1
|
Liu W, Ma Y, He Y, Liu Y, Guo Z, He J, Han X, Hu Y, Li M, Jiang R, Wang S. Discovery of Novel p53-MDM2 Inhibitor (RG7388)-Conjugated Platinum IV Complexes as Potent Antitumor Agents. J Med Chem 2024; 67:9645-9661. [PMID: 38776419 DOI: 10.1021/acs.jmedchem.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While a number of p53-MDM2 inhibitors have progressed into clinical trials for the treatment of cancer, their progression has been hampered by a variety of problems, including acquired drug resistance, dose-dependent toxicity, and limited clinical efficiency. To make more progress, we integrated the advantages of MDM2 inhibitors and platinum drugs to construct novel PtIV-RG7388 (a selective MDM2 inhibitor) complexes. Most complexes, especially 5a and 5b, displayed greatly improved antiproliferative activity against both wild-type and mutated p53 cancer cells. Remarkably, 5a exhibited potent in vivo tumor growth inhibition in the A549 xenograft model (66.5%) without apparent toxicity. It arrested the cell cycle at both the S phase and the G2/M phase and efficiently induced apoptosis via the synergistic effects of RG7388 and cisplatin. Altogether, PtIV-RG7388 complex 5a exhibited excellent in vitro and in vivo antitumor activities, highlighting the therapeutic potential of PtIV-RG7388 complexes as antitumor agents.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yi Ma
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanhong Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodong Han
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yujiao Hu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Muqiong Li
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ru Jiang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Casciano F, Zauli E, Busin M, Caruso L, AlMesfer S, Al-Swailem S, Zauli G, Yu AC. State of the Art of Pharmacological Activators of p53 in Ocular Malignancies. Cancers (Basel) 2023; 15:3593. [PMID: 37509256 PMCID: PMC10377487 DOI: 10.3390/cancers15143593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The pivotal role of p53 in the regulation of a vast array of cellular functions has been the subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations in the p53 gene with loss of function represent one of the major mechanisms for cancer development. As expected, due to its key role, p53 is expressed throughout the human body including the eye. Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis of these ocular tumors and outlines the various pharmacological activators of p53 that are currently under investigation for the treatment of ocular malignancies.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| |
Collapse
|
3
|
Abd-Rabou AA, Edris AE. Frankincense essential oil nanoemulsion specifically induces lung cancer apoptosis and inhibits survival pathways. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00128-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
The volatile fraction of frankincense (Boswellia sacra) oleogum was extracted, formulated in nanoemulsion and tested against lung cancer A549 cell line. First, the gum was hydro-distilled to isolate the volatile fraction (essential oil), which was analyzed via gas chromatography to identify its major volatile constituents. Then, the oil was formulated in two water-based nanoemulsions which differ from one another in the presence of propylene glycol (PG), which is used in the formulation step as a co-surfactant. The pure essential oil as well as its major volatile compound (α-pinene), its two nanoemulsions and a reference drug (Doxorubicin) were evaluated against lung cancer A549 cell lines and WI-38 normal lung cells. The evaluation included cytotoxicity (MTT and IC50), apoptosis (flow cytometric analysis) in addition to genetic assessments for some intrinsic and extrinsic genes relevant to apoptosis and survival pathways.
Results
Chromatographic analysis of frankincense essential oil revealed that α-pinene is the major volatile compound which constituent about 60% of that oil. Emulsification of the oil using the low energy technique gave nanoemulsions having major intense particles population (85–90%) with z-average diameter below 20.0 nm. Frankincense oil nanoemulsion fabricated with (PG) showed the best cytotoxic activity toward lung cancer A549 cell compared to PG-free nanoemulsion, α-pinene and the reference drug doxorubicin, along different incubation periods. Flow cytometric analysis also indicated that PG-containing nanoemulsion can induce cancer cells toward apoptosis better than the other formula and the pure oils. The same nanoemulsion was found to upregulate the pro-apoptotic genes [DR5, FAAD, Caspase 8 (Cas8), p53, and Bax] and downregulate the anti-apoptotic and reoccurrence genes (Bcl-2, NF-kB, and STAT-3). Most importantly, the PG-containing nanoemulsion had the least cytotoxic effect on the normal WI-38 lung cells.
Conclusions
These results point out to the potentials of frankincense essential oil (rich in α-pinene) and its PG-nanoemulsion as a promising adjuvant from plant-source to potentiate the activity of the systematic anti-lung cancer drugs.
