1
|
Stępień M, Zajda J, Keppler BK, Timerbaev AR, Matczuk M. Cisplatin meets liposomes for a smarter delivery: A review. Talanta 2025; 295:128331. [PMID: 40382863 DOI: 10.1016/j.talanta.2025.128331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Effective treatment of tumors remains a significant clinical challenge even for approved anticancer drugs such as cisplatin, whose chemotherapy is hindered by inherent toxicity, rapidly acquired resistance, and nonselective mode of action. In the past years, nanodelivery systems have emerged as a key strategy to overcome these limitations due to their potential to improve drug safety, bioavailability, and efficacy. Among various nanostructures applied as carriers for the delivery of cisplatin, liposomes have undergone intensive testing, with the outcome of being advanced to clinical trials. This fact not only triggers further research endeavors toward developing improved liposomal formulations but also makes it timely to highlight recent trends and strategies, showcasing the evolution and application of cisplatin-liposome systems. The present review is aimed at a critical analysis of fabrication, encapsulation, stability testing, release, and cell/animal experimental procedures, focusing on the analytical methodology used to feature these essential practices and providing insights that may help enhance the efficacy of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Marta Stępień
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Andrei R Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
2
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
3
|
Mert H, Kerem Ö, Mıs L, Yıldırım S, Mert N. Effects of protocatechuic acid against cisplatin-induced neurotoxicity in rat brains: an experimental study. Int J Neurosci 2024; 134:725-734. [PMID: 36525373 DOI: 10.1080/00207454.2022.2147430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/23/2022]
Abstract
Aims/Objectives: Cisplatin (CIS) is widely used in the treatment of various malignant tumors. The aim of study is to determine the potential protective effects of protocatechuic acid (PCA) on the brain in neurotoxicity induced by CIS in rats.Materials and methods: Forty rats were divided into four groups: 1-Control group: 2- PCA group: PCA was administered orally at a dose of 100 mg/kg/day for 5 weeks. 3-CIS group: 5 mg/kg/week of CIS was administered intraperiteonally 4-PCA + CIS group: The rats were given PCA orally daily for 5 weeks and CIS of 5 mg/kg/week. The brain tissues were used for histopathological examinations and for total antioxidant capacity (TAC), total oxidative state (TOS), oxidative stress index (OSI), tumornecrosis factor-alpha (T NF-α), interleukin 6 (IL-6) Interleukin 1 beta (IL-1β), acetylcholinesterase (AChE), glutamate, gamma aminobutyric acid (GABA), dopamine analyzes in ELISA. WBC, RBC, hemoglobin and hematocrit levels were measured.Results: PCA + CIS group compared to CIS group TOS, OSI, T NF-α, IL-6, IL-1β, AChE, glutamate, WBC levels decreased significantly, while TAC and GABA levels increased statistically significant. With this study, P CA corrected the deterioration in the oxidant / antioxidant status, suppressed neuro-inflammation, decreased AChE activity, partially normalized neurotransmitters, and decreased the increased WBC count. Necrosis seen in the CIS group in histopathological examinations was never seen in the PCA + CIS group.Conclusions: PCA may provide therapeutic benefit when used in conjunction with CIS.
Collapse
Affiliation(s)
- Handan Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Özge Kerem
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Leyla Mıs
- Department of Physiology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Zhang JJ, Xu QJ, Zhang Y, Zhou Q, Lv R, Chen Z, He W. Recent advances in nanocarriers for clinical platinum(II) anticancer drugs. Coord Chem Rev 2024; 505:215676. [DOI: 10.1016/j.ccr.2024.215676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Xue Z, Zeng J, Li Y, Meng B, Gong X, Zhao Y, Dai X. Proteomics reveals that cell density could affect the efficacy of drug treatment. Biochem Biophys Rep 2022; 33:101403. [PMID: 36561432 PMCID: PMC9763681 DOI: 10.1016/j.bbrep.2022.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
In vitro cell biology study plays a fundamental role in biological and drug development research, but the repeatability and accuracy of cell studies remain to be low. Various uncertainties during the cell culture process could introduce bias into drug research. In this study, we evaluate the potential effects and underlying mechanisms induced by cell number differences in the cell seeding process. Normally, drug experiments are initiated 24 h after cell seeding, and the difference in the cell number at the time of inoculation leads to the difference in cell confluence (cell density) when drug research is conducted. While cell confluence is closely related to intercellular communication, surface protein interaction, cell autocrine as well as paracrine protein expression of cells, it might have a potential impact on the effect of biological studies such as drug treatment. This study used proteomics technology to comprehensively explore the different protein expression patterns between cells with different confluences. Due to the high sensitivity and high throughput of liquid chromatography-mass spectrometry (LC-MS/MS) detection, it was hired to evaluate the protein expression differences of Hep3B cells with 3 different confluences (30%, 50%, and 70%). The differential expressed proteins were analyzed by the Reactome pathway and the Gene Ontology (GO) pathway. Significant differences were identified across three confluences in terms of the number of proteins identified, the protein expression pattern, and the expression level of certain KEGG pathways. We found that those proteins involved in the cell cycle pathway were differently expressed: the higher the cell confluence, the higher these proteins expressed. A cell cycle inhibitor palbociclib was selected to further verify this observation. Palbociclib in the same dose was applied to cells with different confluence, the results indicated that the growth inhibition effect of palbociclib increases along with the increasing trend of cell cycle protein expression. The result indicated that cell density did influence the effect of drug treatment. Furthermore, three other drugs, cisplatin, paclitaxel, and imatinib, were used to treat the three liver cancer cell lines Hep3B, SUN387, and MHCC97, and a similar observation was obtained that drug effect would be different when the cell confluences were different. Therefore, selecting an appropriate number of cells for plating is vitally important at the beginning of a drug study.
Collapse
Affiliation(s)
- Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Jiaming Zeng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China,Shenyang University of Chemical Technology, College of Chemical Engineering, Shenyang, 110142, PR China
| | - Yongshu Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518055, PR China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China,Corresponding author.
| |
Collapse
|
6
|
Sahu K, Langeh U, Singh C, Singh A. Crosstalk between anticancer drugs and mitochondrial functions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100047. [PMID: 34909674 PMCID: PMC8663961 DOI: 10.1016/j.crphar.2021.100047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy is an important component of cancer treatment, which has side effects like vomiting, peripheral neuropathy, and numerous organ toxicity but the most significant outcomes of chemotherapy are cognitive impairment, which is mainly referred to as chemobrain or CICI (chemotherapy-induced cognitive impairment). It is characterized by difficulty with language, concentrating, processing speed, learning, and memory, as it affects the hippocampus areas of the brain. Mitochondrial dysfunction and oxidative stress are one of the major mechanisms causing chemobrain. The generation of reactive oxygen species (byproducts of oxidative phosphorylation) mainly occurs in mitochondria that play a prominent role in the induction of oxidative stress. The homeostasis of ROS in the mitochondria is maintained by mitochondrial antioxidant mechanism via enzymes like catalase, glutathione, and superoxide dismutase. Lungs and breast cancer are the two most common types of cancer, which are the most leading cancers in the world with about 4.18 million cases. In this review we exposed the current knowledge regarding chemotherapy-induced oxidative stress and mitochondrial dysfunction to cause cognitive impairment.We especially focused on the antineoplastic agent (ADRIAMYCIN, CYCLOPHOSPHAMIDE), platinum group agent CISPLATIN, antimetabolite agents (METHOTREXATE), and nitrogen mustard agent (CARMUSTINE) which increase oxidative stress and inflammatory markers in the PNS (peripheral nervous system) as well as the central nervous system. We also highlight the behavioural and functional changes in the brain.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
7
|
Zakeri N, Rezaie H, Javadpour J, Kharaziha M. Effect of pH on cisplatin encapsulated zeolite nanoparticles: Release mechanism and cytotoxicity. MATERIALS CHEMISTRY AND PHYSICS 2021; 273:124964. [DOI: 10.1016/j.matchemphys.2021.124964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Abstract
The kidneys are vital organs performing several essential functions. Their primary function is the filtration of blood and the removal of metabolic waste products as well as fluid homeostasis. Renal filtration is the main pathway for drug removal, highlighting the importance of this organ to the growing field of nanomedicine. The kidneys (i) have a key role in the transport and clearance of nanoparticles (NPs), (ii) are exposed to potential NPs’ toxicity, and (iii) are the targets of diseases that nanomedicine can study, detect, and treat. In this review, we aim to summarize the latest research on kidney-nanoparticle interaction. We first give a brief overview of the kidney’s anatomy and renal filtration, describe how nanoparticle characteristics influence their renal clearance, and the approaches taken to image and treat the kidney, including drug delivery and tissue engineering. Finally, we discuss the future and some of the challenges faced by nanomedicine.
