing, entrapment of neurovascular structures, pain, and reduced range of motion. HO has become a signature pathology affecting wounded military personnel who have sustained blast-associated traumatic amputations during the recent conflicts in Iraq and Afghanistan and can compound recovery by causing difficulty with prosthesis limb wearing. Tourniquet use to control catastrophic limb hemorrhage prior to surgery has become almost ubiquitous during this time, with the recognition the prolonged use may risk an ischemia reperfusion injury and associated complications. While many factors influence the formation of tHO, the extended use of tourniquets to limit catastrophic hemorrhage during prolonged field care has not been explored. METHODS Utilizing an established pre-clinical model of blast-associated complex lower limb injury and traumatic amputation, we evaluated the effects of tourniquet use on tHO formation. Adult male rats were subjected to blast overpressure exposure, femur fracture, and soft tissue crush injury. Pneumatic tourniquet (250-300 mmHg) applied proximal to the injured limb for 150-min was compared to a control group without tourniquet, before a trans-femoral amputation was performed. Outcome measures were volume to tHO formation at 12 weeks and changes in proteomic and genomic markers of early tHO formation between groups. RESULTS At 12 weeks, volumetric analysis with microCT imaging revealed a 70% increase in total bone formation (p = 0.007) near the site of injury compared to rats with no tourniquet time in the setting of blast-injuries. Rats subjected to tourniquet usage had increased expression of danger-associated molecular patterns (DAMPs) and end organ damage as early as 6 h and as late as 7 days post injury. The expressions of pro-inflammatory cytokines and chemokines and osteochondrogenic genes using quantitative RT-PCR similarly revealed increased expression as early as 6 h post injury, and these genes along with hypoxia associated genes remained elevated for 7 days compared to no tourniquet use. CONCLUSION These findings suggest that tourniquet induced ischemia leads to significant increases in key transcription factors associated with early endochondral bone formation, systemic inflammatory and hypoxia, resulting in increased HO formation.
Collapse
Affiliation(s)
- Philip J. Spreadborough
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Amy L. Strong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - John Mares
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Thomas A. Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| |
Collapse
|
12
|
Metagenomic features of bioburden serve as outcome indicators in combat extremity wounds. Sci Rep 2022; 12:13816. [PMID: 35970993 PMCID: PMC9378645 DOI: 10.1038/s41598-022-16170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Battlefield injury management requires specialized care, and wound infection is a frequent complication. Challenges related to characterizing relevant pathogens further complicates treatment. Applying metagenomics to wounds offers a comprehensive path toward assessing microbial genomic fingerprints and could indicate prognostic variables for future decision support tools. Wound specimens from combat-injured U.S. service members, obtained during surgical debridements before delayed wound closure, were subjected to whole metagenome analysis and targeted enrichment of antimicrobial resistance genes. Results did not indicate a singular, common microbial metagenomic profile for wound failure, instead reflecting a complex microenvironment with varying bioburden diversity across outcomes. Genus-level Pseudomonas detection was associated with wound failure at all surgeries. A logistic regression model was fit to the presence and absence of antimicrobial resistance classes to assess associations with nosocomial pathogens. A. baumannii detection was associated with detection of genomic signatures for resistance to trimethoprim, aminoglycosides, bacitracin, and polymyxin. Machine learning classifiers were applied to identify wound and microbial variables associated with outcome. Feature importance rankings averaged across models indicated the variables with the largest effects on predicting wound outcome, including an increase in P. putida sequence reads. These results describe the microbial genomic determinants in combat wound bioburden and demonstrate metagenomic investigation as a comprehensive tool for providing information toward aiding treatment of combat-related injuries.
Collapse
|
13
|
Stołtny T, Pasek J, Rokicka D, Wróbel M, Dobrakowski M, Kamiński P, Domagalski R, Czech S, Strojek K, Koczy B. Are there really specific risk factors for heterotopic ossifications? A case report of 'non-risk factor' after total hip replacement. J Int Med Res 2022; 50:3000605221095225. [PMID: 35726568 PMCID: PMC9218464 DOI: 10.1177/03000605221095225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Femoral neck fractures are one of the most common fractures in the elderly population. Due to frequent complications of the fixation of these fractures, patients are more and more often eligible for hip replacement surgery. One of the most frequently mentioned postoperative complication is the formation of heterotopic ossification. This case report describes as a 70-year-old male patient that presented with an old hip fracture accompanied by a mild craniocerebral trauma. The patient underwent total cementless hip arthroplasty followed by rehabilitation. At 8 months after surgery, the patient was diagnosed with Brooker IV° heterotopic ossification in the area of the operated hip joint. Due to the persistent pain and complete loss of mobility in the operated joint, computed tomography imaging was performed and the patient was recommended for a revision surgery. The procedure was performed 14 months after the original surgical treatment, resulting in a significant improvement in the range of motion and reduction of pain.
Collapse
Affiliation(s)
- Tomasz Stołtny
- Department of Adult Orthopaedics, District Hospital of Orthopaedics and Trauma Surgery, Piekary Śląskie, Poland
| | - Jarosław Pasek
- Department of Physiotherapy, Faculty of Health Sciences, University of Jan Długosz, Częstochowa, Poland
| | - Dominika Rokicka
- Department of Internal Diseases, Diabetology and Cardiometabolic Diseases, School of Medicine with the Division of Dentistry, Medical University of Silesia, Zabrze, Poland
| | - Marta Wróbel
- Department of Internal Diseases, Diabetology and Cardiometabolic Diseases, School of Medicine with the Division of Dentistry, Medical University of Silesia, Zabrze, Poland
| | - Michał Dobrakowski
- Department of Medical Radiology and Radiodiagnostics, Independent Public Clinical Hospital No. 1, Zabrze, Poland.,Department of Biochemistry, Faculty of Medical Sciences, Medical University of Silesia, Zabrze, Poland
| | - Paweł Kamiński
- Department of Medical Radiology and Radiodiagnostics, Independent Public Clinical Hospital No. 1, Zabrze, Poland
| | - Rafał Domagalski
- Department of Adult Orthopaedics, District Hospital of Orthopaedics and Trauma Surgery, Piekary Śląskie, Poland
| | - Szymon Czech
- Department of Adult Orthopaedics, District Hospital of Orthopaedics and Trauma Surgery, Piekary Śląskie, Poland
| | - Krzysztof Strojek
- Department of Internal Diseases, Diabetology and Cardiometabolic Diseases, School of Medicine with the Division of Dentistry, Medical University of Silesia, Zabrze, Poland
| | - Bogdan Koczy
- Department of Adult Orthopaedics, District Hospital of Orthopaedics and Trauma Surgery, Piekary Śląskie, Poland
| |
Collapse
|
14
|
Huang J, Lin J, Li C, Tang B, Wu J, Xiao H. Palovarotene inhibits the NF-κB signaling pathway to prevent heterotopic ossification. Clin Exp Pharmacol Physiol 2022; 49:881-892. [PMID: 35638441 DOI: 10.1111/1440-1681.13676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Heterotopic ossification (HO) is a common disease characterized by pain, dysfunction, and calcification. The mechanisms underlying HO have not been completely elucidated. Palovarotene, a retinoic acid receptor gamma agonist, significantly inhibits the formation of HO in vivo. However, its specific mechanism of action remains unclear. Therefore, we aimed to evaluate the signaling pathways related to the formation of HO as well as the mechanism of Palovarotene action. We constructed in vitro and in vivo models of HO. Osteogenic differentiation of bone mesenchymal stem cells (BMSCs) was observed by alizarin red and alkaline phosphatase staining assays in vitro. X-ray and hematoxylin-eosin staining were performed in vivo. Western blots and reverse transcription-polymerase chain reaction were performed to determine the levels of osteogenic- and inflammation-related genes. Immunofluorescence and immunocytochemistry were used to assess the levels of p65, the core molecule of the nuclear factor kappa-B (NF-κB) signaling pathway. We demonstrated that, in vitro, under inflammatory stimulation, pathological calcium deposition increased in BMSCs. The levels of osteogenesis- and inflammation-related genes were also upregulated, along with an enhanced expression of p65. Immunofluorescence assays revealed that p65 entered the nucleus, thereby stimulating the downstream effectors of the NF-κB pathway. The above trends were reversed after Palovarotene treatment. In conclusion, the NF-κB signaling pathway played an important role in HO and Palovarotene could alleviate HO by blocking the NF-κB cascade. Our results may provide a theoretical basis for Palovarotene in the treatment of HO. Further studies on the side effects of Palovarotene are warranted in the future.