Collapse
|
4
|
Implication of extrinsic and intrinsic apoptotic pathways in the targeted therapy of hepatocellular carcinoma using aptamer-labeled viramidine nanoparticles. BMC Cancer 2022; 22:1106. [PMID: 36309655 PMCID: PMC9617343 DOI: 10.1186/s12885-022-10201-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health problem with regional differences in epidemiological statistics. Co-assembling the drug nanoparticles and targeting moieties could improve the therapeutic delivery of anti-cancer drugs. In this attempt, we tracked the extrinsic and intrinsic apoptotic pathways in HCC cells using viramidine (VRM)-loaded aptamer (APT) nanoparticles. In these NPs, both APT and VRM act as targeted ligands/drugs to HCC cells. The NPs were characterized using TEM, ESI–MS, FTIR, and 1H NMR. The results showed uniform particles with round and smooth shapes on the nano-scale. SRB-based cytotoxicity was performed and IC50 values were measured for HCC versus normal cells upon the proposed treatments. The flow cytometry technique was applied to determine apoptosis, then confirmed using genetic and protein analyses. In addition, nitric oxide (NO) and its enzyme (iNOS) were analyzed to examine the effect of reactive nitrogen species (RNS) on apoptosis induction. The present findings indicated that Huh-7 cells were more sensitive to APT-VRM NPs than HepG2 cells, recording the lowest IC50 values (11.23 ± 0.23 µM and 16.69 ± 1.12 µM), as well as the highest significant increase in the apoptotic cells (61.5% and 42%), respectively. Intriguingely, normal BHK-21 cells recorded undetectable IC50 values in the applied NPs, confirming their targeted delivery ability. The genetic expression and protein levels of c-FLIP, Bcl-2, and TNF-α were down-regulated, while FADD, caspase 8, caspase 3, caspase 9, and Bax were up-regulated upon treatment with APT-VRM NPs. The prepared VRM NPs labeled with APT could significantly elevate NO via activation of iNOS. In conclusion, APT-VRM NPs bioconjugate interferes with HCC cells through NO-mediated extrinsic and intrinsic apoptosis.
Collapse
|
5
|
Romani A, Zauli E, Zauli G, AlMesfer S, Al-Swailem S, Voltan R. MDM2 inhibitors-mediated disruption of mitochondrial metabolism: A novel therapeutic strategy for retinoblastoma. Front Oncol 2022; 12:1000677. [PMID: 36338723 PMCID: PMC9632280 DOI: 10.3389/fonc.2022.1000677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
MDM2 is the principal inhibitor of p53, and MDM2 inhibitors can disrupt the physical interaction between MDM2 and p53. The half-life of p53 is very short in normal cells and tissues, and an uncontrolled increase in p53 levels has potential harmful effects. It has been shown that p53 is frequently mutated in most cancers; however, p53 mutations are rare in retinoblastoma. Therefore, therapeutic strategies aimed at increasing the expression levels of wild-type p53 are attractive. In this minireview, we discuss the potential use of nutlin-3, the prototype small molecule inhibitor that disrupts the MDM2-p53 interaction, for the treatment of retinoblastoma. Although p53 has pleiotropic biological effects, the functions of p53 depend on its sub-cellular localization. In the nucleus, p53 induces the transcription of a vast array of genes, while in mitochondria, p53 regulates mitochondrial metabolism. This review also discusses the relative contribution of p53-mediated gene transcription and mitochondrial perturbation for retinoblastoma treatment.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
- *Correspondence: Rebecca Voltan,
| |
Collapse
|
6
|
Wang Y, Zhang Z, Mi X, Li M, Huang D, Song T, Qi X, Yang M. Elevation of effective p53 expression sensitizes wild-type p53 breast cancer cells to CDK7 inhibitor THZ1. Cell Commun Signal 2022; 20:96. [PMID: 36058938 PMCID: PMC9442925 DOI: 10.1186/s12964-022-00837-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background The cyclin-dependent kinase 7 (CDK7) inhibitor THZ1 represses multiple cancer cells. However, its tumor-repressive efficiency in wild-type p53 breast cancer cells remains controversial. Methods We conducted various assays, including CCK8, colony formation, flow cytometry, western blotting, and lactate dehydrogenase release detection, to clarify whether p53 elevation sensitizes breast cancer cells to THZ1. Results We found that upregulating functional p53 contributes to the increased sensitivity of breast cancer cells to THZ1. Increased THZ1 sensitivity requires active p53 and an intact p53 pathway, which was confirmed by introducing exogenous wild-type p53 and the subsequent elevation of THZ1-mediated tumor suppression in breast cancer cells carrying mutant p53. We confirmed that p53 accumulates in the nucleus and mitochondria during cell death. Furthermore, we identified extensive transcriptional disruption, rather than solely CDK7 inhibition, as the mechanism underlying the nutlin-3 and THZ1-induced death of breast cancer cells. Finally, we observed the combined nutlin-3 and THZ1 treatment amplified gasdermin E cleavage. Conclusion Enhanced sensitivity of breast cancer cells to THZ1 can be achieved by increasing effective p53 expression. Our approach may serve as a potential treatment for patients with breast cancer resistant to regular therapies. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00837-z.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhihao Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuguang Mi
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, 130021, Jilin, Republic of China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Dan Huang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tingting Song
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyan Qi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
7
|
McNabb HJ, Gonzalez S, Muli CS, Sjögren B. N-Terminal Targeting of Regulator of G Protein Signaling Protein 2 for F-Box Only Protein 44-Mediated Proteasomal Degradation. Mol Pharmacol 2020; 98:677-685. [PMID: 33008920 DOI: 10.1124/molpharm.120.000061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are negative modulators of G protein signaling that have emerged as promising drug targets to improve specificity and reduce side effects of G protein-coupled receptor-related therapies. Several small molecule RGS protein inhibitors have been identified; however, enhancing RGS protein function is often more clinically desirable but presents a challenge. Low protein levels of RGS2 are associated with various pathologies, including hypertension and heart failure. For this reason, RGS2 is a prominent example wherein enhancing its function would be beneficial. RGS2 is rapidly ubiquitinated and proteasomally degraded, providing a point of intervention for small molecule RGS2-stabilizing compounds. We previously identified a novel cullin-RING E3 ligase utilizing F-box only protein 44 (FBXO44) as the substrate recognition component. Here, we demonstrate that RGS2 associates with FBXO44 through a stretch of residues in its N terminus. RGS2 contains four methionine residues close to the N terminus that can act as alternative translation initiation sites. The shorter translation initiation variants display reduced ubiquitination and proteasomal degradation as a result of lost association with FBXO44. In addition, we show that phosphorylation of Ser3 may be an additional mechanism to protect RGS2 from FBXO44-mediated proteasomal degradation. These findings contribute to elucidating mechanisms regulating steady state levels of RGS2 protein and will inform future studies to develop small molecule RGS2 stabilizers. These would serve as novel leads in pathologies associated with low RGS2 protein levels, such as hypertension, heart failure, and anxiety. SIGNIFICANCE STATEMENT: E3 ligases provide a novel point of intervention for therapeutic development, but progress is hindered by the lack of available information about specific E3-substrate pairs. Here, we provide molecular detail on the recognition of regulator of G protein signaling protein 2 (RGS2) by its E3 ligase, increasing the potential for rational design of small molecule RGS2 protein stabilizers. These would be clinically useful in pathologies associated with low RGS2 protein levels, such as hypertension, heart failure, and anxiety.