Collapse
|
9
|
Liu C, Ma M, Wen C, Uz Zaman R, Olatunji OJ. Antiallodynic and anti-hyperalgesia effects of Tiliacora triandra against cisplatin-induced peripheral neuropathy. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1927204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chunhong Liu
- The Second Peoples Hospital of Wuhu City, Wuhu, People’s Republic of China
| | - Mingming Ma
- The First Peoples Hospital of Fuyang, Fuyang City, People’s Republic of China
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu, People’s Republic of China
| | - Raihan Uz Zaman
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, Thailand
| | | |
Collapse
|
10
|
Zhang Z, Song J, Xie C, Pan J, Lu W, Liu M. Pancreatic Cancer: Recent Progress of Drugs in Clinical Trials. AAPS JOURNAL 2021; 23:29. [PMID: 33580411 DOI: 10.1208/s12248-021-00556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is a highly malignant tumor and one of the primary causes of cancer-related death. Because pancreatic cancer is difficult to diagnose in the early course of the disease, most patients present with advanced lesions at the time of diagnosis, and only 20% of patients are eligible for surgery. Consequently, drug treatment has become extremely important. At present, the main treatment regimens for pancreatic cancer are gemcitabine and the FORFIRINOX and MPACT regimens. However, none of these regimens substantially improves the prognosis of patients with pancreatic cancer. Extensive efforts have been dedicated to the study of pancreatic cancer in recent years. With the development and clinical application of biological targeted drugs, the biological targeted treatment of tumors has been widely accepted. Therefore, this article used relevant clinical trial data to summarize the research progress of traditional chemotherapy drugs and biological targeted drugs for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jie Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jun Pan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Min Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
11
|
Ding S, Hackett CL, Liu F, Hackett RG, Bierbach U. Evaluation of a Platinum-Acridine Anticancer Agent and Its Liposomal Formulation in an in vivo Model of Lung Adenocarcinoma. ChemMedChem 2021; 16:412-419. [PMID: 32975041 PMCID: PMC8057267 DOI: 10.1002/cmdc.202000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Liposomal formulations have been developed for a highly cytotoxic platinum-acridine agent, [PtCl(pn)(C18 H21 N4 )](NO3 )2 (PA, pn=propane-1,3-diamine), and fully characterized. Nanoliposomes consisting of hydrogenated soybean phosphatidylcholine (HSPC), 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), and polyethylene glycol-2000-distearoylphosphatidylethanolamine (DSPE-mPEG2k ) were able to stably encapsulate PA at payload-to-lipid ratios of 2-20 %. The fusogenic properties of the liposomes promote efficient cellular uptake of PA across the plasma membrane, which results in vesicular transport of payload to the nucleus in cultured lung cancer cells. Unencapsulated PA and one of the newly designed liposomal formulations show promising tumor growth inhibition in tumor xenografts derived from A549 lung adenocarcinoma cells of 76 % and 72 %, respectively. Cisplatin showed no significant efficacy at a 10-fold higher dose. These findings underscore the utility of platinum-acridine agents for treating aggressive, chemoresistant forms of cancer and validate nanoliposomes as a biocompatible, expandable platform for their intravenous delivery and other potential routes of administration.
Collapse
Affiliation(s)
- Song Ding
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Christopher L Hackett
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Fang Liu
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Ryan G Hackett
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC, 27109, USA
- Department of Chemistry - Wake Downtown, Wake Forest Innovation Quarter, Wake Forest University, 455 Vine Street, Winston-Salem, NC, 27101, USA
| |
Collapse
|
12
|
Yu C, Wang Z, Sun Z, Zhang L, Zhang W, Xu Y, Zhang JJ. Platinum-Based Combination Therapy: Molecular Rationale, Current Clinical Uses, and Future Perspectives. J Med Chem 2020; 63:13397-13412. [PMID: 32813515 DOI: 10.1021/acs.jmedchem.0c00950] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum drugs are common in chemotherapy, but their clinical applications have been limited due to drug resistance and severe toxic effects. The combination of platinum drugs with other drugs with different mechanisms of anticancer action, especially checkpoint inhibitors, is increasingly popular. This combination is the leading strategy to improve the therapeutic efficiency and minimize the side effects of platinum drugs. In this review, we focus on the mechanistic basis of the combinations of platinum-based drugs with other drugs to inspire the development of more promising platinum-based combination regimens in clinical trials as well as novel multitargeting platinum drugs overcoming drug resistance and toxicities resulting from current platinum drugs.
Collapse
Affiliation(s)
- Chunqiu Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhibin Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zeren Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wanwan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Jing Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Zahednezhad F, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H. The latest advances of cisplatin liposomal formulations: essentials for preparation and analysis. Expert Opin Drug Deliv 2020; 17:523-541. [DOI: 10.1080/17425247.2020.1737672] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Science, Iran
| |
Collapse
|
14
|
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol 2020; 69:349-364. [PMID: 32088362 DOI: 10.1016/j.semcancer.2020.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the leading cause of death in both men and women in the world. Lung cancer is heterogeneous in nature and diagnosis is often at an advanced stage as it develops silently in the lung and is frequently associated with high mortality rates. Despite the advances made in understanding the biology of lung cancer, progress in early diagnosis, cancer therapy modalities and considering the mechanisms of drug resistance, the prognosis and outcome still remains low for many patients. Nanotechnology is one of the fastest growing areas of research that can solve many biological problems such as cancer. A growing number of therapies based on using nanoparticles (NPs) have successfully entered the clinic to treat pain, cancer, and infectious diseases. Recent progress in nanotechnology has been encouraging and directed to developing novel nanoparticles that can be one step ahead of the cancer reducing the possibility of multi-drug resistance. Nanomedicine using NPs is continuingly impacting cancer diagnosis and treatment. Chemotherapy is often associated with limited targeting to the tumor, side effects and low solubility that leads to insufficient drug reaching the tumor. Overcoming these drawbacks of chemotherapy by equipping NPs with theranostic capability which is leading to the development of novel strategies. This review provides a synopsis of current progress in theranostic applications for lung cancer diagnosis and therapy using NPs including liposome, polymeric NPs, quantum dots, gold NPs, dendrimers, carbon nanotubes and magnetic NPs.