Collapse
Affiliation(s)
- Junchao Huang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Jialiang Lin
- Department of Orthopedics, Shanghai Fenxian District Central Hospital, Shanghai, China
| | - Congbin Li
- Department of Orthopedics, Shanghai Fenxian District Central Hospital, Shanghai, China
| | - Bo Tang
- Department of Orthopedics, Shanghai Fenxian District Central Hospital, Shanghai, China
| | - Jiang Wu
- Department of Orthopedics, Tinglin Hospital of JinshanDistrict, Shanghai, China
| | - Haijun Xiao
- Department of Orthopedics, Shanghai Fenxian District Central Hospital, Shanghai, China
| |
Collapse
|
15
|
Harvey J, Mellody KT, Cullum N, Watson REB, Dumville J. Wound fluid sampling methods for proteomic studies: A scoping review. Wound Repair Regen 2022; 30:317-333. [PMID: 35381119 PMCID: PMC9322564 DOI: 10.1111/wrr.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/02/2023]
Abstract
Understanding why some wounds are hard to heal is important for improving care and developing more effective treatments. The method of sample collection used is an integral step in the research process and thus may affect the results obtained. The primary objective of this study was to summarise and map the methods currently used to sample wound fluid for protein profiling and analysis. Eligible studies were those that used a sampling method to collect wound fluid from any human wound for analysis of proteins. A search for eligible studies was performed using MEDLINE, Embase and CINAHL Plus in May 2020. All references were screened for eligibility by one reviewer, followed by discussion and consensus with a second reviewer. Quantitative data were mapped and visualised using appropriate software and summarised via a narrative summary. After screening, 280 studies were included in this review. The most commonly used group of wound fluid collection methods were vacuum, drainage or use of other external devices, with surgical wounds being the most common sample source. Other frequently used collection methods were extraction from absorbent materials, collection beneath an occlusive dressing and direct collection of wound fluid. This scoping review highlights the variety of methods used for wound fluid collection. Many studies had small sample sizes and short sample collection periods; these weaknesses have hampered the discovery and validation of novel biomarkers. Future research should aim to assess the reproducibility and feasibility of sampling and analytical methods for use in larger longitudinal studies.
Collapse
Affiliation(s)
- Joe Harvey
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Kieran T. Mellody
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
| | - Nicky Cullum
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Division of Nursing, Midwifery & Social WorkSchool of Health Sciences, The University of ManchesterManchesterUK
| | - Rachel E. B. Watson
- Centre for Dermatology Research, School of Biological SciencesThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreUK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Manchester Institute for Collaborative Research on AgeingThe University of ManchesterManchesterUK
| | - Jo Dumville
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
- Division of Nursing, Midwifery & Social WorkSchool of Health Sciences, The University of ManchesterManchesterUK
| |
Collapse
|
16
|
Palovarotene Can Attenuate Heterotopic Ossification Induced by Tendon Stem Cells by Downregulating the Synergistic Effects of Smad and NF-κB Signaling Pathway following Stimulation of the Inflammatory Microenvironment. Stem Cells Int 2022; 2022:1560943. [PMID: 35530413 PMCID: PMC9071930 DOI: 10.1155/2022/1560943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Heterotopic ossification (HO) is defined as the formation of bone tissues outside the bones, such as in the muscles. Currently, the mechanism of HO is still unclear. Tendon stem cells (TSCs) play important roles in the occurrence and development of HO. The inflammatory microenvironment dominated by macrophages also plays an important role in the course of HO. The commonly used clinical treatment methods, such as nonsteroidal anti-inflammatory drugs and radiotherapy, have relatively large side effects, and more efficient treatment methods are needed in clinical practice. Under physiological conditions, retinoic acid receptor (RAR) signal transduction pathway inhibits osteogenic progenitor cell aggregation and chondrocyte differentiation. We focus on palovarotene, a retinoic acid γ-receptor activator, showing an inhibitory effect on HO mice, but the specific mechanism is still unclear. This study was aimed at exploring the specific molecular mechanism of palovarotene by blocking osteogenic differentiation and HO formation of TSCs in vitro and in vivo in an inflammatory microenvironment. We constructed a coculture model of TCSs and polarized macrophages, as well as overexpression and knockdown models of the Smad signaling pathway of TCSs. In addition, a rat model of HO, which was constructed by Achilles tendon resection, was also established. These models explored the role of inflammatory microenvironment and Smad signaling pathways in the osteogenic differentiation of TSCs which lead to HO, as well as the reversal role played by palovarotene in this process. Our results suggest that, under the stimulation of inflammatory microenvironment and trauma, the injured site was in an inflammatory state, and macrophages were highly concentrated in the injured site. The expression of osteogenic and inflammation-related proteins, as well as Smad proteins, was upregulated. Osteogenic differentiation was performed in TCSs. We also found that TCSs activated Smad and NF-κB signaling pathways, which initiated the formation of HO. Palovarotene inhibited the aggregation of osteogenic progenitor cells and macrophages and attenuated HO by blocking Smad and NF-κB signaling pathways. Therefore, palovarotene may be a novel HO inhibitor, while other drugs or antibodies targeting Smad and NF-κB signaling pathways may also prevent or treat HO. The expressions of Smad5, Id1, P65, and other proteins may predict HO formation.
Collapse
|
17
|
[Research progress of traumatic heterotopic ossification]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:386-394. [PMID: 35293183 PMCID: PMC8923934 DOI: 10.7507/1002-1892.202110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review and evaluate the research progress of traumatic heterotopic ossification (HO). METHODS The domestic and foreign related research literature on traumatic HO was widely consulted, and its etiology, pathogenesis, pathological progress, diagnosis, prevention, and treatment were summarized. RESULTS Traumatic HO is often caused by severe trauma such as joint operation, explosion injury, nerve injury, and burn. At present, it is widely believed that the occurrence of traumatic HO is closely related to inflammation and hypoxia. Oral non-steroidal anti-inflammatory drugs and surgery are the main methods to prevent and treat traumatic HO. CONCLUSION Nowadays, the pathogenesis of traumatic HO is still unclear, the efficiency of relevant prevention and treatment measures is low, and there is a lack of specific treatment method. In the future, it is necessary to further study the pathogenesis of traumatic HO and find specific prevention and treatment targets.
Collapse
|
18
|
Peters N, Baltin CT, Barham M, Wevers A. An unusual finding: Heterotopic ossification located in the subcutis of the iliac region – A case report in the context of current literature. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
19
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
20
|
NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun 2021; 12:4939. [PMID: 34400627 PMCID: PMC8368242 DOI: 10.1038/s41467-021-25143-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFβ to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation.
Collapse
|
21
|
Sun Z, Li J, Luo G, Liu W, He Y, Wang F, Qian Y, Fan C. Pharmacological activation of SIRT1 by metformin prevented trauma-induced heterotopic ossification through inhibiting macrophage mediated inflammation. Eur J Pharmacol 2021; 909:174386. [PMID: 34332919 DOI: 10.1016/j.ejphar.2021.174386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Trauma-induced heterotopic ossification (HO) is the aberrant extra-skeletal bone formation that severely incapacitates patient's daily life. Inflammation is the first stage of this progression, becoming an appealing target of early therapeutic intervention. Metformin, a widely used antidiabetic drug, also poses the therapeutic potential to modulate various inflammatory-related diseases. Therefore, this study aimed to investigate the preventive effect of metformin on trauma-induced HO progression, and unveil the underlying molecular mechanisms. A murine burn/tenotomy model was established to mimic trauma-induced HO in vivo. The anti-inflammation and anti-ossification effects of metformin were evaluated by histological staining and micro-CT. The inhibitory effects of metformin on macrophages activation in vitro were examined by ELISA and qRT-PCR. The underlying molecular mechanisms were further explored by immunofluorescence staining and western-blotting in vivo. Increased macrophages infiltration and inflammatory responses were found at early stage during HO progression. However, metformin dose-dependently attenuated the macrophage-mediated inflammatory responses both in vivo and vitro, which might account for the inhibitory effect of metformin on chondrogenesis and HO formation after trauma. Furthermore, elevated SIRT1 expression and decreased NF-κB p65 acetylation were found in the beneficial effects of metformin. Moreover, similar preventive effects were also found in SRT1720 HCI, a specific SIRT1 activator, while were remarkably reversed after the administration of EX527 (a specific SIRT1 inhibitor) with metformin. Taken together, our results provide a novel evidence that metformin can effectively attenuate trauma-induced HO by mitigating macrophage inflammatory responses through inhibiting NF-κB signaling via SIRT1-dependent mechanisms, which favors future therapeutic investigations for trauma-related disease.
