1
|
Grunwell JR, Huang M, Stephenson ST, Tidwell M, Ripple MJ, Fitzpatrick AM, Kamaleswaran R. RNA Sequencing Analysis of Monocytes Exposed to Airway Fluid From Children With Pediatric Acute Respiratory Distress Syndrome. Crit Care Explor 2024; 6:e1125. [PMID: 39365167 PMCID: PMC11458172 DOI: 10.1097/cce.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVES Monocytes are plastic cells that assume different polarization states that can either promote inflammation or tissue repair and inflammation resolution. Polarized monocytes are partially defined by their transcriptional profiles that are influenced by environmental stimuli. The airway monocyte response in pediatric acute respiratory distress syndrome (PARDS) is undefined. To identify differentially expressed genes and networks using a novel transcriptomic reporter assay with donor monocytes exposed to the airway fluid of intubated children with and at-risk for PARDS. To determine differences in gene expression at two time points using the donor monocyte assay exposed to airway fluid from intubated children with PARDS obtained 48-96 hours following initial tracheal aspirate sampling. DESIGN In vitro pilot study carried out using airway fluid supernatant. SETTING Academic 40-bed PICU. PARTICIPANTS Fifty-seven children: 44 children with PARDS and 13 children at-risk for PARDS. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We performed bulk RNA sequencing using a transcriptomic reporter assay of monocytes exposed to airway fluid from intubated children to discover gene networks differentiating PARDS from at-risk for PARDS and those differentiating mild/moderate from severe PARDS. We also report differences in gene expression in children with PARDS 48-96 hours following initial tracheal aspirate sampling. We found that interleukin (IL)-10, IL-4, and IL-13, cytokine/chemokine signaling, and the senescence-associated secretory phenotype are upregulated in monocytes exposed to airway fluid from intubated children with PARDS compared with those at-risk for PARDS. Signaling by NOTCH, histone deacetylation/acetylation, DNA methylation, chromatin modifications (B-WICH complex), and RNA polymerase I transcription and its associated regulatory apparatus were upregulated in children with PARDS 48-96 hours following initial tracheal aspirate sampling. CONCLUSIONS We identified gene networks important to the PARDS airway immune response using bulk RNA sequencing from a monocyte reporter assay that exposed monocytes to airway fluid from intubated children with and at-risk for PARDS. Mechanistic investigations are needed to validate our findings.
Collapse
Affiliation(s)
- Jocelyn R. Grunwell
- Department of Pediatrics/Division of Critical Care Medicine, Egleston Hospital, Children’s Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Min Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
| | | | - Mallory Tidwell
- Department of Pediatrics/Division of Critical Care Medicine, Egleston Hospital, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Michael J. Ripple
- Department of Pediatrics/Division of Critical Care Medicine, Egleston Hospital, Children’s Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Anne M. Fitzpatrick
- Department of Pediatrics/Division of Critical Care Medicine, Egleston Hospital, Children’s Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Rishikesan Kamaleswaran
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
2
|
Fitzpatrick AM, Huang M, Mohammad AF, Stephenson ST, Kamaleswaran R, Grunwell JR. Dysfunctional neutrophil type 1 interferon responses in preschool children with recurrent wheezing and IL-4-mediated aeroallergen sensitization. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100229. [PMID: 38510797 PMCID: PMC10950716 DOI: 10.1016/j.jacig.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 12/24/2023] [Indexed: 03/22/2024]
Abstract
