1
|
Gjefsen E, Bråten LC, Ponzi E, Dagestad MH, Marchand GH, Kadar T, Bakland G, Haugen AJ, Granviken F, Flørenes TW, Vetti N, Grøvle L, Nilsen AT, Lunestad A, Holmgard TE, Valberg M, Bolstad N, Espeland A, Brox JI, Goll GL, Storheim K, Zwart J. Efficacy of a Tumor Necrosis Factor Inhibitor in Chronic Low-Back Pain With Modic Type 1 Changes: A Randomized Controlled Trial. Arthritis Rheumatol 2025; 77:615-623. [PMID: 39624017 PMCID: PMC12039465 DOI: 10.1002/art.43073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE The efficacy of tumor necrosis factor inhibitors for treating chronic low-back pain with Modic changes is uncertain. This study investigated the superiority of infliximab over placebo in patients with Modic type 1 changes. METHODS In this multicenter, randomized, triple-blind, placebo-controlled trial, patients aged 18 to 65 years with moderate to severe chronic low-back pain and Modic type 1 changes were enrolled from five Norwegian public hospitals between January 2019 and October 2022. Participants were randomly assigned to four intravenous infusions of 5 mg/kg infliximab or placebo. The primary outcome was difference in change in the Oswestry Disability Index (ODI) score from baseline to five months. Secondary outcomes included changes in low-back pain intensity, disability, and health-related quality of life. A linear mixed model was used for efficacy analyses. RESULTS A total of 128 patients (mean age 43 years, 65.6% women) participated (64 in each group). All patients who received at least one dose of the allocated infusion were included in the primary analyses. The average ODI score (±SD) change was -7.0 (±9.7) in the group who received infliximab and -6.4 (±10.4) in the group who received placebo. The difference in the ODI score change between the two groups was 1.3 ODI points (95% confidence interval -2.1 to 4.6, P = 0.45). Analyses showed no effect of infliximab compared to placebo on secondary outcomes. Adverse event rates were similar between groups. CONCLUSION Infliximab did not demonstrate superiority over placebo in reducing pain-related disability in patients with moderate to severe chronic low-back pain with Modic type 1 changes at five months.
Collapse
Affiliation(s)
| | | | | | | | - Gunn H. Marchand
- St Olav's Hospital, Trondheim University HospitalTrondheimNorway
| | | | | | | | - Fredrik Granviken
- St Olav's Hospital, Trondheim University Hospital and Norwegian University of Science and TechnologyTrondheimNorway
| | | | - Nils Vetti
- Haukeland University Hospital and University of BergenBergenNorway
| | | | | | - Astrid Lunestad
- Norwegian Association for Female Pelvic Joint Health, GrønlandOsloNorway
| | | | - Morten Valberg
- Oslo University Hospital and University of OsloOsloNorway
| | | | - Ansgar Espeland
- Haukeland University Hospital and University of BergenBergenNorway
| | - Jens I. Brox
- Oslo University Hospital and University of OsloOsloNorway
| | - Guro L. Goll
- Diakonhjemmet Hospital and University of OsloOsloNorway
| | - Kjersti Storheim
- Oslo University Hospital and Oslo Metropolitan UniversityOsloNorway
| | | |
Collapse
|
2
|
Gansau J, Grossi E, Rodriguez L, Wang M, Laudier DM, Chaudhary S, Hecht AC, Fu W, Sebra R, Liu CJ, Iatridis JC. TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair potential in degenerative conditions. Osteoarthritis Cartilage 2025:S1063-4584(25)00868-4. [PMID: 40139648 DOI: 10.1016/j.joca.2025.02.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE To identify mechanisms and treatment targets in painful intervertebral disc (IVD) degeneration (IVDD) progression with a focus on pro-inflammatory tumor necrosis factor-alpha (TNFα)-receptor-1 (TNFR1) and pro-reparative TNFα receptor-2 (TNFR2) signaling. DESIGN IVDD tissues and cells from IVDD and autopsy subjects were analyzed with single-cell RNA-sequencing to identify cell populations expressing TNFR1 and TNFR2, and multiplexed array to identify inflammatory proteins in IVDD conditioned media (CM). Bulk RNA-seq evaluated inflammatory and cell cycle states of human annulus fibrosus (hAF) cells challenged with CM. hAF cell responses to TNFR1 and TNFR2 modulation were evaluated by treatment with TNFR1- and TNFR2-blocking antibodies and TNFR2-activator Atsttrin. RESULTS IVDD CM chemokines and cytokines were expressed primarily by a small macrophage population and at low levels by native IVD cells. CM-treated hAF cells exhibited TNFα-signaling responses with reduced metabolic rates (MTT: 0.75 [95%CI:0.67 to 0.82]), limited inflammatory responses (inferred from heatmap of 50 differentially expressed genes), and senescence (10.4% SA-β-Gal+ cells [95%CI:6.99 to 13.8]). TNFR1-inhibition sufficiently restored hAF cell metabolism to enable robust pro-inflammatory responses to the complex IVDD CM cytokine mixture (multiple assays,). TNFR2-staining was limited on human IVD cell membranes and TNFR2 modulation had no effect on hAF cells, together suggesting a lack of TNFR2-signaling in native IVD cells. CONCLUSIONS Secreted proteins from IVDD CM caused hAF cells to have reduced metabolic rates, attenuated inflammatory responses, and senescence indicating a TNFR1-dominated response with metabolic impairment. Meanwhile, human IVD cells lacked reparative TNFR2-signaling since its modulation caused no effects, to suggest enhanced TNFR2-signaling in IVD repair may need recruitment or delivery of macrophages or other TNFR2-expressing cells.
Collapse
Affiliation(s)
- Jennifer Gansau
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Levon Rodriguez
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Damien M Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saad Chaudhary
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew C Hecht
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenyu Fu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James C Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
3
|
Qiu C, Cheng L, Di D, Xiang Z, Wang C, Li J, Xiong Y, Li M, Liu J, Zhou J, Liu T, Wang X, Luo D, Wang X, Li S, Wang H, Wang X, Zhao Y, Liu X, Wang L. TNFα-reliant FSP1 up-regulation promotes intervertebral disc degeneration via caspase 3-dependent apoptosis. Genes Dis 2025; 12:101251. [PMID: 39552786 PMCID: PMC11565395 DOI: 10.1016/j.gendis.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 11/19/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a common chronic inflammatory degenerative disease that causes lower back pain. However, the underlying mechanisms of IDD remain unclear. Ferroptosis suppressor protein 1 (FSP1) is a newly identified suppressor for ferroptosis. This study aims to investigate the role of FSP1 in IDD. Nucleus pulposus (NP) tissues in humans were collected and NP cells from rats were isolated to detect FSP1 expression pattern. The relationship between FSP1-mediated ferroptosis and apoptosis was identified using FSP1 inhibitor iFSP1. RNA sequencing was utilized to seek downstream molecules and related signaling pathways. Moreover, both exogenous recombinant FSP1 protein and endogenous small interfering RNA were implemented in this study to clarify the role of FSP1 in tumor necrosis factor-alpha (TNFα)-mediated NP cell apoptosis. Ultimately, the underlying mechanisms of FSP1-related signaling pathway in IDD were uncovered both in vitro and in vivo. As a result, FSP1 was up-regulated in human degenerative NP tissues and after TNFα stimulation. FSP1 inhibition by iFSP1 fails to trigger ferroptosis in NP cells while inhibiting TNFα-mediated apoptosis. Further experiments demonstrated that FSP1 was closely related to TNFα-reliant caspase 3 activation and mitochondrial damage. However, the exogenous addition of recombinant protein FSP1 does not induce cell death or intensify the efficacy of TNFα. Mechanically, FSP1 is involved in TNFα-mediated NF-κB signaling activation to accelerate the development of IDD. This study demonstrated that FSP1 promotes IDD through TNFα-reliant NF-κB signaling activation and caspase 3-dependent apoptosis. These findings suggested a novel therapeutic target for the treatment of IDD.
Collapse
Affiliation(s)
- Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Cheng
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Derun Di
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ziqian Xiang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Congyu Wang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinghang Li
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yinuo Xiong
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Manyu Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jingwei Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tianyi Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinyu Wang
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Dan Luo
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Xiaoxiong Wang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shangye Li
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Wang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xia Wang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinyu Liu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lianlei Wang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Gansau J, Grossi E, Rodriguez L, Wang M, Laudier DM, Chaudhary S, Hecht AC, Fu W, Sebra R, Liu C, Iatridis JC. TNFR1-mediated senescence and lack of TNFR2-signaling limit human intervertebral disc cell repair in back pain conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581620. [PMID: 38948728 PMCID: PMC11212922 DOI: 10.1101/2024.02.22.581620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Poor intervertebral disc (IVD) healing causes IVD degeneration (IVDD) and progression to herniation and back pain. This study identified distinct roles of TNFα-receptors (TNFRs) in contributing to poor healing in painful IVDD. We first isolated IVDD tissue of back pain subjects and determined the complex pro-inflammatory mixture contained many chemokines for recruiting inflammatory cells. Single-cell RNA-sequencing of human IVDD tissues revealed these pro-inflammatory cytokines were dominantly expressed by a small macrophage-population. Human annulus fibrosus (hAF) cells treated with IVDD-conditioned media (CM) underwent senescence with greatly reduced metabolic rates and limited inflammatory responses. TNFR1 inhibition partially restored hAF cell metabolism sufficiently to enable a robust chemokine and cytokine response to CM. We showed that the pro-reparative TNFR2 was very limited on hIVD cell membranes so that TNFR2 inhibition with blocking antibodies or activation using Atsttrin had no effect on hAF cells with CM challenge. However, TNFR2 was expressed in high levels on macrophages identified in scRNA-seq analyses, suggesting their role in repair responses. Results therefore point to therapeutic strategies for painful IVDD involving immunomodulation of TNFR1 signaling in IVD cells to enhance metabolism and enable a more robust inflammatory response including recruitment or delivery of TNFR2 expressing immune cells to enhance IVD repair.
