1
|
Saugel B, Buhre W, Chew MS, Cholley B, Coburn M, Cohen B, De Hert S, Duranteau J, Fellahi JL, Flick M, Guarracino F, Joosten A, Jungwirth B, Kouz K, Longrois D, Buse GL, Meidert AS, Rex S, Romagnoli S, Romero CS, Sander M, Thomsen KK, Vos JJ, Zarbock A. Intra-operative haemodynamic monitoring and management of adults having noncardiac surgery: A statement from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol 2025; 42:543-556. [PMID: 40308048 DOI: 10.1097/eja.0000000000002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 05/02/2025]
Abstract
This article was developed by a diverse group of 25 international experts from the European Society of Anaesthesiology and Intensive Care (ESAIC), who formulated recommendations on intra-operative haemodynamic monitoring and management of adults having noncardiac surgery based on a review of the current evidence. We recommend basing intra-operative arterial pressure management on mean arterial pressure and keeping intra-operative mean arterial pressure above 60 mmHg. We further recommend identifying the underlying causes of intra-operative hypotension and addressing them appropriately. We suggest pragmatically treating bradycardia or tachycardia when it leads to profound hypotension or likely results in reduced cardiac output, oxygen delivery or organ perfusion. We suggest monitoring stroke volume or cardiac output in patients with high baseline risk for complications or in patients having high-risk surgery to assess the haemodynamic status and the haemodynamic response to therapeutic interventions. However, we recommend not routinely maximising stroke volume or cardiac output in patients having noncardiac surgery. Instead, we suggest defining stroke volume and cardiac output targets individually for each patient considering the clinical situation and clinical and metabolic signs of tissue perfusion and oxygenation. We recommend not giving fluids simply because a patient is fluid responsive but only if there are clinical or metabolic signs of hypovolaemia or tissue hypoperfusion. We suggest monitoring and optimising the depth of anaesthesia to titrate doses of anaesthetic drugs and reduce their side effects.
Collapse
Affiliation(s)
- Bernd Saugel
- From the Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (BS, MF, KK, KKT), the Outcomes Research Consortium, Houston, Texas, USA (BS, BCo, KK, KKT), the Department of Anesthesiology, Division of Vital Functions, University Medical Centre Utrecht, Utrecht, The Netherlands (WB), the Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital Huddinge, Huddinge, Sweden (MSC), the Department of Anesthesiology and Intensive Care Medicine, Hôpital européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris and Université Paris Cité, Paris, France (BCh), the Department of Anaesthesiology and Operative Intensive Care Medicine, University Hospital Bonn, Bonn, Germany (MC), the Division of Anesthesia, Intensive Care, and Pain, Tel-Aviv Medical Center, Tel-Aviv University, Tel-Aviv, Israel (BCo), the Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (SDH), the Department of Anesthesiology and Intensive Care, Paris-Saclay University, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France (JD), the Department of Cardiothoracic and Vascular Anaesthesia and Intensive Care, Louis Pradel University Hospital, Hospices Civils de Lyon, Bron, France (JLF), the Department of Cardiothoracic and Vascular Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (FG), the Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, California, USA (AJ), the Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany (BJ), the Department of Anaesthesia and Intensive Care, Bichat-Claude Bernard and Louis Mourier Hospitals, Assistance Publique-Hôpitaux de Paris, Paris, France (DL), the Department of Anesthesiology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany (GLB), the Department of Anaesthesiology, University Hospital LMU Munich, Munich, Germany (ASM), the Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium (SRe), the Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium (SRe), the Department of Health Science, University of Florence, Florence, Italy (SRo), the Department of Anesthesia and Critical Care, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (SRo), the Department of Anaesthesiology and Critical Care, Hospital General Universitario de Valencia, Valencia, Spain (CSR), the Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Giessen, Justus-Liebig-University, Giessen, Germany (MS), the Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (JJV), the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany (AZ)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Messina A, Calabrò L, Benedetto F, Villa A, Matronola GM, Brunati A, Teboul JL, Monnet X, Cecconi M. SIGH 35 and end-expiratory occlusion test for assessing fluid responsiveness in critically ill patients undergoing pressure support ventilation. Crit Care 2025; 29:176. [PMID: 40317039 PMCID: PMC12046741 DOI: 10.1186/s13054-025-05398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/31/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Assessing fluid responsiveness is problematic for critically ill patients with spontaneous breathing activity, such as during Pressure Support Ventilation (PSV), since spontaneous breathing activity physiologically affects heart-lung interplay. We compared the reliability of two hemodynamic tests in predicting fluid responsiveness in this clinical setting: SIGH35, based on a ventilator-generated sigh applied at 35 cmH2O for 4 s and the end-expiratory occlusion test (EEOT). METHODS Prospective study conducted in a general intensive care unit (ICU) and enrolling patients in PSV showing different inspiratory effort [assessed by airway occlusion pressure (P0.1)] and requiring volume expansion (VE). Hemodynamic variables were recorded by means of the MOSTCARE® system, patient received a VE using 4 ml/kg of crystalloids over 10 min and were considered responders if a cardiac output (CO) ≥ 10% was observed. The reliability of SIGH35 and EEOT in discriminating fluid responsiveness was assessed using receiver operating characteristic (ROC) curve approach and the area (AUC) under ROC curves was compared. For the EEOT, we considered the percent changes of CO between baseline the end of the test, while for the SIGH35, the percent changes of pulse pressure (PP) between baseline and the lowest value recorded after SIGH35 application. RESULTS Sixty ICU patients were enrolled, and 56 patients analysed. The AUC of PP changes after SIGH35 was 0.93 (0.84-0.99) [sensitivity of 93.1% (78.0-98.7%); specificity of 91.6 (73.0-98.9%)]; best threshold - 25% PP from baseline (grey zone - 15%/35%)]; and greater than the AUC of CO changes after EEOT [0.67 (0.52-0.81); sensitivity of 72.4% (54.3-85.3%) specificity of 70.3% (73.0-98.9%)]; best threshold 4% of CO increase from baseline (grey zone - 1%/10%)]. In the subgroup having a P0.1 < 1.5 cmH2O, the AUC of SIGH35 [0.98 (0.94-0.99)] and of EEOT [0.89 (0.72-0.99] were comparable (p = 0.26). CONCLUSIONS In a selected ICU population undergoing PSV, SGH35 reliably predicted fluid responsiveness and performed better than the EEOT, which is, however, still reliable in the subgroup of ICU patients having a small extent of inspiratory efforts.
Collapse
Affiliation(s)
- Antonio Messina
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalcini 4,, Pieve Emanuele, Milan, Italy.
| | - Lorenzo Calabrò
- Department of Intensive Care, Hôpital Universitaire (HUB), Brussels, Belgium
| | - Francesco Benedetto
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalcini 4,, Pieve Emanuele, Milan, Italy
| | - Aurora Villa
- Department of Anesthesia and Intensive Care, University Bicocca, Milan, Italy
| | | | | | - Jean-Louis Teboul
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France
| | - Xavier Monnet
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France
| | - Maurizio Cecconi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalcini 4,, Pieve Emanuele, Milan, Italy
| |
Collapse
|
3
|
Gordillo Brenes A, León Montañés L, Hernández Alonso B, Alarabe Peinado S, Sánchez Rodríguez Á. Improved Prediction of Fluid Responsiveness in Ventilated Patients With Low Tidal Volume: The Role of Preload Variation. Crit Care Explor 2025; 7:e1259. [PMID: 40293782 PMCID: PMC12040047 DOI: 10.1097/cce.0000000000001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVES To analyze whether two levels of preload, one reduced by the application of tourniquets with sphygmomanometer cuffs and the other increased by passive leg elevation, improve the predictive capacity of pulse pressure variation (PPV) and stroke volume variation (SVV) of fluid responsiveness in patients ventilated with low tidal volume (Vt). DESIGN Prospective cohort study. SETTING ICU at the University Hospital of Cádiz (Spain). PATIENTS Patients diagnosed with septic shock, on controlled invasive mechanical ventilation without spontaneous breathing, with a Vt of 6 mL/kg predicted body weight and considered for an intravascular volume load due to hemodynamic instability. INTERVENTIONS Patient position changes: supine position and passive leg raise. Placement of pressure cuff compression at 60 mm Hg in one upper limb and the two lower limbs. Administration of 10 mL/kg of saline solution in 10 minutes. MEASUREMENTS AND RESULTS Twenty-eight tests were obtained. The baseline characteristics of the responders and nonresponders were similar. The baseline variables PPV and SVV had a limited ability to predict the response to fluids, with areas under the curve of 0.71 and 0.66, respectively. However, its predictive capacity increases significantly with different maneuvers, with the best prediction of the difference between the PPV value during the application of tourniquets and the PPV value in the supine position, with an area under the receiver operating characteristic curve of 0.97. CONCLUSIONS Lowering preload using tourniquets improves the predictive capacity of PPV and SVV for fluid responsiveness in patients ventilated with low Vt.
Collapse
|
4
|
Mulder MP, Potters JW, van Loon LM, Rumindo K, Hallbäck M, Maksuti E, Donker DW, Diez C. Context-specific clinical applicability of the end-expiratory occlusion test to predict fluid responsiveness in mechanically ventilated patients: A systematic review and meta-analysis. Eur J Anaesthesiol 2025:00003643-990000000-00293. [PMID: 40260456 DOI: 10.1097/eja.0000000000002181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/12/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND The emergence of context-specific clinical evidence from the end-expiratory occlusion test (EEOT) may change the perception of its operative performance to predict fluid responsiveness. OBJECTIVES Assessment of predictive performance of the EEOT in the intensive care unit (ICU) and operating room. DESIGN Systematic review of observational diagnostic test accuracy studies with meta-analysis. DATA SOURCES MEDLINE, Embase and Scopus were used as data sources for relevant publications until February 2024. ELIGIBILITY CRITERIA Prospective clinical studies in which the EEOT was used to predict fluid responsiveness in mechanically ventilated adults, regardless of the clinical care context. The operative performance characteristics must also have been reported. RESULTS Twenty-four studies involving 1073 adult patients (588 receiving intensive care and 485 in the operating room) were systematically reviewed, and 22 studies comprising 1049 volume expansions were meta-analysed. The pooled sensitivity [95% confidence interval (CI)] of the EEOT was 0.87 (0.81 to 0.92), and the pooled specificity was 0.90 (0.85 to 0.94); the median [interquartile range] cardiac index (CI) threshold for a positive test was a 5.0 [3.3 to 5.3] increase. The clinical context, the method used for haemodynamic monitoring, the ratio of the averaging time of the monitoring method to the occlusion time and the levels of positive end-expiratory pressure were identified as significant sources of heterogeneity. However, the occlusion duration, choice of cardiac output marker and tidal volume did not significantly affect its performance. A novel insight is that performance was notably lower in the operating room setting. The likelihood ratios were 14 (positive) and 0.12 (negative) for the ICU, both better than 3.1 and 0.21 for the operating room. The overall quality of the evidence was assessed to be very low, mainly due to high heterogeneity and risk of bias; however, no publication bias was detected. CONCLUSION The EEOT for predicting fluid responsiveness in critical care performs acceptably well overall and is a confirmative test. In the operating room and/or with specific technical settings, its performance and clinical utility are reduced, driving the need for more context-specific and patient-specific fluid responsiveness assessments.