Background The innate mechanisms associated with viral exacerbations in preschool children with recurrent wheezing are not understood. Objective We sought to assess differential gene expression in blood neutrophils from preschool children with recurrent wheezing, stratified by aeroallergen sensitization, at baseline and after exposure to polyinosinic:polycytidylic acid (poly(I:C)) and also to examine whether poly(I:C)-stimulated blood neutrophils influenced airway epithelial gene expression. Methods Blood neutrophils were purified and cultured overnight with poly(I:C) and underwent next-generation sequencing with Reactome pathway analysis. Primary human small airway epithelial cells were treated with poly(I:C)-treated neutrophil culture supernatants and were analyzed for type 1 interferon gene expression with a targeted array. Symptoms and exacerbations were assessed in participants over 12 months. Results A total of 436 genes were differently expressed in neutrophils from children with versus without aeroallergen sensitization at baseline, with significant downregulation of type 1 interferons. These type 1 interferons were significantly upregulated in sensitized children after poly(I:C) stimulation. Confirmatory experiments demonstrated similar upregulation of type 1 interferons in IL-4-treated neutrophils stimulated with poly(I:C). Poly(I:C)-treated neutrophil supernatants from children with aeroallergen sensitization also induced a type 1 interferon response in epithelial cells. Children with aeroallergen sensitization also had higher symptom scores during exacerbations, and these symptom differences persisted for 3 days after prednisolone treatment. Conclusions Type 1 interferon responses are dysregulated in preschool children with aeroallergen sensitization, which is in turn associated with exacerbation severity. Given the importance of type 1 interferon signaling in viral resolution, additional studies of neutrophil type 1 interferon responses are needed in this population.
Collapse
Affiliation(s)
- Anne M. Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga
- Division of Pulmonary Medicine, Children’s Healthcare of Atlanta, Atlanta, Ga
| | - Min Huang
- Department of Biomedical Informatics, Emory University, Atlanta, Ga
| | | | | | | | - Jocelyn R. Grunwell
- Department of Pediatrics, Emory University, Atlanta, Ga
- Division of Critical Care Medicine, Children’s Healthcare of Atlanta, Atlanta, Ga
| |
Collapse
|
3
|
Fitzpatrick AM, Mohammad AF, Huang M, Stephenson ST, Patrignani J, Kamaleswaran R, Grunwell JR. Functional immunophenotyping of blood neutrophils identifies novel endotypes of viral response in preschool children with recurrent wheezing. J Allergy Clin Immunol 2023; 152:1433-1443. [PMID: 37604313 PMCID: PMC10841272 DOI: 10.1016/j.jaci.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Preschool children with recurrent wheezing are heterogeneous, with differing responses to respiratory viral infections. Although neutrophils are crucial for host defense, their function has not been studied in this population. OBJECTIVE We performed functional immunophenotyping on isolated blood neutrophils from 52 preschool children with recurrent wheezing (aeroallergen sensitization, n = 16; no sensitization, n = 36). METHODS Blood neutrophils were purified and cultured overnight with polyinosinic:polycytidylic acid [poly(I:C)] as a viral analog stimulus. Neutrophils underwent next-generation sequencing with Reactome pathway analysis and were analyzed for cytokine secretion, apoptosis, myeloperoxidase, and extracellular DNA release. CD14+ monocytes were also exposed to neutrophil culture supernatant and analyzed for markers of M1 and M2 activation. RESULTS A total of 495 genes, related largely to the innate immune system and neutrophil degranulation, were differently expressed in children with versus without aeroallergen sensitization. Functional experiments identified more neutrophil degranulation and extracellular trap formation (ie, more myeloperoxidase and extracellular DNA) and less neutrophil proinflammatory cytokine secretion in children with aeroallergen sensitization. Neutrophils also shifted CD14+ monocytes to a more anti-inflammatory (ie, M2) phenotype in sensitized children and a more proinflammatory (ie, M1) phenotype in nonsensitized children. Although both groups experienced viral exacerbations, annualized exacerbation rates prompting unscheduled health care were also higher in children without aeroallergen sensitization after enrollment. CONCLUSIONS Systemic neutrophil responses to viral infection differ by allergic phenotype and may be less effective in preschool children without allergic inflammation. Further studies of neutrophil function are needed in this population, which often has less favorable therapeutic responses to inhaled corticosteroids and other therapies directed at type 2-high inflammation.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga; Division of Pulmonary Medicine, Children's Healthcare of Atlanta, Atlanta, Ga.