Collapse
Affiliation(s)
- Christopher Woodman
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Gugulethu Vundu
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, United Kingdom; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
15
|
Zhu W, Zhao J, Chen Q, Liu Z. Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Protective Role of Epigallocatechin Gallate in a Rat Model of Cisplatin-Induced Cerebral Inflammation and Oxidative Damage: Impact of Modulating NF-κB and Nrf2. Neurotox Res 2019; 37:380-396. [PMID: 31410684 DOI: 10.1007/s12640-019-00095-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent in treating various types of cancers. However, it can induce neurotoxicity and nephrotoxicity, limiting its dose and clinical use. Although previous studies indicated the direct link between cisplatin-induced central neurotoxicity and oxidative stress, the exact mechanism is not completely understood. Therefore, herein we investigated the effects of prophylactic and concurrent treatment with (-)-epigallocatechin-3-gallate (EGCG), a natural polyphenolic neuroprotective antioxidant, on cisplatin-induced brain toxicity in rats to delineate its molecular mechanism of action. We found that cisplatin initiated a cascade of genetic, biological, and histopathological changes in the brain cortex, inducing inflammatory cytokines, appearance of scattered inflammatory cells, nitro-oxidative stress, and apoptotic proteins in the cerebral cortex. However, EGCG not only protected against cisplatin-induced inflammatory burden but also ameliorated the induction of nitro-oxidative stress and apoptotic proteins triggered by cisplatin in the cerebral cortex of pre- and co-treated rats with respect to their unprotected counterparts. EGCG anti-inflammatory effect here may be attributed to the downregulation of nuclear factor kappa B (NF-κB). Additionally, this natural polyphenol significantly ameliorated cisplatin-elicited reduction in cerebral cortex brain-derived neurotrophic factor and acetylcholine esterase. Upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1) by EGCG prophylactic and concurrent administration here seems also to play a key role in the protective impact of EGCG against cisplatin toxicity through enhancing total antioxidant capacity. Thus, EGCG can be used as a promising prophylactic adjuvant for preventing the development of brain inflammation and oxidative damage associated with cisplatin chemotherapy.
Collapse
|
17
|
Rausch M, Dyson PJ, Nowak‐Sliwinska P. Recent Considerations in the Application of RAPTA‐C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Magdalena Rausch
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Patrycja Nowak‐Sliwinska
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
- Translational Research Centre in Oncohaematology Geneva, Switzerland, 1211 Geneva 4 Switzerland
| |
Collapse
|
18
|
Vallières F, Durocher I, Girard D. Biological activities of interleukin (IL)-21 in human monocytes and macrophages. Cell Immunol 2019; 337:62-70. [PMID: 30765203 DOI: 10.1016/j.cellimm.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 01/13/2023]
Abstract
The biological roles of interleukin (IL)-21 in human monocytes and macrophages have been neglected. We previously demonstrated that IL-21 induce phagocytosis and established that Syk is a new molecular target of IL-21. Herein, we found that IL-21 is not chemoattractant for immature THP-1 and primary monocytes but can increase the capacity of THP-1 cells (not primary monocytes) to adhere onto a cell substratum by a Syk-dependent mechanism without altering the expression of a panel of cell surface molecules. Unlike THP- 1 and monocytes, IL-21 can increase metalloproteinase (MMP)-9 secretion and activity in monocyte-derived macrophages (HMDM), as assessed by western blot and zymography experiments, respectively. We reported that IL-21 did not increase the production of IL-6 and the chemokines MIP-1α and GRO-α in HMDM. Therefore, IL-21 can increase functions other that phagocytosis, but this cytokine does not have a large spectrum of biological activities in monocytes and macrophages.
Collapse
Affiliation(s)
- Francis Vallières
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Isabelle Durocher
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| |
Collapse
|
19
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Toro-Cordova A, Flores-Cruz M, Santoyo-Salazar J, Carrillo-Nava E, Jurado R, Figueroa-Rodriguez PA, Lopez-Sanchez P, Medina LA, Garcia-Lopez P. Liposomes Loaded with Cisplatin and Magnetic Nanoparticles: Physicochemical Characterization, Pharmacokinetics, and In-Vitro Efficacy. Molecules 2018; 23:molecules23092272. [PMID: 30200551 PMCID: PMC6225157 DOI: 10.3390/molecules23092272] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 02/01/2023] Open
Abstract
With the aim improving drug delivery, liposomes have been employed as carriers for chemotherapeutics achieving promising results; their co-encapsulation with magnetic nanoparticles is evaluated in this work. The objective of this study was to examine the physicochemical characteristics, the pharmacokinetic behaviour, and the efficacy of pegylated liposomes loaded with cisplatin and magnetic nanoparticles (magnetite) (Cis-MLs). Cis-MLs were prepared by a modified reverse-phase evaporation method. To characterize their physicochemical properties, an evaluation was made of particle size, ζ-potential, phospholipid and cholesterol concentration, phase transition temperature (Tm), the encapsulation efficiency of cisplatin and magnetite, and drug release profiles. Additionally, pharmacokinetic studies were conducted on normal Wistar rats, while apoptosis and the cytotoxic effect were assessed with HeLa cells. We present a method for simultaneously encapsulating cisplatin at the core and also embedding magnetite nanoparticles on the membrane of liposomes with a mean vesicular size of 104.4 ± 11.5 nm and a ζ-potential of −40.5 ± 0.8 mV, affording a stable formulation with a safe pharmacokinetic profile. These liposomes elicited a significant effect on cell viability and triggered apoptosis in HeLa cells.
Collapse
Affiliation(s)
- Alfonso Toro-Cordova
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, 14080 CDMX, Mexico.
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 CDMX, Mexico.
| | - Mario Flores-Cruz
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, 14080 CDMX, Mexico.
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Zacatenco, 07360 CDMX, Mexico.
| | - Ernesto Carrillo-Nava
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 014510 CDMX, Mexico.
| | - Rafael Jurado
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, 14080 CDMX, Mexico.
| | - Pavel A Figueroa-Rodriguez
- Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, 14080 CDMX, Mexico.
| | - Pedro Lopez-Sanchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 CDMX, Mexico.
| | - Luis A Medina
- Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, 14080 CDMX, Mexico.
- Instituto de Física, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico.
| | - Patricia Garcia-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, 14080 CDMX, Mexico.
| |
Collapse
|
21
|
Gotov O, Battogtokh G, Shin D, Ko YT. Hyaluronic acid-coated cisplatin conjugated gold nanoparticles for combined cancer treatment. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Arch Pharm Res 2018; 41:797-814. [PMID: 30074202 DOI: 10.1007/s12272-018-1060-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
With the current advance in nanotechnology, the development has accelerated of a number of nanoparticle-type drugs such as nano-emulsions, lipid emulsions, liposomes, and cell therapeutics. With these developments, attempts are being made to apply these new drugs to healing many intractable diseases related to antibody production, autoimmune disorders, cancer, and organ transplantation in both clinical and nonclinical trials. Drug delivery to the lymphatic system is indispensable for treating these diseases, but the core technologies related to the in vivo distribution characteristics and lymphatic delivery evaluation of these particle-type drugs have not yet been established. Additionally, the core technologies for setting up the pharmacotherapeutic aspects such as their usage and dosages in the development of new drugs do not meet the needs of the market. Therefore, it is necessary to consider dividing these particle-type drugs into soft-lipid nanoparticles that can change size in the process of body distribution and hard-lipid nanoparticles whose surfaces are hardened and whose sizes do not easily change in vivo; these soft- and hard-lipid nanoparticles likely possess different biodistribution characteristics including delivery to the lymphatic system. In this review, we summarize the different types, advantages, limitations, possible remedies, and body distribution characteristics of soft- and hard-lipid nanoparticles based on their administration routes. We also emphasize that it will be necessary to fully understand the differences in distribution between these soft- and hard-lipid nanoparticle-type drugs and to establish pharmacokinetic models for their more ideal lymphatic delivery.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
23
|
Ding S, Bierbach U. Linker design for the modular assembly of multifunctional and targeted platinum(ii)-containing anticancer agents. Dalton Trans 2018; 45:13104-13. [PMID: 27251881 DOI: 10.1039/c6dt01399f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A versatile and efficient modular synthetic platform was developed for assembling multifunctional conjugates and targeted forms of platinum-(benz)acridines, a class of highly cytotoxic DNA-targeted hybrid agents. The synthetic strategy involved amide coupling between succinyl ester-modified platinum compounds (P1, P2) and a set of 11 biologically relevant primary and secondary amines (N1-N11). To demonstrate the feasibility and versatility of the approach, a structurally and functionally diverse range of amines was introduced. These include biologically active molecules, such as rucaparib (a PARP inhibitor), E/Z-endoxifen (an estrogen receptor antagonist), and a quinazoline-based tyrosine kinase inhibitor. Micro-scale reactions in Eppendorf tubes or on 96-well plates were used to screen for optimal coupling conditions in DMF solution with carbodiimide-, uronium-, and phosphonium-based compounds, as well as other common coupling reagents. Reactions with the phosphonium-based coupling reagent PyBOP produced the highest yields and gave the cleanest conversions. Furthermore, it was demonstrated that the chemistry can also be performed in aqueous media and is amenable to parallel synthesis based on multiple consecutive reactions in DMF in a "one-tube" format. In-line LC-MS was used to assess the stability of the conjugates in physiologically relevant buffers. Hydrolysis of the conjugates occurs at the ester moiety and is facilitated by the aquated metal moiety under low-chloride ion conditions. The rate of ester cleavage greatly depends on the nature of the amine component. Potential applications of the linker technology are discussed.