Collapse
Affiliation(s)
- Harrison J McNabb
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Stephanie Gonzalez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Christine S Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Benita Sjögren
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
8
|
Huang X, He C, Hua X, Kan A, Mao Y, Sun S, Duan F, Wang J, Huang P, Li S. Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin Transl Med 2020; 10:e41. [PMID: 32508052 PMCID: PMC7403727 DOI: 10.1002/ctm2.41] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are among the most prominent cells during the desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC). However, CAFs are heterogeneous and the precise origins are not fully elucidated. This study aimed to explore whether monocytes can transdifferentiate into fibroblasts in PDAC and evaluate the clinical significance of this event. METHODS CD14+ monocytes were freshly isolated from human peripheral blood. Immunofluorescence, reverse transcription-quantitative PCR, western blot, flow cytometry and enzyme-linked immunosorbent assay were used to detect the expression of αSMA, fibronectin, and other relevant molecules. In addition, latex beads with a mean particle size of 2.0 µm were used to assess the phagocytic capacity. Moreover, RNA sequencing (RNA-seq) was performed to identify the differences induced by H2 O2 and the underlying mechanisms. RESULTS Immunofluorescence identified αSMA and fibroblast-specific protein 1 expression by tumor-associated macrophages in PDAC. The in vitro experiment revealed that oxidative stress (H2 O2 or radiation) induced monocyte-to-myofibroblast transdifferentiation (MMT), as identified by upregulated αSMA expression at both the RNA and protein levels. In addition, compared with freshly isolated monocytes, human monocyte-derived macrophages increased fibronectin expression. RNA-seq analysis identified p53 activation and other signatures accompanying this transdifferentiation; however, the p53 stabilizer nutlin-3 induced αSMA expression through reactive oxygen species generation but not through the p53 transcription/mitochondria-dependent pathway, whereas the p38 inhibitor SB203580 could partially inhibit αSMA expression. Finally, MMT produced a unique subset of CAFs with reduced phagocytic capacity that could promote the proliferation of pancreatic cancer cells. CONCLUSIONS Oxidative stress in the tumor microenvironment could induce MMT in PDAC, thus inducing reactive stroma, modulating immunosuppression, and promoting tumor progression. Reducing oxidative stress may be a promising future therapeutic regimen.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Chaobin He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Xin Hua
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Anna Kan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Hepatic SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Yize Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shuxin Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Fangting Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Jun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
9
|
Yang L, Chang B, Guo Y, Wu X, Liu L. The role of oxidative stress-mediated apoptosis in the pathogenesis of uric acid nephropathy. Ren Fail 2020; 41:616-622. [PMID: 31269852 PMCID: PMC6610514 DOI: 10.1080/0886022x.2019.1633350] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective: By copying the uric acid nephropathy rat model, the oxidative stress injury of mitochondria was caused in renal tubular epithelial cells and the relationship between the injury and the induction of cell apoptosis was identified. Methods: All rats were randomly divided into NC (normal control, NC) group, HUA (high uric acid, HUA) group and GSH (reductive glutathione, GSH) group. The values were quantitatively tested in the kidney tissues, including 24-h urinary protein quantity, serum creatinine, blood uric acid, the MDA (malondialdehyde, MDA) and SOD (superoxide dismutase, SOD) oxidative stress indicators. The expression of p53, Bax and caspase-9/-3 were detected by immunoblotting. TUNEL assays were used to detect the apoptosis of renal tubular epithelial cells. Result: In HUA and GSH groups, the 24-h urinary protein(24UTP), serum creatinine, and blood uric acid increased gradually with the increase of the replication cycle and the increase was significant compared to the NC group (p < .05). Compared to the NC group, MDA increased whereas SOD decreased. The expression of apoptotic proteins, such as p53, Bax, and caspase-9/-3 in the mitochondria was significantly different (p < .05). TUNEL assay revealed that the renal tubular epithelial cells in HUA group were largely apoptotic, whereas the GSH group improved significantly. Conclusion: Mitochondria incurred the substantial damage due to being in a state of oxidative stress, which was the primary cause of apoptosis in the renal tubule epithelial cells. GSH exhibited the effective resistance to the influence of oxidative stress and can restore the damage in the renal tubular epithelial cells.
