1
|
Zou X, Zhang X, Han S, Wei L, Zheng Z, Wang Y, Xin J, Zhang S. Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: A comprehensive review. Biochimie 2023; 214:27-48. [PMID: 37268183 DOI: 10.1016/j.biochi.2023.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common disorder that affects the spine and is a major cause of lower back pain (LBP). The extracellular matrix (ECM) is the structural foundation of the biomechanical properties of IVD, and its degradation is the main pathological characteristic of IDD. Matrix metalloproteinases (MMPs) are a group of endopeptidases that play an important role in the degradation and remodeling of the ECM. Several recent studies have shown that the expression and activity of many MMP subgroups are significantly upregulated in degenerated IVD tissue. This upregulation of MMPs results in an imbalance of ECM anabolism and catabolism, leading to the degradation of the ECM and the development of IDD. Therefore, the regulation of MMP expression is a potential therapeutic target for the treatment of IDD. Recent research has focused on identifying the mechanisms by which MMPs cause ECM degradation and promote IDD, as well as on developing therapies that target MMPs. In summary, MMP dysregulation is a crucial factor in the development of IDD, and a deeper understanding of the mechanisms involved is needed to develop effective biological therapies that target MMPs to treat IDD.
Collapse
Affiliation(s)
- Xiaosong Zou
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Lin Wei
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
2
|
Ishitoku M, Mokuda S, Araki K, Watanabe H, Kohno H, Sugimoto T, Yoshida Y, Sakaguchi T, Masumoto J, Hirata S, Sugiyama E. Tumor Necrosis Factor and Interleukin-1β Upregulate NRP2 Expression and Promote SARS-CoV-2 Proliferation. Viruses 2023; 15:1498. [PMID: 37515185 PMCID: PMC10383177 DOI: 10.3390/v15071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), utilizes the host receptor angiotensin-converting enzyme 2 (ACE2) and the auxiliary receptor Neuropilin-1 (NRP1) to enter host cells. NRP1 has another isoform, NRP2, whose function in COVID-19 has seldom been reported. In addition, although patients with severe cases of COVID-19 often exhibit increased levels of proinflammatory cytokines, the relationship between these cytokines and SARS-CoV-2 proliferation remains unknown. The aim of this study is to clarify the roles of proinflammatory cytokines in Neuropilin expressions and in SARS-CoV-2 infection. To identify the expression patterns of NRP under inflamed and noninflamed conditions, next-generation sequencing (RNA-seq), immunohistochemistry, quantitative real-time PCR, and Western blotting were performed using primary cultured fibroblast-like synoviocytes, MH7A (immortalized cell line of human rheumatoid fibroblast-like synoviocytes), immortalized MRC5 (human embryonic lung fibroblast), and synovial tissues. To measure viral proliferative capacity, SARS-CoV-2 infection experiments were also performed. NRP2 was upregulated in inflamed tissues. Cytokine-stimulated human fibroblast cell lines, such as MH7A and immortalized MRC5, revealed that NRP2 expression increased with co-stimulation of tumor necrosis factor α (TNFα) and interleukin-1 beta (IL-1β) and was suppressed with anti-TNFα antibody alone. TNFα and IL-1β promoted SARS-CoV-2 proliferation and Spike protein binding. The viral proliferation coincided with the expression of NRP2, which was modulated through plasmid transfections. Our results revealed that proinflammatory cytokines, including TNFα, contribute to NRP2 upregulation and SARS-CoV-2 proliferation in host human cells.
Collapse
Affiliation(s)
- Michinori Ishitoku
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Sho Mokuda
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Division of Laboratory Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Kei Araki
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hirofumi Watanabe
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hiroki Kohno
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Tomohiro Sugimoto
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yusuke Yoshida
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon 791-0295, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
3
|
Fan N, Yuan S, Hai Y, Du P, Li J, Kong X, Zhu W, Liu Y, Zang L. Identifying the potential role of IL-1β in the molecular mechanisms of disc degeneration using gene expression profiling and bioinformatics analysis. J Orthop Surg (Hong Kong) 2022; 30:23094990211068203. [PMID: 35042389 DOI: 10.1177/23094990211068203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE We performed a bioinformatics analysis to identify the key genes that were differentially expressed between degenerative intervertebral disc (IVD) cells with and without exposure to interleukin-1β and explore the related signaling pathways and interaction networks. METHODS The microarray data were downloaded from the Gene Expression Omnibus (27,494). Then, analyses of the gene ontology, signaling pathways, and interaction networks for the differentially expressed genes (DEGs) were conducted using tools including the Database for Annotation, Visualization, and Integrated Discovery, Metascape, Gene Set Enrichment Analysis, Search Tool for the Retrieval of Interacting Genes, Cytoscape, Venn method, and packages of the R computing language. RESULTS A total of 260 DEGs were identified, including 161 upregulated and 99 downregulated genes. Gene Ontology annotation analysis showed that these DEGs were mainly associated with the extracellular region, chemotaxis, taxis, cytokine activity, and cytokine receptor binding. A Kyoto Encyclopedia of Genes and Genomes signaling pathway analysis showed that these DEGs were mainly involved in the of cytokine-cytokine receptor interaction, rheumatoid arthritis, tumor necrosis factor signaling pathway, Salmonella infection, and chemokine signaling pathway. The interaction network analysis indicated that 10 hub genes, including CXCL8, CXCL1, CCL20, CXCL2, CXCL5, CXCL3, CXCL6, C3, PF4, and GPER1 may play key roles in IVD degeneration. CONCLUSIONS Bioinformatic analysis showed that CXCL8 and other nine key genes may play a role in the development of disc degeneration induced by inflammatory reactions and can be used to identify potential target genes for therapeutic applications in IVD degeneration.
Collapse
Affiliation(s)
- Ning Fan
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shuo Yuan
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peng Du
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Li
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaochuan Kong
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenyi Zhu
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuzeng Liu
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Zang
- Department of Orthopedics, 74639Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
The Proteolysis of ECM in Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23031715. [PMID: 35163637 PMCID: PMC8835917 DOI: 10.3390/ijms23031715] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a pathological process that commonly occurs throughout the human life span and is a major cause of lower back pain. Better elucidation of the molecular mechanisms involved in disc degeneration could provide a theoretical basis for the development of lumbar disc intervention strategies. In recent years, extracellular matrix (ECM) homeostasis has received much attention due to its relevance to the mechanical properties of IVDs. ECM proteolysis mediated by a variety of proteases is involved in the pathological process of disc degeneration. Here, we discuss in detail the relationship between the IVD as well as the ECM and the role of ECM proteolysis in the degenerative process of the IVD. Targeting ECM proteolysis-associated proteases may be an effective means of intervention in IDD.
Collapse
|
5
|
The expression of metalloproteinases in the lumbar disc correlates strongly with Pfirrmann MRI grades in lumbar spinal fusion patients. BRAIN AND SPINE 2022; 2:100872. [PMID: 36248158 PMCID: PMC9560696 DOI: 10.1016/j.bas.2022.100872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/07/2023]
Abstract
Introduction Increased catabolism of the extracellular matrix is observed under degenerative disc disease (DDD). The cleavage of extracellular matrix proteins in the nucleus pulposus (NP) by either matrix metalloproteinases (MMPs) or a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs) is believed to be involved in the degeneration, but the mechanisms are not known. Research question Here, we examine the correlation between expression of several MMPs and ADAMTSs subtypes in lumbar discs from 34 patients with low back pain (LBP) undergoing 1-2 level lumbar fusion surgery (L4/L5 and/or L5/S1) for DDD with or without spondylolisthesis. Materials and Methods The mRNA levels of MMPs (subtypes 1, 2, 3, 10, and 13) and ADAMTSs (subtypes 1, 4, and 5) were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR) and correlated to the Pfirrmann magnetic resonance imaging classification system (grade I-V) of lumbar DDD. Results We find a highly significant positive correlation between Pfirrmann grades and the gene expression of MMP1 (r=0.67, p=0.0001), MMP3 (r=0.61, p=0.0002), MMP10 (r=0.6701, p=0.0001), MMP13 (r=0.48, p=0.004), ADAMTS1 (r=0.67, p=0.0001), and ADAMTS5 (r=0.53, p=0.0017). The similar regulation of these transcript suggests their involvement in disc degeneration. Interestingly, a post hoc analysis (uncorrected p-values) also demonstrated a positive correlation between expression of TNF-α, IL-6 and both ADAMTSs/MMPs and the Pfirrmann grades. Discussion and Conclusion These findings show that disc degradation in DDD is strongly associated with the expression of some metalloproteinases. An imbalance between catabolism and anabolism of IVD matrix components. MMPs and ADAMTSs are expressed in the NP, and their expression levels increase with degeneration grade. Our results suggest that inflammatory cytokines participate in the regulation of MMPs and ADAMTSs.
Collapse
|
6
|
Jing W, Liu W. HOXC13-AS Induced Extracellular Matrix Loss via Targeting miR-497-5p/ADAMTS5 in Intervertebral Disc. Front Mol Biosci 2021; 8:643997. [PMID: 34277699 PMCID: PMC8283188 DOI: 10.3389/fmolb.2021.643997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
Background/Aims: LncRNAs are a new modulator in the development of intervertebral disc degeneration. However, the functional role and mechanism of HOXC13-AS in intervertebral disc degeneration remain unclear. Methods: qRT-PCR analysis was performed to measure the relative expression levels of HOXC13-AS and miR-497-5p, and the levels of IL-1β, IL-6, and TNF-α in the medium supernatant were analyzed by ELISA. The related mechanism between HOXC13-AS and miR-497-5p was detected by luciferase assays. Results: The results revealed that TNF-α and IL-1β induced HOXC13-AS expression in NP cells. HOXC13-AS was overexpressed in IDD specimens compared to control specimens, and higher expression of HOXC13-AS was correlated with high Pfirrmann scores. Ectopic expression of HOXC13-AS promoted MMP-3 and ADAMTS4 and inhibited aggrecan and collagen II expression in NP cells. Furthermore, overexpression of HOXC13-AS increased the expression of inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Our results demonstrated that TNF-α and IL-1β induced ADAMTS5 expression and suppressed miR-497-5p expression. miR-497-5p was downregulated in IDD specimens compared to control specimens, and the lower expression of miR-497-5p was correlated with high Pfirrmann scores. The miR-497-5p level was negatively proportional to HOXC13-AS expression in IDD specimens. Luciferase analysis data indicated that ADAMTS5 was a direct target gene of miR-497-5p. HOXC13-AS induced inflammatory cytokine expression and ECM degradation by modulating miR-497-5p/ADAMTS5. Conclusion: HOXC13-AS may be a treatment target for IDD.
Collapse
Affiliation(s)
- Wanli Jing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
| | - Wei Liu
- Department of Orthopaedics, Baodi Peopele's Hospital, Tianjin, China
| |
Collapse
|
7
|
Musikant D, Higa R, Rodríguez CE, Edreira MM, Campetella O, Jawerbaum A, Leguizamón MS. Sialic acid removal by trans-sialidase modulates MMP-2 activity during Trypanosoma cruzi infection. Biochimie 2021; 186:82-93. [PMID: 33891967 PMCID: PMC8187320 DOI: 10.1016/j.biochi.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023]
Abstract
Matrix metalloproteinases (MMPs) not only play a relevant role in homeostatic processes but are also involved in several pathological mechanisms associated with infectious diseases. As their clinical relevance in Chagas disease has recently been highlighted, we studied the modulation of circulating MMPs by Trypanosoma cruzi infection. We found that virulent parasites from Discrete Typing Units (DTU) VI induced higher proMMP-2 and MMP-2 activity in blood, whereas both low (DTU I) and high virulence parasites induced a significant decrease in proMMP-9 plasma activity. Moreover, trans-sialidase, a relevant T. cruzi virulence factor, is involved in MMP-2 activity modulation both in vivo and in vitro. It removes α2,3-linked sialyl residues from cell surface glycoconjugates, which then triggers the PKC/MEK/ERK signaling pathway. Additionally, bacterial sialidases specific for this sialyl residue linkage displayed similar MMP modulation profiles and triggered the same signaling pathways. This novel pathogenic mechanism, dependent on sialic acid removal by the neuraminidase activity of trans-sialidase, can be exploited by different pathogens expressing sialidases with similar specificity. Thus, here we present a new pathogen strategy through the regulation of the MMP network.