| | | | - Min Huang
- Department of Biomedical Informatics, Emory University, Atlanta, Ga
| | | | | | | | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University, Atlanta, Ga; Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Ga
| |
Collapse
|
4
|
Ripple MJ, Huang M, Stephenson ST, Mohammad AF, Tidwell M, Fitzpatrick AM, Kamaleswaran R, Grunwell JR. RNA Sequencing Analysis of CD4 + T Cells Exposed to Airway Fluid From Children With Pediatric Acute Respiratory Distress Syndrome. Crit Care Explor 2023; 5:e0935. [PMID: 37378084 PMCID: PMC10292738 DOI: 10.1097/cce.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
CD4+ T cells contribute to lung inflammation in acute respiratory distress syndrome. The CD4+ T-cell response in pediatric acute respiratory distress syndrome (PARDS) is unknown. OBJECTIVES To identify differentially expressed genes and networks using a novel transcriptomic reporter assay with donor CD4+ T cells exposed to the airway fluid of intubated children with mild versus severe PARDS. DESIGN In vitro pilot study. SETTING Laboratory-based study using human airway fluid samples admitted to a 36-bed university-affiliated pediatric intensive care unit. PATIENTS/SUBJECTS Seven children with severe PARDS, nine children with mild PARDS, and four intubated children without lung injury as controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We performed bulk RNA sequencing using a transcriptomic reporter assay of CD4+ T cells exposed to airway fluid from intubated children to discover gene networks differentiating severe from mild PARDS. We found that innate immunity pathways, type I (α and β), and type II (γ) interferon response and cytokine/chemokine signaling are downregulated in CD4+ T cells exposed to airway fluid from intubated children with severe PARDS compared with those with mild PARDS. CONCLUSIONS We identified gene networks important to the PARDS airway immune response using bulk RNA sequencing from a novel CD4+ T-cell reporter assay that exposed CD4+ T cells to airway fluid from intubated children with severe and mild PARDS. These pathways will help drive mechanistic investigations into PARDS. Validation of our findings using this transcriptomic reporter assay strategy is needed.
Collapse
Affiliation(s)
- Michael J Ripple
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Min Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
| | - Susan T Stephenson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ahmad F Mohammad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Mallory Tidwell
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
| | - Anne M Fitzpatrick
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Rishikesan Kamaleswaran
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Jocelyn R Grunwell
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
5
|
Grunwell JR, Rad MG, Ripple MJ, Yehya N, Wong HR, Kamaleswaran R. Identification of a pediatric acute hypoxemic respiratory failure signature in peripheral blood leukocytes at 24 hours post-ICU admission with machine learning. Front Pediatr 2023; 11:1159473. [PMID: 37009294 PMCID: PMC10063855 DOI: 10.3389/fped.2023.1159473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 04/04/2023] Open
Abstract
Background There is no generalizable transcriptomics signature of pediatric acute respiratory distress syndrome. Our goal was to identify a whole blood differential gene expression signature for pediatric acute hypoxemic respiratory failure (AHRF) using transcriptomic microarrays within twenty-four hours of diagnosis. We used publicly available human whole-blood gene expression arrays of a Berlin-defined pediatric acute respiratory distress syndrome (GSE147902) cohort and a sepsis-triggered AHRF (GSE66099) cohort within twenty-four hours of diagnosis and compared those children with a PaO2/FiO2 < 200 to those with a PaO2/FiO2 ≥ 200. Results We used stability selection, a bootstrapping method of 100 simulations using logistic regression as a classifier, to select