Collapse
Affiliation(s)
- Ziyang Sun
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, PR China
| | - Juehong Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, PR China
| | - Gang Luo
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, PR China
| | - Weixuan Liu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, PR China
| | - Yunwei He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, PR China
| | - Feiyan Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, PR China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, PR China.
| |
Collapse
|
22
|
Naderi A, Zhang B, Belgodere JA, Sunder K, Palardy G. Improved Biocompatible, Flexible Mesh Composites for Implant Applications via Hydroxyapatite Coating with Potential for 3-Dimensional Extracellular Matrix Network and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26824-26840. [PMID: 34097380 PMCID: PMC8289173 DOI: 10.1021/acsami.1c09034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 06/02/2023]
Abstract
Hydroxyapatite (HA)-coated metals are biocompatible composites, which have potential for various applications for bone replacement and regeneration in the human body. In this study, we proposed the design of biocompatible, flexible composite implants by using a metal mesh as substrate and HA coating as bone regenerative stimulant derived from a simple sol-gel method. Experiments were performed to understand the effect of coating method (dip-coating and drop casting), substrate material (titanium and stainless steel) and substrate mesh characteristics (mesh size, weave pattern) on implant's performance. HA-coated samples were characterized by X-ray diffractometer, transmission electron microscope, field-emission scanning electron microscope, nanoindenter, polarization and electrochemical impedance spectroscopy, and biocompatibility test. Pure or biphasic nanorod HA coating was obtained on mesh substrates with thicknesses varying from 4.0 to 7.9 μm. Different coating procedures and number of layers did not affect crystal structure, shape, or most intense plane reflections of the HA coating. Moduli of elasticity below 18.5 GPa were reported for HA-coated samples, falling within the range of natural skull bone. Coated samples led to at least 90% cell viability and up to 99.5% extracellular matrix coverage into a 3-dimensional network (16.4% to 76.5% higher than bare substrates). Fluorescent imaging showed no antagonistic effect of the coatings on osteogenic differentiation. Finer mesh size enhanced coating coverage and adhesion, but a low number of HA layers was preferable to maintain open mesh areas promoting extracellular matrix formation. Finally, electrochemical behavior studies revealed that, although corrosion protection for HA-coated samples was generally higher than bare samples, galvanic corrosion occurred on some samples. Overall, the results indicated that while HA-coated titanium grade 1 showed the best performance as a potential implant, HA-coated stainless steel 316 with the finest mesh size constitutes an adequate, lower cost alternative.
Collapse
Affiliation(s)
- Armaghan Naderi
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bin Zhang
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jorge A. Belgodere
- Department
of Biological & Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Kaushik Sunder
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Genevieve Palardy
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
23
|
Li J, Sun Z, Luo G, Wang S, Cui H, Yao Z, Xiong H, He Y, Qian Y, Fan C. Quercetin Attenuates Trauma-Induced Heterotopic Ossification by Tuning Immune Cell Infiltration and Related Inflammatory Insult. Front Immunol 2021; 12:649285. [PMID: 34093537 PMCID: PMC8173182 DOI: 10.3389/fimmu.2021.649285] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is one of the most intractable disorders following musculoskeletal injury and is characterized by the ectopic presence of bone tissue in the soft tissue leading to severe loss of function in the extremities. Recent studies have indicated that immune cell infiltration and inflammation are involved in aberrant bone formation. In this study, we found increased monocyte/macrophage and mast cell accumulation during early HO progression. Macrophage depletion by clodronate liposomes and mast cell stabilization by cromolyn sodium significantly impeded HO formation. Therefore, we proposed that the dietary phytochemical quercetin could also suppress immune cell recruitment and related inflammatory responses to prevent HO. As expected, quercetin inhibited the monocyte-to-macrophage transition, macrophage polarization, and mast cell activation in vitro in a dose-dependent manner. Using a murine burn/tenotomy model, we also demonstrated that quercetin attenuated inflammatory responses and HO in vivo. Furthermore, elevated SIRT1 and decreased acetylated NFκB p65 expression were responsible for the mechanism of quercetin, and the beneficial effects of quercetin were reversed by the SIRT1 antagonist EX527 and mimicked by the SIRT agonist SRT1720. The findings in this study suggest that targeting monocyte/macrophage and mast cell activities may represent an attractive approach for therapeutic intervention of HO and that quercetin may serve as a promising therapeutic candidate for the treatment of trauma-induced HO by modulating SIRT1/NFκB signaling.
Collapse
Affiliation(s)
- Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Sun
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Luo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haomin Cui
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Xiong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunwei He
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Edwards NJ, Hobson E, Dey D, Rhodes A, Overmann A, Hoyt B, Walsh SA, Pagani CA, Strong AL, Hespe GE, Padmanabhan KR, Huber A, Deng C, Davis TA, Levi B. High Frequency Spectral Ultrasound Imaging Detects Early Heterotopic Ossification in Rodents. Stem Cells Dev 2021; 30:473-484. [PMID: 33715398 PMCID: PMC8106252 DOI: 10.1089/scd.2021.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Heterotopic ossification (HO) is a devastating condition in which ectopic bone forms inappropriately in soft tissues following traumatic injuries and orthopedic surgeries as a result of aberrant mesenchymal progenitor cell (MPC) differentiation. HO leads to chronic pain, decreased range of motion, and an overall decrease in quality of life. While several treatments have shown promise in animal models, all must be given during early stages of formation. Methods for early determination of whether and where endochondral ossification/soft tissue mineralization (HO anlagen) develop are lacking. At-risk patients are not identified sufficiently early in the process of MPC differentiation and soft tissue endochondral ossification for potential treatments to be effective. Hence, a critical need exists to develop technologies capable of detecting HO anlagen soon after trauma, when treatments are most effective. In this study, we investigate high frequency spectral ultrasound imaging (SUSI) as a noninvasive strategy to identify HO anlagen at early time points after injury. We show that by determining quantitative parameters based on tissue organization and structure, SUSI identifies HO anlagen as early as 1-week postinjury in a mouse model of burn/tenotomy and 3 days postinjury in a rat model of blast/amputation. We analyze single cell RNA sequencing profiles of the MPCs responsible for HO formation and show that the early tissue changes detected by SUSI match chondrogenic and osteogenic gene expression in this population. SUSI identifies sites of soft tissue endochondral ossification at early stages of HO formation so that effective intervention can be targeted when and where it is needed following trauma-induced injury. Furthermore, we characterize the chondrogenic to osteogenic transition that occurs in the MPCs during HO formation and correlate gene expression to SUSI detection of the HO anlagen.
Collapse
Affiliation(s)
- Nicole J. Edwards
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Devaveena Dey
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Alisha Rhodes
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Archie Overmann
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Benjamin Hoyt
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sarah A. Walsh
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Chase A. Pagani
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amy L. Strong
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Geoffrey E. Hespe
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Amanda Huber
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Cheri Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas A. Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Walsh SA, Hoyt BW, Rowe CJ, Dey D, Davis TA. Alarming Cargo: The Role of Exosomes in Trauma-Induced Inflammation. Biomolecules 2021; 11:biom11040522. [PMID: 33807302 PMCID: PMC8065643 DOI: 10.3390/biom11040522] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Severe polytraumatic injury initiates a robust immune response. Broad immune dysfunction in patients with such injuries has been well-documented; however, early biomarkers of immune dysfunction post-injury, which are critical for comprehensive intervention and can predict the clinical course of patients, have not been reported. Current circulating markers such as IL-6 and IL-10 are broad, non-specific, and lag behind the clinical course of patients. General blockade of the inflammatory response is detrimental to patients, as a certain degree of regulated inflammation is critical and necessary following trauma. Exosomes, small membrane-bound extracellular vesicles, found in a variety of biofluids, carry within them a complex functional cargo, comprised of coding and non-coding RNAs, proteins, and metabolites. Composition of circulating exosomal cargo is modulated by changes in the intra- and extracellular microenvironment, thereby serving as a homeostasis sensor. With its extensively documented involvement in immune regulation in multiple pathologies, study of exosomal cargo in polytrauma patients can provide critical insights on trauma-specific, temporal immune dysregulation, with tremendous potential to serve as unique biomarkers and therapeutic targets for timely and precise intervention.
