1
|
Chen Z, Fang Y, Zhong S, Lin S, Yang X, Chen S. ITGB5 is a prognostic factor in colorectal cancer and promotes cancer progression and metastasis through the Wnt signaling pathway. Sci Rep 2025; 15:9225. [PMID: 40097546 PMCID: PMC11914080 DOI: 10.1038/s41598-025-93081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Integrin beta5 (ITGB5) expression levels are dysregulated in a variety of cancers. However, the mechanism and clinical value of ITGB5 in colorectal cancer (CRC) remain unclear. The Gene Expression Omnibus (GEO) database, real-time PCR, Western blotting and immunohistochemistry were utilized to evaluate ITGB5 expression levels in CRC tissue. Clinical data from the GEO database were obtained to further explore the associations of ITGB5 with clinical features and patient survival. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene set enrichment analysis (GSEA) were performed to explore the functions and signaling pathways of ITGB5. In addition, ITGB5 expression was inhibited by siRNA, and the roles of ITGB5 in SW480 and RKO cell growth, migration and invasion, as well as in the Wnt/β-catenin signaling pathway, were investigated. Pancancer studies have shown that ITGB5 is highly expressed in a variety of cancers. Moreover, ITGB5 expression is significantly increased in CRC tissues and is correlated with TNM stage, invasion depth, lymph node metastasis and distant metastasis stage. Kaplan-Meier analysis and meta-analysis of the GSE39582 and GSE17538 datasets indicated that a high level of ITGB5 is a high risk factor for overall survival (OS) and disease-free survival (DFS). In addition, receiver operating characteristic (ROC) curve analysis revealed the value of ITGB5 in predicting DFS, and univariate and multivariate analyses showed that ITGB5 may be an independent prognostic factor for DFS. GO and KEGG analyses indicated that many GO terms related to the extracellular matrix (ECM), focal adhesion and ECM-receptor interaction pathways were enriched. GSEA revealed focal adhesion, cancer pathways, ECM-receptor interactions and Wnt signaling pathways in the samples with high ITGB5 expression. Correlation analysis revealed that high ITGB5 expression is significantly correlated with the TGF-β/EMT pathway and WNT targets. Silencing of ITGB5 inhibited SW480 and RKO cell proliferation, invasion and migration. Mechanistically, downregulated ITGB5 expression blocked the Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition (EMT) in CRC cells. Moreover, ITGB5 expression was related to M0 macrophages, M2 macrophages, neutrophils and plasma cell fractions. ITGB5 may be associated with poor prognosis and metastasis in patients with CRC. ITGB5 may hold promise as a prognostic biomarker and a new potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Gastrointestinal Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 66, Jintang Road, Jianxin Town, Cangshan District, Fuzhou, 350002, Fujian, China
| | - Yuan Fang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Shuwu Zhong
- Intensive Care Unit (ICU), The Second Affiliated Hospital of University of South China, No. 35 Jiefang Avenue, Zhengxiang District, Hengyang, 421001, Hunan, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Gastrointestinal Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 66, Jintang Road, Jianxin Town, Cangshan District, Fuzhou, 350002, Fujian, China
| | - Xiaoyu Yang
- School of Basic Medicine Sciences, Fujian Medical University, No. 1, Xuefu North Road, Minhou County, Fuzhou, 350122, China.