Collapse
Affiliation(s)
- Lijuan Yang
- a Department of Physiology , Bengbu Medical College , Bengbu , People's Republic of China
| | - Baochao Chang
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Yaling Guo
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Xueping Wu
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| | - Lei Liu
- b Department of Nephrology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , People's Republic of China
| |
Collapse
|
10
|
p53-Mediated Oxidative Stress Enhances Indirubin-3'-Monoxime-Induced Apoptosis in HCT116 Colon Cancer Cells by Upregulating Death Receptor 5 and TNF-Related Apoptosis-Inducing Ligand Expression. Antioxidants (Basel) 2019; 8:antiox8100423. [PMID: 31546731 PMCID: PMC6826553 DOI: 10.3390/antiox8100423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023] Open
Abstract
Indirubin-3′-monoxime (I3M) exhibits anti-proliferative activity in various cancer cells; however, its anti-cancer mechanism remains incompletely elucidated. This study revealed that I3M promotes the expression of death receptor 5 (DR5) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in HCT116 p53+/+ cells, resulting in caspase-mediated apoptosis. However, this study demonstrated that HCT116 p53−/− cells were insensitive to I3M-mediated apoptosis, indicating that I3M-induced apoptosis depends on the p53 status of HCT116 cells. Additionally, in HCT116 p53-/- cells, I3M significantly increased Ras expression, while in HCT116 p53+/+ cells, it reduced Ras expression. Furthermore, I3M remarkably increased the production of reactive oxygen species (ROS), which were reduced in transient p53 knockdown, indicating that I3M-mediated apoptosis was promoted by p53-mediated ROS production. Our results also showed that I3M enhanced transcription factor C/EBP homologous protein (CHOP) expression, resulted in endoplasmic reticulum (ER) stress-mediated DR5 expression, which was upregulated by ROS production in HCT116 p53+/+ cells. Moreover, co-treatment with I3M and TRAIL enhanced DR5 expression, thereby triggering TRAIL-induced apoptosis of HCT116 p53+/+ cells, which was interfered by a DR5-specific blocking chimeric antibody. In summary, I3M potently enhances TRAIL-induced apoptosis by upregulating DR5 expression via p53-mediated ROS production in HCT116 p53+/+ cells. However, HCT116 p53−/− cells were less sensitive to I3M-mediated apoptosis, suggesting that I3M could be a promising anti-cancer candidate against TRAIL-resistant p53+/+ cancer cells. Additionally, this study also revealed that I3M sensitizes colorectal cancer cells such as HT29 and SW480 to TRAIL-mediated apoptosis.
Collapse
|
11
|
Ye DJ, Kwon YJ, Baek HS, Cho E, Kwon TU, Chun YJ. Combination treatment with auranofin and nutlin-3a induces synergistic cytotoxicity in breast cancer cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:626-637. [PMID: 31258040 DOI: 10.1080/15287394.2019.1635934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Auranofin is a gold complex categorized as an anti-rheumatic agent. Recently, several investigators suggested that auranofin may act as a potent anti-cancer drug for breast tumors. Nutlin-3a is a cis-imidazoline analog which prevents interaction between mouse double minute 2 homolog (MDM2) and the tumor suppressor p53. The aim of this study was to examine cell growth inhibition mediated by auranofin or nutlin-3a individually as well as in combination with MCF-7 and MDA-MB-231 cells. To assess any potential synergistic effects between auranofin and nutlin-3a, low concentrations of auranofin and nutlin-3a were simultaneously incubated with MCF-7 and MDA-MB-231 cells. Cell viability assay, caspase-3/7 assay, and poly (ADP-ribose) polymerase cleavage revealed that auranofin and nutlin-3a exerted a synergistic effect on cancer cell apoptosis. Isobologram analysis of MCF-7 and MDA-MB-231 cells noted evident synergism between auranofin and nutlin-3a. The combined treatment increased the expression of mitochondrial pro-apoptotic factors such as Bcl-2 associated X protein and Bcl-2 homologous antagonist/killer. Further, combination treatment significantly enhanced reactive oxygen species (ROS) generation in MCF-7 and MDA-MB-231 cells. In conclusion, data demonstrated that combined treatment with auranofin and nutlin-3a exhibited a synergistic action on breast cancer cells and this combination may be considered for use as a novel therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Dong-Jin Ye
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| | - Yeo-Jung Kwon
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| | | | - Eunah Cho
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| | - Tae-Uk Kwon
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| | - Young-Jin Chun
- a College of Pharmacy, Chung-Ang University , Seoul , Korea
| |
Collapse
|
12
|
Urso L, Cavallari I, Silic-Benussi M, Biasini L, Zago G, Calabrese F, Conte PF, Ciminale V, Pasello G. Synergistic targeting of malignant pleural mesothelioma cells by MDM2 inhibitors and TRAIL agonists. Oncotarget 2018; 8:44232-44241. [PMID: 28562336 PMCID: PMC5546476 DOI: 10.18632/oncotarget.17790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a chemoresistant tumor characterized by low rate of p53 mutation and upregulation of Murine Double Minute 2 (MDM2), suggesting that it may be effectively targeted using MDM2 inhibitors. In the present study, we investigated the anticancer activity of the MDM2 inhibitors Nutlin 3a (in vitro) and RG7112 (in vivo), as single agents or in combination with rhTRAIL. In vitro studies were performed using MPM cell lines derived from epithelioid (ZL55, M14K), biphasic (MSTO211H) and sarcomatoid (ZL34) MPMs. In vivo studies were conducted on a sarcomatoid MPM mouse model. In all the cell lines tested (with the exception of ZL55, which carries a biallelic loss-of-function mutation of p53), Nutlin 3a enhanced p21, MDM2 and DR5 expression, and decreased survivin expression. These changes were associated to cell cycle arrest but not to a significant induction of apoptosis. A synergistic pro-apoptotic effect was obtained through the association of rhTRAIL in all the cell lines harboring functional p53. This synergistic interaction of MDM2 inhibitor and TRAIL agonist was confirmed using a mouse preclinical model. Our results suggest that the combined targeting of MDM2 and TRAIL might provide a novel therapeutic option for treatment of MPM patients, particularly in the case of sarcomatoid MPM with MDM2 overexpression and functional inactivation of wild-type p53.