Collapse
Affiliation(s)
- Sarah A. Walsh
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
| | - Benjamin W. Hoyt
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
| | - Cassie J. Rowe
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Devaveena Dey
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Thomas A. Davis
- USU Walter Reed Surgery, Uniformed Services University, Bethesda, MD 20814, USA; (S.A.W.); (B.W.H.); (C.J.R.); (D.D.)
- Correspondence:
| |
Collapse
|
26
|
Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021; 6:17. [PMID: 33772028 PMCID: PMC7997931 DOI: 10.1038/s41536-021-00127-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
One major cause of traumatic injury is firearm-related wounds (i.e., ballistic trauma), common in both civilian and military populations, which is increasing in prevalence and has serious long-term health and socioeconomic consequences worldwide. Common primary injuries of ballistic trauma include soft-tissue damage and loss, haemorrhage, bone fracture, and pain. The majority of injuries are of musculoskeletal origin and located in the extremities, such that skeletal muscle offers a major therapeutic target to aid recovery and return to normal daily activities. However, the underlying pathophysiology of skeletal muscle ballistic trauma remains poorly understood, with limited evidence-based treatment options. As such, this review will address the topic of firearm-related skeletal muscle injury and regeneration. We first introduce trauma ballistics and the immediate injury of skeletal muscle, followed by detailed coverage of the underlying biological mechanisms involved in regulating skeletal muscle dysfunction following injury, with a specific focus on the processes of muscle regeneration, muscle wasting and vascular impairments. Finally, we evaluate novel approaches for minimising muscle damage and enhancing muscle regeneration after ballistic trauma, which may have important relevance for primary care in victims of violence.
Collapse
Affiliation(s)
- Anselmo Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
27
|
Mundy C, Yao L, Sinha S, Chung J, Rux D, Catheline SE, Koyama E, Qin L, Pacifici M. Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice. Sci Signal 2021; 14:eabd0536. [PMID: 33563697 PMCID: PMC10508179 DOI: 10.1126/scisignal.abd0536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterotopic ossification (HO) is a common, potentially debilitating pathology that is instigated by inflammation caused by tissue damage or other insults, which is followed by chondrogenesis, osteogenesis, and extraskeletal bone accumulation. Current remedies are not very effective and have side effects, including the risk of triggering additional HO. The TGF-β family member activin A is produced by activated macrophages and other inflammatory cells and stimulates the intracellular effectors SMAD2 and SMAD3 (SMAD2/3). Because HO starts with inflammation and because SMAD2/3 activation is chondrogenic, we tested whether activin A stimulated HO development. Using mouse models of acquired intramuscular and subdermal HO, we found that blockage of endogenous activin A by a systemically administered neutralizing antibody reduced HO development and bone accumulation. Single-cell RNA-seq analysis and developmental trajectories showed that the antibody treatment reduced the recruitment of Sox9+ skeletal progenitors, many of which also expressed the gene encoding activin A (Inhba), to HO sites. Gain-of-function assays showed that activin A enhanced the chondrogenic differentiation of progenitor cells through SMAD2/3 signaling, and inclusion of activin A in HO-inducing implants enhanced HO development in vivo. Together, our data reveal that activin A is a critical upstream signaling stimulator of acquired HO in mice and could represent an effective therapeutic target against forms of this pathology in patients.
Collapse
Affiliation(s)
- Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Orthopaedics, The First Hospital of China Medical University, Liaoning 110001, China
| | - Sayantani Sinha
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Juliet Chung
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah E Catheline
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Kazezian Z, Bull AMJ. A review of the biomarkers and in vivo models for the diagnosis and treatment of heterotopic ossification following blast and trauma-induced injuries. Bone 2021; 143:115765. [PMID: 33285256 DOI: 10.1016/j.bone.2020.115765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Heterotopic ossification (HO) is the process of de novo bone formation in non-osseous tissues. HO can occur following trauma and burns and over 60% of military personnel with blast-associated amputations develop HO. This rate is far higher than in other trauma-induced HO development. This suggests that the blast effect itself is a major contributing factor, but the pathway triggering HO following blast injury specifically is not yet fully identified. Also, because of the difficulty of studying the disease using clinical data, the only sources remain the relevant in vivo models. The aim of this paper is first to review the key biomarkers and signalling pathways identified in trauma and blast induced HO in order to summarize the molecular mechanisms underlying HO development, and second to review the blast injury in vivo models developed. The literature derived from trauma-induced HO suggests that inflammatory cytokines play a key role directing different progenitor cells to transform into an osteogenic class contributing to the development of the disease. This highlights the importance of identifying the downstream biomarkers under specific signalling pathways which might trigger similar stimuli in blast to those of trauma induced formation of ectopic bone in the tissues surrounding the site of the injury. The lack of information in the literature regarding the exact biomarkers leading to blast associated HO is hampering the design of specific therapeutics. The majority of existing blast injury in vivo models do not fully replicate the combat scenario in terms of blast, fracture and amputation; these three usually happen in one insult. Hence, this paper highlights the need to replicate the full effect of the blast in preclinical models to better understand the mechanism of blast induced HO development and to enable the design of a specific therapeutic to supress the formation of ectopic bone.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
29
|
Li L, Tuan RS. Mechanism of traumatic heterotopic ossification: In search of injury-induced osteogenic factors. J Cell Mol Med 2020; 24:11046-11055. [PMID: 32853465 PMCID: PMC7576286 DOI: 10.1111/jcmm.15735] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue. Three factors have been proposed as required to induce HO: (a) osteogenic precursor cells, (b) osteoinductive agents and (c) an osteoconductive environment. Since Urist's landmark discovery of bone induction in skeletal muscle tissue by demineralized bone matrix, it is generally believed that skeletal muscle itself is a conductive environment for osteogenesis and that resident progenitor cells in skeletal muscle are capable of differentiating into osteoblast to form bone. However, little is known about the naturally occurring osteoinductive agents that triggered this osteogenic response in the first place. This article provides a review of the emerging findings regarding distinct types of HO to summarize the current understanding of HO mechanisms, with special attention to the osteogenic factors that are induced following injury. Specifically, we hypothesize that muscle injury‐induced up‐regulation of local bone morphogenetic protein‐7 (BMP‐7) level, combined with glucocorticoid excess‐induced down‐regulation of circulating transforming growth factor‐β1 (TGF‐β1) level, could be an important causative mechanism of traumatic HO formation.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
30
|
Hoover ME, Martin EC, Llamas CB, Qureshi A, Davis TA, Gimble JM, Freitas MA. Proteomic characterization of a trauma-based rat model of heterotopic ossification identifies interactive signaling networks as potential therapeutic targets. J Proteomics 2020; 226:103907. [PMID: 32707234 DOI: 10.1016/j.jprot.2020.103907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone in soft tissues observed in patients following blast injuries, orthopedic or head trauma, burns, or in the context of inborn mutations of genes involved in osteogenesis. There is no universally accepted therapy for HO. This study has used global unbiased mass spectrometry proteomic approaches, validated by western immunoblots, to interrogate skeletal muscle tissues obtained from a highly reproducible rat model of trauma induced HO. During early the phase of HO development, statistically significant modulation of proteins within the following pathways was identified: coagulation, cyclic AMP, extracellular matrix, immunity/inflammation, NADH metabolism, TGFβ. These metabolic proteins and pathways have the potential to serve as diagnostic, prognostic, and therapeutic targets for this devastating orthopedic condition that has considerable impact on the patient's quality of life. Furthermore, the findings confirm and extend previous in vitro stromal/stem cell and clinical studies from the field. SIGNIFICANCE: This study confirms and extends the field's understanding of the protein pathways that are modulated in a rat model of trauma induced heterotopic ossification. The identification of specific proteins such as the AP1 transcription factor as well as protein families such as the complement/coagulation pathway and serine protease inhibitors as biomarkers have potential clinical translational value. These outcomes have relevance to the physiological and pathological mineralization processes contributing to the recovery of orthopedic trauma patients.