Collapse
Affiliation(s)
- Jennifer Gansau
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Levon Rodriguez
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Damien M. Laudier
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Saad Chaudhary
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Andrew C. Hecht
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Wenyu Fu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chuanju Liu
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine; New Haven, CT 06510, USA
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
5
|
Kasamkattil J, Gryadunova A, Schmid R, Gay-Dujak MHP, Dasen B, Hilpert M, Pelttari K, Martin I, Schären S, Barbero A, Krupkova O, Mehrkens A. Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Front Bioeng Biotechnol 2023; 11:1119009. [PMID: 36865027 PMCID: PMC9971624 DOI: 10.3389/fbioe.2023.1119009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: An in vitro model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities. Methods: NPµTs were formed by i) spheroids generated with NP cells (NPS) alone or in combination with ii) NCS or iii) NC suspension and cultured in healthy or degenerative disc disease condition. Anti-inflammatory and anabolic drugs (amiloride, celecoxib, metformin, IL-1Ra, GDF-5) were used for pre-conditioning of NC/NCS. The effects of pre-conditioning were tested in 2D, 3D, and degenerative NPµT model. Histological, biochemical, and gene expression analysis were performed to assess matrix content (glycosaminoglycans, type I and II collagen), production and release of inflammatory/catabolic factors (IL-6, IL-8, MMP-3, MMP-13) and cell viability (cleaved caspase 3). Results: The degenerative NPµT contained less glycosaminoglycans, collagens, and released higher levels of IL-8 compared to the healthy NPµT. In the degenerative NPµT, NCS performed superior compared to NC cell suspension but still showed lower viability. Among the different compounds tested, only IL-1Ra pre-conditioning inhibited the expression of inflammatory/catabolic mediators and promoted glycosaminoglycan accumulation in NC/NCS in DDD microenvironment. In degenerative NPµT model, preconditioning of NCS with IL-1Ra also provided superior anti-inflammatory/catabolic activity compared to non-preconditioned NCS. Conclusion: The degenerative NPµT model is suitable to study the responses of therapeutic cells to microenvironment mimicking early-stage degenerative disc disease. In particular, we showed that NC in spheroidal organization as compared to NC cell suspension exhibited superior regenerative performance and that IL-1Ra pre-conditioning of NCS could further improve their ability to counteract inflammation/catabolism and support new matrix production within harsh degenerative disc disease microenvironment. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of IVD repair.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Raphael Schmid
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Max Hans Peter Gay-Dujak
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,Department of Biomedicine, Institute of Anatomy, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Morgane Hilpert
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,*Correspondence: Olga Krupkova,
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Baumgartner L, Sadowska A, Tío L, González Ballester MA, Wuertz-Kozak K, Noailly J. Evidence-Based Network Modelling to Simulate Nucleus Pulposus Multicellular Activity in Different Nutritional and Pro-Inflammatory Environments. Front Bioeng Biotechnol 2021; 9:734258. [PMID: 34858955 PMCID: PMC8631496 DOI: 10.3389/fbioe.2021.734258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
Initiation of intervertebral disc degeneration is thought to be biologically driven. This reflects a process, where biochemical and mechanical stimuli affect cell activity (CA) that compromise the tissue strength over time. Experimental research enhanced our understanding about the effect of such stimuli on different CA, such as protein synthesis or mRNA expression. However, it is still unclear how cells respond to their native environment that consists of a "cocktail" of different stimuli that might locally vary. This work presents an interdisciplinary approach of experimental and in silico research to approximate Nucleus Pulposus CA within multifactorial biochemical environments. Thereby, the biochemical key stimuli glucose, pH, and the proinflammatory cytokines TNF-α and IL1β were considered that were experimentally shown to critically affect CA. To this end, a Nucleus Pulposus multicellular system was modelled. It integrated experimental findings from in vitro studies of human or bovine Nucleus Pulposus cells, to relate the individual effects of targeted stimuli to alterations in CA. Unknown stimulus-CA relationships were obtained through own experimental 3D cultures of bovine Nucleus Pulposus cells in alginate beads. Translation of experimental findings into suitable parameters for network modelling approaches was achieved thanks to a new numerical approach to estimate the individual sensitivity of a CA to each stimulus type. Hence, the effect of each stimulus type on a specific CA was assessed and integrated to approximate a multifactorial stimulus environment. Tackled CA were the mRNA expressions of Aggrecan, Collagen types I & II, MMP3, and ADAMTS4. CA was assessed for four different proinflammatory cell states; non-inflamed and inflamed for IL1β, TNF-α or both IL1β&TNF-α. Inflamed cell clusters were eventually predicted in a multicellular 3D agent-based model. Experimental results showed that glucose had no significant impact on proinflammatory cytokine or ADAMTS4 mRNA expression, whereas TNF-α caused a significant catabolic shift in most explored CA. In silico results showed that the presented methodology to estimate the sensitivity of a CA to a stimulus type importantly improved qualitative model predictions. However, more stimuli and/or further experimental knowledge need to be integrated, especially regarding predictions about the possible progression of inflammatory environments under adverse nutritional conditions. Tackling the multicellular level is a new and promising approach to estimate manifold responses of intervertebral disc cells. Such a top-down high-level network modelling approach allows to obtain information about relevant stimulus environments for a specific CA and could be shown to be suitable to tackle complex biological systems, including different proinflammatory cell states. The development of this methodology required a close interaction with experimental research. Thereby, specific experimental needs were derived from systematic in silico approaches and obtained results were directly used to enhance model predictions, which reflects a novelty in this research field. Eventually, the presented methodology provides modelling solutions suitable for multiscale approaches to contribute to a better understanding about dynamics over multiple spatial scales. Future work should focus on an amplification of the stimulus environment by integrating more key relevant stimuli, such as mechanical loading parameters, in order to better approximate native physiological environments.
Collapse
Affiliation(s)
- L. Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - A. Sadowska
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - L. Tío
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - M. A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - K. Wuertz-Kozak
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY, United States
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, Germany
| | - J. Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
7
|
Hong J, Yan J, Chen J, Li S, Huang Y, Huang Z, Chen W, Liang A, Ye W. Identification of key potential targets for TNF-α/TNFR1-related intervertebral disc degeneration by bioinformatics analysis. Connect Tissue Res 2021; 62:531-541. [PMID: 32686499 DOI: 10.1080/03008207.2020.1797709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Bioinformatics analysis was performed on gene expression profile microarray data to identify the key genes activated through the TNF-α/TNFR1 signaling pathway in intervertebral disc degeneration (IDD). The common differentially expressed genes (co-DEGs) were calculated in nucleus pulposus (NP) cells and annulus fibrosus (AF) cells under TNF-α treatment or TNFR1 knockdown, which reveals the potential mechanism of TNF-α involvement in IDD and may provide new therapeutic targets for IDD. METHODS Differentially expressed genes (DEGs) in TNF-α-treated or TNFR1-knockdown NP cells and AF cells were identified. Further analysis of the gene ontology (GO), signaling pathways and interaction networks of the DEGs or co-DEGs were conducted using the Database for Annotation, Visualization and Integrated Discovery, STRING Database, and Cytoscape software. The relationship between genes and musculoskeletal diseases, including IDD, was assessed with the Comparative Toxicogenomics Database. The predicted microRNAs corresponding to the co-DEGs were also identified by microRNA Data Integration Portal. RESULTS In NP cells, the DEGs (|log2FoldChange|>2, adj.P < 0.01) were identified including 48 DEGs by TNF-α treatment and 74 DEGs by TNFR1 knockdown; in AF cells, correspondingly, 105 DEGs were identified. The co-DEGs between NP cells and AF cells were calculated including CXCL8, ICAM1, BIRC3, RELB, NFKBIA, and TNFAIP3. They may be the hub genes that were significantly associated with both NP cells and AF cells through the TNF-α/TNFR1 signaling pathway. The co-DEGs and corresponding predicted miRNAs may be potential therapeutic targets for IDD. CONCLUSIONS CXCL8, ICAM1, BIRC3, RELB, NFKBIA, and TNFAIP3 may have a synergistic effect on TNF-α-induced IDD development.Abbreviations: IDD: Intervertebral disc degeneration; NP: Nucleus pulposus; AF: Annulus fibrosus; co-DEG: Common differentially expressed gene; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: Protein-protein interaction.
Collapse
Affiliation(s)
- Junmin Hong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiansen Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiancong Chen
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuangxing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingjie Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengqi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weijian Chen
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anjing Liang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Fu F, Bao R, Yao S, Zhou C, Luo H, Zhang Z, Zhang H, Li Y, Yan S, Yu H, Du W, Yang Y, Jin H, Tong P, Sun ZT, Yue M, Chen D, Wu C, Ruan H. Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth. Sci Rep 2021; 11:772. [PMID: 33437038 PMCID: PMC7804398 DOI: 10.1038/s41598-020-80756-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant mechanical factor is one of the etiologies of the intervertebral disc (IVD) degeneration (IVDD). However, the exact molecular mechanism of spinal mechanical loading stress-induced IVDD has yet to be elucidated due to a lack of an ideal and stable IVDD animal model. The present study aimed to establish a stable IVDD mouse model and evaluated the effect of aberrant spinal mechanical loading on the pathogenesis of IVDD. Eight-week-old male mice were treated with lumbar spine instability (LSI) surgery to induce IVDD. The progression of IVDD was evaluated by μCT and Safranin O/Fast green staining analysis. The metabolism of extracellular matrix, ingrowth of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological or real-time PCR analysis. The apoptosis of IVD cells was tested by TUNEL assay. IVDD modeling was successfully produced by LSI surgery, with substantial reductions in IVD height, BS/TV, Tb.N. and lower IVD score. LSI administration led to the histologic change of disc degeneration, disruption of the matrix metabolism, promotion of apoptosis of IVD cells and invasion of sensory nerves into annulus fibrosus, as well as induction of pyroptosis. Moreover, LSI surgery activated Wnt signaling in IVD tissues. Mechanical instability caused by LSI surgery accelerates the disc matrix degradation, nerve invasion, pyroptosis, and eventually lead to IVDD, which provided an alternative mouse IVDD model.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, 311400, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huihao Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Yan Li
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Shuxin Yan
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huan Yu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Weibin Du
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou, 311200, Zhejiang, China
| | - Yanping Yang
- Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Zhi-Tao Sun
- Department of Orthopedics, Shenzhen Traditional Chinese Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518055, China
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China. .,Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
9
|
Zhang C, Gullbrand SE, Schaer TP, Boorman S, Elliott DM, Chen W, Dodge GR, Mauck RL, Malhotra NR, Smith LJ. Combined Hydrogel and Mesenchymal Stem Cell Therapy for Moderate-Severity Disc Degeneration in Goats. Tissue Eng Part A 2021; 27:117-128. [PMID: 32546053 PMCID: PMC7826444 DOI: 10.1089/ten.tea.2020.0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration is a cascade of cellular, structural, and biomechanical changes that is strongly implicated as a cause of low-back pain. Current treatment strategies have poor long-term efficacy as they seek only to alleviate symptoms without preserving or restoring native tissue structure and function. The objective of this study was to evaluate the efficacy of a combined triple interpenetrating network hydrogel (comprising dextran, chitosan, and teleostean) and mesenchymal stem cell (MSC) therapy targeting moderate-severity disc degeneration in a clinically relevant goat model. Degeneration was induced in lumbar discs of 10 large frame goats by injection of chondroitinase ABC. After 12 weeks, degenerate discs were treated by injection of either hydrogel alone or hydrogel seeded with allogeneic, bone marrow-derived MSCs. Untreated healthy and degenerate discs served as controls, and animals were euthanized 2 weeks after treatment. Discs exhibited a significant loss of disc height 12 weeks after degeneration was induced. Two weeks after treatment, discs that received the combined hydrogel and MSC injection exhibited a significant, 10% improvement in disc height index, as well as improvements in histological condition. Discs that were treated with hydrogel alone exhibited reduced tumor necrosis factor-α expression in the nucleus pulposus (NP). Microcomputed tomography imaging revealed that the hydrogel remained localized to the central NP region of all treated discs after 2 weeks of unrestricted activity. These encouraging findings motivate further, longer term studies of therapeutic efficacy of hydrogel and MSC injections in this large animal model. Impact statement Low-back pain is the leading cause of disability worldwide, and degeneration of the intervertebral discs is considered to be one of the most common reasons for low-back pain. Current treatment strategies focus solely on alleviation of symptoms, and there is a critical need for new treatments that also restore disc structure and function. In this study, using a clinically relevant goat model of moderate-severity disc degeneration, we demonstrate that a combined interpenetrating network hydrogel and mesenchymal stem cell therapy provides acute improvements in disc height, histological condition, and local inflammation.