Collapse
Affiliation(s)
- Marijn P Mulder
- From the Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede (MPM, J-WP, LMvL, DWD), Department of Intensive Care, University Medical Centre Utrecht, Utrecht (LMvL, DWD), Department of Anaesthesiology, Medisch Spectrum Twente, Enschede, The Netherlands (J-WP); Getinge, Acute Care Therapies, Maquet Critical Care AB, Solna, Sweden (KR, MH, EM) and Getinge Netherlands B.V., Hilversum, The Netherlands (CD)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Messina A, Grieco DL, Alicino V, Matronola GM, Brunati A, Antonelli M, Chew MS, Cecconi M. Assessing fluid responsiveness by using functional hemodynamic tests in critically ill patients: a narrative review and a profile-based clinical guide. J Clin Monit Comput 2025:10.1007/s10877-024-01255-x. [PMID: 39831948 DOI: 10.1007/s10877-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Fluids are given with the purpose of increasing cardiac output (CO), but approximately only 50% of critically ill patients are fluid responders. Since the effect of a fluid bolus is time-sensitive, it diminuish within few hours, following the initial fluid resuscitation. Several functional hemodynamic tests (FHTs), consisting of maneuvers affecting heart-lung interactions, have been conceived to discriminate fluid responders from non-responders. Three main variables affect the reliability of FHTs in predicting fluid responsiveness: (1) tidal volume; (2) spontaneous breathing activity; (3) cardiac arrythmias. Most FTHs have been validated in sedated or even paralyzed ICU patients, since, historically, controlled mechanical ventilation with high tidal volumes was the preferred mode of ventilatory support. The transition to contemporary methods of invasive mechanical ventilation with spontaneous breathing activity impacts heart-lung interactions by modifying intrathoracic pressure, tidal volumes and transvascular pressure in lung capillaries. These alterations and the heterogeneity in respiratory mechanics (that is present both in healthy and injured lungs) subsequently influence venous return and cardiac output. Cardiac arrythmias are frequently present in critically ill patients, especially atrial fibrillation, and intuitively impact on FHTs. This is due to the random CO fluctuations. Finally, the presence of continuous CO monitoring in ICU patients is not standard and the assessment of fluid responsiveness with surrogate methods is clinically useful, but also challenging. In this review we provide an algorithm for the use of FHTs in different subgroups of ICU patients, according to ventilatory setting, cardiac rhythm and the availability of continuous hemodynamic monitoring.
Collapse
Affiliation(s)
- Antonio Messina
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano - Milan, 20089, Italy.
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy.
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Valeria Alicino
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano - Milan, 20089, Italy
| | - Guia Margherita Matronola
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Andrea Brunati
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Michelle S Chew
- Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maurizio Cecconi
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano - Milan, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| |
Collapse
|
6
|
Thwaites L, Nasa P, Abbenbroek B, Dat VQ, Finfer S, Kwizera A, Ling L, Lobo SM, Sinto R, Aditianingsih D, Antonelli M, Arabi YM, Argent A, Azevedo L, Bennett E, Chakrabarti A, De Asis K, De Waele J, Divatia JV, Estenssoro E, Evans L, Faiz A, Hammond NE, Hashmi M, Herridge MS, Jacob ST, Jatsho J, Javeri Y, Khalid K, Chen LK, Levy M, Lundeg G, Machado FR, Mehta Y, Mer M, Son DN, Ospina-Tascón GA, Ostermann M, Permpikul C, Prescott HC, Reinhart K, Rodriguez Vega G, S-Kabara H, Shrestha GS, Waweru-Siika W, Tan TL, Todi S, Tripathy S, Venkatesh B, Vincent JL, Myatra SN. Management of adult sepsis in resource-limited settings: global expert consensus statements using a Delphi method. Intensive Care Med 2025; 51:21-38. [PMID: 39714613 PMCID: PMC11787051 DOI: 10.1007/s00134-024-07735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/26/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE To generate consensus and provide expert clinical practice statements for the management of adult sepsis in resource-limited settings. METHODS An international multidisciplinary Steering Committee with expertise in sepsis management and including a Delphi methodologist was convened by the Asia Pacific Sepsis Alliance (APSA). The committee selected an international panel of clinicians and researchers with expertise in sepsis management. A Delphi process based on an iterative approach was used to obtain the final consensus statements. RESULTS A stable consensus was achieved for 30 (94%) of the statements by 41 experts after four survey rounds. These include consensus on managing patients with sepsis outside a designated critical care area, triggers for escalating clinical management and criteria for safe transfer to another facility. The experts agreed on the following: in the absence of serum lactate, clinical parameters such as altered mental status, capillary refill time and urine output may be used to guide resuscitation; special considerations regarding the volume of fluid used for resuscitation, especially in tropical infections, including the use of simple tests to assess fluid responsiveness when facilities for advanced hemodynamic monitoring are limited; use of Ringer's lactate or Hartmann's solution as balanced salt solutions; epinephrine when norepinephrine or vasopressin are unavailable; and the administration of vasopressors via a peripheral vein if central venous access is unavailable or not feasible. Similarly, where facilities for investigation are unavailable, there was consensus for empirical antimicrobial administration without delay when sepsis was strongly suspected, as was the empirical use of antiparasitic agents in patients with suspicion of parasitic infections. CONCLUSION Using a Delphi method, international experts reached consensus to generate expert clinical practice statements providing guidance to clinicians worldwide on the management of sepsis in resource-limited settings. These statements complement existing guidelines where evidence is lacking and add relevant aspects of sepsis management that are not addressed by current international guidelines. Future studies are needed to assess the effects of these practice statements and address remaining uncertainties.
Collapse
Affiliation(s)
- Louise Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Prashant Nasa
- Critical Care Medicine, NMC Specialty Hospital, Dubai, United Arab Emirates
- Integrated Critical Care Unit, New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Brett Abbenbroek
- Asia Pacific Sepsis Alliance, Sydney, Australia
- Critical Care Program, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Vu Quoc Dat
- Department of Infectious Diseases, Hanoi Medical University, Hanoi, Vietnam
| | - Simon Finfer
- Asia Pacific Sepsis Alliance, Sydney, Australia
- Critical Care Program, The George Institute for Global Health, University of New South Wales, Sydney, Australia
- School of Public Health, Faculty of Medicine, Imperial College London, London, England
| | - Arthur Kwizera
- Department of Anaesthesia and Critical Care, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lowell Ling
- Department Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Suzana M Lobo
- Intensive Care Division, FAMERP and Hospital de Base, São José do Rio Preto (SP), Brazil
| | - Robert Sinto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Cipto Mangunkusumo National Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Dita Aditianingsih
- Department of Anaesthesiology and Intensive Care, Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Massimo Antonelli
- Department Anaesthesiology, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Yaseen M Arabi
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Andrew Argent
- Department Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | - Elizabeth Bennett
- Intensive Care Unit Colonial War Memorial Hospital, Suva, Fiji
- Anaesthesia and Intensive Care, Fiji National University, Suva, Fiji
| | | | - Kevin De Asis
- Intensive Care Medicine, St Luke's Medical Centre, Quezon City, Philippines
| | - Jan De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jigeeshu Vasishtha Divatia
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Elisa Estenssoro
- Department of Research, Ministry of Health of the Province of Buenos Aires, Buenos Aires, Argentina
| | - Laura Evans
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA
| | - Abul Faiz
- Toxicology Society of Bangladesh, Dhaka, Bangladesh
| | - Naomi E Hammond
- Asia Pacific Sepsis Alliance, Sydney, Australia
- Critical Care Program, The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, Sydney, Australia
| | - Madiha Hashmi
- Department of Critical Care Medicine, Ziauddin University, Karachi, Pakistan
| | - Margaret S Herridge
- Critical Care and Respiratory Medicine, Institute of Medical Sciences, Interdepartmental Division of Critical Care Medicine, University Health Network, Toronto General Research Institute, University of Toronto, Toronto, Canada
| | - Shevin T Jacob
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jimba Jatsho
- Paediatric Nephrology, National Medical Services, Gyaltsuen Jetsun Pema Wangchuck Mother and Child Hospital, Thimphu, Bhutan
| | - Yash Javeri
- Critical Care and Emergency Medicine, Regency Super Specialty Hospital, Indian Sepsis Forum, Lucknow, India
| | - Karima Khalid
- Department Anaesthesiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Lie Khie Chen
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Cipto Mangunkusumo National Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Mitchell Levy
- Division of Pulmonary, Critical Care and Sleep Medicine, Warren Albert Medical School of Brown University, Providence, USA
| | - Ganbold Lundeg
- Critical Care and Anaesthesiology Department, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Flavia R Machado
- Intensive Care Department, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Yatin Mehta
- Medanta Institute of Critical Care and Anesthesiology, Medanta the Medicity, Gurgaon, Haryana, India
| | - Mervyn Mer
- Divisions of Critical Care and Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Do Ngoc Son
- Centre for Critical Care Medicine, Bach Mai Hospital, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Gustavo A Ospina-Tascón
- Department Intensive Care Medicine, Fundación Valle del Lili- Universidad Icesi, Cali, Colombia
| | - Marlies Ostermann
- Department Critical Care and Nephrology, King's College London, Guy's & St Thomas' Hospital London, London, UK
| | - Chairat Permpikul
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Hallie C Prescott
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Konrad Reinhart
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité Universitäts Medizin, Berlin, Germany
- Global Sepsis Alliance & Sepsis-Stiftung Berlin, Berlin, Germany
| | - Gloria Rodriguez Vega
- Department of Critical Care Medicine, Neurosurgical ICU, HIMA-San Pablo Caguas, Puerto Rico, USA
| | - Halima S-Kabara
- Sepsis Research Group SIDOK, Aminu Kano Teaching Hospital, Bayero University Kano, Kano, Nigeria
| | - Gentle Sunder Shrestha
- Department of Critical Care Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Australia
| | | | - Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Subhash Todi