Collapse
Affiliation(s)
- S Ding
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, USA.
| | - U Bierbach
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, USA. and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
24
|
Browning RJ, Reardon PJT, Parhizkar M, Pedley RB, Edirisinghe M, Knowles JC, Stride E. Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS NANO 2017; 11:8560-8578. [PMID: 28829568 DOI: 10.1021/acsnano.7b04092] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Few chemotherapeutics have had such an impact on cancer management as cis-diamminedichloridoplatinum(II) (CDDP), also known as cisplatin. The first member of the platinum-based drug family, CDDP's potent toxicity in disrupting DNA replication has led to its widespread use in multidrug therapies, with particular benefit in patients with testicular cancers. However, CDDP also produces significant side effects that limit the maximum systemic dose. Various strategies have been developed to address this challenge including encapsulation within micro- or nanocarriers and the use of external stimuli such as ultrasound to promote uptake and release. The aim of this review is to look at these strategies and recent scientific and clinical developments.
Collapse
Affiliation(s)
- Richard J Browning
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford , Oxford OX1 2JD, United Kingdom
| | | | | | | | | | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative Medicine, Dankook University , 518-10 Anseo-dong, Dongnam-gu, Cheonan, Chungcheongnam-do, Republic of Korea
- The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus , Gower Street, London WC1E 6BT, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford , Oxford OX1 2JD, United Kingdom
| |
Collapse
|
25
|
Chen C, Zhang H, Xu H, Zheng Y, Wu T, Lian Y. Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments. J Ginseng Res 2017; 43:499-507. [PMID: 31695559 PMCID: PMC6823748 DOI: 10.1016/j.jgr.2017.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/02/2017] [Accepted: 07/20/2017] [Indexed: 11/11/2022] Open
Abstract
Background Ginsenoside Rb1 (Rb1), a dominant component from the extract of Panax ginseng root, exhibits neuroprotective functions in many neurological diseases. This study was intended to investigate whether Rb1 can attenuate cisplatin-induced memory impairments and explore the potential mechanisms. Methods Cisplatin was injected intraperitoneally with a dose of 5 mg/kg/wk, and Rb1 was administered in drinking water at the dose of 2 mg/kg/d to rats for 5 consecutive wk. The novel objects recognition task and Morris water maze were used to detect the memory of rats. Nissl staining was used to examine the neuron numbers in the hippocampus. The activities of superoxide dismutase, glutathione peroxidase, cholineacetyltransferase, acetylcholinesterase, and the levels of malondialdehyde, reactive oxygen species, acetylcholine, tumor necrosis factor-α, interleukin-1β, and interleukin-10 were measured by ELISA to assay the oxidative stress, cholinergic function, and neuroinflammation in the hippocampus. Results Rb1 administration effectively ameliorates the memory impairments caused by cisplatin in both novel objects recognition task and Morris water maze task. Rb1 also attenuates the neuronal loss induced by cisplatin in the different regions (CA1, CA3, and dentate gyrus) of the hippocampus. Meanwhile, Rb1 is able to rescue the cholinergic neuron function, inhibit the oxidative stress and neuroinflammation in cisplatin-induced rat brain. Conclusion Rb1 rescues the cisplatin-induced memory impairment via restoring the neuronal loss by reducing oxidative stress and neuroinflammation and recovering the cholinergic neuron functions.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| | - Hongliang Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yake Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| | - Tianwen Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
26
|
Kieler-Ferguson HM, Chan D, Sockolosky J, Finney L, Maxey E, Vogt S, Szoka FC. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids. Eur J Pharm Sci 2017; 103:85-93. [PMID: 28263913 DOI: 10.1016/j.ejps.2017.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
We employed a recently introduced class of sterol-modified lipids (SML) to produce m-PEG-DSPE containing liposome compositions with a range of cis-platinum content release rates. SML have a cholesterol succinate attached to the phosphatidylglycerol head group and a fatty acid at the 2 position. These compositions were compared to the well-studied liposome phospholipid compositions: mPEG-DSPE/Hydrogenated Soy PC/cholesterol or mPEG-DSPE/POPC/cholesterol to determine the effect of the cis-platinum release extent on C26 tumor proliferation in the BALB/c colon carcinoma mouse model. The release rates of cis-platinum from liposomes composed of SML are a function of the acyl chain length. SML-liposomes with shorter acyl chain lengths C-8 provided more rapid cisplatin release, lower in vitro IC50, and were easier to formulate compared to liposomes using traditional phospholipid compositions. Similar to other liposome cis-platinum formulations, the half-life of m-PEG-DSPE SML liposome cisplatin is substantially longer than the free drug. This resulted in a higher tumor cisplatin concentration at 48h post-dosing compared to the free drug and higher Pt-DNA adducts in the tumor. Moreover, the maximum tolerated dose of the liposome formulations where up to four fold greater than the free drug. Using X-ray fluorescence spectroscopy on tumor sections, we compared the location of platinum, to the location of a fluorescence lipid incorporated in the liposomes. The liposome platinum co-localized with the fluorescent lipid and both were non-uniformly distributed in the tumor. Non-encapsulated Cis-platinum, albeit at a low concentration, was more uniformly distributed thorough the tumor. Three liposome formulations, including the well-studied hydrogenated HSPC composition, had better antitumor activity in the murine colon 26 carcinoma model as compared to the free drug at the same dose but the SML liposome platinum formulations did not perform better than the HSPC formulation.
Collapse
Affiliation(s)
- Heidi M Kieler-Ferguson
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA; Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA
| | - Darren Chan
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA
| | - Jonathan Sockolosky
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA
| | - Lydia Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Francis C Szoka
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA.