Collapse
Affiliation(s)
- Daniel Musikant
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad de Buenos Aires, Argentina
| | - Romina Higa
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Laboratorio de Reproducción y Metabolismo, CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - Cristina E Rodríguez
- Departamento de Microbiología, IMPAM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - Martin M Edreira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Ciudad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN-CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160 C1428EGA, Ciudad de Buenos Aires, Argentina
| | - Oscar Campetella
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas IIBio, Universidad Nacional de San Martín, 25 de Mayo y Francia B1650HMP, San Martín, San Martin, Argentina
| | - Alicia Jawerbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Laboratorio de Reproducción y Metabolismo, CEFYBO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 C1121ABG, Ciudad de Buenos Aires, Argentina
| | - María S Leguizamón
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Godoy Cruz 2290, C1425FQB, Ciudad de Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas IIBio, Universidad Nacional de San Martín, 25 de Mayo y Francia B1650HMP, San Martín, San Martin, Argentina.
| |
Collapse
|
8
|
Li Y, Liu S, Pan D, Xu B, Xing X, Zhou H, Zhang B, Zhou S, Ning G, Feng S. The potential role and trend of HIF‑1α in intervertebral disc degeneration: Friend or foe? (Review). Mol Med Rep 2021; 23:239. [PMID: 33537810 PMCID: PMC7893690 DOI: 10.3892/mmr.2021.11878] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lower back pain (LBP) is one of the most common reasons for seeking medical advice in orthopedic clinics. Increasingly, research has shown that symptomatic intervertebral disc degeneration (IDD) is mostly related to LBP. This review first outlines the research and findings of studies into IDD, from the physiological structure of the intervertebral disc (IVD) to various pathological cascades. The vicious cycles of IDD are re-described in relation to the analysis of the relationship among the pathological mechanisms involved in IDD. Interestingly, a ‘chief molecule’ was found, hypoxia-inducible factor-1α (HIF-1α), that may regulate all other mechanisms involved in IDD. When the vicious cycle is established, the low oxygen tension activates the expression of HIF-1α, which subsequently enters into the hypoxia-induced HIF pathways. The HIF pathways are dichotomized as friend and foe pathways according to the oxygen tension of the IVD microenvironment. Combined with clinical outcomes and previous research, the trend of IDD development has been predicted in this paper. Lastly, an early precautionary diagnosis and treatment method is proposed whereby nucleus pulposus tissue for biopsy can be obtained through IVD puncture guided by B-ultrasound when the patient is showing symptoms but MRI imaging shows negative results. The assessment criteria for biopsy and the feasibility, superiority and challenges of this approach have been discussed. Overall, it is clear that HIF-1α is an indispensable reference indicator for the accurate diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Dayu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin 300000, P.R. China
| | - Xuewu Xing
- Department of Orthopedic Surgery, First Central Clinical of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Suzhe Zhou
- Department of Orthopedics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200034, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
9
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
10
|
Kawakubo A, Uchida K, Miyagi M, Nakawaki M, Satoh M, Sekiguchi H, Yokozeki Y, Inoue G, Takaso M. Investigation of resident and recruited macrophages following disc injury in mice. J Orthop Res 2020; 38:1703-1709. [PMID: 31965590 DOI: 10.1002/jor.24590] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 02/04/2023]
Abstract
Macrophages, particularly M1 macrophages, produce proinflammatory cytokines and contribute to the degenerative process in injured intervertebral discs (IVDs). We previously showed that macrophages in both intact and injured IVDs increased following IVD injury. Resident macrophages and macrophages recruited from the peripheral blood have distinct roles in tissue. However, it remains to be determined whether increased macrophages derive from resident or recruited macrophages. We investigated the origin of M1 macrophages in injured IVDs using green fluorescent protein (GFP) transgenic bone marrow chimeric mice. The M1 macrophage marker, CD86, increased in both disc-derived resident macrophages and bone marrow-derived macrophages (BMMs) after lipopolysaccharide/interferon γ stimulation in vitro. Following IVD injury, the proportion of cells positive for the CD86 ligand, the F4/80 antigen, and the surface glycoprotein CD11b (CD86+ CD11b+ F4/80+) significantly increased in GFP+ populations at days 3, 7, and 14. In contrast, CD86+ CD11b+ F4/80+ cells in GFP- populations significantly increased on day 3, and thereafter decreased on days 7 and 14. The proportion of CD86+ CD11b+ F4/80+ cells in the GFP+ populations was significantly higher than that in the GFP- populations at days 1, 3, 7, and 14. Monocyte chemoattractant protein-1 expression in disc-derived macrophages, but not in BMMs, increased following interleukin-1β stimulation. Our results suggest M1 macrophages following IVD injury originate from recruited macrophages. Resident macrophages may behave differently in IVD injury. The role of resident macrophages needs to be clarified. Further investigation is needed.
Collapse
Affiliation(s)
- Ayumu Kawakubo
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Mitsufumi Nakawaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Hiroyuki Sekiguchi
- Medical Sciences Research Institute, Shonan University, Chigasaki City, Kanagawa, Japan
| | - Yuji Yokozeki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
11
|
Chen X, Li Z, Xu D, Li S. LINC01121 induced intervertebral disc degeneration via modulating miR-150-5p/MMP16 axis. J Gene Med 2020; 22:e3231. [PMID: 32436632 DOI: 10.1002/jgm.3231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Growing evidence indicates that Long noncoding RNAs contribute to cell differentiation, invasion, metabolism, proliferation and metastasis. However, the potential role of LINC01121 in progression of intervertebral disc degeneration (IDD) remains unclear. METHODS LINC01121, matrix metalloprotease (MMP)-16 and miR-150-5p expression was determined by a quantitative-reverse transcriptase-polymerase chain reaction assay. Inflammatory cytokines level was measured by an enzyme-linked immunosorbent assay and cell counting kit-8 analysis was used to assess cell proliferation. MMP-16-specific binding with miR-150-5p was verified with a luciferase reporter assay. RESULTS We noted that interleukin (IL)-1β and tumor necrosis factor (TNF)-α treatment enhanced LINC01121 and MMP-16 expression in nucleus pulposus (NP) cells. LINC01121 was higher in IDD specimens compared to that in control specimens. Higher expression of LINC01121 was correlated with disc degeneration degree. Ectopic expression of LINC01121 enhanced cell proliferation and promoted ki-67, MMP-3 and ADAMTS5 expression and also suppressed collagen II expression in NP cells. We observed that overexpression of LINC01121 increased the secretion of three inflammatory cytokines, including IL-6, TNF-α and IL-1β. We found that ectopic expression of LINC01121 decreased the miR-150-5p level in NP cells. Luciferase reporter data confirmed that MMP-16 was one direct target of miR-150-5p. Overexpression of miR-150-5p inhibited MMP-16 level and elevated the expression of LINC01121 enhanced MMP-16 level. We also found that MMP-16 was up-regulated in IDD specimens compared to that in control specimens. Higher expression of MMP-16 was correlated with disc degeneration degree. Interestingly, MMP-16 expression was positively related to LINC01121 in IDD specimens. Finally, overexpression of LINC01121 regulated cell growth, extracellular matrix degradation and inflammatory cytokine secretion via modulating MMP-16. CONCLUSIONS our data suggested LINC01121 may be a new therapeutic target for IDD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate school of Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate school of Peking Union Medical College, Beijing, 100042, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shugang Li
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate school of Peking Union Medical College, Beijing, 100042, China
| |
Collapse
|
12
|
Gao G, Chang F, Zhang T, Huang X, Yu C, Hu Z, Ji M, Duan Y. Naringin Protects Against Interleukin 1β (IL-1β)-Induced Human Nucleus Pulposus Cells Degeneration via Downregulation Nuclear Factor kappa B (NF-κB) Pathway and p53 Expression. Med Sci Monit 2019; 25:9963-9972. [PMID: 31927560 PMCID: PMC6944037 DOI: 10.12659/msm.918597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low back pain (LBP) is regarded as a frequent disease that causes disability. We aimed to explore the effect of naringin on intervertebral disc degeneration (IDD) in IL-1ß-induced human nucleus pulposus (NP) cells and its corresponding molecular mechanisms. MATERIAL AND METHODS Human NP cells were identified by toluidine blue and Safranin O staining. Cell viability was determined by MTT assay. The expression levels of matrix metalloproteinases (MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, collagen II, aggrecan), inflammatory genes (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6), kappa B kinase alpha (IkappaBalpha), p65 and p53 were determined by quantitative real-time polymerase chain reaction (qPCR) and western blotting. Immunofluorescence study was performed to detect the position and expression of p65 protein in IL-1ß-induced human NP cells. RESULTS Human NP cells were successfully separated from intervertebral disc tissue. We found that naringin could significantly reduce the expressions of matrix metalloproteinases (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and inflammatory genes in IL-1ß-stimulated human NP cells, while collagen II and aggrecan were increased at mRNA and protein level. Immunofluorescence showed that naringin pretreatment decreased the p65 protein expression in the nucleus and suppressed the phosphorylation of IkappaBalpha and p65. CONCLUSIONS These results demonstrated that naringin could attenuate matrix metalloproteinase catabolism and inflammation in IL-1ß-treated human nucleus pulposus cells via downregulating NF-kappaB pathway and p53 expression, suggesting that naringin has the potential to prevent and treat IDD.