- Critical Care, Manipal Hospitals, Dhakuria, Kolkata, India
| | - Swagata Tripathy
- Department Anaesthesia and Critical Care, AIIMS Bhubaneswar, Bhubaneswar, India
| | - Balasubramaniam Venkatesh
- Asia Pacific Sepsis Alliance, Sydney, Australia
- Critical Care Program, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, University of Brussels, Brussels, Belgium
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
7
|
Monnet X, De Backer D, Pinsky MR. Using the ventilator to predict fluid responsiveness. Intensive Care Med 2025; 51:150-153. [PMID: 39680080 PMCID: PMC11787196 DOI: 10.1007/s00134-024-07708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Xavier Monnet
- Service de Médecine Intensive-Réanimation, AP-HP, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Griva P, Kapetanakis EI, Milionis O, Panagouli K, Fountoulaki M, Sidiropoulou T. Tidal Volume Challenge to Assess Volume Responsiveness with Dynamic Preload Indices During Non-Cardiac Surgery: A Prospective Study. J Clin Med 2024; 14:101. [PMID: 39797182 PMCID: PMC11721188 DOI: 10.3390/jcm14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: The aim of this study is to assess whether changes in Pulse Pressure Variation (PPV) and Stroke Volume Variation (SVV) following a VtC can predict the response to fluid administration in patients undergoing surgery under general anesthesia with protective mechanical ventilation. Methods: A total of 40 patients undergoing general surgery or vascular surgery without clamping the aorta were enrolled. Protective mechanical ventilation was applied, and the radial artery was catheterized in all patients. The protocol began one hour after the induction of general anesthesia and the stabilization of hemodynamic parameters. The parameters PPV6 and SVV6 were recorded during ventilation with a Vt of 6 mL/kg Ideal Body Weight (IBW) (T1). Then, the Vt was increased to 8 mL/kg IBW for 3 min without changing other respiratory parameters. After the VtC, the parameters PPV8 and SVV8 (T2) were recorded. After the stabilization of hemodynamic parameters, volume expansion (VE) was administered with colloid fluid of 6 mL/kg IBW. Parameters before (T3) and 5 min after fluid challenge (T4) were recorded. The change in the Stroke Volume Index (SVI) before and after VE was used to indicate fluid responsiveness. Patients were classified as fluid responders (SVI ≥ 10%) or non-responders (SVI < 10%). Results: The parameter ΔPPV(6-8) demonstrated good predictive ability to predict fluid responsiveness, evidenced by an Area Under the Curve (AUC) of 0.86 [95% Confidence Interval (CI) 0.74 to 0.95, p < 0.0001]. The threshold of ΔPPV(6-8) exceeding 2% identified responders with a sensitivity of 83% (95% CI 0.45 to 1.0, p < 0.0001) and a specificity of 73% (95% CI 0.48 to 1.0, p < 0.0001). The parameter ΔSVV(6-8) also revealed good predictive ability, reflected by an AUC of 0.82 (95% CI 0.67 to 0.94, p < 0.0001). The criterion ΔSVV(6-8) greater than 2% pinpointed responders with a sensitivity of 83% (95% CI 0.71 to 1.0, p < 0.001) and a specificity of 77% (95% CI 0.44 to 1.0, p < 0.001). Conclusions: This study demonstrates that VtC possesses good predictive ability for fluid responsiveness in patients undergoing general surgery.
Collapse
Affiliation(s)
- Panagiota Griva
- Second Department of Anesthesiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece; (P.G.); (O.M.); (K.P.); (M.F.)
| | - Emmanouil I. Kapetanakis
- Department of Thoracic Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece;
| | - Orestis Milionis
- Second Department of Anesthesiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece; (P.G.); (O.M.); (K.P.); (M.F.)
| | - Konstantina Panagouli
- Second Department of Anesthesiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece; (P.G.); (O.M.); (K.P.); (M.F.)
| | - Maria Fountoulaki
- Second Department of Anesthesiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece; (P.G.); (O.M.); (K.P.); (M.F.)
| | - Tatiana Sidiropoulou
- Second Department of Anesthesiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece; (P.G.); (O.M.); (K.P.); (M.F.)
| |
Collapse
|
9
|
Zakynthinos GE, Tsolaki V, Mantzarlis K, Xanthopoulos A, Oikonomou E, Kalogeras K, Siasos G, Vavuranakis M, Makris D, Zakynthinos E. Navigating Heart-Lung Interactions in Mechanical Ventilation: Pathophysiology, Diagnosis, and Advanced Management Strategies in Acute Respiratory Distress Syndrome and Beyond. J Clin Med 2024; 13:7788. [PMID: 39768712 PMCID: PMC11728210 DOI: 10.3390/jcm13247788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Patients in critical condition who require mechanical ventilation experience intricate interactions between their respiratory and cardiovascular systems. These complex interactions are crucial for clinicians to understand as they can significantly influence therapeutic decisions and patient outcomes. A deep understanding of heart-lung interactions is essential, particularly under the stress of mechanical ventilation, where the right ventricle plays a pivotal role and often becomes a primary concern. Positive pressure ventilation, commonly used in mechanical ventilation, impacts right and left ventricular pre- and afterload as well as ventricular interplay. The right ventricle is especially susceptible to these changes, and its function can be critically affected, leading to complications such as right heart failure. Clinicians must be adept at recognizing and managing these interactions to optimize patient care. This perspective will analyze this matter comprehensively, covering the pathophysiology of these interactions, the monitoring of heart-lung dynamics using the latest methods (including ECHO), and management and treatment strategies for related conditions. In particular, the analysis will delve into the efficacy and limitations of various treatment modalities, including pharmaceutical interventions, nuanced ventilator management strategies, and advanced devices such as extracorporeal membrane oxygenation (ECMO). Each approach will be examined for its impact on optimizing right ventricular function, mitigating complications, and ultimately improving patient outcomes in the context of mechanical ventilation.
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Kostantinos Mantzarlis
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Demosthenes Makris
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| |
Collapse
|
10
|
Mallat J, Abou-Arab O, Lemyze M, Saleh D, Guinot PG, Fischer MO. Changes in central venous-to-arterial PCO 2 difference and central venous oxygen saturation as markers to define fluid responsiveness in critically ill patients: a pot-hoc analysis of a multi-center prospective study. Crit Care 2024; 28:360. [PMID: 39516883 PMCID: PMC11549741 DOI: 10.1186/s13054-024-05156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The main aim of the study whether changes in central venous-to-arterial CO2 difference (ΔP(v-a)CO2) and central venous oxygen saturation (ΔScvO2) induced by volume expansion (VE) are reliable parameters to define fluid responsiveness (FR) in sedated and mechanically ventilated septic patients. We also sought to determine whether the degree of FR was related to baseline ScvO2 and P(v-a)CO2 levels. METHODS This was a post-hoc analysis of a multicenter prospective study. We included 205 mechanically ventilated patients with acute circulatory failure. Cardiac index (CI), P(v-a)CO2, ScvO2, and other hemodynamic variables were measured before and after VE. A VE-induced increase in CI > 15% defined fluid responders. Areas under the receiver operating characteristic curves (AUCs) and the gray zones were determined for ΔP(v-a)CO2 and ΔScvO2. RESULTS One hundred fifteen patients (56.1%) were classified as fluid responders. The AUCs for ΔP(v-a)CO2 and ΔScvO2 to define FR were 0.831 (95% CI 0.772-0.880) (p < 0.001) and 0.801 (95% CI 0.739-0.853) (p < 0.001), respectively. ΔP(v-a)CO2 ≤ 2.1 mmHg and ΔScvO2 ≥ 3.4% after VE allowed the categorization between responders and non-responders with positive predictive values of 90% and 86% and negative predictive values of 58% and 64%, respectively. The gray zones for ΔP(v-a)CO2 (- 2 to 0 mmHg) and ΔScvO2 (- 1 to 5%) included 22% and 40.5% of patients, respectively. ΔP(v-a)CO2 and ΔScvO2 were independently associated with FR in multivariable analysis. No significant relationships were found between pre-infusion ScvO2 and P(v-a)CO2 levels and FR. CONCLUSION In mechanically critically ill patients, ΔP(v-a)CO2 and ΔScvO2 are reliable parameters to define FR and can be used in the absence of CI measurement. The response to VE was independent of baseline ScvO2 and P(v-a)CO2 levels. Clinical trial registration The study was registered in the ClinicalTrials.gov registry: NCT03225378, date: July 20, 2017.
Collapse
Affiliation(s)
- Jihad Mallat
- Critical Care Division, Critical Care Institute, Cleveland Clinic Abu Dhabi, 112412, Abu Dhabi, United Arab Emirates.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Osama Abou-Arab
- Anesthesia and Critical Care Department, Amiens Hospital University, 80054, Amiens, France
| | - Malcolm Lemyze
- Department of Critical Care Medicine, Arras Hospital, 6200, Arras, France
| | | | | | - Marc-Olivier Fischer
- Institut Aquitain du Cœur, Clinique Saint-Augustin, Elsan, 114 Avenue d'Arès, 33074, Bordeaux Cedex, France
| |
Collapse
|
11
|
Joseph A, Evrard B, Petit M, Goudelin M, Prat G, Slama M, Charron C, Vignon P, Vieillard-Baron A. Fluid responsiveness in acute respiratory distress syndrome patients: a post hoc analysis of the HEMOPRED study. Intensive Care Med 2024; 50:1850-1860. [PMID: 39254736 DOI: 10.1007/s00134-024-07639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE Optimal fluid management in patients with acute respiratory distress syndrome (ARDS) is challenging due to risks associated with both circulatory failure and fluid overload. The performance of dynamic indices to predict fluid responsiveness (FR) in ARDS patients is uncertain. METHODS This post hoc analysis of the HEMOPRED study compared the performance of dynamic indices in mechanically ventilated patients with shock, with and without ARDS, to predict FR, defined as an increase in aortic velocity time integral (VTI) > 10% after passive leg raising (PLR). RESULTS Among 540 patients, 117 (22%) had ARDS and were ventilated with a median tidal volume of 7.6 mL/kg [6.9-8.4] and a median positive end-expiratory pressure of 7 cmH2O [5-9]. FR was observed in 45 ARDS patients (39% vs 44% in non-ARDS patients, p = 0.384). Reliability of dynamic indices to predict FR remained consistent in ARDS patients, though with different thresholds. Collapsibility index of the superior vena cava (ΔSVC) showed the best predictive performance in both ARDS (area under the curve [AUC] = 0.763 [0.659-0.868]) and non-ARDS (AUC = 0.750 [0.698-0.802]) patients. A right to left ventricle end-diastolic area ratio > 0.8 or paradoxical septal motion were strongly linked to the absence of FR (> 80% specificity). FR was not associated with intensive care unit (ICU) mortality (47% vs. 46%, p = 1). However, hypovolemia, defined as an aortic VTI increase > 32% during PLR (median increase in patients with a partial SVC collapse) was independently associated with ICU mortality (odds ratio [OR] = 1.355 [1.077-1.705], p = 0.011), as well as pulse pressure variation (OR = 1.014 [1.001-1.026], p = 0.034). CONCLUSION Performance of dynamic indices to predict FR appears preserved in ARDS patients, albeit with distinct thresholds. Hypovolemia, indicated by a > 32% increase in aortic VTI during PLR, rather than FR, was associated with ICU mortality in this population.