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 66, Jintang Road, Jianxin Town, Cangshan District, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
2
|
Chen W, Yang H, Huang L, Fang C, Yao L, Liu F, Jin T. ROS-mediated ITGB5 promotes tongue squamous cell carcinoma metastasis through epithelial mesenchymal transition and cell adhesion signal pathway. J Cancer Res Clin Oncol 2024; 150:398. [PMID: 39180583 PMCID: PMC11344732 DOI: 10.1007/s00432-024-05922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Integrin β5 (ITGB5) is an integrin β subunit member widely expressed in the human bodies, especially in cancer cells and tissues, which is a key factor in promoting tumor metastasis. In this study we investigated the differential expression of ITGB5 in tongue squamous cell carcinoma (TSCC), especially in those with lymph node metastasis, and revealed the possible mechanism. METHODS The expression of ITGB5 in TSCC was analyzed by database and verified by immunohistochemistry through 135 TSCC patients' tissue sections from Sun Yat-sen Memorial Hospital and Guangzhou First People's Hospital. The relationship between ITGB5 and lymph node metastasis or prognosis was analyzed retrospectively. The effects of ITGB5 on TSCC cells were examined through knocking down or overexpression and its possible regulator and signal pathway were explored. RESULTS The expression of ITGB5 in TSCC was higher than that in adjacent tissue, and the expression in patients with lymph node metastasis was higher than that in patients without lymph node metastasis. The high expression of ITGB5 predicted a worse prognosis. Knock down of ITGB5 suppressed invasion and migration of TSCC cells, while overexpression of ITGB5 contributed to invasion and migration. Reactive oxygen species (ROS) regulated epithelial mesenchymal transition (EMT), and we further verified that ROS enhanced the expression of ITGB5 to promote the metastasis of TSCC. Mechanistically, ITGB5 functions through cell adhesion signal pathway. CONCLUSION The increased expression of ITGB5 in tongue squamous cell carcinoma with lymph node metastasis may be a potential target for evaluating lymph node metastasis and worse prognosis of tongue squamous cell carcinoma. Scavenge of ROS or knock down of ITGB5 may be the strategies to overcome metastasis of TSCC.
Collapse
Affiliation(s)
- Weixiong Chen
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China.
- Department of Stomatology, Longgang District Central Hospital, Chinese University of Hong Kong, Shenzhen, 518116, PR China.
| | - Haojie Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Lei Huang
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Caihong Fang
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Limin Yao
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Faxin Liu
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Tingting Jin
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, 510115, PR China.
- Department of Stomatology, Longgang District Central Hospital, Chinese University of Hong Kong, Shenzhen, 518116, PR China.
| |
Collapse
|
3
|
Lei T, Lin Y, Lai X, Zhang Y, Ma Y, Wang X, Liu W, Tang Q, Yang T, Feng W, Song W. ITGB5 facilitates gastric cancer metastasis by promoting TGFBR2 endosomal recycling. Cancer Lett 2024; 592:216953. [PMID: 38729557 DOI: 10.1016/j.canlet.2024.216953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
TGFBR2, a key regulator of the TGFβ signaling pathway, plays a crucial role in gastric cancer (GC) metastasis through its endosomal recycling process. Despite its importance, the mechanisms governing this process remain unclear. Here, we identify integrin β5 (ITGB5) as a critical mediator that promotes TGFBR2 endosomal recycling. Our study reveals elevated expression of ITGB5 in GC, particularly in metastatic cases, correlating with poor patient outcomes. Knockdown of ITGB5 impairs GC cell metastasis both in vitro and in vivo. Mechanistically, ITGB5 facilitates epithelial-mesenchymal transition mediated by TGFβ signaling, thereby enhancing GC metastasis. Acting as a scaffold, ITGB5 interacts with TGFBR2 and SNX17, facilitating SNX17-mediated endosomal recycling of TGFBR2 and preventing lysosomal degradation, thereby maintaining its surface distribution on tumor cells. Notably, TGFβ signaling directly upregulates ITGB5 expression, establishing a positive feedback loop that exacerbates GC metastasis. Our findings shed light on the role of ITGB5 in promoting GC metastasis through SNX17-mediated endosomal recycling of TGFBR2, providing insights for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuanchen Ma
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wenwei Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qiao Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ting Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Bioclinicum, Solna, 17177, Sweden
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi MKK, Tavolara T, Gower A, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins KL, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. PLoS Pathog 2024; 20:e1011915. [PMID: 38861581 PMCID: PMC11195971 DOI: 10.1371/journal.ppat.1011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Bulent Yener
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Metin N. Gurcan
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - MK Khalid Niazi
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Thomas Tavolara