Collapse
Affiliation(s)
- Michael E Hoover
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States of America
| | - Claire B Llamas
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Ammar Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America
| | - Jeffrey M Gimble
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America; LaCell LLC, New Orleans, LA, United States of America
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America.
| |
Collapse
|
31
|
Macrophage-derived neurotrophin-3 promotes heterotopic ossification in rats. J Transl Med 2020; 100:762-776. [PMID: 31896816 DOI: 10.1038/s41374-019-0367-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Heterotopic ossification (HO) is a debilitating condition that results from traumatic injuries or genetic diseases, for which the underlying mechanisms remain unclear. Recently, we have demonstrated the expression of neurotrophin-3 (NT-3) and its role in promoting HO formation via mediating endothelial-mesenchymal transition (EndMT) of vascular endothelial cells. The current study investigated the role of NT-3 on the surrounding mesenchymal cells and its potential origin throughout HO formation at injured Achilles tendons in rats. We used an Achilles tenotomy to induce HO formation in vivo and cultured primary tendon-derived stem cells (TDSCs) to investigate the underlying mechanisms mediating the osteogenesis in vitro. Furthermore, RAW264.7 cells were employed to identify the origin of NT-3. The mRNA levels of NGF, BDNF, NT-3, and NT-4 and their tyrosine protein kinase (Trk) receptors as well as p75 receptor were elevated at injury sites. NT-3 and TrkC showed the highest induction. Neutralization of the NT-3-induced effects by the pan-Trk inhibitor GNF5837 reduced the expression of bone/cartilage-related genes while injection of NT-3 promoted HO formation with elevated mRNA of bone/cartilage-related markers at injured sites. In vitro, NT-3 accelerated osteogenic differentiation and mineralization of TDSCs through activation of the ERK1/2 and PI3K/Akt signaling pathways. Moreover, the colocalization of NT-3 and macrophages, including M1 and M2 macrophages, was observed in injured sites throughout HO formation, and in vitro studies demonstrated that activated macrophages mediated the secretion of NT-3. In addition, an increasing concentration of serum or supernatant NT-3 was observed both in vivo and in vitro. Depletion of macrophages with clodronate-loaded liposomes reduced HO formation as well as secretion and mRNA expression of NT-3. Our study suggests that macrophage-derived NT-3 may promote HO formation and osteogenesis of TDSCs via the ERK1/2 and PI3K/Akt signaling pathways, which may provide new insights for the therapeutic directions of HO in the future.
Collapse
|
32
|
Both Human Hematoma Punctured from Pelvic Fractures and Serum Increase Muscle Resident Stem Cells Response to BMP9: A Multivariate Statistical Approach. J Clin Med 2020; 9:jcm9041175. [PMID: 32325892 PMCID: PMC7231246 DOI: 10.3390/jcm9041175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Hematoma and skeletal muscles play a crucial role in bone fracture healing. The muscle resident mesenchymal stromal cells (mrSCs) can promote bone formation by differentiating into osteoblasts upon treatment by bone morphogenetic proteins (BMP), such as BMP9. However, the influence of hematoma fracture extracts (Hema) on human mrSC (hmrSC) response to BMP9 is still unknown. We therefore determined the influence of Hema, human healthy serum (HH), and fetal bovine serum (FBS, control) on BMP9-induced osteoblast commitment of hmrSC by measuring alkaline phosphatase activity. Multiplex assays of 90 cytokines were performed to characterize HH and Hema composition and allow their classification by a multivariate statistical approach depending on their expression levels. We confirmed that BMP9 had a greater effect on osteoblastic differentiation of hmrSCs than BMP2 in presence of FBS. The hmrSCs response to BMP9 was enhanced by both Hema and HH, even though several cytokines were upregulated (IL-6, IL-8, MCP-1, VEGF-A and osteopontin), downregulated (BMP9, PDGF) or similar (TNF-alpha) in Hema compared with HH. Thus, hematoma may potentiate BMP9-induced osteogenic differentiation of hmrSCs during bone fracture healing. The multivariate statistical analyses will help to identify the cytokines involved in such phenomenon leading to normal or pathological bone healing.
Collapse
|
33
|
Liu X, Kaminsky AJ, Hill DM, Velamuri SR. Heterotopic ossification: a preventable case of gossypiboma in spinal cord injury. J Wound Care 2020; 29:S30-S32. [PMID: 32160126 DOI: 10.12968/jowc.2020.29.sup3.s30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Heterotopic ossification is the formation of ectopic bone in soft tissues. It has three established aetiologies: genetic, traumatic and neurogenic. A gossypiboma is defined as a retained foreign body, such as a mass or sponge, usually after a surgical procedure. In this article, we present a unique, preventable case of a patient admitted for newly developed heterotopic ossification in the gluteus maximus muscle caused by a retained piece of foam from negative pressure wound therapy (NPWT). The heterotopic ossification lesion, together with the retained foreign body, was completely excised and reconstructed using a posterior thigh fasciocutaneous advancement flap. This is the first reported case of heterotopic ossification caused by a retained foreign body and may be helpful to better understanding of the aetiology of heterotopic ossification.
Collapse
Affiliation(s)
- Xiangxia Liu
- 1 Department of Plastic Surgery, University of Tennessee Health Science Center, Memphis, US.,2 Division of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Alexander J Kaminsky
- 1 Department of Plastic Surgery, University of Tennessee Health Science Center, Memphis, US
| | - David M Hill
- 3 Firefighters Burn Center, Department of Pharmacy, Regional One Health, Memphis, US.,4 Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, US
| | - Sai R Velamuri
- 1 Department of Plastic Surgery, University of Tennessee Health Science Center, Memphis, US
| |
Collapse
|
34
|
Guder C, Gravius S, Burger C, Wirtz DC, Schildberg FA. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Front Immunol 2020; 11:58. [PMID: 32082321 PMCID: PMC7004969 DOI: 10.3389/fimmu.2020.00058] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Immunology, already a discipline in its own right, has become a major part of many different medical fields. However, its relationship to orthopedics and trauma surgery has unfortunately, and perhaps unjustly, been developing rather slowly. Discoveries in recent years have emphasized the immense breadth of communication and connection between both systems and, importantly, the highly promising therapeutic opportunities. Recent discoveries of factors originally assigned to the immune system have now also been shown to have a significant impact on bone health and disease, which has greatly changed how we approach treatment of bone pathologies. In case of bone fracture, immune cells, especially macrophages, are present throughout the whole healing process, assure defense against pathogens and discharge a complex variety of effectors to regulate bone modeling. In rheumatoid arthritis and osteoporosis, the immune system contributes to the formation of the pathological and chronic conditions. Fascinatingly, prosthesis failure is not at all solely a mechanical problem of improper strain but works in conjunction with an active contribution of the immune system as a reaction to irritant debris from material wear. Unraveling conjoined mechanisms of the immune and osseous systems heralds therapeutic possibilities for ailments of both. Contemplation of the bone as merely an unchanging support pillar is outdated and obsolete. Instead it is mandatory that this highly diverse network be incorporated in our understanding of the immune system and hematopoiesis.
Collapse
Affiliation(s)
- Christian Guder
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Sascha Gravius
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany.,Department of Orthopedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg, Mannheim, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
35
|
Haviv R, Moshe V, De Benedetti F, Prencipe G, Rabinowicz N, Uziel Y. Is fibrodysplasia ossificans progressiva an interleukin-1 driven auto-inflammatory syndrome? Pediatr Rheumatol Online J 2019; 17:84. [PMID: 31864380 PMCID: PMC6925442 DOI: 10.1186/s12969-019-0386-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is the most catastrophic form of heterotopic ossification, due to ongoing intracellular signaling through the bone morphogenic protein pathway. The paroxysmal appearance of inflammatory lumps and elevated inflammatory markers during flares, suggest that FOP is an auto-inflammatory disease. Based on evidence, demonstrating a role for interleukin-1β (IL-1β) in other forms of heterotopic ossification, we hypothesized that treating FOP patients with anti-IL-1 agents could help lower the rate of FOP paroxysms and/or limit the symptoms and residual lesions. CASE PRESENTATION A 13.5-year-old Arab boy was diagnosed with FOP. Treatment with anti-inflammatory drugs did not change the disease course. New lumps appeared in a rate of approximately one every 8 days. Treatment with the anti-IL-1 agents anakinra and canakinumab resulted in significantly lower rate of paroxysms (every 22-25 days, of which almost all involved only 2 existing lumps), as well as shorter duration. High levels of IL-1β were found in the patient's plasma samples, collected during a paroxysm that appeared 8 weeks after the last canakinumab dose. In contrast, IL-1β plasma levels were undetectable in the previous three plasma samples, obtained while he was treated with anti-IL-1 agents. CONCLUSIONS Our data demonstrate the efficacy of anti-IL-1 agents in the treatment of a patient with FOP. Results showing the marked increase in IL-1β plasma levels during a paroxysm support a role for IL-1β in the pathogenesis of FOP and further provide the rationale for the use of anti-IL-1 agents in FOP treatment.