Collapse
Affiliation(s)
- Adrien Joseph
- Medical and Surgical intensive care unit, University Hospital Ambroise Paré, GHU Paris-Saclay, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France.
- Inserm U1173, Laboratory of Infection & Inflammation, University Versailles Saint Quentin - University Paris Saclay, Guyancourt, France.
| | - Bruno Evrard
- Medical-Surgical Intensive Care Unit, INSERM CIC 1435 and Faculty of Medicine, University of Limoges, Limoges, France
| | - Matthieu Petit
- Medical and Surgical intensive care unit, University Hospital Ambroise Paré, GHU Paris-Saclay, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France
- Inserm U1018, CESP, University Versailles Saint Quentin - University Paris Saclay, Guyancourt, France
| | - Marine Goudelin
- Medical-Surgical Intensive Care Unit, INSERM CIC 1435 and Faculty of Medicine, University of Limoges, Limoges, France
| | - Gwenaël Prat
- Medical Intensive Care Unit, Brest University Hospital, Brest, France
| | - Michel Slama
- Medical Intensive Care Unit, Amiens University Hospital, Amiens, France
| | - Cyril Charron
- Medical and Surgical intensive care unit, University Hospital Ambroise Paré, GHU Paris-Saclay, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France
| | - Philippe Vignon
- Medical-Surgical Intensive Care Unit, INSERM CIC 1435 and Faculty of Medicine, University of Limoges, Limoges, France
| | - Antoine Vieillard-Baron
- Medical and Surgical intensive care unit, University Hospital Ambroise Paré, GHU Paris-Saclay, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt, France
- Inserm U1018, CESP, University Versailles Saint Quentin - University Paris Saclay, Guyancourt, France
| |
Collapse
|
12
|
Min JY, Jeon JP, Chung MY, Kim CJ. Use of the cardiac power index to predict fluid responsiveness in the prone position: a proof-of-concept study. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:844545. [PMID: 39117065 PMCID: PMC11393583 DOI: 10.1016/j.bjane.2024.844545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The primary aim of this proof-of-concept study was to investigate whether the Cardiac Power Index (CPI) could be a novel alternative method to assess fluid responsiveness in the prone position. METHODS Patients undergoing scheduled elective lumbar spine surgery in the prone position under general anesthesia were enrolled in the criteria of patients aged 19-75 years with American Society of Anesthesiologists (ASA) physical status I-II. The hemodynamic variables were evaluated before and after changes in posture after administering a colloid bolus (5 mL.kg-1) in the prone position. Fluid responsiveness was defined as an increase in the Stroke Volume Index (SVI) ≥ 10%. RESULTS A total of 28 patients were enrolled. In responders, the CPI (median [1/4Q-3/4Q]) decreased to 0.34 [0.28-0.39] W.m-2 (p = 0.035) after the prone position. After following fluid loading, CPI increased to 0.48 [0.37-0.52] W.m-2 (p < 0.008), and decreased SVI (median [1/4Q-3/4Q]) after prone increased from 26.0 [24.5-28.0] mL.m-2 to 33.0 [31.0-37.5] mL.m-2 (p = 0.014). Among non-responders, CPI decreased to 0.43 [0.28-0.53] W.m-2 (p = 0.011), and SVI decreased to 29.0 [23.5-34.8] mL.m-2 (p < 0.009). CPI exhibited predictive capabilities for fluid responsiveness as a receiver operating characteristic curve of 0.78 [95% Confidence Interval, 0.60-0.95; p = 0.025]. CONCLUSION This study suggests the potential of CPI as an alternative method to existing preload indices in assessing fluid responsiveness in clinical scenarios, offering potential benefits for responders and non-responders.
Collapse
Affiliation(s)
- Ji Young Min
- The Catholic University of Korea, College of Medicine, Eunpyeong St. Mary's Hospital, Department of Anesthesiology and Pain Medicine, Seoul, Republic of Korea
| | - Joon Pyo Jeon
- The Catholic University of Korea, College of Medicine, Eunpyeong St. Mary's Hospital, Department of Anesthesiology and Pain Medicine, Seoul, Republic of Korea
| | - Mee Young Chung
- The Catholic University of Korea, College of Medicine, Eunpyeong St. Mary's Hospital, Department of Anesthesiology and Pain Medicine, Seoul, Republic of Korea
| | - Chang Jae Kim
- The Catholic University of Korea, College of Medicine, Eunpyeong St. Mary's Hospital, Department of Anesthesiology and Pain Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Chew MS, Donadello K, Messina A. Editorial comment to intraoperative haemodynamic monitoring and management of adults having non-cardiac surgery: guidelines of the German society of Anaesthesiology and Intensive care medicine in collaboration with the German Association of the Scientific medical societies. J Clin Monit Comput 2024; 38:941-944. [PMID: 39060555 DOI: 10.1007/s10877-024-01203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Michelle S Chew
- Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Katia Donadello
- Department of Surgery, Dentistry, Gynaecology and Paediatrics, University of Verona, Verona, Italy
- Anaesthesia and Intensive Care B Unit, University Hospital Integrated Trust of Verona, Verona, Italy
| | - Antonio Messina
- Department of Anesthesia and Intensive Care Medicine, Humanitas Clinical and Research Center, Humanitas Hospital, Milan, Italy
| |
Collapse
|
14
|
Li L, Du L, Chen G, Zhang W, Du B, Zhang L, Zheng J. Stroke volume variation induced by lung recruitment maneuver to predict fluid responsiveness in patients receiving mechanical ventilation: A systematic review and meta-analysis. J Clin Anesth 2024; 97:111545. [PMID: 38971135 DOI: 10.1016/j.jclinane.2024.111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
STUDY OBJECTIVE The aim of this study was to evaluate the accuracy of lung recruitment maneuver induced stroke volume variation (ΔSVLRM) in predicting fluid responsiveness in mechanically ventilated adult patients by systematic review and meta-analysis. METHODS A comprehensive electronic search of relevant literature was conducted in PubMed, Web of Science, Cochrane Library, Ovid Medline, Embase and Chinese databases (including China National Knowledge Infrastructure, Wanfang and VIP databases). Review Manager 5.4, Meta-DiSc 1.4 and STATA 16.0 were selected for data analysis, and QUADAS-2 tool was used for quality assessment. Data from selected studies were pooled to obtain sensitivity, specificity, diagnostic likelihood ratio (DLR) of positive and negative, diagnostic odds ratio (DOR), and summary receiver operating characteristic curve. RESULTS A total of 6 studies with 256 patients were enrolled through March 2024. The risk of bias and applicability concerns for each included study were low, and there was no significant publication bias. There was moderate to substantial heterogeneity for the non-threshold effect, but not for the threshold effect. The combined sensitivity and specificity were 0.84 (95% CI, 0.77-0.90) and 0.79 (95% CI, 0.70-0.86), respectively. The DOR and the area under the curve (AUC) were 22.15 (95%CI, 7.62-64.34) and 0.90 (95% CI, 0.87-0.92), respectively. The positive and negative predictive values of DLR were 4.53 (95% CI, 2.50-8.18) and 0.19 (95% CI, 0.11-0.35), respectively. Fagan's nomogram showed that with a pre-test probability of 52%, the post-test probability reached 83% and 17% for the positive and negative tests, respectively. CONCLUSIONS Based on the currently available evidence, ΔSVLRM has a good diagnostic value for predicting the fluid responsiveness in adult patients undergoing mechanical ventilation. Given the heterogeneity and limitations of the published data, further studies with large sample sizes and different clinical settings are needed to confirm the diagnostic value of ΔSVLRM in predicting fluid responsiveness. PROSPERO registration number: CRD42023490598.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Li Du
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55th, People's South Road, Chengdu, Sichuan, China
| | - Guo Chen
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Bin Du
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Lu Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China
| | - Jianqiao Zheng
- Department of Anesthesiology, West China Hospital, Sichuan University No. 37th, Guoxue Alley, Wuhou District, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Nimje GR, Goyal VK, Singh P, Shekhrajka P, Mishra A, Mittal S. Assessment of fluid responsiveness after tidal volume challenge in renal transplant recipients: a nonrandomized prospective interventional study. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:188-196. [PMID: 39245990 PMCID: PMC11464152 DOI: 10.4285/ctr.24.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Background When applying lung-protective ventilation, fluid responsiveness cannot be predicted by pulse pressure variation (PPV) or stroke volume variation (SVV). Functional hemodynamic testing may help address this limitation. This study examined whether changes in dynamic indices such as PPV and SVV, induced by tidal volume challenge (TVC), can reliably predict fluid responsiveness in patients undergoing renal transplantation who receive lung-protective ventilation. Methods This nonrandomized interventional study included renal transplant recipients with end-stage renal disease. Patients received ventilation with a 6 mL/kg tidal volume (TV), and the FloTrac system was attached for continuous hemodynamic monitoring. Participants were classified as responders or nonresponders based on whether fluid challenge increased the stroke volume index by more than 10%. Results The analysis included 36 patients, of whom 19 (52.8%) were responders and 17 (47.2%) were nonresponders. Among responders, the mean ΔPPV6-8 (calculated as PPV at a TV of 8 mL/kg predicted body weight [PBW] minus that at 6 mL/kg PBW) was 3.32±0.75 and ΔSVV6-8 was 2.58±0.77, compared to 0.82±0.53 and 0.70±0.92 for nonresponders, respectively. ΔPPV6-8 exhibited an area under the curve (AUC) of 0.97 (95% confidence interval [CI], 0.93-1.00; P≤0.001), with an optimal cutoff value of 1.5, sensitivity of 94.7%, and specificity of 94.1%. ΔSVV6-8 displayed an AUC of 0.93 (95% CI, 0.84-1.00; P≤0.001) at the same cutoff value of 1.5, with a sensitivity of 94.7% and a specificity of 76.5%. Conclusions TVC-induced changes in PPV and SVV are predictive of fluid responsiveness in renal transplant recipients who receive intraoperative lung-protective ventilation.