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Adam Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | - Denise Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Emily McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Anas Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Philipe A. Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
5
|
Zhang X, Li J, Yang L, Zhu Y, Gao R, Zhang T, Chen X, Fu J, He G, Shi H, Peng S, Wu X. Targeted proteomics-determined multi-biomarker profiles developed classifier for prognosis and immunotherapy responses of advanced cervical cancer. Front Immunol 2024; 15:1391524. [PMID: 38835778 PMCID: PMC11148239 DOI: 10.3389/fimmu.2024.1391524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Cervical cancer (CC) poses a global health challenge, with a particularly poor prognosis in cases of recurrence, metastasis, or advanced stages. A single biomarker is inadequate to predict CC prognosis or identify CC patients likely to benefit from immunotherapy, presumably owing to tumor complexity and heterogeneity. Methods Using advanced Olink proteomics, we analyzed 92 oncology-related proteins in plasma from CC patients receiving immunotherapy, based upon the comparison of protein expression levels of pre-therapy with those of therapy-Cycle 6 in the partial response (PR) group and progressive disease (PD) group, respectively. Results 55 proteins were identified to exhibit differential expression trends across pre-therapy and post-therapy in both PR and PD groups. Enriched GO terms and KEGG pathways were associated with vital oncological and immunological processes. A logistic regression model, using 5 proteins (ITGB5, TGF-α, TLR3, WIF-1, and ERBB3) with highest AUC values, demonstrated good predictive performance for prognosis of CC patients undergoing immunotherapy and showed potential across different cancer types. The effectiveness of these proteins in prognosis prediction was further validated using TCGA-CESC datasets. A negative correlation and previously unidentified roles of WIF-1 in CC immunotherapy was also first determined. Conclusion Our findings reveal multi-biomarker profiles effectively predicting CC prognosis and identifying patients benefitting most from immunotherapy, especially for those with limited treatment options and traditionally poor prognosis, paving the way for personalized immunotherapeutic treatments and improved clinical strategies.
Collapse
Affiliation(s)
- Xu Zhang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liuke Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Youwei Zhu
- Clinical Center of Bio-Therapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rongrong Gao
- Clinical Center for Biotherapy at Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiancheng Zhang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Xuwen Chen
- Shanghai Kelin Clinical Bioinformatics Institute, Shanghai, China
| | - Jun Fu
- LC-Bio Technology Co., Ltd, Hangzhou, China
| | - Gaoyang He
- LC-Bio Technology Co., Ltd, Hangzhou, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shenjie Peng
- Shanghai Medical College of Fudan University, Fudan University, Shanghai, China
| | - XiaoHua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Chen Y, Wu L, Li Y, Zheng J, Zhong S, Gu S, Chen J. Necrotizing apoptosis-related genes prognosis and treatment effect analysis of osteosarcoma in children. J Gene Med 2024; 26:e3646. [PMID: 38100138 DOI: 10.1002/jgm.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Immune cell homeostasis plays a crucial role in cancer research and therapeutic response. While chemotherapy and immunotherapy hold promise in treating osteosarcoma (OS), identifying patients who are likely to respond would significantly improve clinical practices. Necroptosis, a fundamental mechanism mediating chemotherapy and immunotherapy efficacy, offers valuable insights. In this context, subtypes based on necroptosis-related genes have been established to predict the response of OS patients to immunotherapy and chemotherapy. METHODS We conducted a high-throughput screening test to identify necroptosis-associated genes that regulate the development of osteosarcoma. Subsequently, the ConsensusClusterPlus package was employed to classify OS patients into subtypes, enabling comparisons of prognosis and clinical information between these subtypes. Patients from the TARGET-OS and GSE21257 datasets were stratified into high-risk and low-risk groups, and their prognoses were compared. Additionally, we assessed the accuracy of the Risk Scoring Model in predicting prognosis, identified independent prognostic factors and explored potential chemotherapeutic agents and immunotherapy drugs. RESULTS Through the intersection of expression profiles from the TARGET-OS and GSE21257 datasets, we have identified a total of 92 genes associated with necroptosis. Based on differences in the expression of these genes, patients were divided into three subtypes, and we investigated the differences in tumor-infiltrating immune cells, immune-related pathways, and prognosis among these subtypes. Our nomogram effectively differentiated subtypes with distinct responses to chemotherapy and immunotherapy. The established signature demonstrated superior prediction ability compared with single clinical indicators. CONCLUSIONS This pioneering study unveils the prognostic role of necroptosis-related genes in OS patients, providing a promising alternative for prognostic prediction in clinical disease management. Moreover, our findings highlight the significance of immune cell homeostasis in cancer research and therapeutic response, underscoring its relevance in advancing current treatment strategies.