| |
Collapse
|
27
|
Zheng Y, Fahrenholtz CD, Hackett CL, Ding S, Day CS, Dhall R, Marrs GS, Gross MD, Singh R, Bierbach U. Large-Pore Functionalized Mesoporous Silica Nanoparticles as Drug Delivery Vector for a Highly Cytotoxic Hybrid Platinum-Acridine Anticancer Agent. Chemistry 2017; 23:3386-3397. [PMID: 28122141 DOI: 10.1002/chem.201604868] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Large-pore mesoporous silica nanoparticles (MSN) were prepared and functionalized to serve as a highly robust and biocompatible delivery platform for platinum-acridine (PA) anticancer agents. The material showed a high loading capacity for the dicationic, hydrophilic hybrid agent [PtCl(en)(N-[acridin-9-ylaminoethyl]-N-methylpropionamidine)] dinitrate salt (P1A1) and virtually complete retention of payload at neutral pH in a high-chloride buffer. In acidic media mimicking the pH inside the cell lysosomes, rapid, burst-like release of P1A1 from the nanoparticles is observed. Coating of the materials in phospholipid bilayers resulted in nanoparticles with greatly improved colloidal stability. The lipid and carboxylate-modified nanoparticles containing 40 wt % drug caused S-phase arrest and inhibited cell proliferation in pancreatic cancer cells at submicromolar concentrations similar to carrier-free P1A1. The most striking feature of nanoparticle-delivered P1A1 was that the payload did not escape from the acidified lysosomal vesicles into the cytoplasm, but was shuttled to the nuclear membrane and released into the nucleus.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Cale D Fahrenholtz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | - Song Ding
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Rohan Dhall
- Analytical Instrumentation Facility, Monteith Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Glen S Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Michael D Gross
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| |
Collapse
|
28
|
Jangra A, Kwatra M, Singh T, Pant R, Kushwah P, Ahmed S, Dwivedi D, Saroha B, Lahkar M. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. Eur J Pharmacol 2016; 791:51-61. [PMID: 27492363 DOI: 10.1016/j.ejphar.2016.08.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
Cisplatin is a chemotherapeutic agent used in the treatment of malignant tumors. A major clinical limitation of cisplatin is its potential toxic effects, including neurotoxicity. Edaravone, a potent free radical scavenger, has been reported to have the neuroprotective effect against neurological deficits. The aim of the present study was to determine the neuroprotective effect of edaravone against cisplatin-induced behavioral and biochemical anomalies in male Wistar rats. Our results showed that cisplatin (5mg/kg/week, i.p.) administration for seven weeks caused marked cognitive deficits and motor incoordination in rats. This was accompanied by oxido-nitrosative stress, neuroinflammation, NF-κB activation and down-regulation of Nrf2/HO-1 gene expression level in the hippocampus. Edaravone (10mg/kg/week, i.p.) treatment for seven weeks inhibited the aforementioned neurobehavioral and neurochemical deficits. Furthermore, edaravone was found to up-regulate the gene expression level of Nrf2/HO-1 and prevented the cisplatin-induced NF-κB activation. These findings demonstrated that oxido-nitrosative stress and inflammatory signaling mediators play a key role in the development of cisplatin-induced neurobehavioral deficits which were prevented by edaravone treatment.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati, Assam, India
| | - Tavleen Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati, Assam, India
| | - Rajat Pant
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati, Assam, India
| | - Pawan Kushwah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati, Assam, India
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati, Assam, India
| | - Durgesh Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati, Assam, India
| | - Babita Saroha
- Department of Biotechnology, University Institute of Engineering & Technology (UIET), Maharshi Dayanand University, Rohtak, Haryana, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, India.
| |
Collapse
|
29
|
Ishiguro S, Cai S, Uppalapati D, Turner K, Zhang T, Forrest WC, Forrest ML, Tamura M. Intratracheal Administration of Hyaluronan-Cisplatin Conjugate Nanoparticles Significantly Attenuates Lung Cancer Growth in Mice. Pharm Res 2016; 33:2517-29. [PMID: 27335023 PMCID: PMC5007205 DOI: 10.1007/s11095-016-1976-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine aerosol administration capability and therapeutic efficacy of the new formulation of hyaluronan cisplatin conjugates, HylaPlat™ (HA-Pt), for lung cancer treatment. METHODS In vitro formulation stability test, 2D and 3D spheroid cell culture and in vivo efficacy studies using mouse orthotopic allograft models were conducted. RESULTS The HA-Pt effectively attenuated cell growth in 2D and 3D cultures with IC50 of 2.62 and 5.36 μM, respectively, which were comparable to those with unconjugated control cisplatin-dependent growth inhibition (IC50 1.64 and 4.63 μM, respectively). A single dose of either 7.5 or 15 mg/kg HA-Pt (cisplatin equivalent) by intratracheal aerosol spray 7 days after Lewis lung carcinoma (LLC) cell inoculation markedly inhibited growth of LLC allografts in mouse lungs and resulted in a 90 or 94% reduction of tumor nodule numbers, respectively, as compared to those from the PBS control. Cancer stem cells and cisplatin resistant cells marker, CD44 expression decreased in the tumor nodules of the HA-Pt but not in those of cisplatin treated groups. CONCLUSIONS The current study suggests that an intratracheal aerosol administration of the HA-Pt nanoparticles offers an effective strategy for lung cancer treatment and this treatment may induce only limited cisplatin resistance.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, 210 Coles Hall, Manhattan, Kansas, 66506, USA
| | - Shuang Cai
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047, USA
- HylaPharm LLC, Lawrence, Kansas, 66047, USA
| | - Deepthi Uppalapati
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, 210 Coles Hall, Manhattan, Kansas, 66506, USA
| | - Katie Turner
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, 210 Coles Hall, Manhattan, Kansas, 66506, USA
| | - Ti Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047, USA
| | | | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047, USA
- HylaPharm LLC, Lawrence, Kansas, 66047, USA
| | - Masaaki Tamura
- Department of Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, 210 Coles Hall, Manhattan, Kansas, 66506, USA.
| |
Collapse
|
30
|
Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27312983 DOI: 10.1002/wnan.1416] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Nanomedicine is a relatively new field that is rapidly evolving. Formulation of drugs on the nanoscale imparts many physical and biological advantages. Such advantages can in turn translate into improved therapeutic efficacy and reduced toxicity. While approximately 50 nanotherapeutics have already entered clinical practice, a greater number of drugs are undergoing clinical investigation for a variety of indications. This review aims to examine all the nanoformulations that are currently undergoing clinical investigation and their outlook for ultimate clinical translation. WIREs Nanomed Nanobiotechnol 2017, 9:e1416. doi: 10.1002/wnan.1416 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joseph M Caster
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Artish N Patel
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tian Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Andrew Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Patel NR, Piroyan A, Nack AH, Galati CA, McHugh M, Orosz S, Keeler AW, O’Neal S, Zamboni WC, Davis B, Coleman TP. Design, Synthesis, and Characterization of Folate-Targeted Platinum-Loaded Theranostic Nanoemulsions for Therapy and Imaging of Ovarian Cancer. Mol Pharm 2016; 13:1996-2009. [DOI: 10.1021/acs.molpharmaceut.6b00149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Niravkumar R. Patel
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts 01608, United States
| | - Aleksandr Piroyan
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts 01608, United States
| | - Abbegial H. Nack
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts 01608, United States
- Blue Ocean Biomanufacturing, Inc., Worcester, Massachusetts 01608, United States
| | - Corin A. Galati
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts 01608, United States
- Blue Ocean Biomanufacturing, Inc., Worcester, Massachusetts 01608, United States
| | - Mackenzi McHugh
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts 01608, United States
| | - Samantha Orosz
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts 01608, United States
| | - Amanda W. Keeler
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman
School of Pharmacy, University of North Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Sara O’Neal
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman
School of Pharmacy, University of North Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Translational Oncology and Nanoparticle
Drug Development Initiative (TOND2I) Lab, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27514, United States
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman
School of Pharmacy, University of North Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Translational Oncology and Nanoparticle
Drug Development Initiative (TOND2I) Lab, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center of Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27514, United States
| | - Barbara Davis
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts 01608, United States
- Blue Ocean Biomanufacturing, Inc., Worcester, Massachusetts 01608, United States
| | - Timothy P. Coleman
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts 01608, United States
- Blue Ocean Biomanufacturing, Inc., Worcester, Massachusetts 01608, United States
- Foundation for the Advancement of Personalized Medicine Manufacturing, Phoenix, Arizona 85013, United States
| |
Collapse
|
32
|
Marzban E, Alavizadeh SH, Ghiadi M, Khoshangosht M, Khashayarmanesh Z, Abbasi A, Jaafari MR. Optimizing the therapeutic efficacy of cisplatin PEGylated liposomes via incorporation of different DPPG ratios: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2015; 136:885-91. [PMID: 26547316 DOI: 10.1016/j.colsurfb.2015.10.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 01/02/2023]
Abstract
The anionic lipid DPPG is known to enhance the cellular uptake of liposomes by forming phase boundaries of high fusogenic potentials in vesicular membranes. The focus of this study is to optimize DPPG concentrations to improve the therapeutic efficacy of cisplatin-loaded liposomes. First, cisplatin liposomes composed of HSPC, mPEG2000-DSPE and cholesterol with increasing amounts of DPPG (10, 20 and 30% mol) were prepared by ethanol injection. Liposomes were then characterized by their size, zeta potential and cytotoxicity against C26 colon carcinoma cells. In an experimental system, based upon C26 tumor bearing BALB/c, mice were treated with administering i.v. doses of different formulations, once weekly for total of three weeks. Although with the highest DPPG ratio (30% mol) liposomes exhibited the highest toxicity in vitro, at 10% DPPG better stability of the encapsulated drug was obtained in the presence of serum. In addition, survival of animals was substantially improved at 10% DPPG compared to the higher DPPG contents. It is thus presumable that the high density of negatively charged residues of DPPG gave rise to repulsive forces between phospholipids in concentric lipid bilayers, which resulted in the instability of lipid structure and the subsequent premature drug leakage. Results indicated that cisplatin liposome fabricated with the inclusion of 10% DPPG, maintains the stability while in circulation, and improves therapeutic efficacy due to fusogenic properties; therefore might serve as an effective and stable formulation of cisplatin. However, further investigations are required to confirm the potential anti-tumor effects of cisplatin anionic nanoliposomes in various tumor types.