differentially expressed genes associated with a PaO2/FiO2 < 200 vs. PaO2/FiO2 ≥ 200. The top-ranked genes that contributed to the AHRF signature were selected in each dataset. Genes common to both of the top 1,500 ranked gene lists were selected for pathway analysis. Pathway and network analysis was performed using the Pathway Network Analysis Visualizer (PANEV) and Reactome was used to perform an over-representation gene network analysis of the top-ranked genes common to both cohorts. Changes in metabolic pathways involved in energy balance, fundamental cellular processes such as protein translation, mitochondrial function, oxidative stress, immune signaling, and inflammation are differentially regulated early in pediatric ARDS and sepsis-induced AHRF compared to both healthy controls and to milder acute hypoxemia. Specifically, fundamental pathways related to the severity of hypoxemia emerged and included (1) ribosomal and eukaryotic initiation of factor 2 (eIF2) regulation of protein translation and (2) the nutrient, oxygen, and energy sensing pathway, mTOR, activated via PI3K/AKT signaling. Conclusions Cellular energetics and metabolic pathways are important mechanisms to consider to further our understanding of the heterogeneity and underlying pathobiology of moderate and severe pediatric acute respiratory distress syndrome. Our findings are hypothesis generating and support the study of metabolic pathways and cellular energetics to understand heterogeneity and underlying pathobiology of moderate and severe acute hypoxemic respiratory failure in children.
Collapse
Affiliation(s)
- Jocelyn R. Grunwell
- Division of Critical Care Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Milad G. Rad
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Michael J. Ripple
- Division of Critical Care Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Pediatric Intensive Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Rishikesan Kamaleswaran
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
6
|
Kneyber MCJ, Khemani RG, Bhalla A, Blokpoel RGT, Cruces P, Dahmer MK, Emeriaud G, Grunwell J, Ilia S, Katira BH, Lopez-Fernandez YM, Rajapreyar P, Sanchez-Pinto LN, Rimensberger PC. Understanding clinical and biological heterogeneity to advance precision medicine in paediatric acute respiratory distress syndrome. THE LANCET. RESPIRATORY MEDICINE 2023; 11:197-212. [PMID: 36566767 PMCID: PMC10880453 DOI: 10.1016/s2213-2600(22)00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Paediatric acute respiratory distress syndrome (PARDS) is a heterogeneous clinical syndrome that is associated with high rates of mortality and long-term morbidity. Factors that distinguish PARDS from adult acute respiratory distress syndrome (ARDS) include changes in developmental stage and lung maturation with age, precipitating factors, and comorbidities. No specific treatment is available for PARDS and management is largely supportive, but methods to identify patients who would benefit from specific ventilation strategies or ancillary treatments, such as prone positioning, are needed. Understanding of the clinical and biological heterogeneity of PARDS, and of differences in clinical features and clinical course, pathobiology, response to treatment, and outcomes between PARDS and adult ARDS, will be key to the development of novel preventive and therapeutic strategies and a precision medicine approach to care. Studies in which clinical, biomarker, and transcriptomic data, as well as informatics, are used to unpack the biological and phenotypic heterogeneity of PARDS, and implementation of methods to better identify patients with PARDS, including methods to rapidly identify subphenotypes and endotypes at the point of care, will drive progress on the path to precision medicine.
Collapse
Affiliation(s)
- Martin C J Kneyber
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Critical Care, Anaesthesiology, Peri-operative and Emergency Medicine, University of Groningen, Groningen, Netherlands.