Collapse
Affiliation(s)
- Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - Ilaria Cavallari
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Micol Silic-Benussi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Lorena Biasini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Giulia Zago
- Medical Oncology Unit 2, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardio-Thoracic and Vascular Sciences, University of Padova, 35128, Padova, Italy
| | - Pier Franco Conte
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy.,Medical Oncology Unit 2, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy.,Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| | - Giulia Pasello
- Medical Oncology Unit 2, Veneto Institute of Oncology, IRCCS, 35128, Padova, Italy
| |
Collapse
|
13
|
Xie C, Wu B, Chen B, Shi Q, Guo J, Fan Z, Huang Y. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling. Onco Targets Ther 2016; 9:4005-13. [PMID: 27445491 PMCID: PMC4938147 DOI: 10.2147/ott.s105418] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Histone deacetylase inhibitors have been reported to induce tumor cell growth arrest, differentiation, and apoptosis. This study aimed to investigate the effects of one histone deacetylase inhibitor - sodium butyrate (SB) - on osteosarcoma (OS) cell proliferation and apoptosis and also the molecular mechanisms by which SB exerts regulatory effects on OS cells. U2OS and MG63 cells were treated with SB at various concentrations. Then, cell proliferation and apoptosis were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry assays, respectively; the expression of Ki67, Bax, Bcl-2, MDM2, and p53 proteins was determined by using Western blot assay. The results showed that SB suppressed proliferation in a concentration-dependent manner and promoted apoptosis of OS cells. In addition, SB enhanced p53 expression and decreased MDM2 expression, indicating that SB can regulate MDM2-p53 feedback loop. p53 inhibited proliferation and promoted apoptosis, whereas MDM2 promoted proliferation and suppressed apoptosis, which indicated that functional effect of SB on OS cell lines at least in part depended on the MDM2-p53 signaling. We also explored the effect of SB on OS cells in vivo and found that SB suppressed the growth of OS cells with no noticeable effect on activity and body weight of mice in vivo. These findings will offer new clues for OS development and progression and offer SB as a potent targeted agent for OS treatment.
Collapse
Affiliation(s)
- Chuhai Xie
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Boyi Wu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Binwei Chen
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qunwei Shi
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianhong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ziwen Fan
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yan Huang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
da Mota MF, Cortez AP, Benfica PL, Rodrigues BDS, Castro TF, Macedo LM, Castro CH, Lião LM, de Carvalho FS, Romeiro LAS, Menegatti R, Verli H, Villavicencio B, Valadares MC. Induction of apoptosis in Ehrlich ascites tumour cells via p53 activation by a novel small-molecule MDM2 inhibitor - LQFM030. ACTA ACUST UNITED AC 2016; 68:1143-59. [PMID: 27350017 DOI: 10.1111/jphp.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The activation of the p53 pathway through the inhibition of MDM2 has been proposed as a novel therapeutic strategy against tumours. A series of cis-imidazoline analogues, termed nutlins, were reported to displace the recombinant p53 protein from its complex with MDM2 by binding to MDM2 in the p53 pocket, and exhibited an antitumour activity both in vitro and in vivo. Thus, the purpose of this study was to evaluate the antitumour properties of LQFM030 (2), a nutlin analogue created by employing the strategy of molecular simplification. METHODS LQFM030 (2) cytotoxicity was evaluated in Ehrlich ascites tumour (EAT) cells, p53 wild type, by the trypan blue exclusion test, and the mechanisms involved in EAT cell death were investigated by light and fluorescence microscopy, flow cytometry, real-time PCR and Western blotting. KEY FINDINGS Our results demonstrate that LQFM030 has dose-dependent antiproliferative activity and cytotoxic activity on EAT cells, induces the accumulation of p53 protein and promotes cell cycle arrest and apoptosis. p53 gene transcription was unaffected by LQFM030 (2); however, MDM2 mRNA increased and MDM2 protein decreased. CONCLUSIONS These results suggest that the small-molecule p53 activator LQFM030 (2) has the potential for further development as a novel cancer therapeutic agent.