Collapse
Affiliation(s)
- Chenghao Zhang
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas P. Schaer
- Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Sophie Boorman
- Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Weiliam Chen
- Department of Surgery, New York University School of Medicine, New York, New York, USA
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil R. Malhotra
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lachlan J. Smith
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Rahaman MM, Rakib A, Mitra S, Tareq AM, Emran TB, Shahid-Ud-Daula AFM, Amin MN, Simal-Gandara J. The Genus Curcuma and Inflammation: Overview of the Pharmacological Perspectives. PLANTS (BASEL, SWITZERLAND) 2020; 10:63. [PMID: 33396698 PMCID: PMC7824061 DOI: 10.3390/plants10010063] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
The Curcuma genus has been extensively used for therapeutic purposes in traditional or folk medicine worldwide, including for its anti-inflammatory activity. Curcuma spp.'s active constituents, such as alkaloids, flavonoids, and terpenoids, can act on various targets in the signaling pathway, restrain pro-inflammatory enzymes, lower the production of inflammatory cytokines and chemokines, and reduce oxidative stress, which subsequently suppresses inflammatory processes. Preclinical and clinical studies have reported the predominant anti-inflammatory activity of several Curcuma species. This review provides an overview of the anti-inflammatory effects of different extracts, preparations, and bioactive components in this genus. This analysis may provide a scientific basis for developing new and alternative methods for the isolation of a single entity from this genus to attenuate inflammatory conditions. The Curcuma genus is waiting for researchers interested in developing safe and efficient anti-inflammatory agents for further investigation.
Collapse
Affiliation(s)
- Md. Moshiur Rahaman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1100, Bangladesh;
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | | | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka 1230, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
11
|
Zhang C, Gullbrand SE, Schaer TP, Lau YK, Jiang Z, Dodge GR, Elliott DM, Mauck RL, Malhotra NR, Smith LJ. Inflammatory cytokine and catabolic enzyme expression in a goat model of intervertebral disc degeneration. J Orthop Res 2020; 38:2521-2531. [PMID: 32091156 PMCID: PMC7483272 DOI: 10.1002/jor.24639] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration is implicated as a leading cause of low back pain. Persistent, local inflammation within the disc nucleus pulposus (NP) and annulus fibrosus (AF) is an important mediator of disc degeneration and negatively impacts the performance of therapeutic stem cells. There is a lack of validated large animal models of disc degeneration that recapitulate clinically relevant local inflammation. We recently described a goat model of disc degeneration in which increasing doses of chondroitinase ABC (ChABC) were used to reproducibly induce a spectrum of degenerative changes. The objective of this study was to extend the clinical relevance of this model by establishing whether these degenerative changes are associated with the local expression of inflammatory cytokines and catabolic enzymes. Degeneration was induced in goat lumbar discs using ChABC at different doses. After 12 weeks, degeneration severity was determined histologically and using quantitative magnetic resonance imaging (MRI). Expression levels of inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], and IL-6) and catabolic enzymes (matrix metalloproteinases-1 [MMPs-1] and 13, and a disintegrin and metalloproteinase with thrombospondin type-1 motifs-4 [ADAMTS-4]) were assessed as the percentage of immunopositive cells in the NP and AF. With the exception of MMP-1, cytokine, and enzyme expression levels were significantly elevated in ChABC-treated discs in the NP and AF. Expression levels of TNF-α, IL1-β, and ADAMTS-4 were positively correlated with histological grade, while all cytokines and ADAMTS-4 were negatively correlated with MRI T2 and T1ρ scores. These results demonstrate that degenerate goat discs exhibit elevated expression of clinically relevant inflammatory mediators, and further validate this animal model as a platform for evaluating new therapeutic approaches for disc degeneration.
Collapse
Affiliation(s)
- Chenghao Zhang
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Sarah E. Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Thomas P. Schaer
- Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 W Street Rd, Kennett Square, PA, USA
| | - Yian Khai Lau
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Zhirui Jiang
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Robert L. Mauck
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Neil R. Malhotra
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
| | - Lachlan J. Smith
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| |
Collapse
|
12
|
Gjefsen E, Bråten LCH, Goll GL, Wigemyr M, Bolstad N, Valberg M, Schistad EI, Marchand GH, Granviken F, Selmer KK, Froholdt A, Haugen AJ, Dagestad MH, Vetti N, Bakland G, Lie BA, Haavardsholm EA, Nilsen AT, Holmgard TE, Kadar TI, Kvien T, Skouen JS, Grøvle L, Brox JI, Espeland A, Storheim K, Zwart JA. The effect of infliximab in patients with chronic low back pain and Modic changes (the BackToBasic study): study protocol of a randomized, double blind, placebo-controlled, multicenter trial. BMC Musculoskelet Disord 2020; 21:698. [PMID: 33087100 PMCID: PMC7580023 DOI: 10.1186/s12891-020-03720-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Low back pain is common and a significant number of patients experience chronic low back pain. Current treatment options offer small to moderate effects. Patients with vertebral bone marrow lesions visualized as Modic changes on magnetic resonance imaging may represent a subgroup within the low back pain population. There is evidence for inflammatory mediators being involved in development of Modic changes; hence, suppression of inflammation could be a treatment strategy for these patients. This study examines the effect of anti-inflammatory treatment with the TNF-α inhibitor infliximab in patients with chronic low back pain and Modic changes. METHODS/DESIGN The BackToBasic trial is a multicenter, double blind, randomized controlled trial conducted at six hospitals in Norway, comparing intravenous infusions with infliximab with placebo. One hundred twenty-six patients aged 18-65 with chronic low back pain and type 1 Modic changes will be recruited from secondary care outpatients' clinics. The primary outcome is back pain-specific disability at day 154 (5 months). The study is designed to detect a difference in change of 10 (SD 18) in the Oswestry Disability Index at day 154/ 5 months. The study also aims to refine MRI-assessment, investigate safety and cost-effectiveness and explore the underlying biological mechanisms of Modic changes. DISCUSSION Finding treatments that target underlying mechanisms could pose new treatment options for patients with low back pain. Suppression of inflammation could be a treatment strategy for patients with low back pain and Modic changes. This paper presents the design of the BackToBasic study, where we will assess the effect of an anti-inflammatory treatment versus placebo in patients with chronic low back pain and type 1 Modic changes. The study is registered at ClinicalTrials.gov under the identifier NCT03704363 . The EudraCT Number: 2017-004861-29.
Collapse
Affiliation(s)
- Elisabeth Gjefsen
- Research and Communication Unit for Musculoskeletal Health (FORMI), Oslo University Hospital HF, Ulleval, Bygg 37b, P.O. Box 4956 Nydalen, 0424, Oslo, Norway. .,Faculty of Medicine, University of Oslo, P.O. Box 1072 Blindern, 0316, Oslo, Norway.
| | - Lars Christian Haugli Bråten
- Research and Communication Unit for Musculoskeletal Health (FORMI), Oslo University Hospital HF, Ulleval, Bygg 37b, P.O. Box 4956 Nydalen, 0424, Oslo, Norway
| | - Guro Løvik Goll
- Department of Rheumatology, Diakonhjemmet Hospital, Box 23 Vinderen, 0319, Oslo, Norway
| | - Monica Wigemyr
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424, Oslo, Norway
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, Box 4953 Nydalen, 0424, Oslo, Norway
| | - Morten Valberg
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Sogn Arena 3.etg, P.O.Box 4950 Nydalen, Oslo, Norway
| | - Elina Iordanova Schistad
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital HF, P.O. Box 4956 Nydalen, 0424, Oslo, Norway
| | - Gunn Hege Marchand
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, P.O. Box 3250 Torgarden, NO-7006, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Fredrik Granviken
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, P.O. Box 3250 Torgarden, NO-7006, Trondheim, Norway.,Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Kaja Kristine Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424, Oslo, Norway.,National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway
| | - Anne Froholdt
- Department of Physical Medicine and Rehabilitation, Drammen Hospital, Vestre Viken Hospital Trust Drammen, P.O. Box 800, 3004, Drammen, Norway
| | - Anne Julsrud Haugen
- Department of Rheumatology, Østfold Hospital Trust, P.O. Box 300, 1714 Grålum, Moss, Norway
| | - Magnhild Hammersland Dagestad
- Department of Radiology, Haukeland University Hospital, Jonas Liesvei 65, 5021, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Nils Vetti
- Department of Radiology, Haukeland University Hospital, Jonas Liesvei 65, 5021, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Gunnstein Bakland
- Department of Rheumatology, University Hospital of North Norway, P.O. Box 100, 9038, Tromsø, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, P.O. Box 4956 Nydalen, 0424, Oslo, Norway
| | - Espen A Haavardsholm
- Department of Rheumatology, Diakonhjemmet Hospital, Box 23 Vinderen, 0319, Oslo, Norway
| | - Aksel Thuv Nilsen
- Department of Rheumatology, University Hospital of North Norway, P.O. Box 100, 9038, Tromsø, Norway
| | - Thor Einar Holmgard
- Norwegian Back Pain Association, P.O.Box 9612 Fjellhagen, 3065, Drammen, Norway
| | - Thomas Istvan Kadar
- Department of Physical Medicine and Rehabilitation, Haukeland University Hospital, Helse Bergen HF, Box 1, 5021, Bergen, Norway
| | - Tore Kvien
- Faculty of Medicine, University of Oslo, P.O. Box 1072 Blindern, 0316, Oslo, Norway.,Department of Rheumatology, Diakonhjemmet Hospital, Box 23 Vinderen, 0319, Oslo, Norway
| | - Jan Sture Skouen
- Department of Physical Medicine and Rehabilitation, Haukeland University Hospital, Helse Bergen HF, Box 1, 5021, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Kalfarveien 31, 5018, Bergen, Norway
| | - Lars Grøvle
- Department of Rheumatology, Østfold Hospital Trust, P.O. Box 300, 1714 Grålum, Moss, Norway
| | - Jens Ivar Brox
- Faculty of Medicine, University of Oslo, P.O. Box 1072 Blindern, 0316, Oslo, Norway.,Department of Physical Medicine and Rehabilitation, Oslo University Hospital HF, P.O. Box 4956 Nydalen, 0424, Oslo, Norway
| | - Ansgar Espeland
- Department of Radiology, Haukeland University Hospital, Jonas Liesvei 65, 5021, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Kjersti Storheim
- Research and Communication Unit for Musculoskeletal Health (FORMI), Oslo University Hospital HF, Ulleval, Bygg 37b, P.O. Box 4956 Nydalen, 0424, Oslo, Norway.,Department of Physiotherapy, Oslo Metropolitan University, P.O. Box 4 St. Olavs plass, NO-0130, Oslo, Norway
| | - John Anker Zwart
- Faculty of Medicine, University of Oslo, P.O. Box 1072 Blindern, 0316, Oslo, Norway.,Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424, Oslo, Norway
| |
Collapse
|
13
|
Schmitz TC, Salzer E, Crispim JF, Fabra GT, LeVisage C, Pandit A, Tryfonidou M, Maitre CL, Ito K. Characterization of biomaterials intended for use in the nucleus pulposus of degenerated intervertebral discs. Acta Biomater 2020; 114:1-15. [PMID: 32771592 DOI: 10.1016/j.actbio.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Biomaterials for regeneration of the intervertebral disc must meet complex requirements conforming to biological, mechanical and clinical demands. Currently no consensus on their characterization exists. It is crucial to identify parameters and their method of characterization for accurate assessment of their potential efficacy, keeping in mind the translation towards clinical application. This review systematically analyses the characterization techniques of biomaterial systems that have been used for nucleus pulposus (NP) restoration and regeneration. Substantial differences in the approach towards assessment became evident, hindering comparisons between different materials with respect to their suitability for NP restoration and regeneration. We have analysed the current approaches and identified parameters necessary for adequate biomaterial characterization, with the clinical goal of functional restoration and biological regeneration of the NP in mind. Further, we provide guidelines and goals for their measurement. STATEMENT OF SIGNIFICANCE: Biomaterials intended for restoration of regeneration of the nucleus pulposus within the intervertebral disc must meet biological, biomechanical and clinical demands. Many materials have been investigated, but a lack of consensus on which parameters to evaluate leads to difficulties in comparing materials as well as mostly partial characterization of the materials in question. A gap between current methodology and clinically relevant and meaningful characterization is prevalent. In this article, we identify necessary methods and their implementation for complete biomaterial characterization in the context of clinical applicability. This will allow for a more unified approach to NP-biomaterials research within the field as a whole and enable comparative analysis of novel materials yet to be developed.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Georgina Targa Fabra
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Catherine LeVisage
- Université de Nantes, INSERM UMR 1229, Regenerative Medicine and Skeleton, RMeS School of Dental Surgery, University of Nantes, 1 Place Ricordeau, 44300 Nantes, France.