Collapse
Affiliation(s)
- Gang Gao
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Feng Chang
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Ting Zhang
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Xinhu Huang
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Chen Yu
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Zhaolin Hu
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Mingming Ji
- Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, P.R China
| | - Yufen Duan
- Department of Endocrinology, Shanxi Coal Central Hospital, Taiyuan, Shanxi, P.R. China
| |
Collapse
|
13
|
Ge J, Zhou Q, Niu J, Wang Y, Yan Q, Wu C, Qian J, Yang H, Zou J. Melatonin Protects Intervertebral Disc from Degeneration by Improving Cell Survival and Function via Activation of the ERK1/2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5120275. [PMID: 31885798 PMCID: PMC6914917 DOI: 10.1155/2019/5120275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Melatonin, a neuroendocrine hormone secreted by the pineal body, has a positive effect on intervertebral disc degeneration. The present study is aimed at investigating the biological role of melatonin in intervertebral disc degeneration and its underlying mechanism. A human nucleus pulposus cell (NPC) line was exposed to melatonin at different concentrations. Cell proliferation was measured by CCK-8 assay. Cell cycle and apoptosis were analyzed by flow cytometry. Western blot was performed to measure the protein expression of indicated genes. A rabbit model of intervertebral disc degeneration was established to detect the role and mechanism of melatonin on intervertebral disc degeneration. Our study showed that melatonin promoted NPC viability and inhibited cell arrest. Furthermore, melatonin treatment led to the upregulation of collagen II and aggrecan and downregulation of collagen X. Moreover, melatonin significantly elevated the activity of the ERK signaling pathway. Inhibition of the ERK1/2 signals reversed the role of melatonin in the regulation of NPCs both in vitro and in vivo. Melatonin increased NPC viability through inhibition of cell cycle arrest and apoptosis. Moreover, melatonin promoted the secretion of functional factors influencing the nucleus pulposus cell physiology and retarded cell degeneration. Our results suggest that melatonin activated the ERK1/2 signaling pathway, thereby affecting the biological properties of the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Quan Zhou
- Department of Orthopedics Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, China
| | - Junjie Niu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yingjie Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiale Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
14
|
Identification of Aberrantly Expressed Genes during Aging in Rat Nucleus Pulposus Cells. Stem Cells Int 2019; 2019:2785207. [PMID: 31379949 PMCID: PMC6652086 DOI: 10.1155/2019/2785207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleus pulposus cells (NPCs) play a vital role in maintaining the homeostasis of the intervertebral disc (IVD). Previous studies have discovered that NPCs exhibited malfunction due to cellular senescence during disc aging and degeneration; this might be one of the key factors of IVD degeneration. Thus, we conducted this study in order to investigate the altered biofunction and the underlying genes and pathways of senescent NPCs. We isolated and identified NPCs from the tail discs of young (2 months) and old (24 months) SD rats and confirmed the senescent phenotype through SA-β-gal staining. CCK-8 assay, transwell assay, and cell scratch assay were adopted to detect the proliferous and migratory ability of two groups. Then, a rat Gene Chip Clariom™ S array was used to detect differentially expressed genes (DEGs). After rigorous bioinformatics analysis of the raw data, totally, 1038 differentially expressed genes with a fold change > 1.5 were identified out of 23189 probes. Among them, 617 were upregulated and 421 were downregulated. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted and revealed numerous number of enriched GO terms and signaling pathways associated with senescence of NPCs. A protein-protein interaction (PPI) network of the DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. Module analysis was conducted for the PPI network using the MCODE plugin in Cytoscape. Hub genes were identified by the CytoHubba plugin in Cytoscape. Derived 5 hub genes and most significantly up- or downregulated genes were further verified by real-time PCR. The present study investigated underlying mechanisms in the senescence of NPCs on a genome-wide scale. The illumination of molecular mechanisms of NPCs senescence may assist the development of novel biological methods to treat degenerative disc diseases.
Collapse
|
15
|
Smith MW, Ith A, Carragee EJ, Cheng I, Alamin TF, Golish SR, Mitsunaga K, Scuderi GJ, Smuck M. Does the presence of the fibronectin-aggrecan complex predict outcomes from lumbar discectomy for disc herniation? Spine J 2019; 19:e28-e33. [PMID: 24239034 DOI: 10.1016/j.spinee.2013.06.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/10/2013] [Accepted: 06/20/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Protein biomarkers associated with lumbar disc disease have been studied as diagnostic indicators and therapeutic targets. Recently, a cartilage degradation product, the fibronectin-aggrecan complex (FAC) identified in the epidural space, has been shown to predict response to lumbar epidural steroid injection in patients with radiculopathy from herniated nucleus pulposus (HNP). PURPOSE Determine the ability of FAC to predict response to microdiscectomy for patients with radiculopathy due to lumbar disc herniation STUDY DESIGN/SETTING: Single-center prospective consecutive cohort study. PATIENT SAMPLE Patients with radiculopathy from HNP with concordant symptoms to MRI who underwent microdiscectomy. OUTCOMES MEASURES Oswestry disability index (ODI) and visual analog scores (VAS) were noted at baseline and at 3-month follow-up. Primary outcome of clinical improvement was defined as patients with both a decrease in VAS of at least 3 points and ODI >20 points. METHODS Intraoperative sampling was done via lavage of the excised fragment by ELISA for presence of FAC. Funding for the ELISA was provided by Cytonics, Inc. RESULTS Seventy-five patients had full complement of data and were included in this analysis. At 3-month follow-up, 57 (76%) patents were "better." There was a statistically significant association of the presence of FAC and clinical improvement (p=.017) with an 85% positive predictive value. Receiver-operating-characteristic (ROC) curve plotting association of FAC and clinical improvement demonstrates an area under the curve (AUC) of 0.66±0.08 (p=.037). Subset analysis of those with weakness on physical examination (n=48) plotting the association of FAC and improvement shows AUC on ROC of 0.81±0.067 (p=.002). CONCLUSIONS Patients who are "FAC+" are more likely to demonstrate clinical improvement following microdiscectomy. The data suggest that the inflammatory milieu plays a significant role regarding improvement in patients undergoing discectomy for radiculopathy in lumbar HNP, even in those with preoperative weakness. The FAC represents a potential target for treatment in HNP.
Collapse
Affiliation(s)
- Micah W Smith
- Orthopaedics Northeast, 5050 N. Clinton St. Fort Wayne, IN 46825, USA.
| | - Agnes Ith
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Eugene J Carragee
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Ivan Cheng
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Todd F Alamin
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - S Raymond Golish
- Department of Orthopedics, Peace Health Oregon St. John- Orthopedics, 1615 Delaware St, Longview, WA 98632, USA
| | - Kyle Mitsunaga
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Gaetano J Scuderi
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Matthew Smuck
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| |
Collapse
|
16
|
Feng G, Zha Z, Huang Y, Li J, Wang Y, Ke W, Chen H, Liu L, Song Y, Ge Z. Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis. Adv Healthc Mater 2018; 7:e1800623. [PMID: 30296017 DOI: 10.1002/adhm.201800623] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/09/2018] [Indexed: 02/05/2023]
Abstract
Intervertebral disc degeneration (IDD) is frequently caused by gradual pathological changes inside intervertebral discs (IVDs) and progressive fibrosis. MicroRNA-29 (miR-29) family possesses potent fibrosis suppression capability, but their application for treatment of chronic IDD is limited due to lack of suitable local delivery systems. In this report, given various overexpressed matrix metalloproteinases (MMPs) during IDD, injectable MMP-degradable hydrogels encapsulating MMP-responsive polyplex micelles are developed for sustained and bioresponsive delivery of miR-29a into nucleus pulposus cells via a two-stage process. Cationic block copolymers are designed to complex miR-29a, and subsequently mixed with the poly(ethylene glycol) (PEG) gelation precursors and MMP-cleavable peptide cross-linkers for in situ formation of polyplex micelle-encapsulated hydrogels in the diseased IVDs. In the presence of MMPs, the polyplex micelles are first released by MMP cleavage of the hydrogels, and subsequently, MMPs-responsive detachment of PEG shells from polyplex micelles contributes to efficient cellular uptake and endosomal escape. MiR-29a is demonstrated to effectively silence the expression of MMP-2, inhibit the fibrosis process, and reverse IDD in animal models through blocking the β-catenin translocation pathway from the cytoplasm to the nucleus. This two-stage bioresponsive local miRNA delivery system represents a novel and promising strategy for the treatment of chronic IDD.
Collapse
Affiliation(s)
- Ganjun Feng
- Department of Orthopedic Surgery; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| | - Yong Huang
- Department of Orthopedic Surgery; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| | - Hongying Chen
- Technology Center for Public Research; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Limin Liu
- Department of Orthopedic Surgery; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Yueming Song
- Department of Orthopedic Surgery; West China Hospital; Sichuan University; Chengdu 610041 Sichuan China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 Anhui China
| |
Collapse
|
17
|
Sultana S, Adhikary R, Bishayi B. Neutralization of MMP-2 and TNFR1 Regulates the Severity of S. aureus-Induced Septic Arthritis by Differential Alteration of Local and Systemic Proinflammatory Cytokines in Mice. Inflammation 2018; 40:1028-1050. [PMID: 28326455 DOI: 10.1007/s10753-017-0547-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite advancement in the field of antibiotics septic arthritis remains a serious concern till date. Staphylococcus aureus is the most common bacterium that causes septic arthritis. Severity of this disease is directly correlated with chronic inflammation induced by proinflammatory cytokines like TNF-α, interleukin (IL)-1β, IL-6, and induction of matrix metalloproteinases (MMPs) including MMP-2. The objective of our study was to evaluate the role of MMP-2 and tumor necrosis factor receptor 1 (TNFR1) in the pathogenesis of S. aureus infection-induced septic arthritis. Mice were infected with live S. aureus (5 × 106 cells/ml) followed by administration of MMP-2 inhibitor and TNFR1 antibody. Arthritis index showed highest reduction in severity of arthritis in mice treated with both MMP-2 inhibitor and TNFR1 antibody after infection. Combined neutralization of MMP-2 and TNFR1 led to marked diminution in bacterial count in the combined group. Lowest levels of pro inflammatory cytokines like TNF-α, IL-1β, IL-6, and IFN-γ were observed in both serum and synovial tissues indicating maximum protection in S. aureus arthritis during combination treatment. Increment in the level of IL-10 in the combination group could be positively correlated with the recovery of arthritis. Similarly, expressions of COX-2 and iNOS, markers of acute inflammation were also significantly reduced in the combination group due to resolution of inflammation. Levels of O2.- and NO also showed a significant fall in case of the group treated with MMP-2 inhibitor and TNFR1 antibody both. Neutralization of both MMP-2 and TNFR1 caused rapid decline in recruitment of neutrophil and macrophages in the synovial tissues as evident from reduced MPO and MCP-1 levels, respectively, compared to other groups. Overall, it can be suggested that administration of MMP-2 inhibitor and TNFR1 antibody in combination is protective against the severity of inflammation and cartilage destruction associated with S. aureus infection-induced septic arthritis by altering the levels of cytokines.
Collapse
Affiliation(s)
- Sahin Sultana
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Rana Adhikary
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India.
| |
Collapse
|
18
|
Pan CH, Li PC, Chien YC, Yeh WT, Liaw CC, Sheu MJ, Wu CH. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia. Phytother Res 2017; 32:312-320. [PMID: 29250830 DOI: 10.1002/ptr.5979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/30/2017] [Accepted: 10/18/2017] [Indexed: 11/06/2022]
Abstract
Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G0 /G1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation.
Collapse
Affiliation(s)
- Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Pei-Chuan Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Wan-Ting Yeh
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
19
|
Abstract
OBJECTIVE To examine the link between cytokines in intervertebral disc (IVD) tissues and axial back pain. DESIGN In vitro study with human IVD cells cultured from cadaveric donors and annulus fibrosus (AF) tissues from patients. RESULTS Cultured nucleus pulposus (NP) and AF cells were stimulated with interleukin (IL)-1β. IL-8 and IL-7 gene expression was analyzed using real-time polymerase chain reaction. IL-8 protein was quantified by enzyme-linked immunosorbent assay. After IL-1β stimulation, IL-8 gene expression increased 26,541 fold in NP cells and 22,429 fold in AF cells, whereas protein released by the NP and AF cells increased 2,389- and 1,784-fold, respectively. IL-7 gene expression increased 3.3-fold in NP cells (P < 0.05).Cytokine profiles in AF tissues collected from patients undergoing surgery for back pain (painful group) or scoliosis (controls) were compared by cytokine array. IL-8 protein in the AF tissues from patients with back pain was 1.81-fold of that in controls. IL-7 and IL-10 in AF tissues from the painful group were 6.87 and 4.63 times greater than the corresponding values in controls, respectively (P < 0.05). CONCLUSION Inflammatory mediators found in AF tissues from patients with discogenic back pain are likely produced by IVD cells and may play a key role in back pain.