Collapse
Affiliation(s)
| | - Ling Wu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Yunyan Li
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Jika Zheng
- Ningbo Women and Children's Hospital, Ningbo, China
| | | | - Shirong Gu
- Department of Orthopaedics, LiHuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jingyang Chen
- Department of Orthopaedics, LiHuili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
9
|
Ma L, Song K, Zang J. Integrin β5 is an independent prognostic marker for intrahepatic cholangiocarcinoma in a Chinese population. Exp Ther Med 2023; 26:532. [PMID: 37869645 PMCID: PMC10587877 DOI: 10.3892/etm.2023.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/21/2023] [Indexed: 10/24/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver tumor and a major cause of cancer mortality worldwide. Integrin β5 (ITGB5) is considered to be involved in the intercellular signal transduction and regulation of tumorigenesis and development. The present study investigated the association between ITGB5 expression levels and the prognosis of ICC, as well as the effects of ITGB5 on the proliferation and invasion of ICC cells. RNA-sequencing transcriptomic profiling data of ICC samples were retrieved from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Tissue specimens from patients with ICC treated at Taizhou People's Hospital were collected and the ITGB5 expression levels were evaluated using immunohistochemical staining. The biological function of ITGB5 in ICC was investigated using Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA) and in vitro experiments using HuCCT1 cells. After knocking down ITGB5 expression, cell proliferation was detected using Cell Counting Kit-8 assay, while cell invasion was assessed using Transwell assays. According to TCGA dataset, ITGB5 was highly expressed in ICC; however, there was no significant difference in prognosis between patients with high and low ITGB5 expression levels. High expression of ITGB5 was present in the tissues of patients with ICC from the GEO database, which was associated with poor prognosis. Survival analyses of the clinical data obtained in the present study revealed that high expression levels of ITGB5 in patients with ICC were associated with a reduced overall survival. GO and GSEA indicated that genes associated with ITGB5 were enriched in the extracellular matrix-receptor interaction and focal adhesion signaling pathways. Silencing ITGB5 inhibited the proliferation and invasion of ICC cells. In conclusion, ITGB5 may act as an essential regulator of ICC development and progression by influencing the proliferation and invasion of ICC cells. However, future studies with larger sample sizes are required to validate the role of ITGB5 in the prognosis of patients with ICC.