Collapse
Affiliation(s)
- Ruby Haviv
- Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Veronica Moshe
- 0000 0001 0325 0791grid.415250.7Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, 59 Tchernichovsky St., 4428164 Kfar Saba, Israel
| | - Fabrizio De Benedetti
- 0000 0001 0727 6809grid.414125.7Division of Rheumatology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giusi Prencipe
- 0000 0001 0727 6809grid.414125.7Division of Rheumatology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Noa Rabinowicz
- 0000 0001 0325 0791grid.415250.7Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, 59 Tchernichovsky St., 4428164 Kfar Saba, Israel
| | - Yosef Uziel
- 0000 0001 0325 0791grid.415250.7Pediatric Rheumatology Unit, Department of Pediatrics, Meir Medical Center, 59 Tchernichovsky St., 4428164 Kfar Saba, Israel ,0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Matsuo K, Chavez RD, Barruet E, Hsiao EC. Inflammation in Fibrodysplasia Ossificans Progressiva and Other Forms of Heterotopic Ossification. Curr Osteoporos Rep 2019; 17:387-394. [PMID: 31721068 PMCID: PMC7271746 DOI: 10.1007/s11914-019-00541-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Heterotopic ossification (HO) is associated with inflammation. The goal of this review is to examine recent findings on the roles of inflammation and the immune system in HO. We examine how inflammation changes in fibrodysplasia ossificans progressiva, in traumatic HO, and in other clinical conditions of HO. We also discuss how inflammation may be a target for treating HO. RECENT FINDINGS Both genetic and acquired forms of HO show similarities in their inflammatory cell types and signaling pathways. These include macrophages, mast cells, and adaptive immune cells, along with hypoxia signaling pathways, mesenchymal stem cell differentiation signaling pathways, vascular signaling pathways, and inflammatory cytokines. Because there are common inflammatory mediators across various types of HO, these mediators may serve as common targets for blocking HO. Future research may focus on identifying new inflammatory targets and testing combinatorial therapies based on these results.
Collapse
Affiliation(s)
- Koji Matsuo
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Robert Dalton Chavez
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Emilie Barruet
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA.
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA.
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA.
| |
Collapse
|
37
|
Utilizing Precision Medicine to Estimate Timing for Surgical Closure of Traumatic Extremity Wounds. Ann Surg 2019; 270:535-543. [DOI: 10.1097/sla.0000000000003470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Jodoin M, Rouleau DM, Therrien E, Chauny JM, Sandman E, Larson-Dupuis C, Leduc S, Gosselin N, De Beaumont L. Investigating the incidence and magnitude of heterotopic ossification with and without joints involvement in patients with a limb fracture and mild traumatic brain injury. Bone Rep 2019; 11:100222. [PMID: 31463337 PMCID: PMC6706636 DOI: 10.1016/j.bonr.2019.100222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023] Open
Abstract
Objectives This study seeks to evaluate the incidence rate of heterotopic ossification (HO) formation in patients afflicted by an isolated limb fracture (ILF) and a concomitant mild traumatic brain injury (mTBI). Methods The current study is an observational study including ILF patients with or without a concomitant mTBI recruited from an orthopedic clinic of a Level 1 Trauma Hospital. Patients were diagnosed with a mTBI according to the American Congress of Rehabilitation Medicine (ACRM) criteria. Radiographs taken on average 3 months post-trauma were analyzed separately by two distinct specialists for the presence of HO proximally to the fracture site (joints or extra joints). Both raters referred to Brooker's and Della's Valle's classification to establish signs of HO. First, analyses were conducted for the full sample. Secondly, a matched cohort was used in order to control for specific factors, namely age, sex, type of injury, and time elapsed between the accident and the analyzed radiograph. Results The full sample included a total of 183 patients with an ILF (94 females; 47.5 years old), of which 50 had a concomitant mTBI and 133 without. Radiographic evidence of HO was significantly higher in patients with an ILF and a mTBI compared to ILF patients (X2 = 6.50; p = 0.01). The matched cohort consisted of 94 participants (i.e.; 47 patients from the ILF + mTBI group and 47 patients from the ILF group). Again, ILF + mTBI patients presented significantly higher rates of HO signs in comparison to ILF patients (X2 = 3.69; p = 0.04). Presence of HO was associated with prolonged delays to return to work (RTW) only in ILF + mTBI patients (F = 4.055; p = 0.05) but not in ILF patients (F = 0.823; p = 0.37). Conclusions Study findings suggest that rates of HO are significantly higher proximally to fracture sites when ILF patients sustain a concomitant mTBI, even after controlling for factors known to influence HO. Moreover, results show that HO is associated with a prolonged RTW only in ILF patients with a concomitant mTBI but not in ILF-only patients. The impact of mTBI on HO formation warrants further attention to detect early signs of HO, to identify shared physiopathological mechanisms and, ultimately, to design targeted therapies. Rates of HO are significantly higher in patients with a fracture and a mTBI compared to patients with a fracture only. Factors such as sex, age, joint involvement, and surgical procedures were unrelated to the detection of signs of HO Presence of HO negatively impacted RTW delays in patients with a concomitant mTBI
Collapse
Affiliation(s)
- Marianne Jodoin
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada.,Départment de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Dominique M Rouleau
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada.,Départment de Chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Erik Therrien
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada.,Départment de Chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Marc Chauny
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Emilie Sandman
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada.,Départment de Chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Camille Larson-Dupuis
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada.,Départment de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Stephane Leduc
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada.,Départment de Chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Nadia Gosselin
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada.,Départment de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Louis De Beaumont
- Centre de Recherche de l'Hôpital Sacré-Coeur de Montréal, Montréal, Québec, Canada.,Départment de Chirurgie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
39
|
Ju J, Yu D, Xue F, Zhao Y, Shi W, Pan M, Tang G, Xiao H. Inhibition of Nf-ҝb prevents trauma-induced heterotopic ossification in rat model. Connect Tissue Res 2019; 60:304-310. [PMID: 30288996 DOI: 10.1080/03008207.2018.1530771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate the pathogenesis and find a better prophylactic method of acquired heterotopic ossification (HO). MATERIALS AND METHODS In the first part, we designed the brain-traumatic/burn/tenotomy rat model and testified its efficacy as HO model. 44 rats were randomly divided into experimental group and control group. After operation, the bilateral tendons of 2 rats were collected at the 2nd, 3rd, 4th, 6th, 8th, and 10th weeks to determine the expression levels of p65. Additionally, the remaining rats were exposed to X-Ray examination at the 10th week. In the second part, 124 rats were randomly divided into four groups based on the administration dosage of Ammonium pyrrolidinedithiocarbamate (PDTC). Then, three rats of each group were euthanized every week in the first seven weeks to collect tendon to detect the expression levels of p65 by qRT-PCR and Western Blot. The remaining rats were exposed to X-Ray examination at the 10th week to assess the size of HO before being euthanized for HE staining. RESULTS The success rate of Brain-traumatic/Burn/Tenotomy model was 100%. Pharmacologic inhibition of Nf-ҝb signaling pathway by PDTC could significantly reduce the expression levels of p53 and the size of HO, and the reduction was most significant in the 0.6mg dosage group. CONCLUSIONS Brain-traumatic/Burn/Tenotomy model was highly reliable HO model. Inhibition of Nf-ҝb signaling pathway by PDTC could significantly reduce HO formation, and the most effective concentration was 6 mg/ml for local injection.