Collapse
|
20
|
Shah A, Alhusayen R, Amini-Nik S. The critical role of macrophages in the pathogenesis of hidradenitis suppurativa. Inflamm Res 2017; 66:931-945. [PMID: 28656364 DOI: 10.1007/s00011-017-1074-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Hidradenitis suppurativa (HS) is a painful chronic inflammatory disease with a prevalence between 1 and 4% of general population. The pathogenesis of HS long eluded scientists, but growing evidence suggests that it is a consequence of inflammatory dysregulation. FINDINGS Recent studies suggest that dysregulated immune response to skin flora and overexpression of inflammatory cytokines leads to chronic skin inflammation seen in HS. Macrophages are the most numerous inflammatory cells found in HS infiltrates and release numerous pro-inflammatory cytokines such as IL-23, and IL-1β and TNF-α, exacerbating the inflammation and contributing to the pathogenesis of HS. Furthermore, in HS, there is dysregulated function of other immune players closely associated with macrophage function including: matrix metalloproteases (MMP) 2 and 9 overexpression, toll-like receptor upregulation, impaired Notch signalling, NLRP3 inflammasome upregulation, and dysregulated keratinocyte function. Lifestyle factors including obesity and smoking also contribute to macrophage dysfunction and correlate with HS incidence. CONCLUSIONS The overexpression of pro-inflammatory cytokines and subsequent efficacy of anti-cytokine biologic therapies highlights the importance of managing macrophage dysfunction. Future therapies should target key molecular drivers of macrophage dysfunction such as TLR2 and NLRP3 overexpression.
Collapse
Affiliation(s)
- Ahmed Shah
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Raed Alhusayen
- Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Dermatology, University of Toronto, Toronto, Canada.,Sunnybrook Health Science Center, Sunnybrook Research Institute, Toronto, Canada
| | - Saeid Amini-Nik
- Faculty of Medicine, University of Toronto, Toronto, Canada. .,Department of Surgery, University of Toronto, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, Canada. .,Sunnybrook Health Science Center, Sunnybrook Research Institute, Toronto, Canada.
| |
Collapse
|
21
|
Feng C, He J, Zhang Y, Lan M, Yang M, Liu H, Huang B, Pan Y, Zhou Y. Collagen-derived N-acetylated proline-glycine-proline upregulates the expression of pro-inflammatory cytokines and extracellular matrix proteases in nucleus pulposus cells via the NF-κB and MAPK signaling pathways. Int J Mol Med 2017; 40:164-174. [PMID: 28560408 PMCID: PMC5466390 DOI: 10.3892/ijmm.2017.3005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
N-acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine involved in inflammatory diseases and is found to accumulate in degenerative discs. N-Ac-PGP has been demonstrated to have a pro-inflammatory effect on human cartilage endplate stem cells. However, the effect of N-Ac-PGP on human intervertebral disc cells, especially nucleus pulposus (NP) cells, remains unknown. The purpose of this study was to investigate the effect of N-Ac-PGP on the expression of pro-inflammatory factors and extracellular matrix (ECM) proteases in NP cells and the molecular mechanism underlying this effect. Therefore, Milliplex assays were used to detect the levels of various inflammatory cytokines in conditioned culture medium of NP cells treated with N-Ac-PGP, including interleukin-1β (IL-1β), IL-6, IL-17, tumor necrosis factor-α (TNF-α) and C-C motif ligand 2 (CCL2). RT-qPCR was also used to determine the expression of pro-inflammatory cytokines and ECM proteases in the NP cells treated with N-Ac-PGP. Moreover, the role of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in mediating the effect of N-Ac-PGP on the phenotype of NP cells was investigated using specific signaling inhibitors. Milliplex assays showed that NP cells treated with N-Ac-PGP (10 and 100 µg/ml) secreted higher levels of IL-1β, IL-6, IL-17, TNF-α and CCL2 compared with the control. RT-qPCR assays showed that NP cells treated with N-Ac-PGP (100 µg/ml) had markedly upregulated expression of matrix metalloproteinase 3 (MMP3), MMP13, a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4), ADAMTS5, IL-6, CCL-2, CCL-5 and C-X-C motif chemokine ligand 10 (CXCL10). Moreover, N-Ac-PGP was shown to activate the MAPK and NF-κB signaling pathways in NP cells. MAPK and NF-κB signaling inhibitors suppressed the upregulation of proteases and pro-inflammatory cytokines in NP cells treated with N-Ac-PGP. In conclusion, N-Ac-PGP induces the expression of pro-inflammatory cytokines and matrix catabolic enzymes in NP cells via the NF-κB and MAPK signaling pathways. N-Ac-PGP is a novel therapeutic target for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Chencheng Feng
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Jinyue He
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Yang Zhang
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Minghong Lan
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Minghui Yang
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Huan Liu
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Huang
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Yong Pan
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
22
|
Tong W, Lu Z, Qin L, Mauck RL, Smith HE, Smith LJ, Malhotra NR, Heyworth MF, Caldera F, Enomoto-Iwamoto M, Zhang Y. Cell therapy for the degenerating intervertebral disc. Transl Res 2017; 181:49-58. [PMID: 27986604 PMCID: PMC5776755 DOI: 10.1016/j.trsl.2016.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
Abstract
Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologically privileged site, permitting long-term survival of transplanted cells. All of the animal studies reviewed here reported some improvement in disc structure, and 2 studies showed attenuation of local inflammation. Among the 50 studies reviewed, 25 used some type of scaffold, and cell leakage is a consistently noted problem, though some studies showed reduced cell leakage. Hydrogel scaffolds may prevent cell leakage and provide biomechanical support until cells can become established matrix producers. However, these gels need to be optimized to prevent this leakage. Many animal models have been leveraged in this research space. Rabbit is the most frequently used model (28 of 50), followed by rat, pig, and dog. Sheep and goat IVDs resemble those of humans in size and in the absence of notochordal cells. Despite this advantage, there were only 2 sheep and 1 goat studies of 50 studies in this cohort. It is also unclear if a study in large animals is needed before clinical trials since some of the clinical trials proceeded without a study in large animals. No animal studies or clinical trials completely restored IVD structure. However, results suggest cause for optimism. In light of the fact that patients primarily seek medical care for back pain, attenuating local inflammation should be a priority in benchmarks for success. Clinicians generally agree that short-term back pain should be treated conservatively. When interventions are considered, the ideal therapy should also be minimally invasive and concurrent with other procedures such as discography or discectomy. Restoration of tissue structure and preservation of spinal motion are desirable.
Collapse
Affiliation(s)
- Wei Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Zhouyu Lu
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Robert L Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa
| | - Harvey E Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Martin F Heyworth
- Research Service, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Franklin Caldera
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Motomi Enomoto-Iwamoto
- Department of Surgery, Division of Orthopedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pa.
| |
Collapse
|
23
|
Nguyen QT, Jacobsen TD, Chahine NO. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues. ACS Biomater Sci Eng 2017; 3:2644-2656. [PMID: 29152560 PMCID: PMC5686563 DOI: 10.1021/acsbiomaterials.6b00671] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
![]()
Cells
within cartilaginous tissues are mechanosensitive and thus
require mechanical loading for regulation of tissue homeostasis and
metabolism. Mechanical loading plays critical roles in cell differentiation,
proliferation, biosynthesis, and homeostasis. Inflammation is an important
event occurring during multiple processes, such as aging, injury,
and disease. Inflammation has significant effects on biological processes
as well as mechanical function of cells and tissues. These effects
are highly dependent on cell/tissue type, timing, and magnitude. In
this review, we summarize key findings pertaining to effects of inflammation
on multiscale mechanical properties at subcellular, cellular, and
tissue level in cartilaginous tissues, including alterations in mechanotransduction
and mechanosensitivity. The emphasis is on articular cartilage and
the intervertebral disc, which are impacted by inflammatory insults
during degenerative conditions such as osteoarthritis, joint pain,
and back pain. To recapitulate the pro-inflammatory cascades that
occur in vivo, different inflammatory stimuli have been used for in
vitro and in situ studies, including tumor necrosis factor (TNF),
various interleukins (IL), and lipopolysaccharide (LPS). Therefore,
this review will focus on the effects of these stimuli because they
are the best studied pro-inflammatory cytokines in cartilaginous tissues.
Understanding the current state of the field of inflammation and cell/tissue
biomechanics may potentially identify future directions for novel
and translational therapeutics with multiscale biomechanical considerations.
Collapse
Affiliation(s)
- Q T Nguyen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States
| | - T D Jacobsen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| | - N O Chahine
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
24
|
Deletion of Opg Leads to Increased Neovascularization and Expression of Inflammatory Cytokines in the Lumbar Intervertebral Disc of Mice. Spine (Phila Pa 1976) 2017; 42:E8-E14. [PMID: 27196016 DOI: 10.1097/brs.0000000000001701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Neovascularization and expression of inflammatory cytokines were examined in Osteoprotegerin (Opg) knockout (KO) mice that show intervertebral disc (IVD) degeneration. OBJECTIVE The aim of this study was to clarify the pathological changes in lumbar IVD degeneration in Opg KO mice. SUMMARY OF BACKGROUND DATA Osteoporosis is a controversial risk factor for IVD degeneration. Deletion of Opg resulted in IVD degeneration in mice. Neovascularization and inflammatory cytokines are key factors in IVD degeneration. METHODS Opg KO mice and their wild-type (WT) littermates were euthanized. Lumbar IVDs were harvested. Safranin O/Fast Green staining was performed to examine the pathological changes. Microcomputed tomographic (micro-CT) analysis was performed to determine the structural changes at the junction of lumbar IVD cartilage and vertebrae. Tartrate-resistant acid phosphatase (TRAP) staining was performed to evaluate osteoclast formation. Protein expression of vascular endothelial growth factor A (VEGF-A), CD31, VE-cadherin, CD 34, interleukin-1β (IL-1β), and tumor necrosis factors α (TNF-α) were analyzed by immunohistochemistry (IHC) assays. Gene expressions of IL-1β, IL-6, and TNF-α were analyzed by real-time polymerase chain reaction (RT-PCR). RESULTS In 12-week-old Opg KO mice, new bone was formed in the endplate cartilage of lumbar IVDs and this became more obvious in 24-week-old Opg KO mice. Three-dimensional (3D) μCT reconstruction analyses showed that the edges of the L4 and L5 vertebrae were rugged with bone marrow cavities in it. Protein expression of VEGF-A, CD31, VE-cadherin, and CD34 was increased in the endplate and growth plate of lumbar IVDs of Opg KO mice. Gene expression of IL-1β, IL-6, and TNF-α as well as protein expression of IL-1β and TNF-α were highly expressed in the lumbar IVDs of Opg KO mice. CONCLUSION Deletion of Opg leads to increased neovascularization and expression of inflammatory cytokines in the lumbar disc in Opg KO mice, which may play important roles in IVD degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
25
|
Properties and Immune Function of Cardiac Fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:35-70. [DOI: 10.1007/978-3-319-57613-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Li N, Whitaker C, Xu Z, Heggeness M, Yang SY. Therapeutic effects of naringin on degenerative human nucleus pulposus cells for discogenic low back pain. Spine J 2016; 16:1231-1237. [PMID: 27208552 DOI: 10.1016/j.spinee.2016.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/08/2016] [Accepted: 05/17/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Over half the population of the world will suffer from moderate or severe low back pain (LBP) during their life span. Studies have shown that naringin, a major flavonoid in grapefruit and an active compound extracted from a Chinese herbal medicine (Rhizoma Drynariae) possesses many pharmacological effects. PURPOSE The aim of this study was to evaluate the influence of naringin on the growth of degenerative human nucleus pulposus (NP) cells, and its repair effects on protein and gene expressions of the cells. STUDY DESIGN/SETTING This was an in vitro investigation of the human NP cells isolated from degenerated intervertebral discs that were interacted with various concentrated of naringin. METHOD This study was exempted by the institutional Human Subjects Committee-2, University of Kansas School of Medicine-Wichita. Degenerative human NP cells were isolated from intervertebral discs of patients with discogenic LBP and cultured at 37°C with 5% CO2. The proliferation of NP cells was determined following treatment with various concentrations of naringin. The protein expressions of tumor necrosis factor-α (TNF-α) and Bone morphogenetic protein 2 (BMP-2) were tested using enzyme-linked immunosorbent assay. Aggrecan and type II collagen levels were measured by immunohistological staining. Further examination of the gene expression of aggrecan, Sox6, and MMP3 was performed after intervention with naringin for 3 days. RESULTS The human NP cells were successfully propagated in culture and stained positive with toluidine blue staining. Naringin effectively enhanced the cell proliferation at an optimal concentration of 20 µg/mL. Naringin treatment resulted in significant inhibition of TNF-α, but elevated protein expressions of BMP-2, collagen II, and aggrecan. Naringin also increased disc matrix gene activity including aggrecan and Sox6, and decreased the gene expression of MMP3. CONCLUSION Naringin effectively promotes the proliferation of degenerative human NP cells and improves the recuperation of the cells from degeneration by increasing expression of aggrecan, BMP-2, and Sox6 while inhibiting the expression of TNF-α and MMP3. This study suggests that naringin may represent an alternative therapeutic agent for disc degeneration.