Collapse
Affiliation(s)
- Lixing Ma
- Department of Surgery, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Kang Song
- Department of Hepatobiliary Surgery, Taixing People's Hospital, The Affiliated Taixing People's Hospital of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Jinfeng Zang
- Department of Hepatobiliary Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
10
|
Jayathirtha M, Jayaweera T, Whitham D, Petre BA, Neagu AN, Darie CC. Two-Dimensional Polyacrylamide Gel Electrophoresis Coupled with Nanoliquid Chromatography-Tandem Mass Spectrometry-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in the MCF7 Breast Cancer Cell Line Transfected for Jumping Translocation Breakpoint Protein Overexpression. Int J Mol Sci 2023; 24:14714. [PMID: 37834160 PMCID: PMC10572688 DOI: 10.3390/ijms241914714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 20A, 700505 Iasi, Romania;
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| |
Collapse
|
11
|
Chen Z, Yang K, Zhang J, Ren S, Chen H, Guo J, Cui Y, Wang T, Wang M. Systems crosstalk between antiviral response and cancerous pathways via extracellular vesicles in HIV-1-associated colorectal cancer. Comput Struct Biotechnol J 2023; 21:3369-3382. [PMID: 37389186 PMCID: PMC10300105 DOI: 10.1016/j.csbj.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
HIV-1 associated colorectal cancer (HA-CRC) is one of the most understudied non-AIDS-defining cancers. In this study, we analyzed the proteome of HA-CRC and the paired remote tissues (HA-RT) through data-independent acquisition mass spectrometry (MS). The quantified proteins could differentiate the HA-CRC and HA-RT groups per PCA or cluster analyses. As a background comparison, we reanalyzed the MS data of non-HIV-1 infected CRC (non-HA-CRC) published by CPTAC. According to the GSEA results, we found that HA-CRC and non-HA-CRC shared similarly over-represented KEGG pathways. Hallmark analysis suggested that terms of antiviral response were only significantly enriched in HA-CRC. The network and molecular system analysis centered the crosstalk of IFN-associated antiviral response and cancerous pathways, which was favored by significant up-regulation of ISGylated proteins as detected in the HA-CRC tissues. We further proved that defective HIV-1 reservoir cells as represented by the 8E5 cells could activate the IFN pathway in human macrophages via horizonal transfer of cell-associated HIV-1 RNA (CA-HIV RNA) carried by extracellular vesicles (EVs). In conclusion, HIV-1 reservoir cells secreted and CA-HIV RNA-containing EVs can induce IFN pathway activation in macrophages that contributes to one of the mechanistic explanations of the systems crosstalk between antiviral response and cancerous pathways in HA-CRC.
Collapse
Affiliation(s)
- Zimei Chen
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Ke Yang
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Jiayi Zhang
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shufan Ren
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hui Chen
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Jiahui Guo
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yizhi Cui
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Tong Wang
- The First Affiliated Hospital, MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Min Wang
- Department of Infectious Diseases, Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, Hunan 410005, China
| |
Collapse
|
12
|
Bergonzini C, Kroese K, Zweemer AJM, Danen EHJ. Targeting Integrins for Cancer Therapy - Disappointments and Opportunities. Front Cell Dev Biol 2022; 10:863850. [PMID: 35356286 PMCID: PMC8959606 DOI: 10.3389/fcell.2022.863850] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/16/2022] [Indexed: 12/29/2022] Open
Abstract
Integrins mediate adhesive interactions between cells and their environment, including neighboring cells and extracellular matrix (ECM). These heterodimeric transmembrane receptors bind extracellular ligands with their globular head domains and connect to the cytoskeleton through multi-protein interactions at their cytoplasmic tails. Integrin containing cell–matrix adhesions are dynamic force-responsive protein complexes that allow bidirectional mechanical coupling of cells with their environment. This allows cells to sense and modulate tissue mechanics and regulates intracellular signaling impacting on cell faith, survival, proliferation, and differentiation programs. Dysregulation of these functions has been extensively reported in cancer and associated with tumor growth, invasion, angiogenesis, metastasis, and therapy resistance. This central role in multiple hallmarks of cancer and their localization on the cell surface makes integrins attractive targets for cancer therapy. However, despite a wealth of highly encouraging preclinical data, targeting integrin adhesion complexes in clinical trials has thus far failed to meet expectations. Contributing factors to therapeutic failure are 1) variable integrin expression, 2) redundancy in integrin function, 3) distinct roles of integrins at various disease stages, and 4) sequestering of therapeutics by integrin-containing tumor-derived extracellular vesicles. Despite disappointing clinical results, new promising approaches are being investigated that highlight the potential of integrins as targets or prognostic biomarkers. Improvement of therapeutic delivery at the tumor site via integrin binding ligands is emerging as another successful approach that may enhance both efficacy and safety of conventional therapeutics. In this review we provide an overview of recent encouraging preclinical findings, we discuss the apparent disagreement between preclinical and clinical results, and we consider new opportunities to exploit the potential of integrin adhesion complexes as targets for cancer therapy.