Collapse
Affiliation(s)
- Jinyong Ju
- a Department of Orthopedics , Ji'ning NO.1 People's Hospital , Shandong , China
| | - Du Yu
- b Department of Orthopedics , Shanghai Fenxian District Central Hospital , Shanghai , China
| | - Feng Xue
- b Department of Orthopedics , Shanghai Fenxian District Central Hospital , Shanghai , China
| | - Yong Zhao
- b Department of Orthopedics , Shanghai Fenxian District Central Hospital , Shanghai , China
| | - Weizhe Shi
- b Department of Orthopedics , Shanghai Fenxian District Central Hospital , Shanghai , China
| | - Mingmang Pan
- b Department of Orthopedics , Shanghai Fenxian District Central Hospital , Shanghai , China
| | - Guo Tang
- b Department of Orthopedics , Shanghai Fenxian District Central Hospital , Shanghai , China
| | - Haijun Xiao
- b Department of Orthopedics , Shanghai Fenxian District Central Hospital , Shanghai , China
| |
Collapse
|
40
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|
41
|
Logan NJ, Camman M, Williams G, Higgins CA. Demethylation of ITGAV accelerates osteogenic differentiation in a blast-induced heterotopic ossification in vitro cell culture model. Bone 2018; 117:149-160. [PMID: 30219480 PMCID: PMC6218666 DOI: 10.1016/j.bone.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Abstract
Trauma-induced heterotopic ossification is an intriguing phenomenon involving the inappropriate ossification of soft tissues within the body such as the muscle and ligaments. This inappropriate formation of bone is highly prevalent in those affected by blast injuries. Here, we developed a simplified cell culture model to evaluate the molecular events involved in heterotopic ossification onset that arise from the shock wave component of the disease. We exposed three subtypes of human mesenchymal cells in vitro to a single, high-energy shock wave and observed increased transcription in the osteogenic master regulators, Runx2 and Dlx5, and significantly accelerated cell mineralisation. Reduced representation bisulfite sequencing revealed that the shock wave altered methylation of gene promoters, leading to opposing changes in gene expression. Using a drug to target ITGAV, whose expression was perturbed by the shock wave, we found that we could abrogate the deposition of mineral in our model. These findings show how new therapeutics for the treatment of heterotopic ossification can be identified using cell culture models.
Collapse
Affiliation(s)
- Niall J Logan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom,.
| | - Marie Camman
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Greg Williams
- Farjo Hair Institute, London, W1G 7LH, United Kingdom.
| | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom,.
| |
Collapse
|
42
|
Barruet E, Morales BM, Cain CJ, Ton AN, Wentworth KL, Chan TV, Moody TA, Haks MC, Ottenhoff TH, Hellman J, Nakamura MC, Hsiao EC. NF-κB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight 2018; 3:122958. [PMID: 30429363 DOI: 10.1172/jci.insight.122958] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation helps regulate normal growth and tissue repair. Although bone morphogenetic proteins (BMPs) and inflammation are known contributors to abnormal bone formation, how these pathways interact in ossification remains unclear. METHODS We examined this potential link in patients with fibrodysplasia ossificans progressiva (FOP), a genetic condition of progressive heterotopic ossification caused by activating mutations in the Activin A type I receptor (ACVR1/ALK2). FOP patients show exquisite sensitivity to trauma, suggesting that BMP pathway activation may alter immune responses. We studied primary blood, monocyte, and macrophage samples from control and FOP subjects using multiplex cytokine, gene expression, and protein analyses; examined CD14+ primary monocyte and macrophage responses to TLR ligands; and assayed BMP, TGF-β activated kinase 1 (TAK1), and NF-κB pathways. RESULTS FOP subjects at baseline without clinically evident heterotopic ossification showed increased serum IL-3, IL-7, IL-8, and IL-10. CD14+ primary monocytes treated with the TLR4 activator LPS showed increased CCL5, CCR7, and CXCL10; abnormal cytokine/chemokine secretion; and prolonged activation of the NF-κB pathway. FOP macrophages derived from primary monocytes also showed abnormal cytokine/chemokine secretion, increased TGF-β production, and p38MAPK activation. Surprisingly, SMAD phosphorylation was not significantly changed in the FOP monocytes/macrophages. CONCLUSIONS Abnormal ACVR1 activity causes a proinflammatory state via increased NF-κB and p38MAPK activity. Similar changes may contribute to other types of heterotopic ossification, such as in scleroderma and dermatomyositis; after trauma; or with recombinant BMP-induced bone fusion. Our findings suggest that chronic antiinflammatory treatment may be useful for heterotopic ossification.
Collapse
Affiliation(s)
- Emilie Barruet
- Division of Endocrinology and Metabolism, Department of Medicine, and the Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Blanca M Morales
- Division of Endocrinology and Metabolism, Department of Medicine, and the Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Corey J Cain
- Division of Endocrinology and Metabolism, Department of Medicine, and the Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Amy N Ton
- Division of Endocrinology and Metabolism, Department of Medicine, and the Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Kelly L Wentworth
- Division of Endocrinology and Metabolism, Department of Medicine, and the Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Tea V Chan
- Division of Endocrinology and Metabolism, Department of Medicine, and the Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Tania A Moody
- Division of Endocrinology and Metabolism, Department of Medicine, and the Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Mariëlle C Haks
- Leiden University Medical Center, Department of Infectious Diseases, Leiden, Netherlands
| | - Tom Hm Ottenhoff
- Leiden University Medical Center, Department of Infectious Diseases, Leiden, Netherlands
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, California, USA
| | - Mary C Nakamura
- Division of Rheumatology, Department of Medicine, San Francisco VA Health Care System, UCSF, San Francisco, California, USA
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, and the Institute for Human Genetics, UCSF, San Francisco, California, USA
| |
Collapse
|
43
|
|
44
|
Belard A, Schobel S, Bradley M, Potter BK, Dente C, Buchman T, Kirk A, Elster E. Battlefield to Bedside: Bringing Precision Medicine to Surgical Care. J Am Coll Surg 2018; 226:1093-1102. [PMID: 29653881 DOI: 10.1016/j.jamcollsurg.2018.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Arnaud Belard
- Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Seth Schobel
- Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Matthew Bradley
- Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD
| | - Benjamin Kyle Potter
- Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD
| | - Christopher Dente
- Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Department of Surgery, Emory University, Atlanta, GA
| | - Timothy Buchman
- Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Department of Surgery, Emory University, Atlanta, GA
| | - Allan Kirk
- Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD; Department of Surgery, Duke University, Durham, NC
| | - Eric Elster
- Department of Surgery, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD; Uniformed Services University Surgical Critical Care Initiative, Bethesda, MD.
| |
Collapse
|
45
|
Bradley MJ, Baird DE, Peterson PG, Baird MD, Elster EA, Rodriguez CJ. Primary Pulmonary Thrombus in Combat Casualties: Is Treatment Necessary? Am Surg 2018. [DOI: 10.1177/000313481808400640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to describe the natural history of primary pulmonary thrombus (PPT) in combat casualties. This was a retrospective study of casualties treated at a major military treatment facility from 2010 to 2012. Patients with a downrange chest CTwere included. CTs were reviewed by two independent, blinded radiologists to confirm PPTon initial imaging. Follow-up CTs, if obtained, were also independently reviewed to determine the extent of clot burden. Two hundred and forty-nine casualties with a downrange, acceptable quality chest CT were included. 9 per cent (23/249) of patients sustained PPT. Thirty nine per cent (9/23) were initially treated with therapeutic anticoagulation (AC). Conversely, 61 per cent (14/23) arrived to our military treatment facility without AC. Seven arriving without AC-developed pulmonary symptoms during their hospitalization and had interval chest CTs. Of those, three had no evidence of pulmonary thrombus. The other four had subsegmental filling defects and three were started AC whereas one had an IVC (Inferior Vena Cava) filter inserted. In total, 11/23 (48%) PPT patients were managed without AC and discharged without complications. This is the first study attempting to look at PPT natural history. There were no adverse sequelae from managing PPT without AC. Further studies are warranted to further characterize PPT.