Collapse
Affiliation(s)
- Ganesh Ramaji Nimje
- Department of Organ Transplant Anaesthesia and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Vipin Kumar Goyal
- Department of Organ Transplant Anaesthesia and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Pankaj Singh
- Department of Organ Transplant Anaesthesia and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | | | - Akash Mishra
- Division of Biostatistics, Department of Community Medicine, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Saurabh Mittal
- Department of Organ Transplant Anaesthesia and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| |
Collapse
|
16
|
Chaves RCDF, Barbas CSV, Queiroz VNF, Serpa Neto A, Deliberato RO, Pereira AJ, Timenetsky KT, Silva Júnior JM, Takaoka F, de Backer D, Celi LA, Corrêa TD. Assessment of fluid responsiveness using pulse pressure variation, stroke volume variation, plethysmographic variability index, central venous pressure, and inferior vena cava variation in patients undergoing mechanical ventilation: a systematic review and meta-analysis. Crit Care 2024; 28:289. [PMID: 39217370 PMCID: PMC11366151 DOI: 10.1186/s13054-024-05078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
IMPORTANCE Maneuvers assessing fluid responsiveness before an intravascular volume expansion may limit useless fluid administration, which in turn may improve outcomes. OBJECTIVE To describe maneuvers for assessing fluid responsiveness in mechanically ventilated patients. REGISTRATION The protocol was registered at PROSPERO: CRD42019146781. INFORMATION SOURCES AND SEARCH PubMed, EMBASE, CINAHL, SCOPUS, and Web of Science were search from inception to 08/08/2023. STUDY SELECTION AND DATA COLLECTION Prospective and intervention studies were selected. STATISTICAL ANALYSIS Data for each maneuver were reported individually and data from the five most employed maneuvers were aggregated. A traditional and a Bayesian meta-analysis approach were performed. RESULTS A total of 69 studies, encompassing 3185 fluid challenges and 2711 patients were analyzed. The prevalence of fluid responsiveness was 49.9%. Pulse pressure variation (PPV) was studied in 40 studies, mean threshold with 95% confidence intervals (95% CI) = 11.5 (10.5-12.4)%, and area under the receiver operating characteristics curve (AUC) with 95% CI was 0.87 (0.84-0.90). Stroke volume variation (SVV) was studied in 24 studies, mean threshold with 95% CI = 12.1 (10.9-13.3)%, and AUC with 95% CI was 0.87 (0.84-0.91). The plethysmographic variability index (PVI) was studied in 17 studies, mean threshold = 13.8 (12.3-15.3)%, and AUC was 0.88 (0.82-0.94). Central venous pressure (CVP) was studied in 12 studies, mean threshold with 95% CI = 9.0 (7.7-10.1) mmHg, and AUC with 95% CI was 0.77 (0.69-0.87). Inferior vena cava variation (∆IVC) was studied in 8 studies, mean threshold = 15.4 (13.3-17.6)%, and AUC with 95% CI was 0.83 (0.78-0.89). CONCLUSIONS Fluid responsiveness can be reliably assessed in adult patients under mechanical ventilation. Among the five maneuvers compared in predicting fluid responsiveness, PPV, SVV, and PVI were superior to CVP and ∆IVC. However, there is no data supporting any of the above mentioned as being the best maneuver. Additionally, other well-established tests, such as the passive leg raising test, end-expiratory occlusion test, and tidal volume challenge, are also reliable.
Collapse
Affiliation(s)
- Renato Carneiro de Freitas Chaves
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Department of Anesthesiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Department of Pneumology, Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- MIT Critical Data, Laboratory for Computational Physiology, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Critical Care Medicine and Anesthesiology, Hospital Israelita Albert Einstein, Avenida Albert Einstein, 627/701, 5° Floor, São Paulo, SP, 05651-901, Brazil.
| | - Carmen Silvia Valente Barbas
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Department of Pneumology, Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Veronica Neves Fialho Queiroz
- Department of Anesthesiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Department of Anesthesiology, Takaoka Anestesia, São Paulo, SP, Brazil
| | - Ary Serpa Neto
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Melbourne, VIC, Australia
- Department of Intensive Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne, Australia
| | - Rodrigo Octavio Deliberato
- MIT Critical Data, Laboratory for Computational Physiology, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Translational Health Intelligence and Knowledge Lab, Department of Biostatistics, Health Informatics and Data Science, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Adriano José Pereira
- Department of Intensive Care, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | - Flávio Takaoka
- Department of Anesthesiology, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Department of Anesthesiology, Takaoka Anestesia, São Paulo, SP, Brazil
| | - Daniel de Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Leo Anthony Celi
- MIT Critical Data, Laboratory for Computational Physiology, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
17
|
Jozwiak M, Teboul JL. Heart-Lungs interactions: the basics and clinical implications. Ann Intensive Care 2024; 14:122. [PMID: 39133379 PMCID: PMC11319696 DOI: 10.1186/s13613-024-01356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
Heart-lungs interactions are related to the interplay between the cardiovascular and the respiratory system. They result from the respiratory-induced changes in intrathoracic pressure, which are transmitted to the cardiac cavities and to the changes in alveolar pressure, which may impact the lung microvessels. In spontaneously breathing patients, consequences of heart-lungs interactions are during inspiration an increase in right ventricular preload and afterload, a decrease in left ventricular preload and an increase in left ventricular afterload. In mechanically ventilated patients, consequences of heart-lungs interactions are during mechanical insufflation a decrease in right ventricular preload, an increase in right ventricular afterload, an increase in left ventricular preload and a decrease in left ventricular afterload. Physiologically and during normal breathing, heart-lungs interactions do not lead to significant hemodynamic consequences. Nevertheless, in some clinical settings such as acute exacerbation of chronic obstructive pulmonary disease, acute left heart failure or acute respiratory distress syndrome, heart-lungs interactions may lead to significant hemodynamic consequences. These are linked to complex pathophysiological mechanisms, including a marked inspiratory negativity of intrathoracic pressure, a marked inspiratory increase in transpulmonary pressure and an increase in intra-abdominal pressure. The most recent application of heart-lungs interactions is the prediction of fluid responsiveness in mechanically ventilated patients. The first test to be developed using heart-lungs interactions was the respiratory variation of pulse pressure. Subsequently, many other dynamic fluid responsiveness tests using heart-lungs interactions have been developed, such as the respiratory variations of pulse contour-based stroke volume or the respiratory variations of the inferior or superior vena cava diameters. All these tests share the same limitations, the most frequent being low tidal volume ventilation, persistent spontaneous breathing activity and cardiac arrhythmia. Nevertheless, when their main limitations are properly addressed, all these tests can help intensivists in the decision-making process regarding fluid administration and fluid removal in critically ill patients.
Collapse
Affiliation(s)
- Mathieu Jozwiak
- Service de Médecine Intensive Réanimation, CHU de Nice Hôpital Archet 1, 151 Route Saint Antoine de Ginestière, 06200, Nice, France.
- UR2CA, Unité de Recherche Clinique Côte d'Azur, Université Côte d'Azur, 06200, Nice, France.
| | - Jean-Louis Teboul
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
18
|
Prütz M, Bozkurt A, Löser B, Haas SA, Tschopp D, Rieder P, Trachsel S, Vorderwülbecke G, Menk M, Balzer F, Treskatsch S, Reuter DA, Zitzmann A. Dynamic parameters of fluid responsiveness in the operating room : An analysis of intraoperative ventilation framework conditions. DIE ANAESTHESIOLOGIE 2024; 73:462-468. [PMID: 38942901 PMCID: PMC11222210 DOI: 10.1007/s00101-024-01428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Reliable assessment of fluid responsiveness with pulse pressure variation (PPV) depends on certain ventilation-related preconditions; however, some of these requirements are in contrast with recommendations for protective ventilation. OBJECTIVE The aim of this study was to evaluate the applicability of PPV in patients undergoing non-cardiac surgery by retrospectively analyzing intraoperative ventilation data. MATERIAL AND METHODS Intraoperative ventilation data from three large medical centers in Germany and Switzerland from January to December 2018 were extracted from electronic patient records and pseudonymized; 10,334 complete data sets were analyzed with respect to the ventilation parameters set as well as demographic and medical data. RESULTS In 6.3% of the 3398 included anesthesia records, patients were ventilated with mean tidal volumes (mTV) > 8 ml/kg predicted body weight (PBW). These would qualify for PPV-based hemodynamic assessment, but the majority were ventilated with lower mTVs. In patients who underwent abdominal surgery (75.5% of analyzed cases), mTVs > 8 ml/kg PBW were used in 5.5% of cases, which did not differ between laparoscopic (44.9%) and open (55.1%) approaches. Other obstacles to the use of PPV, such as elevated positive end-expiratory pressure (PEEP) or increased respiratory rate, were also identified. Of all the cases 6.0% were ventilated with a mTV of > 8 ml/kg PBW and a PEEP of 5-10 cmH2O and 0.3% were ventilated with a mTV > 8 ml/kg PBW and a PEEP of > 10 cmH2O. CONCLUSION The data suggest that only few patients meet the currently defined TV (of > 8 ml/kg PBW) for assessment of fluid responsiveness using PPV during surgery.