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Marianna Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, Netherlands.
| | - Christine Le Maitre
- Biomolecular Sciences Research Centre Sheffield Hallam University, City Campus, Howard Street, S1 1WB Sheffield, United Kingdom.
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| |
Collapse
|
14
|
Du J, Pfannkuche JJ, Lang G, Häckel S, Creemers LB, Alini M, Grad S, Li Z. Proinflammatory intervertebral disc cell and organ culture models induced by tumor necrosis factor alpha. JOR Spine 2020; 3:e1104. [PMID: 33015577 PMCID: PMC7524256 DOI: 10.1002/jsp2.1104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of intervertebral disc (IVD) degeneration. The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) has shown markedly higher expression in degenerated human disc tissue compared with healthy controls. Anti-inflammatory treatment targeting TNF-α has shown to alleviate discogenic pain in patients with low back pain. Therefore, in vitro and ex vivo inflammatory models utilizing TNF-α provide relevant experimental conditions for drug development in disc degeneration research. The current method article addressed several specific questions related to the model establishment. (a) The effects of bovine and human recombinant TNF-α on bovine nucleus pulposus (NP) cells were compared. (b) The required dose for an inflammatory IVD organ culture model with intradiscal TNF-α injection was studied. (c) The effect of TNF-α blocking at different stages of inflammation was evaluated. Outcomes revealed that bovine and human recombinant TNF-α induced equivalent inflammatory effects in bovine NP cells. A bovine whole IVD inflammatory model was established by intradiscal injection of 100 ng TNF-α/ cm3 disc volume, as indicated by increased nitric oxide, glycosaminoglycan, interleukin 6 (IL-6), and interleukin 8 (IL-8) release in culture media, and upregulation of MMP3, ADAMTS4, IL-8, IL-6, and cyclooxygenase (COX)-2 expression in NP tissue. However, results in human NP cells showed that the time point of anti-inflammatory treatment was crucial to achieve significant effects. Furthermore, anticatabolic therapy in conjunction with TNF-α inhibition would be required to slow down the pathologic cascade of disc degeneration.
Collapse
Affiliation(s)
- Jie Du
- AO Research Institute Davos Davos Switzerland
- Department of Orthopedics University Medical Center Utrecht Utrecht The Netherlands
| | - Judith-J Pfannkuche
- AO Research Institute Davos Davos Switzerland
- Department of Orthopedics and Trauma Surgery Medical Centre-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg Freiburg Germany
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery Medical Centre-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg Freiburg Germany
| | - Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital Bern University Hospital, University of Bern Bern Switzerland
| | - Laura B Creemers
- Department of Orthopedics University Medical Center Utrecht Utrecht The Netherlands
| | - Mauro Alini
- AO Research Institute Davos Davos Switzerland
| | | | - Zhen Li
- AO Research Institute Davos Davos Switzerland
| |
Collapse
|
15
|
Wagner EK, Vedadghavami A, Jacobsen TD, Goel SA, Chahine NO, Bajpayee AG. Avidin grafted dextran nanostructure enables a month-long intra-discal retention. Sci Rep 2020; 10:12017. [PMID: 32694557 PMCID: PMC7374582 DOI: 10.1038/s41598-020-68351-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Low back pain is often the direct result of degeneration of the intervertebral disc. A wide range of therapeutics including anti-catabolic, pro-anabolic factors and chemo-attractants that can stimulate resident cells and recruit endogenous progenitors are under consideration. The avascular nature and the dense matrix of this tissue make it challenging for systemically administered drugs to reach their target cells inside the nucleus pulposus (NP), the central gelatinous region of the intervertebral disc (IVD). Therefore, local intra-discal injection of therapeutic drugs directly into the NP is a clinically relevant delivery approach, however, suffers from rapid and wide diffusion outside the injection site resulting in short lived benefits while causing systemic toxicity. NP has a high negative fixed charge density due to the presence of negatively charged aggrecan glycosaminoglycans that provide swelling pressures, compressive stiffness and hydration to the tissue. This negative fixed charge density can also be used for enhancing intra-NP residence time of therapeutic drugs. Here we design positively charged Avidin grafted branched Dextran nanostructures that utilize long-range binding effects of electrostatic interactions to bind with the intra-NP negatively charged groups. The binding is strong enough to enable a month-long retention of cationic nanostructures within the NP following intra-discal administration, yet weak and reversible to allow movement to reach cells dispersed throughout the tissue. The branched carrier has multiple sites for drug conjugation and can reduce the need for multiple injections of high drug doses and minimize associated side-effects, paving the way for effective clinical translation of potential therapeutics for treatment of low back pain and disc degeneration.
Collapse
Affiliation(s)
- Erica K Wagner
- Department of Bioengineering, Northeastern University, 805 Columbus Avenue, Boston, MA, 02120, USA
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, 805 Columbus Avenue, Boston, MA, 02120, USA
| | - Timothy D Jacobsen
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 14-1410, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shakti A Goel
- Department of Orthopedic Surgery, Indian Spinal Injuries Center, New Delhi, India
| | - Nadeen O Chahine
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 14-1410, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, 805 Columbus Avenue, Boston, MA, 02120, USA.
- Department of Mechanical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Li Z, Gehlen Y, Heizmann F, Grad S, Alini M, Richards RG, Kubosch D, Südkamp N, Izadpanah K, Kubosch EJ, Lang G. Preclinical ex-vivo Testing of Anti-inflammatory Drugs in a Bovine Intervertebral Degenerative Disc Model. Front Bioeng Biotechnol 2020; 8:583. [PMID: 32587853 PMCID: PMC7298127 DOI: 10.3389/fbioe.2020.00583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Discogenic low back pain (LBP) is a main cause of disability and inflammation is presumed to be a major driver of symptomatic intervertebral disc degeneration (IDD). Anti-inflammatory agents are currently under investigation as they demonstrated to alleviate symptoms in patients having IDD. However, their underlying anti-inflammatory and regenerative activity is poorly explored. The present study sought to investigate the potential of Etanercept and Tofacitinib for maintaining disc homeostasis in a preclinical intervertebral disc (IVD) organ culture model within IVD bioreactors allowing for dynamic loading and nutrient exchange. Bovine caudal IVDs were cultured in a bioreactor system for 4 days to simulate physiological or degenerative conditions: (1) Phy—physiological loading (0.02–0.2 MPa; 0.2 Hz; 2 h/day) and high glucose DMEM medium (4.5 g/L); (2) Deg+Tumor necrosis factor α (TNF-α)—degenerative loading (0.32–0.5 MPa; 5 Hz; 2 h/day) and low glucose DMEM medium (2 g/L), with TNF-α injection. Etanercept was injected intradiscally while Tofacitinib was supplemented into the culture medium. Gene expression in the IVD tissue was measured by RT-qPCR. Release of nitric oxide (NO), interleukin 8 (IL-8) and glycosaminoglycan (GAG) into the IVD conditioned medium were analyzed. Cell viability in the IVD was assessed using lactate dehydrogenase and ethidium homodimer-1 staining. Immunohistochemistry was performed to assess protein expression of IL-1β, IL-6, IL-8, and collagen type II in the IVD tissue. Etanercept and Tofacitinib downregulated the expression of IL-1β, IL-6, IL-8, Matrix metalloproteinase 1 (MMP1), and MMP3 in the nucleus pulposus (NP) tissue and IL-1β, MMP3, Cyclooxygenase-2 (COX2), and Nerve growth factor (NGF) in the annulus fibrosus (AF) tissue. Furthermore, Etanercept significantly reduced the IL-1β positively stained cells in the outer AF and NP regions. Tofacitinib significantly reduced IL-1β and IL-8 positively stained cells in the inner AF region. Both, Etanercept and Tofacitinib reduced the GAG loss to the level under physiological culture condition. Etanercept and Tofacitinib are able to neutralize the proinflammatory and catabolic environment in the IDD organ culture model. However, combined anti-inflammatory and anabolic treatment may be required to constrain accelerated IDD and relieving inflammation-induced back pain.