Collapse
Affiliation(s)
- Ehsan Marzban
- Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| | - Maral Ghiadi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Mostafa Khoshangosht
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Zahra Khashayarmanesh
- Pharmaceutical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Abbasi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Mahmoud R Jaafari
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| |
Collapse
|
33
|
Affiliation(s)
- Yuanzeng Min
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Joseph M Caster
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Michael J Eblan
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
34
|
Oz M, Nurullahoglu Atalik KE, Yerlikaya FH, Demir EA. Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol Learn Mem 2015; 123:43-9. [PMID: 25982942 DOI: 10.1016/j.nlm.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
The present study has been designed to investigate the role of curcumin on cisplatin-inducedcognitive impairment and to reveal mechanisms of cisplatin's detrimental actions on cognition in rats. Animals were treated with cisplatin (5mg/kg/week) and/or curcumin (300mg/kg/day) for 5weeks. Morris water maze test was used to assess spatial learning and memory. Enzymatic activities of acetylcholinesterase (AChE) and superoxide dismutase (SOD) were evaluated from hippocampus and plasma samples, and malondialdehyde (MDA), which is the end-product of lipid peroxidation, was determined by a colorimetric method. Our results showed that cisplatin (5mg/kg/week, 5weeks) caused learning and memory deficits, elevated MDA content, decreased SOD activity in the hippocampus and plasma, and AChE activity in the hippocampus. Curcumin improved learning and memory in rats with administration of cisplatin. In addition, curcumin significantly reduced the level of MDA and increased the activities of SOD and AChE. Taken together, our findings indicate that curcumin ameliorates cisplatin-induced spatial learning and memory impairment, possibly through restored cholinergic function and enhanced oxidative status.
Collapse
Affiliation(s)
- Mehmet Oz
- School of Health Services, Mevlana (Rumi) University, Konya, Turkey.
| | | | - F Humeyra Yerlikaya
- Department of Biochemistry, Faculty of Meram Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
35
|
Ganta S, Singh A, Kulkarni P, Keeler AW, Piroyan A, Sawant RR, Patel NR, Davis B, Ferris C, O'Neal S, Zamboni W, Amiji MM, Coleman TP. EGFR Targeted Theranostic Nanoemulsion for Image-Guided Ovarian Cancer Therapy. Pharm Res 2015; 32:2753-63. [PMID: 25732960 DOI: 10.1007/s11095-015-1660-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide. METHODS The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm. RESULTS Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment. CONCLUSIONS Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression.
Collapse
Affiliation(s)
- Srinivas Ganta
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts, 01608, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Z, Shtemenko NI, Yegorova DY, Babiy SO, Brown AJ, Yang T, Shtemenko AV, Dunbar KR. Liposomes loaded with a dirhenium compound and cisplatin: preparation, properties and improvedin vivoanticancer activity. J Liposome Res 2014; 25:78-87. [DOI: 10.3109/08982104.2014.954127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Callari M, Aldrich-Wright JR, de Souza PL, Stenzel MH. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Alavizadeh SH, Badiee A, Golmohammadzadeh S, Jaafari MR. The influence of phospholipid on the physicochemical properties and anti-tumor efficacy of liposomes encapsulating cisplatin in mice bearing C26 colon carcinoma. Int J Pharm 2014; 473:326-33. [PMID: 25051111 DOI: 10.1016/j.ijpharm.2014.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
Abstract
SPI-077, cisplatin stealth liposome, is the best illustration of poor cisplatin release from liposomes and the subsequent negligible therapeutic activity. For this reason, optimizing drug release kinetics is desirable. In this report, cisplatin was encapsulated in liposomes composed of different phosphatidylcholines with various phase transition temperatures (Tm) (HSPC, DPPC, DMPC, soy phosphatidylcholine (SPC)), cholesterol and mPEG2000-DSPE. In vitro cytotoxicity studies indicated that lowering Tm of lipids increases cisplatin release; the highest cytotoxicity was observed in SPCs. Cisplatin plasma concentration was also sensitive to the transition temperature. The highest platinum concentration observed after treatment with HSPC and DPPC liposomes, whilst the lowest was observed with SPC. HSPC and DPPC containing liposomes showed the highest therapeutic efficacy and survival with DPPC exhibited better efficacy in mouse model of C26. It seems that DPPC with Tm (41.5°C) nearly, or close to body temperature maintains good drug retention in blood circulation. Upon extravasation through permeable tumor microvasculature, it gradually releases its payload in the tumor area better than HSPC, with a greater Tm of 55°C. Our data suggests, the choice of Tm for lipid mixture directed to a considerable extent the rate of cisplatin elimination from plasma and therapeutic effects.
Collapse
Affiliation(s)
- Seyedeh Hoda Alavizadeh
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| |
Collapse
|
39
|
Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:424239. [PMID: 25114900 PMCID: PMC4119704 DOI: 10.1155/2014/424239] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/27/2014] [Indexed: 12/23/2022]
Abstract
Increasing consumption of tobacco and alcohol has led to a steady increase in the incidence of head and neck cancers in Asia. The drawbacks associated with the existing chemotherapeutic and surgical interventions have necessitated the development of a safer alternative for therapy of head and neck cancers. In this study we have explored the synergistic therapeutic potential of a phytochemical and chemotherapeutic agent using PEGylated liposomes as a delivery vehicle. Resveratrol and 5-fluorouracil were successfully coencapsulated in a single PEGylated nanoliposome. The thermal analysis and the nuclear magnetic resonance results revealed that resveratrol localized near the glycerol backbone of the liposomal membrane while 5-fluorouracil localized closer to the phosphate moiety, which influenced the release kinetics of both drugs. The nanoformulation was tested in vitro on a head and neck cancer cell line NT8e and was found to exhibit a GI50 similar to that of free 5-fluorouracil. Further, gene expression studies showed that the combination of resveratrol and 5-fluorouracil exhibited different effects on different genes that may influence the net antagonistic effect. The coencapsulation of resveratrol and 5-fluorouracil in a liposomal nanocarrier improved the cytotoxicity in comparison with the free drug combination when tested in vitro.
Collapse
|
40
|
Development of EGFR-targeted nanoemulsion for imaging and novel platinum therapy of ovarian cancer. Pharm Res 2014; 31:2490-502. [PMID: 24643932 DOI: 10.1007/s11095-014-1345-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/24/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE Platinum-based chemotherapy is the treatment of choice for malignant epithelial ovarian cancers, but generalized toxicity and platinum resistance limits its use. Theranostic nanoemulsion with a novel platinum prodrug, myrisplatin, and the pro-apoptotic agent, C6-ceramide, were designed to overcome these limitations. METHODS The nanoemulsions, including ones with an EGFR binding peptide and gadolinium, were made using generally regarded as safe grade excipients and a high shear microfluidization process. Efficacy was evaluated in ovarian cancer cells, SKOV3, A2780 and A2780CP. RESULTS The nanoemulsion with particle size <150 nm were stable in plasma and parenteral fluids for 24 h. Ovarian cancer cells in vitro efficiently took up the non-targeted and EGFR-targeted nanoemulsions; improved cytotoxicity was observed for the these nanoemulsions with the latter showing a 50-fold drop in the IC50 in SKOV3 cells as compared to cisplatin alone. The addition of gadolinium did not affect cell viability in vitro, but showed relaxation times comparable to Magnevist(®). CONCLUSION The myrisplatin/C6-ceramide nanoemulsion synergistically enhanced in vitro cytotoxicity. An EGFR binding peptide addition further increased in vitro cytotoxicity in EGFR positive cancer cells. The diagnostic version showed MR imaging similar to the clinically relevant Magnevist® and may be suitable as a theranostic for ovarian cancer.