Collapse
|
13
|
Yu J, Yang K, Zheng J, Sun X, Zhao W. Establishment of a novel prognostic signature based on an identified expression profile of integrin superfamily to predict overall survival of patients with colorectal adenocarcinoma. Gene 2022; 808:145990. [PMID: 34624456 DOI: 10.1016/j.gene.2021.145990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/02/2022]
Abstract
The abnormal expression of integrin superfamily members commonly related to kinds of malignancies. However, the role of integrins in predicting the prognosis of cancers is still little known, especially for colorectal cancer that is one of the leading causes of cancer-related death. RNA-seq data and clinical features of colorectal adenocarcinoma (COAD) patients were derived from The Cancer Genome Atlas (TCGA), used to analyze the expression pattern and genomic alterations of integrin genes in the COAD cohort. Unsupervised hierarchical clustering divided COAD patients into two clusters (clusters 1 & 2), and we observed that patients in cluster 2 with high expressions of most integrin genes had worse clinical features and shorter overall survival (a median OS: 67.25 months vs 99.93 months, p = 0.012), compared to those in cluster 1. Combined with univariate Cox regression analysis, Pearson Correlation Coefficients (PCC), and Principal Component Analysis (PCA), an integrin-related signature was established, including ITGA1, ITGA5, ITGA7, ITGA11, ITGAX, ITGAM, ITGB1, and ITGB5. And the AUC values for OS at 1, 3, and 5 years was 0.61, 0.59, and 0.56, further demonstrating the predicting capacity of our signature. Furthermore, overexpression of which also significantly correlated with poorer prognosis of colon cancer patients in a separate validation cohort, GSE17536 (p < 0.05). Meanwhile, the AUC values for OS in the validation cohort at 1, 3, and 5 years was 0.62, 0.59, and 0.59. Additionally, enrichment analysis indicated significant differences between cluster 1 and cluster 2 in the biological processes of cell adhesion, signal transduction, extracellular matrix, immune system, and in tumor microenvironment (TME), which were crucial to the progression of tumor. The findings supplied compelling evidence that our signature could be a novel prognostic biomarker for COAD patients, and these genes had the potential to be therapeutic targets.
Collapse
Affiliation(s)
- Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| | - Kui Yang
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| | - Wei Zhao
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| |
Collapse
|
14
|
Hou S, Wang J, Li W, Hao X, Hang Q. Roles of Integrins in Gastrointestinal Cancer Metastasis. Front Mol Biosci 2021; 8:708779. [PMID: 34869579 PMCID: PMC8634653 DOI: 10.3389/fmolb.2021.708779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are a large family of heterodimeric transmembrane receptors which mediate cell adhesion and transmit signals to the cell interior. The mechanistic roles of integrins have long been an enigma in cancer, given its complexity in regulating different cellular behaviors. Recently, however, increasing research is providing new insights into its function and the underlying mechanisms, which collectively include the influences of altered integrin expression on the aberrant signaling pathways and cancer progression. Many studies have also demonstrated the potentiality of integrins as therapeutic targets in cancer treatment. In this review, we have summarized these recent reports and put a particular emphasis on the dysregulated expression of integrins and how they regulate related signaling pathways to facilitate the metastatic progression of gastrointestinal cancer, including gastric cancer (GC) and colorectal cancer (CRC), which will address the crucial roles of integrins in gastrointestinal cancer.
Collapse
Affiliation(s)
- Sicong Hou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiaxin Wang
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Wenqian Li
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xin Hao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|