Collapse
Affiliation(s)
- Mariana F da Mota
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil.,Lab. de Biologia e DNA Forense da Polícia Técnico-Científica de Goiás, GO - Brazil, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Alane P Cortez
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Polyana L Benfica
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Bruna Dos S Rodrigues
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Thalyta F Castro
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Larissa M Macedo
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Carlos H Castro
- Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Luciano M Lião
- Instituto de Química, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Flávio S de Carvalho
- Instituto de Química, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil.,Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Luiz A S Romeiro
- Faculdade de Ciências da Saúde, Universidade de Brasília, UNB, Brasília, DF, Brazil
| | - Ricardo Menegatti
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal de Rio Grande do Sul, UFRS, Porto Alegre, RS, Brazil
| | - Bianca Villavicencio
- Centro de Biotecnologia, Universidade Federal de Rio Grande do Sul, UFRS, Porto Alegre, RS, Brazil
| | - Marize C Valadares
- Laboratório de Farmacologia e Toxicologia Celular, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| |
Collapse
|
15
|
Chloroquine enhances TRAIL-mediated apoptosis through up-regulation of DR5 by stabilization of mRNA and protein in cancer cells. Sci Rep 2016; 6:22921. [PMID: 26964637 PMCID: PMC4786792 DOI: 10.1038/srep22921] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 01/02/2023] Open
Abstract
Chloroquine (CQ), an anti-malarial drug, has immune-modulating activity and lysosomotropic activity. In this study, we investigated CQ sensitizes TRAIL-mediated apoptosis in human renal cancer Caki cells. Combination of CQ and TRAIL significantly induces apoptosis in human renal cancer Caki cells and various human cancer cells, but not in normal mouse kidney cells (TMCK-1) and human mesangial cells (MC). CQ up-regulates DR5 mRNA and protein expression in a dose- and time- dependent manner. Interestingly, CQ regulates DR5 expression through the increased stability in the mRNA and protein of DR5, rather than through the increased transcriptional activity of DR5. Moreover, we found that CQ decreased the expression of Cbl, an E3 ligase of DR5, and knock-down of Cbl markedly enhanced DR5 up-regulation. Other lysosomal inhibitors, including monensin and nigericin, also up-regulated DR5 and sensitized TRAIL-mediated apoptosis. Therefore, this study demonstrates that lysosomal inhibition by CQ may sensitize TRAIL-mediated apoptosis in human renal cancer Caki cells via DR5 up-regulation.
Collapse
|
16
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
17
|
The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Mol Cell Biochem 2015; 410:187-95. [PMID: 26350565 DOI: 10.1007/s11010-015-2551-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/02/2015] [Indexed: 01/04/2023]
Abstract
Estrogen is synthesized from cholesterol and high cholesterol levels are suggested to be associated with increased risk of estrogen receptor(ER)-positive breast cancer. The cholesterol metabolite 27-hydroxycholesterol (27-OHC) was recently identified as a selective estrogen receptor modulator (SERM) and may therefore impact breast cancer progression. However, the mechanisms by which 27-OHC may contribute to breast cancer are not all known. We determined the extent to which 27-OHC regulates cell proliferation in MCF7 ER-positive breast cancer cell line involving the tumor suppressor protein p53. We found that treatment of MCF7 cells with 27-OHC resulted reduced p53 transcriptional activity. Conversely, treatment of the ER-negative MDA-MB 231 cells with 27-OHC induced no significant change in p53 activity. Exposure of MCF7 cells to 27-OHC was also associated with increased protein levels of the E3 ubiquitin protein ligase MDM2 and decreased levels of p53. Moreover, 27-OHC also enhanced physical interaction between p53 and MDM2. Furthermore, 27-OHC-induced proliferation was attenuated using either the p53 activator Tenovin-1 or the MDM2 inhibitor Nutlin-3 and Mdm2 siRNA. Taken together, our results indicate that 27-OHC may contribute to ER-positive breast cancer progression by disrupting constitutive p53 signaling in an MDM2-dependent manner.
Collapse
|
18
|
Urokinase-type plasminogen activator receptor regulates apoptotic sensitivity of colon cancer HCT116 cell line to TRAIL via JNK-p53 pathway. Apoptosis 2015; 19:1532-44. [PMID: 25113506 DOI: 10.1007/s10495-014-1025-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) serves not only as an anchor for urokinase-type plasminogen activator but also participates in intracellular signal transduction events. In this study, we investigated whether uPAR could modulate TRAIL-induced apoptosis in human colon cancer cells HCT116. Using an antisense strategy, we established a stable HCT116 cell line with down-regulated uPAR. The sensitivity to TRAIL-induced apoptosis was evaluated by FACS analysis. Our results show that the inhibition of uPAR could sensitize HCT116 to TRAIL-induced apoptosis. uPAR inhibition changed the expression of mitochondrial apoptotic pathway proteins, including Bcl-2, Bax, Bid and p53, in a pro-apoptotic manner. We also found that the inhibition of uPAR down-regulated the phosphorylation of FAK, ERK and JNK. The inhibition of p53 by RNA interference rescued cells from enhanced apoptosis, thus indicating that p53 is critical for enhancing TRAIL-induced apoptosis. Furthermore, JNK, but not ERK, inhibition involved in the up-regulation of p53. JNK negatively regulated p53 protein level. Overall, our results show that uPAR inhibition can sensitize colon cancer cells HCT116 to TRAIL-induced apoptosis via active p53 and mitochondrial apoptotic pathways that JNK inhibition is involved.