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anoopindar Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert G T Blokpoel
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Pablo Cruces
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mary K Dahmer
- Department of Pediatrics, Division of Critical Care, University of Michigan, Ann Arbor, MI, USA
| | - Guillaume Emeriaud
- Department of Pediatrics, CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Jocelyn Grunwell
- Department of Pediatrics, Division of Critical Care, Emory University, Atlanta, GA, USA
| | - Stavroula Ilia
- Pediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Bhushan H Katira
- Department of Pediatrics, Division of Critical Care Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Yolanda M Lopez-Fernandez
- Pediatric Intensive Care Unit, Department of Pediatrics, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Bizkaia, Spain
| | - Prakadeshwari Rajapreyar
- Department of Pediatrics (Critical Care), Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - L Nelson Sanchez-Pinto
- Department of Pediatrics (Critical Care), Northwestern University Feinberg School of Medicine and Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Peter C Rimensberger
- Division of Neonatology and Paediatric Intensive Care, Department of Paediatrics, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Pathobiology, Severity, and Risk Stratification of Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S12-S27. [PMID: 36661433 DOI: 10.1097/pcc.0000000000003156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To review the literature for studies published in children on the pathobiology, severity, and risk stratification of pediatric acute respiratory distress syndrome (PARDS) with the intent of guiding current medical practice and identifying important areas for future research related to severity and risk stratification. DATA SOURCES Electronic searches of PubMed and Embase were conducted from 2013 to March 2022 by using a combination of medical subject heading terms and text words to capture the pathobiology, severity, and comorbidities of PARDS. STUDY SELECTION We included studies of critically ill patients with PARDS that related to the severity and risk stratification of PARDS using characteristics other than the oxygenation defect. Studies using animal models, adult only, and studies with 10 or fewer children were excluded from our review. DATA EXTRACTION Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize relevant evidence and develop recommendations for clinical practice. There were 192 studies identified for full-text extraction to address the relevant Patient/Intervention/Comparator/Outcome questions. One clinical recommendation was generated related to the use of dead space fraction for risk stratification. In addition, six research statements were generated about the impact of age on acute respiratory distress syndrome pathobiology and outcomes, addressing PARDS heterogeneity using biomarkers to identify subphenotypes and endotypes, and use of standardized ventilator, physiologic, and nonpulmonary organ failure measurements for future research. CONCLUSIONS Based on an extensive literature review, we propose clinical management and research recommendations related to characterization and risk stratification of PARDS severity.
Collapse
|
8
|
Ripple MJ, Mohammad AF, Stephenson ST, Fitzpatrick AM, Grunwell JR. Expression Patterns of Airway Fluid Cytokines From Intubated Children With Pediatric Acute Respiratory Distress Syndrome. Crit Care Explor 2022; 4:e0819. [PMID: 36567781 PMCID: PMC9760621 DOI: 10.1097/cce.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a heterogeneous illness affecting 6% of mechanically ventilated children and with an overall mortality of 17%. Studies in PARDS have mainly focused on plasma biomarkers which may not reflect airway biomarkers. We lack adequate understanding of the inflammatory mediators and underlying immune responses in the airways of PARDS patients. Our objective was to compare the levels of cytokines in the airway fluid of intubated children with severe versus nonsevere acute respiratory distress syndrome. DESIGN Prospective observational cohort study. SETTING Single 36-bed quaternary care academic safety-net hospital PICU. PATIENTS Children intubated for acute respiratory failure between January 2018 and November 2021 stratified by Pediatric Acute Lung Injury Consensus Conference-1 criteria for PARDS. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We measured levels of 23 cytokines, chemokines, and protein biomarkers in the tracheal aspirate from 82 intubated children, between 14 days and 17 years old, at risk for or with PARDS. Levels of interleukin-4, -5, -7, -8, -12(p-70), -17a, -21, and fractalkine were higher in patients with severe versus nonsevere PARDS. There were no associations between airway and plasma cytokines. CONCLUSIONS Proinflammatory cytokines are elevated in the airway fluid from intubated children with severe PARDS and reflect diverse patterns of airway inflammation.