Collapse
Affiliation(s)
- Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Yannik Gehlen
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Fabian Heizmann
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - David Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Norbert Südkamp
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kaywan Izadpanah
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Lopreiato M, Cocchiola R, Falcucci S, Leopizzi M, Cardone M, Di Maio V, Brocco U, D'Orazi V, Calvieri S, Scandurra R, De Marco F, Scotto d'Abusco A. The Glucosamine-derivative NAPA Suppresses MAPK Activation and Restores Collagen Deposition in Human Diploid Fibroblasts Challenged with Environmental Levels of UVB. Photochem Photobiol 2020; 96:74-82. [PMID: 31769510 DOI: 10.1111/php.13185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
The ultraviolet (UV) component of solar radiation is the driving force of life on earth, but it can cause photoaging and skin cancer. In this study, we investigated the effects of the glucosamine-derivative 2-(N-Acetyl)-L-phenylalanylamido-2-deoxy-β-D-glucose (NAPA) on human primary fibroblasts (FBs) stimulated in vitro with environmental levels of UVB radiation. FBs were irradiated with 0.04 J cm-2 UVB dose, which resulted a mild dosage as shown by the cell viability and ROS production measurement. This environmental UVB dose induced activation of MAP kinase ERK 1/2, the stimulation of c-fos and at lower extent of c-jun, and in turn AP-1-dependent up-regulation of pro-inflammatory factors IL-6 and IL-8 and suppression of collagen type I expression. On the contrary, 0.04 J cm-2 UVB dose was not able to stimulate metalloprotease production. NAPA treatment was able to suppress the up-regulation of IL-6 and IL-8 via the inhibition of MAP kinase ERK phosphorylation and the following AP-1 activation, and was able to attenuate the collagen type I down-regulation induced by the UVBs. Taken together, our results show that NAPA, considering its dual action on suppression of inflammation and stimulation of collagen type I production, represents an interesting candidate as a new photoprotective and photorepairing agents.
Collapse
Affiliation(s)
| | - Rossana Cocchiola
- Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Susanna Falcucci
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Michele Cardone
- Department of Dermatology and Venereology, Sapienza University of Roma, Policlinico Umberto I, Roma, Italy
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Umberto Brocco
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, Sapienza University of Roma, Roma, Italy
| | - Stefano Calvieri
- Department of Dermatology and Venereology, Sapienza University of Roma, Policlinico Umberto I, Roma, Italy
| | - Roberto Scandurra
- Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Federico De Marco
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, Roma, Italy
| | | |
Collapse
|
18
|
Molladavoodi S, McMorran J, Gregory D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res 2019; 379:429-444. [PMID: 31844969 DOI: 10.1007/s00441-019-03136-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
Abstract
Low back pain (LBP) is a chronic condition that can affect up to 80% of the global population. It is the number one cause of disability worldwide and has enormous socioeconomic consequences. One of the main causes of this condition is intervertebral disc (IVD) degeneration. IVD degenerative processes and inflammation associated with it has been the subject of many studies in both tissue and cell level. It is believed that the phenotype of the resident cells within the IVD directly affects homeostasis of the tissue. At the same time, IVDs located between vertebral bodies of spine are under various mechanical loading conditions in vivo. Therefore, investigating how mechanical loading can affect the behaviour of IVD cells has been a subject of many research articles. In this review paper, following a brief explanation of the anatomy of the IVD and its resident cells, we compiled mechanobiological studies of IVD cells (specifically, annulus fibrosus and nucleus pulposus cells) and synthesized and discussed the key findings of the field.
Collapse
Affiliation(s)
- Sara Molladavoodi
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada.,Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - John McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Diane Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada. .,Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
19
|
Pfannkuche JJ, Guo W, Cui S, Ma J, Lang G, Peroglio M, Richards RG, Alini M, Grad S, Li Z. Intervertebral disc organ culture for the investigation of disc pathology and regeneration - benefits, limitations, and future directions of bioreactors. Connect Tissue Res 2019; 61:304-321. [PMID: 31556329 DOI: 10.1080/03008207.2019.1665652] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low back pain is the leading cause of disability worldwide and in many patients the source of pain can be attributed to pathological changes within the intervertebral disc (IVD). As present treatment options fail to address the underlying biological problem, novel therapies are currently subject to intense research. The physiologic IVD microenvironment features a highly complex interaction of biochemical and mechanical factors influencing cell metabolism and extracellular matrix turnover and is therefore difficult to simulate for research purposes on IVD pathology. The first whole organ culture models were not able to sufficiently replicate human in vivo conditions as mechanical loading, the predominant way of IVD nutrient supply and waste exchange, remained disregarded. To mimic the unique IVD niche more realistically, whole organ culture bioreactors have been developed, allowing for dynamic loading of IVDs and nutrient exchange. Recent advancements on bioreactor systems have facilitated whole organ culture of various IVDs for extended periods. IVD organ culture bioreactors have the potential to bridge the gap between in vitro and in vivo systems and thus may give valuable insights on IVD pathology and/or potential novel treatment approaches if the respective model is adjusted according to a well-defined research question. In this review, we outline the potential of currently utilized IVD bioreactor systems and present suggestions for further developments to more reliably investigate IVD biology and novel treatment approaches.
Collapse
Affiliation(s)
- Judith-Johanna Pfannkuche
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxuan Ma
- AO Research Institute Davos, Davos, Switzerland
| | - Gernot Lang
- Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
20
|
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146:306-324. [PMID: 29705378 DOI: 10.1016/j.addr.2018.04.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP), frequently associated with intervertebral disc (IVD) degeneration, is a major public health concern. LBP is currently managed by pharmacological treatments and, if unsuccessful, by invasive surgical procedures, which do not counteract the degenerative process. Considering that IVD cell depletion is critical in the degenerative process, the supplementation of IVD with reparative cells, associated or not with biomaterials, has been contemplated. Recently, the discovery of reparative stem/progenitor cells in the IVD has led to increased interest in the potential of endogenous repair strategies. Recruitment of these cells by specific signals might constitute an alternative strategy to cell transplantation. Here, we review the status of cell-based therapies for treating IVD degeneration and emphasize the current concept of endogenous repair as well as future perspectives. This review also highlights the challenges of the mobilization/differentiation of reparative progenitor cells through the delivery of biologics factors to stimulate IVD regeneration.
Collapse
Affiliation(s)
- Johann Clouet
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes F-44035, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Marion Fusellier
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes F-44307, France
| | - Anne Camus
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Catherine Le Visage
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Jérôme Guicheux
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| |
Collapse
|
21
|
Low-Concentration Oxygen/Ozone Treatment Attenuated Radiculitis and Mechanical Allodynia via PDE2A-cAMP/cGMP-NF- κB/p65 Signaling in Chronic Radiculitis Rats. Pain Res Manag 2018; 2018:5192814. [PMID: 30651902 PMCID: PMC6311849 DOI: 10.1155/2018/5192814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
Background Oxygen/ozone therapy is a minimally invasive technique for the treatment of radiculitis from lumbar disc herniation. This study aimed at investigating whether intrathecal administration of low-concentration oxygen/ozone could attenuate chronic radiculitis and mechanical allodynia after noncompressive lumbar disc herniation and at elucidating the underlying mechanisms. Methods First, we transplanted autologous nucleus pulposus into dorsal root ganglions to establish chronic radiculitis in rats. Then, filtered oxygen or oxygen/ozone (10, 20, or 30 μg/mL) was intrathecally injected on day 1 after surgery. The ipsilateral paw withdrawal thresholds (PWTs) to mechanical stimuli were tested daily with von Frey filaments. The expression of the tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), phosphodiesterase 2A (PDE2A), and nuclear factor- (NF-) κB/p65 in spinal dorsal horns was measured by enzyme-linked immunosorbent assay, polymerase chain reaction, and western blot on day 7 after surgery. Results Chronic radiculitis was established in rats. Intrathecal administration of 10 μg/mL, 20 μg/mL, or 30 μg/mL oxygen/ozone significantly attenuated the decreased mechanical PWTs, downregulated the overexpression of spinal TNF-α, IL-1β, and IL-6, and increased the expression of cGMP and cAMP in chronic radiculitis rats. In addition, the effects of treatment with 20 μg/mL oxygen/ozone were greater than the effects of the 10 μg/mL or 30 μg/mL doses. Moreover, intrathecal administration of 20 μg/mL oxygen/ozone reversed the increased levels of spinal PDE2A and NF-κB/p65 mRNA and protein expressions in rats with chronic radiculitis. Conclusion Intrathecal administration of low-concentration oxygen/ozone alleviated mechanical allodynia and attenuated radiculitis, likely by a PDE2A-cGMP/cAMP-NF-κB/p65 signaling pathway in chronic radiculitis rats.
Collapse
|
22
|
Byvaltsev VA, Kolesnikov SI, Bardonova LA, Belykh EG, Korytov LI, Giers MB, Bowen S, Preul MC. Development of an In Vitro Model of Inflammatory Cytokine Influences on Intervertebral Disk Cells in 3D Cell Culture Using Activated Macrophage-Like THP-1 Cells. Bull Exp Biol Med 2018; 166:151-154. [PMID: 30417291 DOI: 10.1007/s10517-018-4304-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 01/04/2023]
Abstract
We developed a new model for evaluation of the influence of proinflammatory cytokines on intervertebral disc cells in a 3D culture based on co-culturing of these cells with activated macrophage-like THP-1 cells. The levels of TNFα, IL-1β, IL-6, IL-8, IL-10, and IL-12p70 production were assessed by flow cytofluorometry using microspheres. Considerable differences in the level of spontaneous cytokine secretion by normal and degenerated intervertebral disc cells were revealed. A significant increase in the level of IL-1β and IL-8 was observed during co-culturing, which confirms consistency of the developed model.
Collapse
Affiliation(s)
- V A Byvaltsev
- Irkutsk State Medical University, Irkutsk, Russia.
- Irkutsk Research Center of Surgery and Traumatology, Irkutsk, Russia.