Collapse
|
41
|
Kulhari H, Pooja D, Singh MK, Chauhan AS. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev Ind Pharm 2013; 41:232-8. [PMID: 24237325 DOI: 10.3109/03639045.2013.858735] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Cisplatin is mainly used in the treatment of ovarian, head and neck and testicular cancer. Poor solubility and non-specific interactions causes hurdles in the development of successful cisplatin formulation. There were few reports on poly(amidoamine) (PAMAM) dendrimer-cisplatin complexes for anticancer treatment. But the earlier research was mainly focused on therapeutic effect of PAMAM dendrimer-cisplatin complex, with less attention paid on the formulation development of these complexes. Objective of the present study is to optimize and validate the carboxylate-terminated, EDA core PAMAM dendrimer-based cisplatin formulation with respect to various variables such as dendrimer core, generation, drug entrapment, purification, yield, reproducibility, stability, storage and in-vitro release. Dendrimer-cisplatin complex was prepared by an efficient method which significantly increases the % platinum (Pt) content along with the product yield. Dendrimers showed reproducible (∼27%) platinum loading by weight. Variation in core and generations does not produce significant change in the % Pt content. Percentage Pt content of dendrimeric formulation increases with increase in drug/dendrimer mole ratio. Formulation with low drug/dendrimer mole ratio showed delayed release compared to the higher drug/dendrimer mole ratio; these dendrimer formulations are stable in room temperature. In vitro release profiles of the stored dendrimer-cisplatin samples showed comparatively slow release of cisplatin, which may be due to formation of strong bond between cisplatin and dendrimer. This study will contribute to create a fine print for the formulation development of PAMAM dendrimer-cisplatin complexes.
Collapse
|
42
|
Modery-Pawlowski CL, Master AM, Pan V, Howard G, Gupta AS. A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms. Biomacromolecules 2013; 14:910-9. [PMID: 23360320 PMCID: PMC3690560 DOI: 10.1021/bm301996p] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is compelling evidence that, beyond their traditional role in hemostasis and thrombosis, platelets play a significant role in mediating hematologic mechanisms of tumor metastasis by directly and indirectly interacting with pro-metastatic cancer cells. With this rationale, we hypothesized that platelets can be an effective paradigm to develop nanomedicine platforms that utilize platelet-mimetic interaction mechanisms for targeted diagnosis and therapy of metastatic cancer cells. Here we report on our investigation of the development of nanoconstructs that interact with metastatic cancer cells via platelet-mimetic heteromultivalent ligand-receptor pathways. For our studies, pro-metastatic human breast cancer cell line MDA-MB-231 was studied for its surface expression of platelet-interactive receptors, in comparison to another low-metastatic human breast cancer cell line, MCF-7. Certain platelet-interactive receptors were found to be significantly overexpressed on the MDA-MB-231 cells, and these cells showed significantly enhanced binding interactions with active platelets compared to MCF-7 cells. Based upon these observations, two specific receptor interactions were selected, and corresponding ligands were engineered onto the surface of liposomes as model nanoconstructs, to enable platelet-mimetic binding to the cancer cells. Our model platelet-mimetic liposomal constructs showed enhanced targeting and attachment of MDA-MB-231 cells compared to the MCF-7 cells. These results demonstrate the promise of utilizing platelet-mimetic constructs in modifying nanovehicle constructs for metastasis-targeted drug as well as modifying surfaces for ex-vivo cell enrichment diagnostic technologies.
Collapse
Affiliation(s)
- Christa L. Modery-Pawlowski
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
| | - Alyssa M. Master
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
| | - Victor Pan
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
| | - Gregory Howard
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106
| |
Collapse
|
43
|
Improved pharmacological profile of the lipophilic antitumor dichloro-(N-dodecyl)-propanediamine-platinum(II) complex after incorporation into pegylated liposomes. Anticancer Drugs 2013; 24:131-9. [DOI: 10.1097/cad.0b013e3283599a34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Gopal KV, Wu C, Shrestha B, Campbell KCM, Moore EJ, Gross GW. d-Methionine protects against cisplatin-induced neurotoxicity in cortical networks. Neurotoxicol Teratol 2012; 34:495-504. [PMID: 22732230 DOI: 10.1016/j.ntt.2012.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Cisplatin is a platinum-based chemotherapeutic agent widely used for the treatment of various types of cancer. Patients undergoing cisplatin treatment often suffer from a condition known as "chemobrain", ototoxicity, peripheral neuropathy, weight loss, nausea, vomiting, nephrotoxicity, seizures, hearing loss and tinnitus. d-Methionine (d-Met), a sulfur-containing nucleophilic antioxidant, has been shown to prevent cisplatin-induced side effects in animals without antitumor interference. In this study, we have used an in vitro model of cortical networks (CNs), enriched in auditory cortex cells; to quantify cisplatin neurotoxicity and the protective effects of d-Met. Dissociated neurons from auditory cortices of mouse embryos were grown on microelectrode arrays with 64 transparent indium-tin oxide electrodes, which enabled continuous optical and electrophysiological monitoring of network neurons. Cisplatin at 0.10-0.25 mM induced up to a 200% increase in spontaneous spiking activity, while concentrations at or above 0.5mM caused irreversible loss of neuronal activity, accompanied by cell death. Pretreatment with d-Met, at a concentration of 1.0mM, prevented the cisplatin-induced excitation at 0.10-0.25 mM, caused sustained excitation without occurrence of cell death at 0.5mM, and delayed cell death at 0.75 mM cisplatin. l-Methionine, the optical isomer, showed lower potency and less efficacy than d-Met, was less protective against 0.1mM cisplatin, and proved ineffective at a concentration of 0.5mM cisplatin. Pre-exposure time of d-Met was associated with the protective effects at 0.1 and 0.5mM cisplatin, with longer pre-exposure times exhibiting better protection. This study quantifies as a function of concentration and time that d-Met protects central nervous system tissue from acute cisplatin toxicity.
Collapse
Affiliation(s)
- Kamakshi V Gopal
- University of North Texas, Department of Speech & Hearing Sciences, United States.
| | | | | | | | | | | |
Collapse
|
45
|
Gaviglio L, Gross A, Metzler-Nolte N, Ravera M. Synthesis and in vitro cytotoxicity of cis,cis,trans-diamminedichloridodisuccinatoplatinum(IV)-peptide bioconjugates. Metallomics 2012; 4:260-6. [PMID: 22310724 DOI: 10.1039/c2mt00171c] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis and characterization of four Pt(IV)-peptide conjugates, containing one or two peptides in the axial position, designed for the purpose of targeted drug delivery to tumor cells, are described. The precursor cis,cis,trans-diamminedichloridodisuccinatoplatinum(IV) was coupled in the last step of standard solid-phase peptide synthesis (SSPS) with an analogue of neurotensin (pseudo-neurotensin = Lys-Lys-Pro-Tyr-Ile-Leu) and with octreotate (D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-OH), an analogue of somatostatin, respectively. For all peptides, the SSPS reactions afforded both mono- and diconjugated Pt-peptide species, which were separated and purified by RP-HPLC. The two couples of conjugates, together with the precursor, were tested as cytotoxic agents towards different cancer cell lines. In general all conjugates are good inhibitors of cellular proliferation when compared to a nontargeting platinum(IV) parent compound, so that its relatively low cytotoxicity is greatly improved by addition of the peptides.