Collapse
Affiliation(s)
- Michael J Ripple
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| | - Ahmad F Mohammad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Susan T Stephenson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Division of Pulmonary Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
9
|
Functional immunophenotyping of children with critical status asthmaticus identifies differential gene expression responses in neutrophils exposed to a poly(I:C) stimulus. Sci Rep 2022; 12:19644. [PMID: 36385161 PMCID: PMC9666940 DOI: 10.1038/s41598-022-24261-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The host immune response to a viral immune stimulus has not been examined in children during a life-threatening asthma attack. We determined whether we could identify clusters of children with critical asthma by functional immunophenotyping using an intracellular viral analog stimulus. We performed a single-center, prospective, observational cohort study of 43 children ages 6-17 years admitted to a pediatric intensive care unit for an asthma attack between July 2019 to February 2021. Neutrophils were isolated from children, stimulated overnight with LyoVec poly(I:C), and mRNA was analyzed using a targeted Nanostring immunology array. Network analysis of the differentially expressed transcripts for the paired LyoVec poly(I:C) samples was performed. We identified two clusters by functional immunophenotyping that differed by the Asthma Control Test score. Cluster 1 (n = 23) had a higher proportion of children with uncontrolled asthma in the four weeks prior to PICU admission compared with cluster 2 (n = 20). Pathways up-regulated in cluster 1 versus cluster 2 included chemokine receptor/chemokines, interleukin-10 (IL-10), IL-4, and IL-13 signaling. Larger validation studies and clinical phenotyping of children with critical asthma are needed to determine the predictive utility of these clusters in a larger clinical setting.
Collapse
|
10
|
Whitney JE, Lee IH, Lee JW, Kong SW. Evolution of multiple omics approaches to define pathophysiology of pediatric acute respiratory distress syndrome. eLife 2022; 11:77405. [PMID: 35913450 PMCID: PMC9342956 DOI: 10.7554/elife.77405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Pediatric acute respiratory distress syndrome (PARDS), though both common and deadly in critically ill children, lacks targeted therapies. The development of effective pharmacotherapies has been limited, in part, by lack of clarity about the pathobiology of pediatric ARDS. Epithelial lung injury, vascular endothelial activation, and systemic immune activation are putative drivers of this complex disease process. Prior studies have used either hypothesis-driven (e.g., candidate genes and proteins, in vitro investigations) or unbiased (e.g., genome-wide association, transcriptomic, metabolomic) approaches to predict clinical outcomes and to define subphenotypes. Advances in multiple omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have permitted more comprehensive investigation of PARDS pathobiology. However, omics studies have been limited in children compared to adults, and analyses across multiple tissue types are lacking. Here, we synthesized existing literature on the molecular mechanism of PARDS, summarized our interrogation of publicly available genomic databases to determine the association of candidate genes with PARDS phenotypes across multiple tissues and cell types, and integrated recent studies that used single-cell RNA sequencing (scRNA-seq). We conclude that novel profiling methods such as scRNA-seq, which permits more comprehensive, unbiased evaluation of pathophysiological mechanisms across tissue and cell types, should be employed to investigate the molecular mechanisms of PRDS toward the goal of identifying targeted therapies.