- Railroad Clinical Hospital at Irkutsk-Passenger Station, Russian Railways Company, Irkutsk, Russia.
| | - S I Kolesnikov
- Research Center for Problems of Family Health and Human Reproduction, Irkutsk, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - L A Bardonova
- Irkutsk State Medical University, Irkutsk, Russia
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - E G Belykh
- Irkutsk State Medical University, Irkutsk, Russia
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - L I Korytov
- Irkutsk State Medical University, Irkutsk, Russia
| | - M B Giers
- Oregon State University, Corvallis, OR, USA
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - S Bowen
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - M C Preul
- Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
23
|
Intradiscal delivery of celecoxib-loaded microspheres restores intervertebral disc integrity in a preclinical canine model. J Control Release 2018; 286:439-450. [PMID: 30110616 DOI: 10.1016/j.jconrel.2018.08.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
Low back pain, related to degeneration of the intervertebral disc (IVD), affects millions of people worldwide. Clinical studies using oral cyclooxygenase-2 (COX-2) inhibitors have shown beneficial effects, although side-effects were reported. Therefore, intradiscal delivery of nonsteroidal anti-inflammatory drugs can be an alternative treatment strategy to halt degeneration and address IVD-related pain. In the present study, the controlled release and biologic potency of celecoxib, a selective COX-2 inhibitor, from polyesteramide microspheres was investigated in vitro. In addition, safety and efficacy of injection of celecoxib-loaded microspheres were evaluated in vivo in a canine IVD degeneration model. In vitro, a sustained release of celecoxib was noted for over 28 days resulting in sustained inhibition of inflammation, as indicated by decreased prostaglandin E2 (PGE2) production, and anti-catabolic effects in nucleus pulposus (NP) cells from degenerated IVDs on qPCR. In vivo, there was no evidence of adverse effects on computed tomography and magnetic resonance imaging or macroscopic evaluation of IVDs. Local and sustained delivery of celecoxib prevented progression of IVD degeneration corroborated by MRI, histology, and measurement of NP proteoglycan content. Furthermore, it seemed to harness inflammation as indicated by decreased PGE2 tissue levels and decreased neuronal growth factor immunopositivity, providing indirect evidence that local delivery of a COX-2 inhibitor could also address pain related to IVD degeneration. In conclusion, intradiscal controlled release of celecoxib from polyesteramide microspheres prevented progression of IVD degeneration both in vitro and in vivo. Follow-up studies are warranted to determine the clinical efficacy of celecoxib-loaded PEAMs in chronic back pain.
Collapse
|
24
|
Evashwick-Rogler TW, Lai A, Watanabe H, Salandra JM, Winkelstein BA, Cho SK, Hecht AC, Iatridis JC. Inhibiting tumor necrosis factor-alpha at time of induced intervertebral disc injury limits long-term pain and degeneration in a rat model. JOR Spine 2018; 1. [PMID: 29963655 PMCID: PMC6022768 DOI: 10.1002/jsp2.1014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Painful intervertebral disc (IVD) degeneration has tremendous societal costs and few effective therapies. Intradiscal tumor necrosis factor‐alpha (TNFα) is commonly associated with low back pain, but the direct relationship remains unclear. Purpose Treatment strategies for low back pain require improved understanding of the complex relationships between pain, intradiscal pro‐inflammatory cytokines, and structural IVD degeneration. A rat in vivo lumbar IVD puncture model was used to 1) determine the role of TNFα in initiating painful IVD degeneration, and 2) identify statistical relationships between painful behavior, IVD degeneration, and intradiscal pro‐inflammatory cytokine expression. Methods Lumbar IVDs were punctured anteriorly and injected with TNFα, anti‐TNFα, or saline and compared with sham and naive controls. Hindpaw mechanical hyperalgesia was assayed weekly to determine pain over time. 6‐weeks post‐surgery, animals were sacrificed, and IVD degeneration, IVD height, and intradiscal TNFα and interleukin‐1 beta (IL‐1β) expressions were assayed. Results Intradiscal TNFα injection increased pain and IVD degeneration whereas anti‐TNFα alleviated pain to sham level. Multivariate step‐wise linear regression identified pain threshold was predicted by IVD degeneration and intradiscal TNFα expression. Pain threshold was also linearly associated with IVD height loss and IL‐1β. Discussion The significant associations between IVD degeneration, height loss, inflammation, and painful behavior highlight the multifactorial nature of painful IVD degeneration and the challenges to diagnose and treat a specific underlying factor. We concluded that TNFα is an initiator of painful IVD degeneration and its early inhibition can mitigate pain and degeneration. Intradiscal TNFα inhibition following IVD injury may warrant investigation for its potential to alter downstream painful IVD degeneration processes.
Collapse
Affiliation(s)
- Thomas W Evashwick-Rogler
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alon Lai
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hironobu Watanabe
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York.,Keiyu Spine Center, Keiyu Orthopedic Hospital, Tatebayashi, Japan
| | - Jonathan M Salandra
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Beth A Winkelstein
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel K Cho
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
25
|
Tellegen AR, Willems N, Beukers M, Grinwis GCM, Plomp SGM, Bos C, van Dijk M, de Leeuw M, Creemers LB, Tryfonidou MA, Meij BP. Intradiscal application of a PCLA-PEG-PCLA hydrogel loaded with celecoxib for the treatment of back pain in canines: What's in it for humans? J Tissue Eng Regen Med 2018; 12:642-652. [PMID: 28544701 DOI: 10.1002/term.2483] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 12/19/2022]
Abstract
Chronic low back pain is a common clinical problem in both the human and canine population. Current pharmaceutical treatment often consists of oral anti-inflammatory drugs to alleviate pain. Novel treatments for degenerative disc disease focus on local application of sustained released drug formulations. The aim of this study was to determine safety and feasibility of intradiscal application of a poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-bpoly(ε-caprolactone-co-lactide) PCLA-PEG-PCLA hydrogel releasing celecoxib, a COX-2 inhibitor. Biocompatibility was evaluated after subcutaneous injection in mice, and safety of intradiscal injection of the hydrogel was evaluated in experimental dogs with early spontaneous intervertebral disc (IVD) degeneration. COX-2 expression was increased in IVD samples surgically obtained from canine patients, indicating a role of COX-2 in clinical IVD disease. Ten client-owned dogs with chronic low back pain related to IVD degeneration received an intradiscal injection with the celecoxib-loaded hydrogel. None of the dogs showed adverse reactions after intradiscal injection. The hydrogel did not influence magnetic resonance imaging signal at long-term follow-up. Clinical improvement was achieved by reduction of back pain in 9 of 10 dogs, as was shown by clinical examination and owner questionnaires. In 3 of 10 dogs, back pain recurred after 3 months. This study showed the safety and effectiveness of intradiscal injections in vivo with a thermoresponsive PCLA-PEG-PCLA hydrogel loaded with celecoxib. In this set-up, the dog can be used as a model for the development of novel treatment modalities in both canine and human patients with chronic low back pain.
Collapse
Affiliation(s)
- Anna R Tellegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole Willems
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martijn Beukers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia G M Plomp
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Clemens Bos
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Laura B Creemers
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Lang G, Liu Y, Geries J, Zhou Z, Kubosch D, Südkamp N, Richards RG, Alini M, Grad S, Li Z. An intervertebral disc whole organ culture system to investigate proinflammatory and degenerative disc disease condition. J Tissue Eng Regen Med 2018; 12:e2051-e2061. [PMID: 29320615 DOI: 10.1002/term.2636] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/29/2017] [Accepted: 01/02/2018] [Indexed: 01/07/2023]
Abstract
The aim of this study was to compare the effect of different disease initiators of degenerative disc disease (DDD) within an intervertebral disc (IVD) organ culture system and to understand the interplay between inflammation and degeneration in the early stage of DDD. Bovine caudal IVDs were cultured within a bioreactor for up to 11 days. Control group was cultured under physiological loading (0.02-0.2 MPa; 0.2 Hz; 2 hr/day) and high glucose (4.5 g/L) medium. Detrimental loading (0.32-0.5 MPa, 5 Hz; 2 hr/day) and low glucose (2 g/L) medium were applied to mimic the condition of abnormal mechanical stress and limited nutrition supply. Tumour necrosis factor alpha (TNF-α) was injected into the nucleus pulposus (100 ng per IVD) as a proinflammatory trigger. TNF-α combined with detrimental loading and low glucose medium up-regulated interleukin 1β (IL-1β), IL-6, and IL-8 gene expression in disc tissue, nitric oxide, and IL-8 release from IVD, which indicate a proinflammatory effect. The combined initiators up-regulated matrix metalloproteinase 1 gene expression, down-regulated gene expression of Type I collagen in annulus fibrosus and Type II collagen in nucleus pulposus, and reduced the cell viability. Furthermore, the combined initiators induced a degradative effect, as indicated by markedly higher glycosaminoglycan release into conditioned medium. The combination of detrimental dynamic loading, nutrient deficiency, and TNF-α intradiscal injection can synergistically simulate the proinflammatory and degenerative disease condition within DDD. This model will be of high interest to screen therapeutic agents in further preclinical studies for early intervention and treatment of DDD.
Collapse
Affiliation(s)
- Gernot Lang
- Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Yishan Liu
- Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,AO Research Institute Davos, Davos, Switzerland
| | - Janna Geries
- Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,AO Research Institute Davos, Davos, Switzerland
| | - Zhiyu Zhou
- AO Research Institute Davos, Davos, Switzerland.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology/Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - David Kubosch
- Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Norbert Südkamp
- Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - R Geoff Richards
- Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland.,Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Henry N, Clouet J, Le Bideau J, Le Visage C, Guicheux J. Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems. Biotechnol Adv 2017; 36:281-294. [PMID: 29199133 DOI: 10.1016/j.biotechadv.2017.11.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
As our understanding of the physiopathology of intervertebral disc (IVD) degeneration has improved, novel therapeutic strategies have emerged, based on the local injection of cells, bioactive molecules, and nucleic acids. However, with regard to the harsh environment constituted by degenerated IVDs, protecting biologics from in situ degradation while allowing their long-term delivery is a major challenge. Yet, the design of the optimal approach for IVD regeneration is still under debate and only a few papers provide a critical assessment of IVD-specific carriers for local and sustained delivery of biologics. In this review, we highlight the IVD-relevant polymers as well as their design as macro-, micro-, and nano-sized particles to promote endogenous repair. Finally, we illustrate how multiscale systems, combining in situ-forming hydrogels with ready-to-use particles, might drive IVD regenerative medicine strategies toward innovation.
Collapse
Affiliation(s)
- Nina Henry
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, France
| | - Jean Le Bideau
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3, France
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France.