Collapse
Affiliation(s)
- M Prütz
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - A Bozkurt
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - B Löser
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - S A Haas
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - D Tschopp
- The Hirslanden Clinical Trial Unit, Hirslanden AG, Glattpark, Switzerland
| | - P Rieder
- The Hirslanden Clinical Trial Unit, Hirslanden AG, Glattpark, Switzerland
| | - S Trachsel
- Institute for Anaesthetics and Intensive Care, Klinik Beau-Site, Hirslanden AG, Bern, Switzerland
| | - G Vorderwülbecke
- Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M Menk
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus and Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - F Balzer
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - S Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - D A Reuter
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - A Zitzmann
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medical Centre Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
19
|
Swathy AS, Jafra A, Bhardwaj N, Kanojia RP, Bawa M. Goal-directed fluid therapy guided by plethysmographic variability index versus conventional liberal fluid therapy in neonates undergoing abdominal surgery: A prospective randomized controlled trial. Paediatr Anaesth 2024; 34:559-567. [PMID: 38348932 DOI: 10.1111/pan.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Intraoperative fluid therapy maintains normovolemia, normal tissue perfusion, normal metabolic function, normal electrolytes, and acid-base status. Plethysmographic variability index has been shown to predict fluid responsiveness but its role in guiding intraoperative fluid therapy is still elusive. AIMS The aim of the present study was to compare intraoperative goal-directed fluid therapy based on plethysmographic variability index with liberal fluid therapy in term neonates undergoing abdominal surgeries. METHODS A prospective randomized controlled study was conducted in a tertiary care centre, over a period of 18 months. A total of 30 neonates completed the study out of 132 neonates screened. Neonates with tracheoesophageal fistula, congenital diaphragmatic hernia, congenital heart disease, respiratory disorders, creatinine clearance <90 mL/min and who were hemodynamically unstable were excluded. Neonates were randomized to goal-directed fluid therapy group where the plethysmographic variability index was targeted at <18 or liberal fluid therapy group. Primary outcome was comparison of total amount of fluid infused intraoperatively in both the groups. Secondary outcomes included intraoperative and postoperative arterial blood gas parameters, biochemical parameters, use of vasopressors, number of fluid boluses, complications and duration of hospital stay. RESULTS There was no significant difference in total intraoperative fluid infused [90 (84-117.5 mL) in goal-directed fluid therapy and 105 (85.5-144.5 mL) in liberal fluid therapy group (p = .406)], median difference (95% CI) -15 (-49.1 to 19.1). There was a decrease in serum lactate levels in both groups from preoperative to postoperative 24 h. The amount of fluid infused before dopamine administration was significantly higher in liberal fluid therapy group (58 [50.25-65 mL]) compared to goal-directed fluid therapy group (36 [22-44 mL], p = .008), median difference (95% CI) -22 (-46 to 2). In postoperative period, the total amount of fluid intake over 24 h was comparable in two groups (222 [204-253 mL] in goal-directed fluid therapy group and 224 [179.5-289.5 mL] in liberal fluid therapy group, p = .917) median difference (95% CI) cutoff -2 (-65.3 to 61.2). CONCLUSION Intraoperative plethysmographic variability index-guided goal-directed fluid therapy was comparable to liberal fluid therapy in terms of total volume of fluid infused in neonates during perioperative period. More randomized controlled trials with higher sample size are required. TRIAL REGISTRATION Central Trial Registry of India (CTRI/2020/02/023561).
Collapse
Affiliation(s)
- A S Swathy
- Department of Anaesthesia and Intensive Care, All India Institute of Medical Sciences, New Delhi, India
| | - Anudeep Jafra
- Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neerja Bhardwaj
- Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravi P Kanojia
- Department of Pediatric surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Monika Bawa
- Department of Pediatric surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
20
|
Chun EH, Chung MH, Kim JE, Lee HS, Jo Y, Jun JH. Use of stepwise lung recruitment maneuver to predict fluid responsiveness under lung protective ventilation in the operating room. Sci Rep 2024; 14:11649. [PMID: 38773192 PMCID: PMC11109109 DOI: 10.1038/s41598-024-62355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Recent research has revealed that hemodynamic changes caused by lung recruitment maneuvers (LRM) with continuous positive airway pressure can be used to identify fluid responders. We investigated the usefulness of stepwise LRM with increasing positive end-expiratory pressure and constant driving pressure for predicting fluid responsiveness in patients under lung protective ventilation (LPV). Forty-one patients under LPV were enrolled when PPV values were in a priori considered gray zone (4% to 17%). The FloTrac-Vigileo device measured stroke volume variation (SVV) and stroke volume (SV), while the patient monitor measured pulse pressure variation (PPV) before and at the end of stepwise LRM and before and 5 min after fluid challenge (6 ml/kg). Fluid responsiveness was defined as a ≥ 15% increase in the SV or SV index. Seventeen were fluid responders. The areas under the curve for the augmented values of PPV and SVV, as well as the decrease in SV by stepwise LRM to identify fluid responders, were 0.76 (95% confidence interval, 0.61-0.88), 0.78 (0.62-0.89), and 0.69 (0.53-0.82), respectively. The optimal cut-offs for the augmented values of PPV and SVV were > 18% and > 13%, respectively. Stepwise LRM -generated augmented PPV and SVV predicted fluid responsiveness under LPV.
Collapse
Affiliation(s)
- Eun Hee Chun
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Mi Hwa Chung
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jung Eun Kim
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngbum Jo
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Joo Hyun Jun
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Wyffels PAH, De Hert S, Wouters PF. Measurement error of pulse pressure variation. J Clin Monit Comput 2024; 38:313-323. [PMID: 38064135 DOI: 10.1007/s10877-023-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/21/2023] [Indexed: 04/06/2024]
Abstract
Dynamic preload parameters are used to guide perioperative fluid management. However, reported cut-off values vary and the presence of a gray zone complicates clinical decision making. Measurement error, intrinsic to the calculation of pulse pressure variation (PPV) has not been studied but could contribute to this level of uncertainty. The purpose of this study was to quantify and compare measurement errors associated with PPV calculations. Hemodynamic data of patients undergoing liver transplantation were extracted from the open-access VitalDatabase. Three algorithms were applied to calculate PPV based on 1 min observation periods. For each method, different durations of sampling periods were assessed. Best Linear Unbiased Prediction was determined as the reference PPV-value for each observation period. A Bayesian model was used to determine bias and precision of each method and to simulate the uncertainty of measured PPV-values. All methods were associated with measurement error. The range of differential and proportional bias were [- 0.04%, 1.64%] and [0.92%, 1.17%] respectively. Heteroscedasticity influenced by sampling period was detected in all methods. This resulted in a predicted range of reference PPV-values for a measured PPV of 12% of [10.2%, 13.9%] and [10.3%, 15.1%] for two selected methods. The predicted range in reference PPV-value changes for a measured absolute change of 1% was [- 1.3%, 3.3%] and [- 1.9%, 4%] for these two methods. We showed that all methods that calculate PPV come with varying degrees of uncertainty. Accounting for bias and precision may have important implications for the interpretation of measured PPV-values or PPV-changes.
Collapse
Affiliation(s)
- Piet A H Wyffels
- Department of Basic and Applied Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Anaesthesiology and Perioperative Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Stefan De Hert
- Department of Basic and Applied Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Anaesthesiology and Perioperative Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Patrick F Wouters
- Department of Basic and Applied Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Anaesthesiology and Perioperative Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
22
|
Zhou K, Ran S, Guo Y, Ye H. CAROTID ARTERY ULTRASOUND FOR ASSESSING FLUID RESPONSIVENESS IN PATIENTS UNDERGOING MECHANICAL VENTILATION WITH LOW TIDAL VOLUME AND PRESERVED SPONTANEOUS BREATHING. Shock 2024; 61:360-366. [PMID: 38117132 DOI: 10.1097/shk.0000000000002288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
ABSTRACT Objective : This study aimed to investigate whether changes in carotid artery corrected flow time (ΔFTc bolus ) and carotid artery peak flow velocity respiratory variation (Δ V peak bolus ) induced by the fluid challenge could reliably predict fluid responsiveness in mechanically ventilated patients with a tidal volume < 8 mL/kg Predicted Body Weight while preserving spontaneous breathing. Methods : Carotid artery corrected flow time, Δ V peak, and hemodynamic data were measured before and after administration of 250 mL crystalloids. Fluid responsiveness was defined as a 10% or more increase in stroke volume index as assessed by noninvasive cardiac output monitoring after the fluid challenge. Results : A total of 43 patients with acute circulatory failure were enrolled in this study. Forty-three patients underwent a total of 60 fluid challenges. The ΔFTc bolus and Δ V peak bolus showed a significant difference between the fluid responsiveness positive group (n = 35) and the fluid responsiveness negative group (n = 25). Spearman correlation test showed that ΔFTc bolus and Δ V peak bolus with the relative increase in stroke volume index after fluid expansion ( r = 0.5296, P < 0.0001; r = 0.3175, P = 0.0135). Multiple logistic regression analysis demonstrated that ΔFTc bolus and Δ V peak bolus were significantly correlated with fluid responsiveness in patients with acute circulatory failure. The areas under the receiver operating characteristic curves of ΔFTc bolus and Δ V peak bolus for predicting fluid responsiveness were 0.935 and 0.750, respectively. The optimal cutoff values of ΔFTc bolus and Δ V peak bolus were 0.725 (sensitivity = 97.1%, specificity = 84%) and 4.21% (sensitivity = 65.7%, specificity = 80%), respectively. Conclusion : In mechanically ventilated patients with a tidal volume < 8 mL/kg while preserving spontaneous breathing, ΔFTc bolus and Δ V peak bolus could predict fluid responsiveness. The predictive performance of ΔFTc bolus was superior to Δ V peak bolus .
Collapse
Affiliation(s)
- Kefan Zhou
- Department of Intensive Care Medicine, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, China
| | | | | | | |
Collapse
|
23
|
Lobo SM, Junior JMDS, Malbouisson LM. Improving perioperative care in low-resource settings with goal-directed therapy: a narrative review. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:744460. [PMID: 37648078 DOI: 10.1016/j.bjane.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Perioperative Goal-Directed Therapy (PGDT) has significantly showed to decrease complications and risk of death in high-risk patients according to numerous meta-analyses. The main goal of PGDT is to individualize the therapy with fluids, inotropes, and vasopressors, during and after surgery, according to patients' needs in order to prevent organic dysfunction development. In this opinion paper we aimed to focus a discussion on possible alternatives to invasive hemodynamic monitoring in low resource settings.