Collapse
Affiliation(s)
- Nianhu Li
- Department of Orthopedics, University of Kansas School of Medicine-Wichita, 929 N Saint Francis St, Wichita, KS, USA; Department of Orthopaedic Surgery, Affiliated Hospital to Shandong University of Traditional Chinese Medicine, 42 Wenhua West Road, Jinan, China
| | - Camden Whitaker
- Department of Orthopedics, University of Kansas School of Medicine-Wichita, 929 N Saint Francis St, Wichita, KS, USA
| | - Zhanwang Xu
- Department of Orthopaedic Surgery, Affiliated Hospital to Shandong University of Traditional Chinese Medicine, 42 Wenhua West Road, Jinan, China
| | - Michael Heggeness
- Department of Orthopedics, University of Kansas School of Medicine-Wichita, 929 N Saint Francis St, Wichita, KS, USA; Robert J. Dole Veterans Administration Hospital Center, 5500 E. Kellogg, Wichita, KS, USA
| | - Shang-You Yang
- Department of Orthopedics, University of Kansas School of Medicine-Wichita, 929 N Saint Francis St, Wichita, KS, USA; Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, USA.
| |
Collapse
|
27
|
Xu K, Wang X, Zhang Q, Liang A, Zhu H, Huang D, Li C, Ye W. Sp1 downregulates proinflammatory cytokine‑induced catabolic gene expression in nucleus pulposus cells. Mol Med Rep 2016; 14:3961-8. [PMID: 27600876 DOI: 10.3892/mmr.2016.5730] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
Abstract
During the pathogenesis of intervertebral disc degeneration, pro‑inflammatory cytokines, including tumor necrosis factor‑α (TNF‑α), stimulate the degradation of the extracellular matrix (ECM) of intervertebral discs via the activity of catabolic enzymes including matrix metalloproteinases (MMPs), disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs), and cyclooxygenase 2 (Cox2). The transcriptional promoters of the human catabolic enzymes MMPs, ADAMTS, Cox2 and Syndecan 4 contain at least one specificity protein‑1 (Sp1) transcription factor‑binding site. The present study investigated the role of Sp1 in the regulation of the mRNA and protein expression of the aforementioned catabolic enzyme genes in nucleus pulposus cells, using reverse transcription‑quantitative polymerase chain reaction, western blot, transfection and RNA interference. The data demonstrated that Sp1 transcription factor protein expression is induced by TNF‑α and interleukin‑1β. Specific inhibitors of Sp1 DNA binding to its GC‑rich consensus site, WP631 and mithramycin A, partially suppressed TNF‑α‑induced catabolic enzyme expression and activity. Genetic inhibition of Sp1 by small interfering RNA‑mediated Sp1 knockdown partially inhibited catabolic enzyme induction by TNF‑α. In addition, Sp1 transcription factor inhibitors decreased the activity of MMP3, ADAMTS4 and ADAMTS5 promoters. Furthermore, chromatin immunoprecipitation revealed functional Sp1 binding sites at ‑577/‑567 bp within the ADAMTS4 promoter and ‑718/‑708 bp within the ADAMTS5 promoter. These results provide pharmacological and genetic evidence of the importance of Sp1 in catabolic enzyme gene regulation during TNF‑α stimulation. Thus, Sp1 may represent an effective target in reducing intervertebral disc‑associated ECM loss.
Collapse
Affiliation(s)
- Kang Xu
- Experimental Center of Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaofei Wang
- Department of Spine Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Anjing Liang
- Department of Spine Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Haipeng Zhu
- Department of Spine Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chunhai Li
- Department of Spine Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Ye
- Department of Spine Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
28
|
Walter B, Purmessur D, Moon A, Occhiogrosso J, Laudier D, Hecht A, Iatridis J. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells. Eur Cell Mater 2016; 32:123-36. [PMID: 27434269 PMCID: PMC5072776 DOI: 10.22203/ecm.v032a08] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.
Collapse
Affiliation(s)
- B.A. Walter
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - D Purmessur
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A. Moon
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J. Occhiogrosso
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D.M. Laudier
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A.C. Hecht
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J.C. Iatridis
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA,Address for correspondence: James C. Iatridis Leni & Peter W. May Department of Orthopaedics, Box 1188, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, Telephone Number: 1-212-241-1517, FAX Number: 1-212-876-3168 www.ecmjournal.org
| |
Collapse
|
29
|
LIU CHANGYING, ZHAO PENGFEI, YANG YUBAO, XU XIAODONG, WANG LIANG, LI BO. Ampelopsin suppresses TNF-α-induced migration and invasion of U2OS osteosarcoma cells. Mol Med Rep 2016; 13:4729-36. [DOI: 10.3892/mmr.2016.5124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/16/2016] [Indexed: 11/05/2022] Open
|
30
|
Wang XH, Zhu L, Hong X, Wang YT, Wang F, Bao JP, Xie XH, Liu L, Wu XT. Resveratrol attenuated TNF-α-induced MMP-3 expression in human nucleus pulposus cells by activating autophagy via AMPK/SIRT1 signaling pathway. Exp Biol Med (Maywood) 2016; 241:848-53. [PMID: 26946533 DOI: 10.1177/1535370216637940] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
Resveratrol (RSV) is known to play a role of anti-TNF-α in a number of cell types. However, whether RSV modulates the effects of TNF-α on human nucleus pulposus (NP) cells is unknown. The purpose of this study is to investigate whether RSV regulates TNF-α-induced matrix metalloproteinase-3 (MMP-3) expression. Via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we found that MMP-3 expression induced by TNF-α was inhibited by RSV treatment. Depending on Western blot and qRT-PCR assay, we found that RSV induced autophagy in human NP cells, whereas inhibition of autophagy remarkably abolished the restraining role of RSV in the TNF-α-mediated up-regulation of MMP-3. Furthermore, RSV increased SIRT1 expression and SIRT1 knockdown significantly suppressed RSV-induced autophagy in NP cells. RSV also activated AMP-activated protein kinase (AMPK), while inhibition of AMPK notably abolished RSV-induced SIRT1 expression. Our data showed that RSV attenuated TNF-α-induced MMP-3 expression in human NP cells by activating autophagy via AMPK/SIRT1 signaling pathway. This new finding suggested that RSV might act as a novel preventive and therapeutic role in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xiao-Hu Wang
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lei Zhu
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xin Hong
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yun-Tao Wang
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Feng Wang
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jun-Ping Bao
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xin-Hui Xie
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lei Liu
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiao-Tao Wu
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
31
|
FoxC2 Enhances BMP7-Mediated Anabolism in Nucleus Pulposus Cells of the Intervertebral Disc. PLoS One 2016; 11:e0147764. [PMID: 26824865 PMCID: PMC4732619 DOI: 10.1371/journal.pone.0147764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
Bone-morphogenetic protein-7 (BMP-7) is a growth factor that plays a major role in mediating anabolism and anti-catabolism of the intervertebral disc matrix and cell homeostasis. In osteoblasts, Forkhead box protein C2 (FoxC2) is a downstream target of BMPs and promotes cell proliferation and differentiation. However, the role FoxC2 may play in degenerative human intervertebral disc tissue and the relationship between FoxC2 and BMP-7 in nucleus pulposus (NP) cells remain to be elucidated. This study aims to investigate the presence and signaling mechanisms of FoxC2 in degenerative human intervertebral disc tissue and NP cells. Western blot and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses were used to measure FoxC2 expression in the NP tissue and cells. Transfections were carried out to measure the effect of FoxC2 on BMP-7-mediated extracellular matrix upregulation. Adenoviral knock-down of Smad1 was performed to investigate the mechanism of BMP-7-induced FoxC2 expression. In degenerative NP tissue, FoxC2 was markedly upregulated and positively correlated with increased disc degeneration. Induction of NP cell proliferation was confirmed by using cell counting kit-8 assay, immunocytochemistry and real-time qRT-PCR for Ki67. FoxC2 led to decreased noggin expression and increased Smad1/5/8 phosphorylation. During combined treatment with BMP-7, FoxC2 greatly potentiated anabolism through synergistic mechanisms on ECM formation. Combination therapy using BMP-7 and FoxC2 may be beneficial to the treatment of intervertebral disc degeneration.
Collapse
|
32
|
Oehme D, Ghosh P, Goldschlager T, Itescu S, Shimon S, Wu J, McDonald C, Troupis JM, Rosenfeld JV, Jenkin G. Reconstitution of degenerated ovine lumbar discs by STRO-3-positive allogeneic mesenchymal precursor cells combined with pentosan polysulfate. J Neurosurg Spine 2016; 24:715-26. [PMID: 26799116 DOI: 10.3171/2015.8.spine141097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Disc degeneration and associated low-back pain are major causes of suffering and disability. The authors examined the potential of mesenchymal precursor cells (MPCs), when formulated with pentosan polysulfate (PPS), to ameliorate disc degeneration in an ovine model. METHODS Twenty-four sheep had annular incisions made at L2-3, L3-4, and L4-5 to induce degeneration. Twelve weeks after injury, the nucleus pulposus of a degenerated disc in each animal was injected with ProFreeze and PPS formulated with either a low dose (0.1 million MPCs) or a high dose (0.5 million MPCs) of cells. The 2 adjacent injured discs in each spine were either injected with PPS and ProFreeze (PPS control) or not injected (nil-injected control). The adjacent noninjured L1-2 and L5-6 discs served as noninjured control discs. Disc height indices (DHIs) were obtained at baseline, before injection, and at planned death. After necropsy, 24 weeks after injection, the spines were subjected to MRI and morphological, histological, and biochemical analyses. RESULTS Twelve weeks after the annular injury, all the injured discs exhibited a significant reduction in mean DHI (low-dose group 17.19%; high-dose group 18.01% [p < 0.01]). Twenty-four weeks after injections, the discs injected with the low-dose MPC+PPS formulation recovered disc height, and their mean DHI was significantly greater than the DHI of PPS- and nil-injected discs (p < 0.001). Although the mean Pfirrmann MRI disc degeneration score for the low-dose MPC+PPS-injected discs was lower than that for the nil- and PPS-injected discs, the differences were not significant. The disc morphology scores for the nil- and PPS-injected discs were significantly higher than the normal control disc scores (p < 0.005), whereas the low-dose MPC+PPS-injected disc scores were not significantly different from those of the normal controls. The mean glycosaminoglycan content of the nuclei pulposus of the low-dose MPC+PPS-injected discs was significantly higher than that of the PPS-injected controls (p < 0.05) but was not significantly different from the normal control disc glycosaminoglycan levels. Histopathology degeneration frequency scores for the low-dose MPC+PPS-injected discs were lower than those for the PPS- and Nil-injected discs. The corresponding high-dose MPC+PPS-injected discs failed to show significant improvements in any outcome measure relative to the controls. CONCLUSIONS Intradiscal injections of a formulation composed of 0.1 million MPCs combined with PPS resulted in positive effects in reducing the progression of disc degeneration in an ovine model, as assessed by improvements in DHI and morphological, biochemical, and histopathological scores.