Collapse
Affiliation(s)
- Matthew J. Bradley
- Department of Surgery, Walter Reed National Military Medical Center/Uniformed Services University, Bethesda, Maryland
| | - Dean E. Baird
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Paul G. Peterson
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | - Eric A. Elster
- Department of Surgery, Walter Reed National Military Medical Center/Uniformed Services University, Bethesda, Maryland
| | - Carlos J. Rodriguez
- Department of Surgery, Walter Reed National Military Medical Center/Uniformed Services University, Bethesda, Maryland
| |
Collapse
|
46
|
Juarez JK, Wenke JC, Rivera JC. Treatments and Preventative Measures for Trauma-Induced Heterotopic Ossification: A Review. Clin Transl Sci 2018; 11:365-370. [PMID: 29697199 PMCID: PMC6039201 DOI: 10.1111/cts.12552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jessica K Juarez
- Unites States Army Institute of Surgical Research, Joint Base Fort Sam Houston, Texas, USA.,University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Joseph C Wenke
- Unites States Army Institute of Surgical Research, Joint Base Fort Sam Houston, Texas, USA
| | - Jessica C Rivera
- Unites States Army Institute of Surgical Research, Joint Base Fort Sam Houston, Texas, USA
| |
Collapse
|
47
|
Martin EC, Qureshi AT, Llamas CB, Boos EC, King AG, Krause PC, Lee OC, Dasa V, Freitas MA, Forsberg JA, Elster EA, Davis TA, Gimble JM. Trauma induced heterotopic ossification patient serum alters mitogen activated protein kinase signaling in adipose stem cells. J Cell Physiol 2018; 233:7035-7044. [PMID: 29377109 DOI: 10.1002/jcp.26504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
Post-traumatic heterotopic ossification (HO) is the formation of ectopic bone in non-osseous structures following injury. The precise mechanism for bone development following trauma is unknown; however, early onset of HO may involve the production of pro-osteogenic serum factors. Here we evaluated serum from a cohort of civilian and military patients post trauma to determine early induction gene signatures in orthopaedic trauma induced HO. To test this, human adipose derived stromal/stem cells (hASCs) were stimulated with human serum from patients who developed HO following trauma and evaluated for a gene panel with qPCR. Pathway gene analysis ontology revealed that hASCs stimulated with serum from patients who developed HO had altered gene expression in the activator protein 1 (AP1) and AP1 transcriptional targets pathways. Notably, there was a significant repression in FOS gene expression in hASCs treated with serum from individuals with HO. Furthermore, the mitogen-activated protein kinase (MAPK) signaling pathway was activated in hASCs following serum exposure from individuals with HO. Serum from both military and civilian patients with trauma induced HO had elevated downstream genes associated with the MAPK pathways. Stimulation of hASCs with known regulators of osteogenesis (BMP2, IL6, Forskolin, and WNT3A) failed to recapitulate the gene signature observed in hASCs following serum stimulation, suggesting non-canonical mechanisms for gene regulation in trauma induced HO. These findings provide new insight for the development of HO and support ongoing work linking the systemic response to injury with wound specific outcomes.
Collapse
Affiliation(s)
- Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Ammar T Qureshi
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland
| | - Claire B Llamas
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Elaine C Boos
- Department of Orthopaedics, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Andrew G King
- Department of Orthopaedics, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Peter C Krause
- Department of Orthopaedics, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Olivia C Lee
- Department of Orthopaedics, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Vinod Dasa
- Department of Orthopaedics, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, Ohio
| | - Jonathan A Forsberg
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland.,Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, Maryland
| | - J M Gimble
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana.,Departments of Medicine, Structural and Cellular Biology, & Surgery, Tulane University School of Medicine, New Orleans, Louisiana.,LaCell LLC, New Orleans, Louisiana
| |
Collapse
|
48
|
Wheatley BM, Cilwa KE, Dey D, Qureshi AT, Seavey JG, Tomasino AM, Sanders EM, Bova W, Boehm CA, Iwamoto M, Potter BK, Forsberg JA, Muschler GF, Davis TA. Palovarotene inhibits connective tissue progenitor cell proliferation in a rat model of combat-related heterotopic ossification. J Orthop Res 2018; 36:1135-1144. [PMID: 28960501 DOI: 10.1002/jor.23747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) develops in the extremities of wounded service members and is common in the setting of high-energy penetrating injuries and blast-related amputations. No safe and effective prophylaxis modality has been identified for this patient population. Palovarotene has been shown to reduce bone formation in traumatic and genetic models of HO. The purpose of this study was to determine the effects of Palovarotene on inflammation, progenitor cell proliferation, and gene expression following a blast-related amputation in a rodent model (n = 72 animals), as well as the ability of Raman spectroscopy to detect early HO before radiographic changes are present. Treatment with Palovarotene was found to dampen the systemic inflammatory response including the cytokines IL-6 (p = 0.01), TNF-α (p = 0.001), and IFN-γ (p = 0.03) as well as the local inflammatory response via a 76% reduction in the cellular infiltration at post-operative day (POD)-7 (p = 0.03). Palovarotene decreased osteogenic connective tissue progenitor (CTP-O) colonies by as much as 98% both in vitro (p = 0.04) and in vivo (p = 0.01). Palovarotene treated animals exhibited significantly decreased expression of osteo- and chondrogenic genes by POD-7, including BMP4 (p = 0.02). Finally, Raman spectroscopy was able to detect differences between the two groups by POD-1 (p < 0.001). These results indicate that Palovarotene inhibits traumatic HO formation through multiple inter-related mechanisms including anti-inflammatory, anti-proliferative, and gene expression modulation. Further, that Raman spectroscopy is able to detect markers of early HO formation before it becomes radiographically evident, which could facilitate earlier diagnosis and treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1135-1144, 2018.
Collapse
Affiliation(s)
- Benjamin M Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| | - Katherine E Cilwa
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Ammar T Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Jonathan G Seavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| | - Allison M Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Erin M Sanders
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Wesley Bova
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Cynthia A Boehm
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland, Baltimore, Maryland
| | - Benjamin K Potter
- Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| | - Jonathan A Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| | - George F Muschler
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio.,Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, Uniformed Services University-Walter Reed Department of Surgery, Bethesda, Maryland
| |
Collapse
|
49
|
Eisenstein N, Stapley S, Grover L. Post-Traumatic Heterotopic Ossification: An Old Problem in Need of New Solutions. J Orthop Res 2018; 36:1061-1068. [PMID: 29193256 DOI: 10.1002/jor.23808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/12/2017] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is the formation of pathological bone in ectopic sites and it can have serious consequences for functional outcomes. For many years, its main clinical relevance was as a rare complication of elective joint arthroplasty or CNS injury and a number of prophylaxes were developed to mitigate against it in these settings. As a consequence of changes in patterns of wounding and survival in conflicts since the turn of the century, post-traumatic HO has become much more common and case severity has increased. It represents one of the main barriers to rehabilitation in a large cohort of combat-injured patients. However, extant prophylaxes have not been shown to be effective or appropriate in this patient cohort. In addition, the lack of reliable early detection or means of predicting which patients will develop HO is another barrier to effective prevention. This review examines the current state of understanding of post-traumatic HO including the historical context, epidemiology, pathophysiology, clinical issues, currently prophylaxis and detection, management, and potential future approaches. Our aims are to highlight the current lack of effective means of early detection and prevention of HO after major trauma and to stimulate research into novel solutions to this challenging problem. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1061-1068, 2018.
Collapse
Affiliation(s)
- Neil Eisenstein
- Royal Centre for Defence Medicine, Birmingham Research Park, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, United Kingdom.,School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Sarah Stapley
- Royal Centre for Defence Medicine, Birmingham Research Park, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, United Kingdom.,School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Liam Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| |
Collapse
|
50
|
Hoyt BW, Pavey GJ, Potter BK, Forsberg JA. Heterotopic ossification and lessons learned from fifteen years at war: A review of therapy, novel research, and future directions for military and civilian orthopaedic trauma. Bone 2018; 109:3-11. [PMID: 29462673 DOI: 10.1016/j.bone.2018.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Heterotopic ossification, the formation of bone in soft tissues, is a common complication of the high-energy extremity trauma sustained in modern armed conflict. In the past 15years, military treatment facilities and aligned laboratories have been in a unique position to study and treat this process due to the high volume of patients with these injuries secondary to blast trauma. The devastating nature of these wounds has limited traditional therapeutic options, necessitating alternative solutions to prophylaxis and initial treatment producing substantial advances in modeling, prophylaxis, detection, and therapy. Specific developments include establishment of an animal model that reproduces the systemic and local tissue injury of blast injuries, the use of molecular assays and predictive modeling in clinical decision making, advances in early detection including Raman spectroscopy, and investigation of prophylactic and therapeutic pharmacotherapy targeting the molecular pathways of aberrant bone formation. In this review article, we will present the literature to date, ongoing studies, and future directions for investigation of heterotopic ossification, with a focus on military-specific research.
Collapse
Affiliation(s)
- Benjamin W Hoyt
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Gabriel J Pavey
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Benjamin K Potter
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Jonathan A Forsberg
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States..
| |
Collapse
|