Collapse
Affiliation(s)
- Suzana Margareth Lobo
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil.
| | - João Manoel da Silva Junior
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Luiz Marcelo Malbouisson
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
24
|
La Via L, Vasile F, Perna F, Zawadka M. Prediction of fluid responsiveness in critical care: Current evidence and future perspective. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2024; 54:101316. [DOI: 10.1016/j.tacc.2023.101316] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
De Backer D, Deutschman CS, Hellman J, Myatra SN, Ostermann M, Prescott HC, Talmor D, Antonelli M, Pontes Azevedo LC, Bauer SR, Kissoon N, Loeches IM, Nunnally M, Tissieres P, Vieillard-Baron A, Coopersmith CM. Surviving Sepsis Campaign Research Priorities 2023. Crit Care Med 2024; 52:268-296. [PMID: 38240508 DOI: 10.1097/ccm.0000000000006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES To identify research priorities in the management, epidemiology, outcome, and pathophysiology of sepsis and septic shock. DESIGN Shortly after publication of the most recent Surviving Sepsis Campaign Guidelines, the Surviving Sepsis Research Committee, a multiprofessional group of 16 international experts representing the European Society of Intensive Care Medicine and the Society of Critical Care Medicine, convened virtually and iteratively developed the article and recommendations, which represents an update from the 2018 Surviving Sepsis Campaign Research Priorities. METHODS Each task force member submitted five research questions on any sepsis-related subject. Committee members then independently ranked their top three priorities from the list generated. The highest rated clinical and basic science questions were developed into the current article. RESULTS A total of 81 questions were submitted. After merging similar questions, there were 34 clinical and ten basic science research questions submitted for voting. The five top clinical priorities were as follows: 1) what is the best strategy for screening and identification of patients with sepsis, and can predictive modeling assist in real-time recognition of sepsis? 2) what causes organ injury and dysfunction in sepsis, how should it be defined, and how can it be detected? 3) how should fluid resuscitation be individualized initially and beyond? 4) what is the best vasopressor approach for treating the different phases of septic shock? and 5) can a personalized/precision medicine approach identify optimal therapies to improve patient outcomes? The five top basic science priorities were as follows: 1) How can we improve animal models so that they more closely resemble sepsis in humans? 2) What outcome variables maximize correlations between human sepsis and animal models and are therefore most appropriate to use in both? 3) How does sepsis affect the brain, and how do sepsis-induced brain alterations contribute to organ dysfunction? How does sepsis affect interactions between neural, endocrine, and immune systems? 4) How does the microbiome affect sepsis pathobiology? 5) How do genetics and epigenetics influence the development of sepsis, the course of sepsis and the response to treatments for sepsis? CONCLUSIONS Knowledge advances in multiple clinical domains have been incorporated in progressive iterations of the Surviving Sepsis Campaign guidelines, allowing for evidence-based recommendations for short- and long-term management of sepsis. However, the strength of existing evidence is modest with significant knowledge gaps and mortality from sepsis remains high. The priorities identified represent a roadmap for research in sepsis and septic shock.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY
- Sepsis Research Lab, the Feinstein Institutes for Medical Research, Manhasset, NY
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, United Kingdom
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio-Martin Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Leinster, Dublin, Ireland
| | | | - Pierre Tissieres
- Pediatric Intensive Care, Neonatal Medicine and Pediatric Emergency, AP-HP Paris Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antoine Vieillard-Baron
- Service de Medecine Intensive Reanimation, Hopital Ambroise Pare, Universite Paris-Saclay, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
26
|
Mallat J, Lemyze M, Fischer MO. Passive leg raising test induced changes in plethysmographic variability index to assess fluid responsiveness in critically ill mechanically ventilated patients with acute circulatory failure. J Crit Care 2024; 79:154449. [PMID: 37857068 DOI: 10.1016/j.jcrc.2023.154449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Passive leg raising (PLR) reliably predicts fluid responsiveness but requires a real-time cardiac index (CI) measurement or the presence of an invasive arterial line to achieve this effect. The plethysmographic variability index (PVI), an automatic measurement of the respiratory variation of the perfusion index, is non-invasive and continuously displayed on the pulse oximeter device. We tested whether PLR-induced changes in PVI (ΔPVIPLR) could accurately predict fluid responsiveness in mechanically ventilated patients with acute circulatory failure. METHODS This was a secondary analysis of an observational prospective study. We included 29 mechanically ventilated patients with acute circulatory failure in this study. We measured PVI (Radical-7 device; Masimo Corp., Irvine, CA) and CI (Echocardiography) before and during a PLR test and before and after volume expansion of 500 mL of crystalloid solution. A volume expansion-induced increase in CI of >15% defined fluid responsiveness. To investigate whether ΔPVIPLR can predict fluid responsiveness, we determined areas under the receiver operating characteristic curves (AUROCs) and gray zones for ΔPVIPLR. RESULTS Of the 29 patients, 27 (93.1%) received norepinephrine. The median tidal volume was 7.0 [IQR: 6.6-7.6] mL/kg ideal body weight. Nineteen patients (65.5%) were classified as fluid responders (increase in CI > 15% after volume expansion). Relative ΔPVIPLR accurately predicted fluid responsiveness with an AUROC of 0.89 (95%CI: 0.72-0.98, p < 0.001). A decrease in PVI ≤ -24.1% induced by PLR detected fluid responsiveness with a sensitivity of 95% (95%CI: 74-100%) and a specificity of 80% (95%CI: 44-97%). Gray zone was acceptable, including 13.8% of patients. The correlations between the relative ΔPVIPLR and changes in CI induced by PLR and by volume expansion were significant (r = -0.58, p < 0.001, and r = -0.65, p < 0.001; respectively). CONCLUSIONS In sedated and mechanically ventilated ICU patients with acute circulatory failure, PLR-induced changes in PVI accurately predict fluid responsiveness with an acceptable gray zone. TRIAL REGISTRATION ClinicalTrials.govNCT03225378.
Collapse
Affiliation(s)
- Jihad Mallat
- Department of Critical Care Medicine, Arras Hospital, 6200 Arras, France; Critical Care Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA; Normandy University, UNICAEN, ED 497, Caen, France.
| | - Malcolm Lemyze
- Department of Critical Care Medicine, Arras Hospital, 6200 Arras, France
| | - Marc-Olivier Fischer
- Institut Aquitain du Cœur, Clinique Saint Augustin, ELSAN, 114 Avenue d'Arès, 33 074 Bordeaux Cedex, France
| |
Collapse
|
27
|
Tang X, Chen Q, Huang Z, Liang J, An R, Liu H. Comparison of the carotid corrected flow time and tidal volume challenge for assessing fluid responsiveness in robot-assisted laparoscopic surgery. J Robot Surg 2023; 17:2763-2772. [PMID: 37707743 DOI: 10.1007/s11701-023-01710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
We aimed to compare the ability of carotid corrected flow time assessed by ultrasound and the changes in dynamic preload indices induced by tidal volume challenge predicting fluid responsiveness in patients undergoing robot-assisted laparoscopic gynecological surgery in the modified head-down lithotomy position. This prospective single-center study included patients undergoing robot-assisted laparoscopic surgery in the modified head-down lithotomy position. Carotid Doppler parameters and hemodynamic data, including corrected flow time, pulse pressure variation, stroke volume variation, and stroke volume index at a tidal volume of 6 mL/kg predicted body weight and after increasing the tidal volume to 8 mL/kg predicted body weight (tidal volume challenge), respectively, were measured. Fluid responsiveness was defined as a stroke volume index ≥ 10% increase after volume expansion. Among the 52 patients included, 26 were classified as fluid responders and 26 as non-responders based on the stroke volume index. The area under the receiver operating characteristic curve measured to predict the fluid responsiveness to corrected flow time and changes in pulse pressure variation (ΔPPV6-8) after tidal volume challenge were 0.82 [95% confidence interval (CI) 0.71-0.94; P < 0.0001] and 0.85 (95% CI 0.74-0.96; P < 0.0001), respectively. The value for pulse pressure variation at a tidal volume of 8 mL/kg was 0.79 (95% CI 0.67-0.91; P = 0.0003). The optimal cut-off values for corrected flow time and ΔPPV6-8 were 357 ms and > 1%, respectively. Both the corrected flow time and Changes in pulse pressure variation after tidal volume challenge reliably predicted fluid responsiveness in patients undergoing robot-assisted laparoscopic gynecological surgery in the modified head-down lithotomy position. And pulse pressure variation at a tidal volume of 8 mL/kg maybe also a useful predictor.Trial registration: Chinese Clinical Trial Register (CHiCTR2200060573, Principal investigator: Hongliang Liu, Date of registration: 05/06/2022).
Collapse
Affiliation(s)
- Xixi Tang
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Qi Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zejun Huang
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
| | - Jingqiu Liang
- Chongqing Cancer Multi-Omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ran An
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hongliang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
28
|
Wu M, Dai Z, Liang Y, Liu X, Zheng X, Zhang W, Bo J. Respiratory variation in the internal jugular vein does not predict fluid responsiveness in the prone position during adolescent idiopathic scoliosis surgery: a prospective cohort study. BMC Anesthesiol 2023; 23:360. [PMID: 37932674 PMCID: PMC10626766 DOI: 10.1186/s12871-023-02313-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Respiratory variation in the internal jugular vein (IJVV) has not shown promising results in predicting volume responsiveness in ventilated patients with low tidal volume (Vt) in prone position. We aimed to determine whether the baseline respiratory variation in the IJVV value measured by ultrasound might predict fluid responsiveness in patients with adolescent idiopathic scoliosis (AIS) undergoing posterior spinal fusion (PSF) with low Vt. METHODS According to the fluid responsiveness results, the included patients were divided into two groups: those who responded to volume expansion, denoted the responder group, and those who did not respond, denoted the non-responder group. The primary outcome was determination of the value of baseline IJVV in predicting fluid responsiveness (≥15% increases in stroke volume index (SVI) after 7 ml·kg-1 colloid administration) in patients with AIS undergoing PSF during low Vt ventilation. Secondary outcomes were estimation of the diagnostic performance of pulse pressure variation (PPV), stroke volume variation (SVV), and the combination of IJVV and PPV in predicting fluid responsiveness in this surgical setting. The ability of each parameter to predict fluid responsiveness was assessed using a receiver operating characteristic curve. RESULTS Fifty-six patients were included, 36 (64.29%) of whom were deemed fluid responsive. No significant difference in baseline IJVV was found between responders and non-responders (25.89% vs. 23.66%, p = 0.73), and no correlation was detected between baseline IJVV and the increase in SVI after volume expansion (r = 0.14, p = 0.40). A baseline IJVV greater than 32.00%, SVV greater than 14.30%, PPV greater than 11.00%, and a combination of IJVV and PPV greater than 64.00% had utility in identifying fluid responsiveness, with a sensitivity of 33.33%, 77.78%, 55.56%, and 55.56%, respectively, and a specificity of 80.00%, 50.00%, 65.00%, and 65.00%, respectively. The area under the receiver operating characteristic curve for the baseline values of IJVV, SVV, PPV, and the combination of IJVV and PPV was 0.52 (95% CI, 0.38-0.65, p=0.83), 0.54 (95% CI, 0.40-0.67, p=0.67), 0.58 (95% CI, 0.45-0.71, p=0.31), and 0.57 (95% CI, 0.43-0.71, p=0.37), respectively. CONCLUSIONS Ultrasonic-derived IJVV lacked accuracy in predicting fluid responsiveness in patients with AIS undergoing PSF during low Vt ventilation. In addition, the baseline values of PPV, SVV, and the combination of IJVV and PPV did not predict fluid responsiveness in this surgical setting. TRAIL REGISTRATION This trial was registered at www.chictr.org (ChiCTR2200064947) on 24/10/2022. All data were collected through chart review.