Collapse
Affiliation(s)
- David Oehme
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria
| | - Peter Ghosh
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;,Proteobioactives, Pty Ltd, Brookvale, New South Wales;,Mesoblast Ltd, Melbourne
| | - Tony Goldschlager
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;,Mesoblast Ltd, Melbourne
| | | | - Susan Shimon
- Proteobioactives, Pty Ltd, Brookvale, New South Wales
| | - Jiehua Wu
- Proteobioactives, Pty Ltd, Brookvale, New South Wales
| | - Courtney McDonald
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria
| | | | - Jeffrey V Rosenfeld
- Department of Surgery, Monash University, Clayton; and.,Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria
| |
Collapse
|
33
|
Molinos M, Almeida CR, Caldeira J, Cunha C, Gonçalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 2015; 12:20141191. [PMID: 25673296 DOI: 10.1098/rsif.2014.1191] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.
Collapse
Affiliation(s)
- Maria Molinos
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| | - Catarina R Almeida
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Joana Caldeira
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Patologia e Imunologia-IPATIMUP, Universidade do Porto, Porto, Portugal
| | - Carla Cunha
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Raquel M Gonçalves
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| |
Collapse
|
34
|
Zhang J, Sun X, Liu J, Liu J, Shen B, Nie L. The role of matrix metalloproteinase 14 polymorphisms in susceptibility to intervertebral disc degeneration in the Chinese Han population. Arch Med Sci 2015; 11:801-6. [PMID: 26322093 PMCID: PMC4548033 DOI: 10.5114/aoms.2015.53301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/03/2013] [Accepted: 08/18/2013] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Matrix metalloproteinase 14 (MMP14) plays an important role in the pathophysiology of intervertebral disc degeneration (IVDD). The present study aimed to determine whether two single nucleotide polymorphisms (-378 T/C and -364 G/T) of MMP14 were associated with the risk and severity of IVDD in the Chinese Han population. MATERIAL AND METHODS A total of 908 patients with IVDD and 906 healthy controls were enrolled in this study. The grade of disc degeneration was determined according to Schneiderman's classification for magnetic resonance imaging. The polymorphisms of MMP14 were genotyped using polymerase chain reaction and direct sequencing. RESULTS The genotype distribution of -364G/T did not show a significant difference between IVDD patients and healthy controls. The frequencies of the -378T/C and CC genotypes were significantly lower among IVDD patients compared with healthy controls (p < 0.001); unconditional logistic regression analysis revealed that the CT and CC genotypes were significantly associated with a decreased risk of IVDD compared with the TT genotype (p < 0.001). Patients with IVDD showed significantly higher frequencies of the T allele at -378T/C than healthy controls (p < 0.001). In addition, the -375 CC genotype, as well as the C allele, was associated with lower degenerative grades of IVDD compared with the TT genotype and the T allele, respectively (both p < 0.001). CONCLUSIONS The -378T/C polymorphism of MMP14 may be associated with the risk and severity of IVDD in the Chinese Han population. It shows potential to become a biomarker to predict risk and severity of IVDD.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, JiNan City, Shandong Province, China
- Department of Spine Surgery, Yantaishan Hospital, YanTai City, Shandong Province, China
| | - Xiujiang Sun
- Department of Bone and Joint, Yantaishan Hospital, YanTai City, Shandong Province, China
| | - Jing Liu
- Department of Basic Research, Occupation College of Yantai, YanTai City, Shandong Province, China
| | - Jianqing Liu
- Department of Spine Surgery, Yantaishan Hospital, YanTai City, Shandong Province, China
| | - Binghua Shen
- Department of Bone and Joint, Yantaishan Hospital, YanTai City, Shandong Province, China
| | - Lin Nie
- Department of Orthopedics, Qilu Hospital of Shandong University, JiNan City, Shandong Province, China
| |
Collapse
|
35
|
Expression of matrix metalloproteinases is positively related to the severity of disc degeneration and growing age in the East Asian lumbar disc herniation patients. Cell Biochem Biophys 2015; 70:1219-25. [PMID: 24874308 DOI: 10.1007/s12013-014-0045-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Matrix metalloproteinases (MMPs) have been known to play a pivotal role in the age- and/or disease-related degradation of intervertebral discs. We aimed to explore as to whether the expression of these enzymes is correlated to disc degeneration caused by increasing age and severity of herniation in the East Asian population. Thus, we studied the expressions of MMP-1 (collagenase), MMP-2 (gelatinase) and MMP-14 (membrane-type protease) in 65 patients diagnosed with lumbar disc herniation. The patients were divided into 3 groups according to their age, and the severity of herniation was graded on the basis of magnetic resonance imaging (MRI). Immunohistochemistry analysis was conducted to determine the expression of different MMPs in the post-surgery disc specimens. The results showed that expressions of these three enzymes were directly and positively related to the degree of disc degradation. Whereas, the MMP-1 expression was found to be elevated with the increasing age, the MMP-2 and MMP-14 remained unchanged in groups of different ages. A direct correlation between the expressions of MMP-2 and MMP-14 suggested a role of MMP-14 in the modulation of MMP-2 expression.
Collapse
|
36
|
Janicki JS, Brower GL, Levick SP. The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods Mol Biol 2015; 1220:121-39. [PMID: 25388248 DOI: 10.1007/978-1-4939-1568-2_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed.
Collapse
Affiliation(s)
- Joseph S Janicki
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA,
| | | | | |
Collapse
|
37
|
Inflammation Biomarkers of Advanced Disease in Nongingival Tissues of Chronic Periodontitis Patients. Mediators Inflamm 2015; 2015:983782. [PMID: 26063981 PMCID: PMC4439505 DOI: 10.1155/2015/983782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 01/13/2023] Open
Abstract
Chronic periodontitis is a multifactorial inflammatory disease that affects supporting structures of the teeth. Although the gingival response is largely described, little is known about the immune changes in the alveolar bone and neighboring tissues that could indicate periodontal disease (PD) activity. Then, in this study we identified the ongoing inflammatory changes and novel biomarkers for periodontitis in the tissues directly affected by the destructive disease in PD patients. Samples were collected by osteotomy in 17 control subjects during extraction of third molars and 18 patients with advanced PD, in which alveoloplasty was necessary after extraction of teeth with previous extensive periodontal damage. Patients presented mononuclear cells infiltration in the connective tissue next to the bone and higher fibrosis area, along with increased accumulation of IL-17+ and TRAP+ cells. The levels of TNF-α and MMP-2 mRNA were also elevated compared to controls and a positive and significant correlation was observed between TNF-α and MMP-2 mRNA expression, considering all samples evaluated. In conclusion, nongingival tissues neighboring large periodontal pockets present inflammatory markers that could predict ongoing bone resorption and disease spreading. Therefore, we suggested that the detailed evaluation of these regions could be of great importance to the assessment of disease progression.
Collapse
|
38
|
Vu LT, Keschrumrus V, Zhang X, Zhong JF, Su Q, Kabeer MH, Loudon WG, Li SC. Tissue elasticity regulated tumor gene expression: implication for diagnostic biomarkers of primitive neuroectodermal tumor. PLoS One 2015; 10:e0120336. [PMID: 25774514 PMCID: PMC4361745 DOI: 10.1371/journal.pone.0120336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/05/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The tumor microenvironment consists of both physical and chemical factors. Tissue elasticity is one physical factor contributing to the microenvironment of tumor cells. To test the importance of tissue elasticity in cell culture, primitive neuroectodermal tumor (PNET) stem cells were cultured on soft polyacrylamide (PAA) hydrogel plates that mimics the elasticity of brain tissue compared with PNET on standard polystyrene (PS) plates. We report the molecular profiles of PNET grown on either PAA or PS. METHODOLOGY/PRINCIPAL FINDINGS A whole-genome microarray profile of transcriptional expression between the two culture conditions was performed as a way to probe effects of substrate on cell behavior in culture. The results showed more genes downregulated on PAA compared to PS. This led us to propose microRNA (miRNA) silencing as a potential mechanism for downregulation. Bioinformatic analysis predicted a greater number of miRNA binding sites from the 3' UTR of downregulated genes and identified as specific miRNA binding sites that were enriched when cells were grown on PAA-this supports the hypothesis that tissue elasticity plays a role in influencing miRNA expression. Thus, Dicer was examined to determine if miRNA processing was affected by tissue elasticity. Dicer genes were downregulated on PAA and had multiple predicted miRNA binding sites in its 3' UTR that matched the miRNA binding sites found enriched on PAA. Many differentially regulated genes were found to be present on PS but downregulated on PAA were mapped onto intron sequences. This suggests expression of alternative polyadenylation sites within intron regions that provide alternative 3' UTRs and alternative miRNA binding sites. This results in tissue specific transcriptional downregulation of mRNA in humans by miRNA. We propose a mechanism, driven by the physical characteristics of the microenvironment by which downregulation of genes occur. We found that tissue elasticity-mediated cytokines (TGFβ2 and TNFα) signaling affect expression of ECM proteins. CONCLUSIONS Our results suggest that tissue elasticity plays important roles in miRNA expression, which, in turn, regulate tumor growth or tumorigenicity.