Collapse
Affiliation(s)
- Luca Gaviglio
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale Amedeo Avogadro, Viale T. Michel 11, I-15121 Alessandria, Italy
| | | | | | | |
Collapse
|
46
|
Huxford RC, Dekrafft KE, Boyle WS, Liu D, Lin W. Lipid-Coated Nanoscale Coordination Polymers for Targeted Delivery of Antifolates to Cancer Cells. Chem Sci 2012; 3. [PMID: 24288587 DOI: 10.1039/c1sc00499a] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanoscale coordination polymers (NCPs) have been demonstrated as an interesting platform for drug delivery, as they possess many advantages over small-molecule chemotherapeutics, such as high payloads, lower systemic toxicity, tunability, and enhanced tumor uptake. Existing formulations for the delivery of methotrexate (MTX), an antifolate cancer drug, have very low drug loadings. Herein, we report the incorporation of MTX as a building block in an NCP formulation with exceptionally high drug loadings (up to 79.1 wt%) and the selective delivery of the NCP to cancer cells. Encapsulation of the NCP in a functionalized lipid bilayer allows for targeted delivery and controlled release to cancer cells. A phosphor can be doped into the NCPs for monitoring particle uptake by optical imaging. The lipid-coated and anisamide-targeted NCPs have superior in vitro efficacy against acute lymphoblastic leukemia cells when compared to free drug.
Collapse
Affiliation(s)
- Rachel C Huxford
- Department of Chemistry, CB#3290, University of North Carolina, Chapel Hill, NC 27599, USA ; Tel: 1-919-962-6320
| | | | | | | | | |
Collapse
|
47
|
Woll KA, Schuchardt EJ, Willis CR, Ortengren CD, Hendricks N, Johnson M, Gaidamauskas E, Baruah B, Sostarecz AG, Worley DR, Osborne DW, Crans DC. Gel formulation containing mixed surfactant and lipids associating with carboplatin. Chem Biodivers 2011; 8:2195-210. [PMID: 22162158 DOI: 10.1002/cbdv.201100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interaction of amphiphilic molecules such as lipids and surfactants with the hydrophilic drug carboplatin was investigated to identify suitable self-assembling components for a potential gel-based delivery formulation. (1) H-NMR Studies in sodium bis(2-ethylhexyl) sulfosuccinate (aerosol-OT, AOT)-based reverse micelles show that carboplatin associates and at least partially penetrates the surfactant interface. Langmuir monolayers formed by dipalmitoyl(phosphatidyl)choline are penetrated by carboplatin. Carboplatin was found to also penetrate the more rigid monolayers containing cholesterol. A combined mixed surfactant gel formulation containing carboplatin and cholesterol for lymphatic tissue targeting was investigated for the intracavitary treatment of cancer. This formulation consists of a blend of the surfactants lecithin and AOT (1 : 3 ratio), an oil phase of isopropyl myristate, and an aqueous component. The phases of the system were defined within a pseudo-ternary phase diagram. At low oil content, this formulation produces a gel-like system over a wide range of H(2) O content. The carboplatin release from the formulation displays a prolonged discharge with a rate three to five times slower than that of the control. Rheological properties of the formulation exhibit pseudoplastic behavior. Microemulsion and Langmuir monolayer studies support the interactions between carboplatin and amphiphilic components used in this formulation. To target delivery of carboplatin, two formulations containing cholesterol were characterized. These two formulations with cholesterol showed that, although cholesterol does little to alter the phases in the pseudo-ternary system or to increase the initial release of the drug, it contributes significantly to the structure of the formulation under physiological temperature, as well as increases the rate of steady-state discharge of carboplatin.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang F, Jin C, Jiang Y, Li J, Di Y, Ni Q, Fu D. Liposome based delivery systems in pancreatic cancer treatment: from bench to bedside. Cancer Treat Rev 2011; 37:633-642. [PMID: 21330062 DOI: 10.1016/j.ctrv.2011.01.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/15/2011] [Accepted: 01/21/2011] [Indexed: 12/12/2022]
Abstract
Despite rapid advances in cancer diagnosis and treatment, pancreatic cancer remains one of the most difficult human malignancies to be treated, with a mortality rate nearly equal to its incidence. Although gemcitabine has been established as the standard first-line treatment for advanced pancreatic cancer, gemcitabine-based combination chemotherapy showed either marginal or no improvement in survival. Developments in liposomal delivery systems have facilitated the targeting of specific agents for cancer treatment. Such systems could be developed as platforms for future multi-functional theranostic nanodevices tailor-made for the combined detection of early cancer and functional drug delivery. We systemically review liposome based drug-delivery systems, which can provide improved pharmacokinetics, reduced side effects and potentially increased tumor uptake, for pancreatic cancer therapy. Novel liposomal formulations allowing for higher tumor targeting efficiencies and used in current clinical trials to treat this challenging disease are emphasized.
Collapse
Affiliation(s)
- Feng Yang
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Monneret C. Platinum anticancer drugs. From serendipity to rational design. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:286-95. [PMID: 22115131 DOI: 10.1016/j.pharma.2011.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 12/25/2022]
Abstract
The discovery of cis-platin was serendipitous. In 1965, Rosenberg was looking into the effects of an electric field on the growth of Escherichia coli bacteria. He noticed that bacteria ceased to divide when placed in an electric field but what Rosenberg also observed was a 300-fold increase in the size of the bacteria. He attributed this to the fact that somehow the platinum-conducting plates were inducing cell growth but inhibiting cell division. It was later deduced that the platinum species responsible for this was cis-platin. Rosenberg hypothesized that if cis-platin could inhibit bacterial cell division it could also stop tumor cell growth. This conjecture has proven correct and has led to the introduction of cis-platin in cancer therapy. Indeed, in 1978, six years after clinical trials conducted by the NCI and Bristol-Myers-Squibb, the U.S. Food and Drug Administration (FDA) approved cis-platin under the name of Platinol(®) for treating patients with metastatic testicular or ovarian cancer in combination with other drugs but also for treating bladder cancer. Bristol-Myers Squibb also licensed carboplatin, a second-generation platinum drug with fewer side effects, in 1979. Carboplatin entered the U.S. market as Paraplatin(®) in 1989 for initial treatment of advanced ovarian cancer in established combination with other approved chemotherapeutic agents. Numerous platin derivatives have been further developed with more or less success and the third derivative to be approved in 1994 was oxaliplatin under the name of Eloxatin(®). It was the first platin-based drug to be active against metastatic colorectal cancer in combination with fluorouracil and folinic acid. The two others platin-based drugs to be approved were nedaplatin (Aqupla(®)) in Japan and lobaplatin in China, respectively. More recently, a strategy to overcome resistance due to interaction with thiol-containing molecules led to the synthesis of picoplatin in which one of the amines linked to Pt was replaced by a bulky methyl substituted pyridine allowing the drug more time to reach its target, DNA. On the other hand, efforts which were made to find new orally administered analog led to satraplatin bearing to axial acetate groups. Both drugs are still under clinical trials. An alternatively route to the discovery of new derivatives turns to the development of improved delivery strategies such as liposomes and polymers. Liposomal cis-platin or lipoplatin in under a phase III randomized clinical trial for patients suffering from small cell lung cancer whereas polymer-based drug, Prolindac™ is currently under investigation for pretreated ovarian cancers in up to eight European centers.
Collapse
Affiliation(s)
- C Monneret
- Institut Curie, 26, rue d'Ulm, 75248 Paris cedex 05, France.
| |
Collapse
|
50
|
Pt-rotaxanes as cytotoxic agents. Bioorg Med Chem Lett 2011; 21:6880-3. [DOI: 10.1016/j.bmcl.2011.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022]
|