Collapse
|
19
|
Sjögren B, Swaney S, Neubig RR. FBXO44-Mediated Degradation of RGS2 Protein Uniquely Depends on a Cullin 4B/DDB1 Complex. PLoS One 2015; 10:e0123581. [PMID: 25970626 PMCID: PMC4430315 DOI: 10.1371/journal.pone.0123581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-proteasome system for protein degradation plays a major role in regulating cell function and many signaling proteins are tightly controlled by this mechanism. Among these, Regulator of G Protein Signaling 2 (RGS2) is a target for rapid proteasomal degradation, however, the specific enzymes involved are not known. Using a genomic siRNA screening approach, we identified a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding protein 1 (DDB1) and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation. While the more typical F-box partners CUL1 and Skp1 can bind FBXO44, that E3 ligase complex does not bind RGS2 and is not involved in RGS2 degradation. These observations define an unexpected DDB1/CUL4B-containing FBXO44 E3 ligase complex. Pharmacological targeting of this mechanism provides a novel therapeutic approach to hypertension, anxiety, and other diseases associated with RGS2 dysregulation.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology & Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, United States of America
| | - Steven Swaney
- Center for Chemical Genomics, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, United States of America
| | - Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, United States of America
| |
Collapse
|
20
|
Metformin sensitizes human bladder cancer cells to TRAIL-induced apoptosis through mTOR/S6K1-mediated downregulation of c-FLIP. Anticancer Drugs 2014; 25:887-97. [DOI: 10.1097/cad.0000000000000116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Xia P, Wang W, Bai Y. Claudin-7 suppresses the cytotoxicity of TRAIL-expressing mesenchymal stem cells in H460 human non-small cell lung cancer cells. Apoptosis 2014; 19:491-505. [PMID: 24242915 DOI: 10.1007/s10495-013-0938-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evidence suggests that the cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapeutics. Studies have also shown that claudin-7 (CLDN7) expression is variably dysregulated in various malignant neoplasms, with a role in lung cancer that has not been definitively decided. This work investigated the differential sensitivity of CLDN7-overexpressing human NSCLC H460 cells to TRAIL in vitro and in mouse xenografts, and explored the molecular mechanisms responsible for these effects. NCI-H460 cells were transfected or not with green fluorescent protein-tagged CLDN7. Each group was then exposed to mesenchymal stem cells (MSCs) or red fluorescent protein-tagged MSCs transduced with lentivirus expressing membrane-bound TRAIL. The effects and related mechanisms of these treatments were evaluated in vitro, and in vivo in murine xenografts. Our results indicate that TRAIL induced apoptosis in H460 cells in vitro, and in established xenograft tumors TRAIL was associated with a decrease in tumor size, tumor weight, and circulating tumor cells. CLDN7 was found to inhibit the MEK/ERK signaling pathway, leading to inhibition of death receptor 5 (TNFRSF10B). The cytotoxicity of TRAIL was confirmed in H460 cells and in vivo, and CLDN7 suppressed the cytotoxicity of TRAIL in H460 cells. Our results indicate that TRAIL may be a useful therapy to enhance apoptosis in CLDN7-negative lung cancer cells.
Collapse
Affiliation(s)
- Pu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, People's Republic of China,
| | | | | |
Collapse
|
22
|
Pennati M, Sbarra S, De Cesare M, Lopergolo A, Locatelli SL, Campi E, Daidone MG, Carlo-Stella C, Gianni AM, Zaffaroni N. YM155 sensitizes triple-negative breast cancer to membrane-bound TRAIL through p38 MAPK- and CHOP-mediated DR5 upregulation. Int J Cancer 2014; 136:299-309. [PMID: 24866585 DOI: 10.1002/ijc.28993] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022]
Abstract
Because available treatments have limited efficacy in triple-negative breast cancer (TNBC), the identification of new therapeutic strategies to improve patients' outcome is urgently needed. In our study, we investigated the effects of the administration of the small molecule selective survivin suppressant YM155, alone or in association with CD34+ cells transduced with a replication-deficient adenovirus encoding the human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene (CD34-TRAIL+ cells), in three TNBC cell models. YM155 exposure significantly impaired TNBC cell growth and selectively modulated survivin expression at both mRNA and protein level. In addition, co-culturing YM155-treated TNBC cells with CD34-TRAIL+ cells resulted in markedly increased cytotoxic effect and apoptotic response in comparison with single treatments. Such a chemosensitizing effect was observed only in TNBC cells inherently expressing DR5 and relied on the ability of YM155 to upregulate DR5 expression through a p38 MAPK- and CHOP-dependent mechanism. YM155/CD34-TRAIL+ combination also showed a significant inhibitory effect on the growth of DR5-expressing TNBC cells following xenotransplantation into NOD/SCID mice, in the absence of toxicity. Overall, our data (i) provide, for the first time, evidence that YM155 sensitizes TNBC cells to CD34-TRAIL+ cells-induced apoptosis by a mechanism involving the downregulation of survivin and the simultaneous p38 MAPK- and CHOP-mediated upregulation of DR5, and (ii) suggest the combination of YM155 with TRAIL-armed CD34+ progenitor cells as a promising therapeutic option for patients with TNBC expressing DR5.