Collapse
Affiliation(s)
- Long T. Vu
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Hospital Research Institute, University of California Irvine, 1201 West La Veta Ave., Orange, CA, 92868, United States of America
- Department of Biological Science, California State University, Fullerton, CA, 92834, United States of America
| | - Vic Keschrumrus
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Hospital Research Institute, University of California Irvine, 1201 West La Veta Ave., Orange, CA, 92868, United States of America
| | - Xi Zhang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States of America
| | - Jiang F. Zhong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States of America
| | - Qingning Su
- Bioengineering Research Center, School of Medicine, Shenzhen University, Shenzhen, 518057, Guangdong, China
| | - Mustafa H. Kabeer
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Hospital Research Institute, University of California Irvine, 1201 West La Veta Ave., Orange, CA, 92868, United States of America
- Department of Pediatric Surgery, CHOC Children's Hospital, 1201 West La Veta Ave., Orange, CA, 92868, United States of America
- Department of Surgery, University of California Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, United States of America
| | - William G. Loudon
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Hospital Research Institute, University of California Irvine, 1201 West La Veta Ave., Orange, CA, 92868, United States of America
- Department of Neurological Surgery, Saint Joseph Hospital, Orange, CA, 92868, United States of America
- Department of Neurological Surgery, University of California Irvine School of Medicine, Orange, CA, 92862, United States of America
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Hospital Research Institute, University of California Irvine, 1201 West La Veta Ave., Orange, CA, 92868, United States of America
- Department of Neurology, University of California Irvine School of Medicine, Orange, CA, 92697–4292, United States of America
- Department of Biological Science, California State University, Fullerton, CA, 92834, United States of America
| |
Collapse
|
39
|
Ye W, Zhou J, Markova DZ, Tian Y, Li J, Anderson DG, Shapiro IM, Risbud MV. Xylosyltransferase-1 expression is refractory to inhibition by the inflammatory cytokines tumor necrosis factor α and IL-1β in nucleus pulposus cells: novel regulation by AP-1, Sp1, and Sp3. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:485-95. [PMID: 25476526 PMCID: PMC4305180 DOI: 10.1016/j.ajpath.2014.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022]
Abstract
We investigated whether expression of xylosyltransferase-1 (XT-1), a key enzyme in glycosaminoglycan biosynthesis, is responsive to disk degeneration and to inhibition by the inflammatory cytokines tumor necrosis factor α and IL-1β in nucleus pulposus (NP) cells. Analysis of human NP tissues showed that XT-1 expression is unaffected by degeneration severity; XT-1 and Jun, Fos, and Sp1 mRNA were positively correlated. Cytokines failed to inhibit XT-1 promoter activity and expression. However, cytokines decreased activity of XT-1 promoters containing deletion and mutation of the -730/-723 bp AP-1 motif, prompting us to investigate the role of AP-1 and Sp1/Sp3 in the regulation of XT-1 in healthy NP cells. Overexpression and suppression of AP-1 modulated XT-1 promoter activity. Likewise, treatment with the Sp1 inhibitors WP631 and mithramycin A or cotransfection with the plasmid DN-Sp1 decreased XT-1 promoter activity. Inhibitors of AP-1 and Sp1 and stable knockdown of Sp1 and Sp3 resulted in decreased XT-1 expression in NP cells. Genomic chromatin immunoprecipitation analysis showed AP-1 binding to motifs located at -730/-723 bp and -684/-677 bp and Sp1 binding to -227/-217 bp and -124/-114 bp in XT-1 promoter. These results suggest that XT-1 expression is refractory to the disease process and to inhibition by inflammatory cytokines and that signaling through AP-1, Sp1, and Sp3 is important in the maintenance of XT-1 levels in NP cells.
Collapse
Affiliation(s)
- Wei Ye
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Zhou
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dessislava Z Markova
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ye Tian
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - D Greg Anderson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
40
|
Mavrogonatou E, Angelopoulou MT, Kletsas D. The catabolic effect of TNFα on bovine nucleus pulposus intervertebral disc cells and the restraining role of glucosamine sulfate in the TNFα-mediated up-regulation of MMP-3. J Orthop Res 2014; 32:1701-7. [PMID: 25220975 DOI: 10.1002/jor.22725] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/28/2014] [Indexed: 02/04/2023]
Abstract
Glucosamine is an endogenous amino monosaccharide naturally occurring in the cartilage. We have recently shown that glucosamine sulfate promotes the biosynthesis of glycosaminoglycans in intervertebral disc cells. Here we assessed the role of glucosamine sulfate in the response of bovine nucleus pulposus cell monolayers to TNFα that constitutes an early signal of disc degeneration. TNFα was not found to affect nucleus pulposus cells' viability, while it resulted in a ∼2.5-fold increase of the intracellular ROS levels, a rapid transient phosphorylation of p38 MAPK and a ROS-dependent activation of JNKs. In addition, TNFα had a prominent inflammatory effect on nucleus pulposus cells by up-regulating MMP-3 expression that was reversed when inhibiting the kinase activity of p38 MAPK. Glucosamine sulfate also diminished the increased by TNFα MMP-3 mRNA levels, but this was unrelated to the p38 MAPK or ROS-mediated JNK activation. Even though the mode of action of glucosamine towards TNFα remains to be elucidated, to the best of our knowledge, this is the first report providing evidence for the protective role of glucosamine against this early mediator of disc degeneration that could support the potential usage of this molecule as a treatment for preventing disc degenerative disorders.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 153 10, Athens, Greece
| | | | | |
Collapse
|
41
|
Wang XH, Hong X, Zhu L, Wang YT, Bao JP, Liu L, Wang F, Wu XT. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-κB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Exp Biol Med (Maywood) 2014; 240:411-7. [PMID: 25304312 DOI: 10.1177/1535370214554533] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
Although tumor necrosis factor alpha (TNF-α) is known to play a critical role in intervertebral disc (IVD) degeneration, the effect of TNF-α on nucleus pulposus (NP) cells has not yet been elucidated. The aim of this study was to explore the effect of TNF-α on proliferation of human NP cells. NP cells were treated with different concentrations of TNF-α. Cell proliferation was determined by cell counting kit-8 (CCK-8) analysis and Ki67 immunofluorescence staining, and expression of cyclin B1 was studied by quantitative real-time RT-PCR. Cell cycle was measured by flow cytometry and cell apoptosis was analyzed using an Annexin V-fluorescein isothiocyanate (FITC) & propidium iodide (PI) apoptosis detection kit. To identify the mechanism by which TNF-α induced proliferation of NP cells, selective inhibitors of major signaling pathways were used and Western blotting was carried out. Treatment with TNF-α increased cell viability (as determined by CCK-8 analysis) and expression of cyclin B1 and the number of Ki67-positive and S-phase NP cells, indicating enhancement of proliferation. Consistent with this, NP cell apoptosis was suppressed by TNF-α treatment. Moreover, inhibition of NF-κB, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) blocked TNF-α-stimulated proliferation of NP cells. In conclusion, the current findings suggest that the effect of TNF-α on IVD degeneration involves promotion of the proliferation of human NP cells via the NF-κB, JNK, and p38 MAPK pathways.
Collapse
Affiliation(s)
- Xiao-Hu Wang
- Medical School of Southeast University, Nanjing 210009, Jiangsu, China
| | - Xin Hong
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lei Zhu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yun-Tao Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jun-Ping Bao
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lei Liu
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich D-81675, Germany
| | - Feng Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiao-Tao Wu
- Medical School of Southeast University, Nanjing 210009, Jiangsu, China Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
42
|
Molecular interactions between human cartilaginous endplates and nucleus pulposus cells: a preliminary investigation. Spine (Phila Pa 1976) 2014; 39:1355-64. [PMID: 24831500 DOI: 10.1097/brs.0000000000000372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Conditioned media (CM) of cartilaginous endplates (CEPs) of intervertebral discs were analyzed in a bioassay with regard to their influence on matrix turnover and inflammatory factors on nucleus pulposus (NP) cells of the same patient. CEP tissue underwent further histological and ultrastructural analysis. OBJECTIVE To identify possible interactions between the CEP and the disc via molecular factors that may influence disc matrix degradation and to determine degenerative changes of CEP tissue. SUMMARY OF BACKGROUND DATA Impaired endplate perme-ability due to degeneration and calcification is considered to be a key contributor to disc degeneration. An upregulation of metalloproteinases and inflammatory cytokines has been observed in degenerated intervertebral discs. Possibly, the CEP contributes to the regulation of disc matrix degradation via molecular interactions with the disc tissue. METHODS CEP and NP cells from the same patients (n = 6) were investigated in a bioassay with regard to their influence on matrix turnover and inflammatory factors. We determined gene expression of NP cells in alginate beads that were exposed to CM of CEP punches (CEP-CM) from the same patients. The CEP-CMs were analyzed by protein array for inflammatory cytokines. Further CEP samples underwent histological (n = 15) and ultrastructural analysis (n = 8) to determine alterations of cell and matrix structure. RESULTS NP cells exposed to their donor-corresponding CEP-CM significantly upregulated interleukins (IL-6, IL-8) and matrix metalloproteinase (MMP-3, MMP-13) expression, and significantly decreased aggrecan and collagen type 2 expression. Proinflammatory cytokines were identified in the CEP-CM. The occurrence of apoptotic cells and degraded matrix fragments varied strongly between donors. CONCLUSION Our results indicate interactions between the CEP and the NP tissue via molecular factors that upregulate matrix degrading enzymes and inflammatory cytokines and thereby influence the pathophysiology of disc degeneration. Ongoing investigations will further identify the regulative role of potential molecular factors that are responsible for these degenerative alterations. LEVEL OF EVIDENCE N/A.
Collapse
|
43
|
Maidhof R, Jacobsen T, Papatheodorou A, Chahine NO. Inflammation induces irreversible biophysical changes in isolated nucleus pulposus cells. PLoS One 2014; 9:e99621. [PMID: 24936787 PMCID: PMC4061011 DOI: 10.1371/journal.pone.0099621] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 05/16/2014] [Indexed: 11/20/2022] Open
Abstract
Intervertebral disc degeneration is accompanied by elevated levels of inflammatory cytokines that have been implicated in disease etiology and matrix degradation. While the effects of inflammatory stimulation on disc cell metabolism have been well-studied, their effects on cell biophysical properties have not been investigated. The hypothesis of this study is that inflammatory stimulation alters the biomechanical properties of isolated disc cells and volume responses to step osmotic loading. Cells from the nucleus pulposus (NP) of bovine discs were isolated and treated with either lipopolysaccharide (LPS), an inflammatory ligand, or with the recombinant cytokine TNF-α for 24 hours. We measured cellular volume regulation responses to osmotic loading either immediately after stimulation or after a 1 week recovery period from the inflammatory stimuli. Cells from each group were tested under step osmotic loading and the transient volume-response was captured via time-lapse microscopy. Volume-responses were analyzed using mixture theory framework to investigate two biomechanical properties of the cell, the intracellular water content and the hydraulic permeability. Intracellular water content did not vary between treatment groups, but hydraulic permeability increased significantly with inflammatory treatment. In the 1 week recovery group, hydraulic permeability remained elevated relative to the untreated recovery control. Cell radius was also significantly increased both after 24 hours of treatment and after 1 week recovery. A significant linear correlation was observed between hydraulic permeability and cell radius in untreated cells at 24 hours and at 1-week recovery, though not in the inflammatory stimulated groups at either time point. This loss of correlation between cell size and hydraulic permeability suggests that regulation of volume change is disrupted irreversibly due to inflammatory stimulation. Inflammatory treated cells exhibited altered F-actin cytoskeleton expression relative to untreated cells. We also found a significant decrease in the expression of aquaporin-1, the predominant water channel in disc NP cells, with inflammatory stimulation. To our knowledge, this is the first study providing evidence that inflammatory stimulation directly alters the mechanobiology of NP cells. The cellular biophysical changes observed in this study are coincident with documented changes in the extracellular matrix induced by inflammation, and may be important in disease etiology.