Collapse
Affiliation(s)
- Jane E Whitney
- Medical Critical Care, Pediatrics, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States
| | - In-Hee Lee
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, United States
| | - Ji-Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Sek Won Kong
- Department of Pediatrics, Harvard Medical School, Boston, United States.,Computational Health and Informatics Program, Boston Children's Hospital, Boston, United States
| |
Collapse
|
11
|
Somekh J, Lotan N, Sussman E, Yehuda GA. Predicting mechanical ventilation effects on six human tissue transcriptomes. PLoS One 2022; 17:e0264919. [PMID: 35271646 PMCID: PMC8912236 DOI: 10.1371/journal.pone.0264919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/21/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is a lifesaving therapy used for patients with respiratory failure. Nevertheless, MV is associated with numerous complications and increased mortality. The aim of this study is to define the effects of MV on gene expression of direct and peripheral human tissues. METHODS Classification models were applied to Genotype-Tissue Expression Project (GTEx) gene expression data of six representative tissues-liver, adipose, skin, nerve-tibial, muscle and lung, for performance comparison and feature analysis. We utilized 18 prediction models using the Random Forest (RF), XGBoost (eXtreme Gradient Boosting) decision tree and ANN (Artificial Neural Network) methods to classify ventilation and non-ventilation samples and to compare their prediction performance for the six tissues. In the model comparison, the AUC (area under receiver operating curve), accuracy, precision, recall, and F1 score were used to evaluate the predictive performance of each model. We then conducted feature analysis per each tissue to detect MV marker genes followed by pathway enrichment analysis for these genes. RESULTS XGBoost outperformed the other methods and predicted samples had undergone MV with an average accuracy for the six tissues of 0.951 and average AUC of 0.945. The feature analysis detected a combination of MV marker genes per each tested tissue, some common across several tissues. MV marker genes were mainly related to inflammation and fibrosis as well as cell development and movement regulation. The MV marker genes were significantly enriched in inflammatory and viral pathways. CONCLUSION The XGBoost method demonstrated clear enhanced performance and feature analysis compared to the other models. XGBoost was helpful in detecting the tissue-specific marker genes for identifying transcriptomic changes related to MV. Our results show that MV is associated with reduced development and movement in the tissues and higher inflammation and injury not only in direct tissues such as the lungs but also in peripheral tissues and thus should be carefully considered before being implemented.
Collapse
Affiliation(s)
- Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel
- * E-mail:
| | - Nir Lotan
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Ehud Sussman
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Gur Arye Yehuda
- Department of Information Systems, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Arora M, Zambrzycki SC, Levy JM, Esper A, Frediani JK, Quave CL, Fernández FM, Kamaleswaran R. Machine Learning Approaches to Identify Discriminative Signatures of Volatile Organic Compounds (VOCs) from Bacteria and Fungi Using SPME-DART-MS. Metabolites 2022; 12:232. [PMID: 35323675 PMCID: PMC8953436 DOI: 10.3390/metabo12030232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Point-of-care screening tools are essential to expedite patient care and decrease reliance on slow diagnostic tools (e.g., microbial cultures) to identify pathogens and their associated antibiotic resistance. Analysis of volatile organic compounds (VOC) emitted from biological media has seen increased attention in recent years as a potential non-invasive diagnostic procedure. This work explores the use of solid phase micro-extraction (SPME) and ambient plasma ionization mass spectrometry (MS) to rapidly acquire VOC signatures of bacteria and fungi. The MS spectrum of each pathogen goes through a preprocessing and feature extraction pipeline. Various supervised and unsupervised machine learning (ML) classification algorithms are trained and evaluated on the extracted feature set. These are able to classify the type of pathogen as bacteria or fungi with high accuracy, while marked progress is also made in identifying specific strains of bacteria. This study presents a new approach for the identification of pathogens from VOC signatures collected using SPME and ambient ionization MS by training classifiers on just a few samples of data. This ambient plasma ionization and ML approach is robust, rapid, precise, and can potentially be used as a non-invasive clinical diagnostic tool for point-of-care applications.
Collapse
Affiliation(s)
- Mehak Arora
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Stephen C. Zambrzycki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.C.Z.); (F.M.F.)
| | - Joshua M. Levy
- Department of Otolaryngology—Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Annette Esper
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30332, USA;
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Jennifer K. Frediani
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30332, USA;
| | - Cassandra L. Quave
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30332, USA;
- Center for the Study of Human Health, Emory College of Arts and Sciences, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.C.Z.); (F.M.F.)