Collapse
Affiliation(s)
- Marzia Pennati
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Axitinib, a selective inhibitor of vascular endothelial growth factor receptor, exerts an anticancer effect in melanoma through promoting antitumor immunity. Anticancer Drugs 2014; 25:204-11. [PMID: 24135499 DOI: 10.1097/cad.0000000000000033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the antitumor activity of axitinib, a selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases, against melanoma cells. Axitinib dose-dependently inhibited the proliferation and induced the apoptosis of B16F1 cells in vitro. In a mouse model of melanoma xenograft, axitinib significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 mg/kg. In addition, axitinib suppressed the lung metastasis of melanoma cells and prolonged the life span of tumor-bearing mice. Axitinib also enhanced the proportion of CD8⁺ T cells and reduced the proportion of myeloid-derived suppressor cells in CD45.2⁺ cells, whereas the proportions of CD4⁺ T cells and Treg cells were not affected. The mRNA expressions of inducible nitric oxide synthases-2 and arginase-1, which were associated with the function of myeloid-derived suppressor cells in tumor tissues, were inhibited by axitinib. Moreover, axitinib suppressed the expressions of proinflammatory cytokines such as IL-6, TNF-α, and IFN-γ. Altogether, our results showed the unique antitumor mechanism of axitinib and provided useful information for its clinical application.
Collapse
|
24
|
TRAIL combinations: The new 'trail' for cancer therapy (Review). Oncol Lett 2014; 7:1327-1332. [PMID: 24765133 PMCID: PMC3997674 DOI: 10.3892/ol.2014.1922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy is anticipated to be one of the most effective cancer treatments. However, resistance to TRAIL therapy remains a challenge facing the development of anticancer strategies. To circumvent this problem, TRAIL combinations have been experimented with for over ten years to induce synergism or sensitize resistant cancer cells. By analyzing the signaling pathways triggered by these combinations, this review has defined a set of core targets for novel combinatorial treatments. The review suggests specific pathways to be targeted together with TRAIL for more efficient treatment, including cellular FLICE inhibitory protein and its downstream survival factors, the Bcl-2 family and other prominent targets. The suggested pathways provide new avenues for more effective TRAIL-based cancer therapy.
Collapse
|
25
|
Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res 2013; 27:254-71. [PMID: 23885265 PMCID: PMC3721034 DOI: 10.7555/jbr.27.20130030] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022] Open
Abstract
The p53 tumor suppressor is a key transcription factor regulating cellular pathways such as DNA repair, cell cycle, apoptosis, angiogenesis, and senescence. It acts as an important defense mechanism against cancer onset and progression, and is negatively regulated by interaction with the oncoprotein MDM2. In human cancers, the TP53 gene is frequently mutated or deleted, or the wild-type p53 function is inhibited by high levels of MDM2, leading to downregulation of tumor suppressive p53 pathways. Thus, the inhibition of MDM2-p53 interaction presents an appealing therapeutic strategy for the treatment of cancer. However, recent studies have revealed the MDM2-p53 interaction to be more complex involving multiple levels of regulation by numerous cellular proteins and epigenetic mechanisms, making it imperative to reexamine this intricate interplay from a holistic viewpoint. This review aims to highlight the multifaceted network of molecules regulating the MDM2-p53 axis to better understand the pathway and exploit it for anticancer therapy.
Collapse
Affiliation(s)
- Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
26
|
Yulyana Y, Endaya BB, Ng WH, Guo CM, Hui KM, Lam PYP, Ho IAW. Carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma. Stem Cells Dev 2013; 22:1870-82. [PMID: 23428290 DOI: 10.1089/scd.2012.0529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been used extensively in cancer therapy. However, more than half of glioblastoma multiforme are insensitive to the apoptotic effect of TRAIL. Improvement in therapeutic modalities that enhances the efficacy of TRAIL in glioma is much sought after. In this study, we combined the tumor selectivity of TRAIL and tumor-homing properties of mesenchymal stem cells (MSC) with gap junction (GJ) inhibitory effect of carbenoxolone (CBX) to target orthotopic glioma. MSC were engineered to express TRAIL (MSC-TRAIL) by incorporating the secretable trimeric form of TRAIL into a Herpes Simplex Virus (HSV) type I amplicon vector. Our results showed that combined treatment of MSC-TRAIL and CBX enhanced glioma cell death, especially in three primary human glioma isolates, of which two of those are marginally sensitive to TRAIL. CBX enhanced TRAIL-induced apoptosis through upregulation of death receptor 5, blockade of GJ intercellular communication, and downregulation of connexin 43. Dual arm therapy using TRAIL and CBX prolonged the survival of treated mice by ~27% when compared with the controls in an intracranial glioma model. The enhanced efficacy of TRAIL in combination with CBX coupled with the minimal cytotoxic nature of CBX suggested a favorable clinical usage of this treatment regimen.
Collapse
Affiliation(s)
- Yulyana Yulyana
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre of Singapore, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|