Collapse
Affiliation(s)
- Robert Maidhof
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - Timothy Jacobsen
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - Angelos Papatheodorou
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | - Nadeen O. Chahine
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
- Hofstra-North Shore LIJ School of Medicine, Hempstead, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Oehme D, Ghosh P, Shimmon S, Wu J, McDonald C, Troupis JM, Goldschlager T, Rosenfeld JV, Jenkin G. Mesenchymal progenitor cells combined with pentosan polysulfate mediating disc regeneration at the time of microdiscectomy: a preliminary study in an ovine model. J Neurosurg Spine 2014; 20:657-69. [PMID: 24702507 DOI: 10.3171/2014.2.spine13760] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECT Following microdiscectomy, discs generally fail to undergo spontaneous regeneration and patients may experience chronic low-back pain and recurrent disc prolapse. In published studies, formulations of mesenchymal progenitor cells combined with pentosan polysulfate (MPCs+PPS) have been shown to regenerate disc tissue in animal models, suggesting that this approach may provide a useful adjunct to microdiscectomy. The goal of this preclinical laboratory study was to determine if the transplantation of MPCs+PPS, embedded in a gelatin/fibrin scaffold (SCAF), and transplanted into a defect created by microdiscectomy, could promote disc regeneration. METHODS A standardized microdiscectomy procedure was performed in 18 ovine lumbar discs. The subsequent disc defects were randomized to receive either no treatment (NIL), SCAF only, or the MPC+PPS formulation added to SCAF (MPCs+PPS+SCAF). Necropsies were undertaken 6 months postoperatively and the spines analyzed radiologically (radiography and MRI), biochemically, and histologically. RESULTS No adverse events occurred throughout the duration of the study. The MPC+PPS+SCAF group had significantly less reduction in disc height compared with SCAF-only and NIL groups (p < 0.05 and p < 0.01, respectively). Magnetic resonance imaging Pfirrmann scores in the MPC+PPS+SCAF group were significantly lower than those in the SCAF group (p = 0.0213). The chaotropic solvent extractability of proteoglycans from the nucleus pulposus of MPC+PPS+SCAF-treated discs was significantly higher than that from the SCAF-only discs (p = 0.0312), and using gel exclusion chromatography, extracts from MPC+PPS+SCAF-treated discs also contained a higher percentage of proteoglycan aggregates than the extracts from both other groups. Analysis of the histological sections showed that 66% (p > 0.05) of the MPC+PPS+SCAF-treated discs exhibited less degeneration than the NIL or SCAF discs. CONCLUSIONS These findings demonstrate the capacity of MPCs in combination with PPS, when embedded in a gelatin sponge and sealed with fibrin glue in a microdiscectomy defect, to restore disc height, disc morphology, and nucleus pulposus proteoglycan content.
Collapse
Affiliation(s)
- David Oehme
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
van Dijk B, Potier E, Licht R, Creemers L, Ito K. The effect of a cyclooxygenase 2 inhibitor on early degenerated human nucleus pulposus explants. Global Spine J 2014; 4:33-40. [PMID: 24494179 PMCID: PMC3908972 DOI: 10.1055/s-0033-1359724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 09/11/2013] [Indexed: 11/24/2022] Open
Abstract
Study Design Preclinical in vitro culture of human degenerated nucleus pulposus (NP) tissue. Objective Cyclooxygenase 2 inhibitors (e.g., celecoxib) inhibit prostaglandin E2 (PGE2) production, and they have been shown to upregulate regeneration of articular cartilage. In this study, we developed an explant culture system for use with human tissue and tested the potential of celecoxib. Methods NP explants were cultured with or without 1 μM of celecoxib and were analyzed at days 0 and 7 for biochemical content (water, sulfated glycosaminoglycans, hydroxyproline, and DNA), gene expression (for disk matrix anabolic and catabolic markers), and PGE2 content. Results Water and biochemical contents as well as gene expression remained close to native values after 1 week of culture. PGE2 levels were not increased in freshly harvested human NP tissue and thus were not reduced in treated tissues. Although no anabolic effects were observed at the dosage and culture duration used, no detrimental effects were observed and some specimens did respond by lowering PGE2. Conclusions Human degenerated NP explants were successfully cultured in a close to in vivo environment for 1 week. Further research, especially dosage-response studies, is needed to understand the role of PGE2 in low back pain and the potential of celecoxib to treat painful disks.
Collapse
Affiliation(s)
- Bart van Dijk
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther Potier
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruud Licht
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Address for correspondence Keita Ito, MD, ScD Department of Biomedical Engineering, Eindhoven University of TechnologyP.O. Box 513, GEM-Z 4.115, 5600 MB EindhovenThe Netherlands
| |
Collapse
|
46
|
Abstract
Degeneration of the intervertebral discs (IVDs) is a major contributor to back, neck and radicular pain. IVD degeneration is characterized by increases in levels of the proinflammatory cytokines TNF, IL-1α, IL-1β, IL-6 and IL-17 secreted by the IVD cells; these cytokines promote extracellular matrix degradation, chemokine production and changes in IVD cell phenotype. The resulting imbalance in catabolic and anabolic responses leads to the degeneration of IVD tissues, as well as disc herniation and radicular pain. The release of chemokines from degenerating discs promotes the infiltration and activation of immune cells, further amplifying the inflammatory cascade. Leukocyte migration into the IVD is accompanied by the appearance of microvasculature tissue and nerve fibres. Furthermore, neurogenic factors, generated by both disc and immune cells, induce expression of pain-associated cation channels in the dorsal root ganglion. Depolarization of these ion channels is likely to promote discogenic and radicular pain, and reinforce the cytokine-mediated degenerative cascade. Taken together, an enhanced understanding of the contribution of cytokines and immune cells to these catabolic, angiogenic and nociceptive processes could provide new targets for the treatment of symptomatic disc disease. In this Review, the role of key inflammatory cytokines during each of the individual phases of degenerative disc disease, as well as the outcomes of major clinical studies aimed at blocking cytokine function, are discussed.
Collapse
Affiliation(s)
- Makarand V Risbud
- Department of Orthopaedic Surgery, Jefferson Medical College, 1025 Walnut Street, 511 College Building, Philadelphia, PA 19107, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Jefferson Medical College, 1025 Walnut Street, 511 College Building, Philadelphia, PA 19107, USA
| |
Collapse
|
47
|
Titanium particles up-regulate the activity of matrix metalloproteinase-2 in human synovial cells. INTERNATIONAL ORTHOPAEDICS 2013; 38:1091-8. [PMID: 24271334 DOI: 10.1007/s00264-013-2190-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/05/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE Wear debris particle-induced osteolysis and subsequent aseptic loosening is one of the major causes of failure of total joint replacement. The purpose of this study was to investigate the effect of titanium implant material and inflammatory cytokines on human synovial cells and the development to osteolysis and aseptic loosening. METHODS This study investigated the effect of titanium implant material on the ECM-degraded MMP-2 in human synovial cells and analyzed the contribution of synovial cells in osteolysis and aseptic loosening. RESULTS When human synovial cells are exposed to titanium materials, MMP-2 activity is induced by 1.72 ± 0.14-fold with Ti disc and 3.95 ± 0.10-fold with Ti particles, compared with that of the controls, respectively. Inflammatory cytokines TNFα and IL-1β are also shown to induce MMP-2 activity by 3.65 ± 0.28-fold and 6.76 ± 0.28-fold, respectively. A combination of Ti particles and cytokines induces MMP-2 activities to a higher level (10.54 ± 0.45-fold). Inhibitors of various signal pathways involved in MMP-2 reverse Ti particle-induced MMP-2 activities. CONCLUSIONS Synovial cells surrounding the bone-prosthesis interface may contribute to production of MMP-2, and NFκB inhibitors may be explored as potential therapeutics to alleviate wear debris-induced osteolysis and aseptic loosening.
Collapse
|
48
|
Sinclair SM, Bhattacharyya J, McDaniel JR, Gooden DM, Gopalaswamy R, Chilkoti A, Setton LA. A genetically engineered thermally responsive sustained release curcumin depot to treat neuroinflammation. J Control Release 2013; 171:38-47. [PMID: 23830979 DOI: 10.1016/j.jconrel.2013.06.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/23/2013] [Accepted: 06/25/2013] [Indexed: 12/11/2022]
Abstract
Radiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4days post-injection and decreased plasma AUC 7-fold.
Collapse
Affiliation(s)
- S Michael Sinclair
- Department of Biomedical Engineering, 136 Hudson Hall, Box 90281, Durham 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Wuertz K, Haglund L. Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Global Spine J 2013; 3:175-84. [PMID: 24436868 PMCID: PMC3854585 DOI: 10.1055/s-0033-1347299] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/09/2013] [Indexed: 01/07/2023] Open
Abstract
Although degeneration of the intervertebral disk has historically been described as a misbalance between anabolic and catabolic factors, the role of inflammatory mediators has long been neglected. However, past research clearly indicates that inflammatory mediators such as interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α are expressed at higher levels in "diseased" intervertebral disks. Both disk cells as well as invading macrophages can be the source of the detected cytokines. Importantly, occurrence of inflammatory mediators in the disk can worsen the progress of degeneration by inducing the expression of matrix degrading enzymes as well as by inhibiting extracellular matrix synthesis. In addition, inflammatory mediators play a crucial role in pain development during intervertebral disk herniation (i.e., sciatica) and disk degeneration (i.e., discogenic pain). This review provides information on the most relevant inflammatory mediators during different types of disk diseases and explains how these factors can induce disk degeneration and the development of discogenic and sciatic/radiculopathic pain.
Collapse
Affiliation(s)
- Karin Wuertz
- Institute for Biomechanics, D-HEST, ETH Zurich, Zurich, Switzerland,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland,AOSpine Research Network, Duebendorf, Switzerland,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland,Address for correspondence Dr. Karin Wuertz, PhD Institute for Biomechanics, D-HESTETH Zurich, Schafmattstrasse 30, HPP-O12, 8093 ZurichSwitzerland
| | - Lisbet Haglund
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland,Orthopeadic Research Laboratory, Division of Orthopedic Surgery, McGill University, Montreal, Canada,Dr. Lisbet Haglund, PhD Orthopaedic Research Laboratory, Montreal General HospitalRoom C9.173, 1650 Cedar Avenue, Montreal, QCCanada H3G 1A4
| |
Collapse
|
50
|
Paul CPL, Schoorl T, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, van Royen BJ, Helder MN, Mullender MG. Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One 2013; 8:e62411. [PMID: 23638074 PMCID: PMC3640099 DOI: 10.1371/journal.pone.0062411] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/20/2013] [Indexed: 11/30/2022] Open
Abstract
Mechanical overloading of the spine is associated with low back pain and intervertebral disc (IVD) degeneration. How excessive loading elicits degenerative changes in the IVD is poorly understood. Comprehensive knowledge of the interaction between mechanical loading, cell responses and changes in the extracellular matrix of the disc is needed in order to successfully intervene in this process. The purpose of the current study was to investigate whether dynamic and static overloading affect caprine lumbar discs differently and what mechanisms lead to mechanically induced IVD degeneration. Lumbar caprine IVDs (n = 175) were cultured 7, 14 and 21 days under simulated-physiological loading (control), high dynamic or high static loading. Axial deformation and stiffness were continuously measured. Cell viability, cell density, and gene expression were assessed in the nucleus, inner- and outer annulus. The extracellular matrix (ECM) was analyzed for water, glycosaminoglycan and collagen content. IVD height loss and changes in axial deformation were gradual with dynamic and acute with static overloading. Dynamic overloading caused cell death in all IVD regions, whereas static overloading mostly affected the outer annulus. IVDs expression of catabolic and inflammation-related genes was up-regulated directly, whereas loss of water and glycosaminoglycan were significant only after 21 days. Static and dynamic overloading both induced pathological changes to caprine lumbar IVDs within 21 days. The mechanism by which they inflict biomechanical, cellular, and extracellular changes to the nucleus and annulus differed. The described cascades provide leads for the development of new pharmacological and rehabilitative therapies to halt the progression of DDD.
Collapse
Affiliation(s)
- Cornelis P. L. Paul
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tom Schoorl
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Hendrik A. Zuiderbaan
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Behrouz Zandieh Doulabi
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Albert J. van der Veen
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter M. van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Theo H. Smit
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Barend J. van Royen
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marco N. Helder
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Margriet G. Mullender
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|