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30332, USA;
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30332, USA
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30332, USA
| |
Collapse
|
13
|
Mechanisms and modulation of sepsis-induced immune dysfunction in children. Pediatr Res 2022; 91:447-453. [PMID: 34952937 PMCID: PMC9752201 DOI: 10.1038/s41390-021-01879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Immunologic responses during sepsis vary significantly among patients and evolve over the course of illness. Sepsis has a direct impact on the immune system due to adverse alteration of the production, maturation, function, and apoptosis of immune cells. Dysregulation in both the innate and adaptive immune responses during sepsis leads to a range of phenotypes consisting of both hyperinflammation and immunosuppression that can result in immunoparalysis. In this review, we discuss components of immune dysregulation in sepsis, biomarkers and functional immune assays to aid in immunophenotyping patients, and evolving immunomodulatory therapies. Important research gaps for the future include: (1) Defining how age, host factors including prior exposures, and genetics impact the trajectory of sepsis in children, (2) Developing tools for rapid assessment of immune function in sepsis, and (3) Assessing how evolving pediatric sepsis endotypes respond differently to immunomodulation. Although multiple promising immunomodulatory agents exist or are in development, access to rapid immunophenotyping will be needed to identify which children are most likely to benefit from which therapy. Advancements in the ability to perform multidimensional endotyping will be key to developing a personalized approach to children with sepsis. IMPACT: Immunologic responses during sepsis vary significantly among patients and evolve over the course of illness. The resulting spectrum of immunoparalysis that can occur due to sepsis can increase morbidity and mortality in children and adults. This narrative review summarizes the current literature surrounding biomarkers and functional immunologic assays for immune dysregulation in sepsis, with a focus on immunomodulatory therapies that have been evaluated in sepsis. A precision approach toward diagnostic endotyping and therapeutics, including gene expression, will allow for optimal clinical trials to evaluate the efficacy of individualized and targeted treatments for pediatric sepsis.
Collapse
|
14
|
Imai H, Watanabe Y, Shimada D, Suzuki J, Endo S, Kaku M, Seki M. Utility of a Cell-Direct Polymerase Chain Reaction-Based Nucleic Acid Lateral Flow Immunoassay for Detection of Bacteria in Peripheral Blood Leukocytes of Suspected Sepsis Cases. Infect Drug Resist 2021; 14:5137-5144. [PMID: 34887667 PMCID: PMC8653706 DOI: 10.2147/idr.s345361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background The detection of the pathogens in the blood is essential for the management of septic patients; however, conventional blood culture takes 2–3 days. Therefore, rapid and convenient methods may be useful to aid clinical decision-making. Methods Blood samples with sepsis clinically diagnosed in cases that fulfilled the diagnostic criteria were used and analyzed the utility of a novel bacterial nucleic acid identification test using a cell-direct polymerase chain reaction (cdPCR)-based nucleic acid lateral flow immunoassay (NALFIA) which were named as “DiagnoSep” to detect representative bacteria in peripheral blood leukocytes in patients admitted to our hospital and compared the conventional blood culture results simultaneously taken from the patients. Results We analyzed the total 42 samples in the terms of this study and found 18 (42.8%) were positive on cdPCR-NALFIA, and 24 (57.1%) were positive on blood cultures. Although the positive rate was higher with blood cultures, 15 samples showed positive results from both blood cultures and cdPCR-NALFIA, and the identified bacteria agreed for 10 samples. Of the 18 cdPCR-NALFIA-positive cases, the results for 8 samples differed from the results of blood cultures; four of them had an implanted pacemaker or prosthetic joint and were positive for Staphylococcus aureus or Staphylococcus epidermidis on cdPCR-NALFIA. Conclusion Blood culture tests are probably the gold standard in identifying causative organisms in sepsis, but the rapid results from cdPCR-NALFIA simultaneously used with blood culture may make it an important auxiliary diagnostic tool for identifying infecting organisms and lead to the improvement of mortality of the septic patients, because these combined results provide the wide information on the possible pathogens in early phase.
Collapse
Affiliation(s)
- Haruka Imai
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Yuji Watanabe
- Laboratory for Clinical Microbiology, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Daishi Shimada
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Jun Suzuki
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Shiro Endo
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Mitsuo Kaku
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Masafumi Seki
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| |
Collapse
|