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU 4 OTONN, Nantes, France.
| |
Collapse
|
28
|
Wang S, Liu C, Sun Z, Yan P, Liang H, Huang K, Li C, Tian J. IL-1β increases asporin expression via the NF-κB p65 pathway in nucleus pulposus cells during intervertebral disc degeneration. Sci Rep 2017. [PMID: 28646230 PMCID: PMC5482889 DOI: 10.1038/s41598-017-04384-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Disc degeneration (DD) is a multifaceted chronic process that alters the structure and function of intervertebral discs. The pathophysiology of degeneration is not completely understood, but the consensus is that changes in genes encoding extracellular matrix (ECM) proteins in the disc are the leading factors contributing to DD. Asporin is an ECM protein that has been shown to be increased in degenerated intervertebral discs, but little is known about how asporin is regulated during DD. In exploring the intricate mechanism, we confirmed that asporin was abundantly increased in patients’ degenerated nucleus pulposus. Consistently, the increased asporin expression with degeneration was also proved by rabbit intervertebral disc degeneration (IDD) model. Mechanistically, IL-1β upregulated asporin expression by activating the p65 pathway in human nucleus pulposus cells. Furthermore, p65 mediated asporin expression by binding to −41/−31 bp on asporin promoter. Functionally, asporin was the intermediator of IL-1β-inhibited aggrecan and collagen Π expression and played a negative role in TGF-β-induced aggrecan and collagen Π formation in human nucleus pulposus cells. Therefore, identifying asporin as a negative regulator of aggrecan and collagen Π and elucidating its induction mechanisms in human nucleus pulposus cells provides new insight for asporin induction during IDD.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Chao Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Zhongyi Sun
- Department of Orthopedics, Songjiang District Central Hospital of Shanghai, 746, middle-Zhongshan Road, Shanghai, 201600, People's Republic of China
| | - Peng Yan
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - He Liang
- Department of Orthopedics, Songjiang District Central Hospital of Shanghai, 746, middle-Zhongshan Road, Shanghai, 201600, People's Republic of China
| | - Kai Huang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100, Haining Road, Shanghai, 200080, People's Republic of China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Jiwei Tian
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100, Haining Road, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
29
|
Selective phosphodiesterase-2A inhibitor alleviates radicular inflammation and mechanical allodynia in non-compressive lumbar disc herniation rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:1961-1968. [PMID: 28283839 DOI: 10.1007/s00586-017-5023-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Phosphodiesterase inhibitors possess anti-inflammatory properties. In addition, some studies report that phosphodiesterase 2A (PDE2A) are highly expressed in the dorsal horn of the spinal cord. The present study aimed to investigate whether intrathecal administration of Bay 60-7550, a specific PDE2A inhibitor, could alleviate mechanical allodynia in non-compressive lumbar disc herniation (NCLDH) rats. METHODS Rat NCLDH models by autologous nucleus pulposus implantation to dorsal root ganglion were established. Vehicle or Bay 60-7550 (0.1, 1.0 mg/kg) was injected by intrathecal catheter at day 1 post-operation. The ipsilateral mechanical withdrawal thresholds were analyzed from the day before surgery to day 7 after surgery. At day 7 post-operation, the ipsilateral lumbar (L4-L6) segments of the spinal dorsal horns were removed, and tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), cyclic adenosine monophosphate (cAMP), and cyclic guanosine monophosphate (cGMP) expressions were measured by ELISA. Furthermore, PDE2A mRNA and protein expressions in spinal cord were measured by Real-Time PCR and Western blot. RESULTS Intrathecal administration of the PDE2A inhibitor Bay 60-7550, significantly attenuated mechanical allodynia, down-regulated spinal TNF-α, IL-1β and IL-6 over-expressions, increased the expression of spinal cAMP, as well as cGMP in a more remarkable manner, and decreased the spinal PDE2A expression in NCLDH rats in a dose-dependent manner. CONCLUSIONS Bay 60-7550 alleviated mechanical allodynia and inflammation in NCLDH rats, which might be associated with increased cAMP and especially cGMP increase. Thus, spinal PDE2A inhibition might represent a potential analgesic strategy for radiculopathy treatment in non-compressive lumbar disc herniation.
Collapse
|
30
|
Wang C, Yu X, Yan Y, Yang W, Zhang S, Xiang Y, Zhang J, Wang W. Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1-13. [PMID: 27864283 DOI: 10.1093/abbs/gmw112] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most common cause leading to low back pain (LBP), which is a highly prevalent, costly, and crippling condition worldwide. Current treatments for IDD are limited to treat the symptoms and do not target the pathophysiology. Tumor necrosis factor-α (TNF-α) is one of the most potent pro-inflammatory cytokines and signals through its receptors TNFR1 and TNFR2. TNF-α is highly expressed in degenerative IVD tissues, and it is deeply involved in multiple pathological processes of disc degeneration, including matrix destruction, inflammatory responses, apoptosis, autophagy, and cell proliferation. Importantly, anti-TNF-α therapy has shown promise for mitigating disc degeneration and relieving LBP. In this review, following a brief description of TNF-α signal transduction, we mainly focus on the expression pattern and roles of TNF-α in IDD, and summarize the emerging progress regarding its inhibition as a promising biological therapeutic approach to disc degeneration and associated LBP. A better understanding will help to develop novel TNF-α-centered therapeutic interventions for degenerative disc disease.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Xiaohua Yu
- Medical Research Center, University of South China, Hengyang 421001, China
| | - Yiguo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wei Yang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shujun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yongxiao Xiang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
31
|
Vedicherla S, Buckley CT. Cell-based therapies for intervertebral disc and cartilage regeneration- Current concepts, parallels, and perspectives. J Orthop Res 2017; 35:8-22. [PMID: 27104885 DOI: 10.1002/jor.23268] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
Lower back pain from degenerative disc disease represents a global health burden, and presents a prominent opportunity for regenerative therapeutics. While current regenerative therapies such as autologous disc chondrocyte transplantation (ADCT), allogeneic juvenile chondrocyte implantation (NuQu®), and immunoselected allogeneic adipose derived precursor cells (Mesoblast) show exciting clinical potential, limitations remain. The heterogeneity of preclinical approaches and the paucity of clinical guidance have limited translational outcomes in disc repair, lagging almost a decade behind cartilage repair. Advances in cartilage repair have evolved to single step approaches with improved orthopedic repair and regeneration. Elements from cartilage regeneration endeavors could be adopted and applied to harness translatable approaches and deliver a clinically and economically feasible regenerative surgery for back pain. In this article, we trace the developments behind the translational success of cartilage repair, examine elements to consider in achieving disc regeneration, and the need for surgical redesign. We further discuss clinical parameters, objectives, and coordination required to deliver improved regenerative surgery. Cell source, processing, and delivery modalities are key issues to be addressed in considering surgical redesign. Advances in biomanufacturing, tissue cryobanking, and point of care cell processing technology may enable intraoperative solutions for single step procedures. To maximize translational success a triad partnership between clinicians, industry, and researchers will be critical in providing instructive clinical guidelines for design as well as practical and economic considerations. This will allow a consensus in research ventures and add regenerative surgery into the algorithm in managing and treating a debilitating condition such as back pain. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:8-22, 2017.
Collapse
Affiliation(s)
- Srujana Vedicherla
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,School of Medicine, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
32
|
Li XC, Wu YH, Bai XD, Ji W, Guo ZM, Wang CF, He Q, Ruan DK. BMP7-Based Functionalized Self-Assembling Peptides Protect Nucleus Pulposus-Derived Stem Cells From Apoptosis In Vitro. Tissue Eng Part A 2016; 22:1218-1228. [PMID: 27582519 DOI: 10.1089/ten.tea.2016.0230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue engineering has shown great success in the treatment of intervertebral disk degeneration (IVDD) in the past decade. However, the adverse and harsh microenvironment associated in the intervertebral disks remains a great obstacle for the survival of transplanted cells. Although increasing numbers of new materials have been created or modified to overcome this hurdle, a new effective strategy of biological therapy is still required. In this study, bone morphogenic protein 7 (BMP7)-based functionalized self-assembling peptides were developed by conjugating a bioactive motif from BMP-7 (RKPS) onto the C-terminal of the peptide RADARADARADARADA (RADA16-I) at a ratio of 1:1 to form a new RADARKPS peptide. Human nucleus pulposus-derived stem cells (NPDCs) were cultured in the presence of RADA-RKPS or RADA16-I in an apoptosis-promoting environment that was induced by tumor necrosis factor-alpha, and cells were cultured with RADA16-I in normal medium that served as the control group. After 48 h of apoptosis induction, the viability, proliferation, apoptosis rate, and expression of apoptosis-related genes of NPDCs in the different groups were evaluated, and the differentiation of NPDCs toward nucleus pulposus-like cells was tested. The results showed that the RADA-RKPS peptide could significantly protect the survival and proliferation of NPDCs. In addition, the application of RADA-RKPS decreased the rate of cell apoptosis, as detected by TUNEL-positive staining. Furthermore, our in vitro study confirmed the apoptosis-protecting effects of RADA-RKPS peptides, which significantly reduced the BAX/BCL-2 ratio of NPDCs and upregulated the gene expression of collagen II a1, aggrecan, and Sox-9 after 48 h of apoptosis induction. Collectively, these lines of evidence suggest that RADA-RKPS peptides confer a protective effect to NPDCs in an apoptosis environment, suggesting their potential application in the development of new biological treatment strategies for IVDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- 1 The Third Affiliated Hospital of Southern Medical University , Guangzhou, China .,2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China .,3 Department of Orthopedic Surgery, The People's Hospital of Gaozhou, Guangdong, People's Republic of China
| | - Yao-Hong Wu
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Xue-Dong Bai
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Wei Ji
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Zi-Ming Guo
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Chao-Feng Wang
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Qing He
- 2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Di-Ke Ruan
- 1 The Third Affiliated Hospital of Southern Medical University , Guangzhou, China .,2 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| |
Collapse
|
33
|
IL-1β/HMGB1 signalling promotes the inflammatory cytokines release via TLR signalling in human intervertebral disc cells. Biosci Rep 2016; 36:BSR20160118. [PMID: 27512095 PMCID: PMC5025813 DOI: 10.1042/bsr20160118] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammation and cytokines have been recognized to correlate with intervertebral disc (IVD) degeneration (IDD), via mediating the development of clinical signs and symptoms. However, the regulation mechanism remains unclear. We aimed at investigating the regulatory role of interleukin (IL)β and high mobility group box 1 (HMGB1) in the inflammatory response in human IVD cells, and then explored the signalling pathways mediating such regulatory effect. Firstly, the promotion to inflammatory cytokines in IVD cells was examined with ELISA method. And then western blot and real time quantitative PCR were performed to analyse the expression of toll-like receptors (TLRs), receptors for advanced glycation endproducts (RAGE) and NF-κB signalling markers in the IL-1β- or (and) HMGB1-treated IVD cells. Results demonstrated that either IL-1β or HMGB1 promoted the release of the inflammatory cytokines such as prostaglandin E2 (PGE2), TNF-α, IL-6 and IL-8 in human IVD cells. And the expression of matrix metalloproteinases (MMPs) such as MMP-1, -3 and -9 was also additively up-regulated by IL-1β and HMGB1. We also found such additive promotion to the expression of TLR-2, TLR-4 and RAGE, and the NF-κB signalling in intervertebral disc cells. In summary, our study demonstrated that IL-1β and HMGB1 additively promotes the release of inflammatory cytokines and the expression of MMPs in human IVD cells. The TLRs and RAGE and the NF-κB signalling were also additively promoted by IL-1β and HMGB1. Our study implied that the additive promotion by IL-1β and HMGB1 to inflammatory cytokines and MMPs might aggravate the progression of IDD.
Collapse
|
34
|
Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, Schaffler MB. Osteocyte Apoptosis Caused by Hindlimb Unloading is Required to Trigger Osteocyte RANKL Production and Subsequent Resorption of Cortical and Trabecular Bone in Mice Femurs. J Bone Miner Res 2016; 31:1356-65. [PMID: 26852281 PMCID: PMC5488280 DOI: 10.1002/jbmr.2807] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
Osteocyte apoptosis is essential to activate bone remodeling in response to fatigue microdamage and estrogen withdrawal, such that apoptosis inhibition in vivo prevents the onset of osteoclastic resorption. Osteocyte apoptosis has also been spatially linked to bone resorption owing to disuse, but whether apoptosis plays a similar controlling role is unclear. We, therefore, 1) evaluated the spatial and temporal effects of disuse from hindlimb unloading (HLU) on osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression, bone resorption, and loss in mouse femora, and 2) tested whether osteocyte apoptosis was required to activate osteoclastic activity in cortical and trabecular bone by treating animals subjected to HLU with the pan-caspase apoptosis inhibitor, QVD (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methylketone). Immunohistochemistry was used to identify apoptotic and RANKL-producing osteocytes in femoral diaphysis and distal trabecular bone, and µCT was used to determine the extent of trabecular bone loss owing to HLU. In both cortical and trabecular bone, 5 days of HLU increased osteocyte apoptosis significantly (3- and 4-fold, respectively, p < 0.05 versus Ctrl). At day 14, the apoptotic osteocyte number in femoral cortices declined to near control levels but remained elevated in trabeculae (3-fold versus Ctrl, p < 0.05). The number of osteocytes producing RANKL in both bone compartments was also significantly increased at day 5 of HLU (>1.5-fold versus Ctrl, p < 0.05) and further increased by day 14. Increases in osteocyte apoptosis and RANKL production preceded increases in bone resorption at both endocortical and trabecular surfaces. QVD completely inhibited not only the HLU-triggered increases in osteocyte apoptosis but also RANKL production and activation of bone resorption at both sites. Finally, µCT studies revealed that apoptosis inhibition completely prevented the trabecular bone loss caused by HLU. Together these data indicate that osteocyte apoptosis plays a central and controlling role in triggering osteocyte RANKL production and the activation of new resorption leading to bone loss in disuse. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Dorra Frikha-Benayed
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Robert J Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Alyssa Tuthill
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| |
Collapse
|
35
|
Li Y, Li K, Mao L, Han X, Zhang K, Zhao C, Zhao J. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc. PeerJ 2016; 4:e1992. [PMID: 27190710 PMCID: PMC4867702 DOI: 10.7717/peerj.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/09/2016] [Indexed: 01/07/2023] Open
Abstract
Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future.
Collapse
Affiliation(s)
- Yan Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kang Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lu Mao
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqing Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Pentosan Polysulfate: Oral Versus Subcutaneous Injection in Mucopolysaccharidosis Type I Dogs. PLoS One 2016; 11:e0153136. [PMID: 27064989 PMCID: PMC4827827 DOI: 10.1371/journal.pone.0153136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/08/2016] [Indexed: 12/04/2022] Open
Abstract
Background We previously demonstrated the therapeutic benefits of pentosan polysulfate (PPS) in a rat model of mucopolysaccharidosis (MPS) type VI. Reduction of inflammation, reduction of glycosaminoglycan (GAG) storage, and improvement in the skeletal phenotype were shown. Herein, we evaluate the long-term safety and therapeutic effects of PPS in a large animal model of a different MPS type, MPS I dogs. We focused on the arterial phenotype since this is one of the most consistent and clinically significant features of the model. Methodology/Principal Findings MPS I dogs were treated with daily oral or biweekly subcutaneous (subQ) PPS at a human equivalent dose of 1.6 mg/kg for 17 and 12 months, respectively. Safety parameters were assessed at 6 months and at the end of the study. Following treatment, cytokine and GAG levels were determined in fluids and tissues. Assessments of the aorta and carotid arteries also were performed. No drug-related increases in liver enzymes, coagulation factors, or other adverse effects were observed. Significantly reduced IL-8 and TNF-alpha were found in urine and cerebrospinal fluid (CSF). GAG reduction was observed in urine and tissues. Increases in the luminal openings and reduction of the intimal media thickening occurred in the carotids and aortas of PPS-treated animals, along with a reduction of storage vacuoles. These results were correlated with a reduction of GAG storage, reduction of clusterin 1 staining, and improved elastin integrity. No significant changes in the spines of the treated animals were observed. Conclusions PPS treatment led to reductions of pro-inflammatory cytokines and GAG storage in urine and tissues of MPS I dogs, which were most evident after subQ administration. SubQ administration also led to significant cytokine reductions in the CSF. Both treatment groups exhibited markedly reduced carotid and aortic inflammation, increased vessel integrity, and improved histopathology. We conclude that PPS may be a safe and useful therapy for MPS I, either as an adjunct or as a stand-alone treatment that reduces inflammation and GAG storage.
Collapse
|
37
|
Likhitpanichkul M, Torre OM, Gruen J, Walter BA, Hecht AC, Iatridis JC. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells? J Biomech 2016; 49:1214-1220. [PMID: 26924657 DOI: 10.1016/j.jbiomech.2016.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Abstract
During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations.
Collapse
Affiliation(s)
- Morakot Likhitpanichkul
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, Box 1188, New York, NY 10029, United States.
| | - Olivia M Torre
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, Box 1188, New York, NY 10029, United States.
| | - Jadry Gruen
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, Box 1188, New York, NY 10029, United States.
| | - Benjamin A Walter
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, Box 1188, New York, NY 10029, United States; Department of Biomedical Engineering, The City College of New York, New York, NY, United States.
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, Box 1188, New York, NY 10029, United States.
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, Box 1188, New York, NY 10029, United States.
| |
Collapse
|
38
|
Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV, Risbud MV. Disc in flames: Roles of TNF-α and IL-1β in intervertebral disc degeneration. Eur Cell Mater 2015; 30:104-16; discussion 116-7. [PMID: 26388614 PMCID: PMC4751407 DOI: 10.22203/ecm.v030a08] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intervertebral disc is an important mechanical structure that allows range of motion of the spinal column. Degeneration of the intervertebral disc--incited by aging, traumatic insult, genetic predisposition, or other factors--is often defined by functional and structural changes in the tissue, including excessive breakdown of the extracellular matrix, increased disc cell senescence and death, as well as compromised biomechanical function of the tissue. Intervertebral disc degeneration is strongly correlated with low back pain, which is a highly prevalent and costly condition, significantly contributing to loss in productivity and health care costs. Disc degeneration is a chronic, progressive condition, and current therapies are limited and often focused on symptomatic pain relief rather than curtailing the progression of the disease. Inflammatory processes exacerbated by cytokines tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are believed to be key mediators of disc degeneration and low back pain. In this review, we describe the contributions of TNF-α and IL-1β to changes seen during disc degeneration at both cellular and tissue level, as well as new evidence suggesting a link between infection of the spine and low back pain, and the emerging therapeutic modalities aimed at combating these processes.
Collapse
|
39
|
Willems N, Yang HY, Langelaan MLP, Tellegen AR, Grinwis GCM, Kranenburg HJC, Riemers FM, Plomp SGM, Craenmehr EGM, Dhert WJA, Papen-Botterhuis NE, Meij BP, Creemers LB, Tryfonidou MA. Biocompatibility and intradiscal application of a thermoreversible celecoxib-loaded poly-N-isopropylacrylamide MgFe-layered double hydroxide hydrogel in a canine model. Arthritis Res Ther 2015; 17:214. [PMID: 26290179 PMCID: PMC4545995 DOI: 10.1186/s13075-015-0727-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide (pNIPAAM MgFe-LDH) hydrogel was evaluated for intradiscal controlled delivery of the selective cyclooxygenase (COX) 2 inhibitor and anti-inflammatory drug celecoxib (CXB). Methods Degradation, release behavior, and the ability of a CXB-loaded pNIPAAM MgFe-LDH hydrogel to suppress prostaglandin E2 (PGE2) levels in a controlled manner in the presence of a proinflammatory stimulus (TNF-α) were evaluated in vitro. Biocompatibility was evaluated histologically after subcutaneous injection in mice. Safety of intradiscal application of the loaded and unloaded hydrogels was studied in a canine model of spontaneous mild IVD degeneration by histological, biomolecular, and biochemical evaluation. After the hydrogel was shown to be biocompatible and safe, an in vivo dose–response study was performed in order to determine safety and efficacy of the pNIPAAM MgFe-LDH hydrogel for intradiscal controlled delivery of CXB. Results CXB release correlated to hydrogel degradation in vitro. Furthermore, controlled release from CXB-loaded hydrogels was demonstrated to suppress PGE2 levels in the presence of TNF-α. The hydrogel was shown to exhibit a good biocompatibility upon subcutaneous injection in mice. Upon intradiscal injection in a canine model, the hydrogel exhibited excellent biocompatibility based on histological evaluation of the treated IVDs. Gene expression and biochemical analyses supported the finding that no substantial negative effects of the hydrogel were observed. Safety of application was further confirmed by the absence of clinical symptoms, IVD herniation or progression of degeneration. Controlled release of CXB resulted in a nonsignificant maximal inhibition (approximately 35 %) of PGE2 levels in the mildly degenerated canine IVDs. Conclusions In conclusion, this study showed biocompatibility and safe intradiscal application of an MgFe LDH-pNIPAAM hydrogel. Controlled release of CXB resulted in only limited inhibition of PGE2 in this model with mild IVD degeneration, and further studies should concentrate on application of controlled release from this type of hydrogel in animal models with more severe IVD degeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0727-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Willems
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Hsiao-Yin Yang
- Department of Orthopedics, University Medical Center, Heidelberglaan 100, Utrecht, 3584, CX, The Netherlands.
| | - Marloes L P Langelaan
- Department of Materials Technology, TNO, De Rondom 1, Eindhoven, 5612, AP, The Netherlands.
| | - Anna R Tellegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3508, TD, The Netherlands.
| | - Hendrik-Jan C Kranenburg
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Frank M Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Saskia G M Plomp
- Department of Orthopedics, University Medical Center, Heidelberglaan 100, Utrecht, 3584, CX, The Netherlands.
| | - Eric G M Craenmehr
- Department of Materials Technology, TNO, De Rondom 1, Eindhoven, 5612, AP, The Netherlands.
| | - Wouter J A Dhert
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands. .,Department of Orthopedics, University Medical Center, Heidelberglaan 100, Utrecht, 3584, CX, The Netherlands.
| | | | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| | - Laura B Creemers
- Department of Orthopedics, University Medical Center, Heidelberglaan 100, Utrecht, 3584, CX, The Netherlands.
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584, CM, The Netherlands.
| |
Collapse
|