Collapse
Affiliation(s)
- Mimi Wu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Zhao Dai
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Ying Liang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xiaojie Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xu Zheng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.
| | - Jinhua Bo
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.
| |
Collapse
|
29
|
Botros JM, Salem YSM, Khalil M, Algyar MF, Yassin HM. Effects of tidal volume challenge on the reliability of plethysmography variability index in hepatobiliary and pancreatic surgeries: a prospective interventional study. J Clin Monit Comput 2023; 37:1275-1285. [PMID: 36933167 PMCID: PMC10520182 DOI: 10.1007/s10877-023-00977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/18/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND The plethysmography variability index (PVI) is a non-invasive, real-time, and automated parameter for evaluating fluid responsiveness, but it does not reliably predict fluid responsiveness during low tidal volume (VT) ventilation. We hypothesized that in a 'tidal volume challenge' with a transient increase in tidal volume from 6 to 8 ml Kg- 1, the changes in PVI could predict fluid responsiveness reliably. METHOD We performed a prospective interventional study in adult patients undergoing hepatobiliary or pancreatic tumor resections and receiving controlled low VT ventilation. The values for PVI, perfusion index, stroke volume variation, and stroke volume index (SVI) were recorded at baseline VT of 6 ml Kg- 1, 1 min after the VT challenge (8 ml Kg- 1), 1 min after VT 6 ml Kg- 1 reduced back again, and then 5 min after crystalloid fluid bolus 6 ml kg- 1 (actual body weight) administered over 10 min. The fluid responders were identified by SVI rise ≥ 10% after the fluid bolus. RESULTS The area under the receiver operating characteristic curve for PVI value change (ΔPVI6-8) after increasing VT from 6 to 8 ml Kg- 1 was 0.86 (95% confidence interval, 0.76-0.96), P < 0.001, 95% sensitivity, 68% specificity, and with best cut-off value of absolute change (ΔPVI6-8) = 2.5%. CONCLUSION In hepatobiliary and pancreatic surgeries, tidal volume challenge improves the reliability of PVI for predicting fluid responsiveness and changes in PVI values obtained after tidal volume challenge are comparable to the changes in SVI.
Collapse
Affiliation(s)
- J. M. Botros
- Department of Anesthesia and Intensive Care, Fayoum University Hospital, Fayoum University, Fayoum government, Egypt
| | - Y. S. M. Salem
- Department of Anesthesia and Intensive Care, Fayoum University Hospital, Fayoum University, Fayoum government, Egypt
| | - M. Khalil
- Department of Anesthesia and Intensive Care, National Liver Institute, Menoufia University, Menoufia government, Egypt
| | - M. F. Algyar
- Department of Anesthesiology, Surgical Intensive Care Unit and pain management, Kafrelsheikh University, Kafrelsheikh government, Egypt
| | - H. M. Yassin
- Department of Anesthesia and Intensive Care, Fayoum University Hospital, Fayoum University, Fayoum government, Egypt
| |
Collapse
|
30
|
Hamahata N, Pinsky MR. Heart-Lung Interactions. Semin Respir Crit Care Med 2023; 44:650-660. [PMID: 37541314 DOI: 10.1055/s-0043-1770062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The pulmonary and cardiovascular systems have profound effects on each other. Overall cardiac function is determined by heart rate, preload, contractility, and afterload. Changes in lung volume, intrathoracic pressure (ITP), and hypoxemia can simultaneously change all of these four hemodynamic determinants for both ventricles and can even lead to cardiovascular collapse. Intubation using sedation depresses vasomotor tone. Also, the interdependence between right and left ventricles can be affected by lung volume-induced changes in pulmonary vascular resistance and the rise in ITP. An increase in venous return due to negative ITP during spontaneous inspiration can shift the septum to the left and cause a decrease in left ventricle compliance. During positive pressure ventilation, the increase in ITP causes a decrease in venous return (preload), minimizing ventricular interdependence and will decrease left ventricle afterload augmenting cardiac output. Thus, positive pressure ventilation is beneficial in acute heart failure patients and detrimental in hypovolemic patients where it can cause a significant decrease in venous return and cardiac output. Recently, this phenomenon has been used to assess patient's volume responsiveness to fluid by measuring pulse pressure variation and stroke volume variation. Heart-lung interaction is very dynamic and changes in lung volume, ITP, and oxygen level can have various effects on the cardiovascular system depending on preexisting cardiovascular function and volume status. Heart failure and either hypo or hypervolemia predispose to greater effects of ventilation of cardiovascular function and gas exchange. This review is an overview of the basics of heart-lung interaction.
Collapse
Affiliation(s)
- Natsumi Hamahata
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Chen H, Liang M, He Y, Teboul JL, Sun Q, Xie J, Yang Y, Qiu H, Liu L. Inspiratory effort impacts the accuracy of pulse pressure variations for fluid responsiveness prediction in mechanically ventilated patients with spontaneous breathing activity: a prospective cohort study. Ann Intensive Care 2023; 13:72. [PMID: 37592166 PMCID: PMC10435426 DOI: 10.1186/s13613-023-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Pulse pressure variation (PPV) is unreliable in predicting fluid responsiveness (FR) in patients receiving mechanical ventilation with spontaneous breathing activity. Whether PPV can be valuable for predicting FR in patients with low inspiratory effort is unknown. We aimed to investigate whether PPV can be valuable in patients with low inspiratory effort. METHODS This prospective study was conducted in an intensive care unit at a university hospital and included acute circulatory failure patients receiving volume-controlled ventilation with spontaneous breathing activity. Hemodynamic measurements were collected before and after a fluid challenge. The degree of inspiratory effort was assessed using airway occlusion pressure (P0.1) and airway pressure swing during a whole breath occlusion (ΔPocc) before fluid challenge. Patients were classified as fluid responders if their cardiac output increased by ≥ 10%. Areas under receiver operating characteristic (AUROC) curves and gray zone approach were used to assess the predictive performance of PPV. RESULTS Among the 189 included patients, 53 (28.0%) were defined as responders. A PPV > 9.5% enabled to predict FR with an AUROC of 0.79 (0.67-0.83) in the whole population. The predictive performance of PPV differed significantly in groups stratified by the median value of P0.1 (P0.1 < 1.5 cmH2O and P0.1 ≥ 1.5 cmH2O), but not in groups stratified by the median value of ΔPocc (ΔPocc < - 9.8 cmH2O and ΔPocc ≥ - 9.8 cmH2O). Specifically, in patients with P0.1 < 1.5 cmH2O, PPV was associated with an AUROC of 0.90 (0.82-0.99) compared with 0.68 (0.57-0.79) otherwise (p = 0.0016). The cut-off values of PPV were 10.5% and 9.5%, respectively. Besides, patients with P0.1 < 1.5 cmH2O had a narrow gray zone (10.5-11.5%) compared to patients with P0.1 ≥ 1.5 cmH2O (8.5-16.5%). CONCLUSIONS PPV is reliable in predicting FR in patients who received controlled ventilation with low spontaneous effort, defined as P0.1 < 1.5 cmH2O. Trial registration NCT04802668. Registered 6 February 2021, https://clinicaltrials.gov/ct2/show/record/NCT04802668.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215000 People’s Republic of China
| | - Meihao Liang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
- Department of Critical Care Medicine, Changsha central hospital, University of South China, No. 161, South Shaoshan Road, Changsha, 410000 Hunan People’s Republic of China
| | - Yuanchao He
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
- Department of Critical Care Medicine, Wuhan first hospital of Hubei Province, No 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430000 People’s Republic of China
| | - Jean-Louis Teboul
- Service de médecine intensive-réanimation, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Inserm UMR S_999, Le Kremlin-Bicêtre, France
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| | - Jianfen Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
32
|
Zhang Y, Ding Y, Zhang J, Huang T, Gao J. Tidal volume challenge-induced hemodynamic changes can predict fluid responsiveness during one-lung ventilation: an observational study. Front Med (Lausanne) 2023; 10:1169912. [PMID: 37636561 PMCID: PMC10447224 DOI: 10.3389/fmed.2023.1169912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Background To evaluate the ability of tidal volume challenge (VTC)-induced hemodynamic changes to predict fluid responsiveness in patients during one-lung ventilation (OLV). Methods 80 patients scheduled for elective thoracoscopic surgery with OLV were enrolled. The inclusion criteria were: age ≥ 18 years, American Society of Anesthesiologists physical status I-III, normal right ventricular function, normal left ventricular systolic function (ejection fraction ≥55%), and normal or slightly impaired diastolic function. The study protocol was implemented 15 min after starting OLV. Simultaneous recordings were performed for hemodynamic variables of diameter of left ventricular outflow tract, velocity time integral (VTI) of aortic valve, and stroke volume (SV), and ΔSV-VTC, ΔVTI-VTC, and ΔMAP-VTC were calculated at four time points: with VT 5 mL/kg (T1); after VT increased from 5 mL/kg to 8 mL/kg and maintained at this level for 2 min (T2); after VT was adjusted back to 5 mL/kg for 2 min (T3); and after volume expansion (250 mL of 0.9% saline infused over 10-15 min) (T4). Patients were considered as responders to fluid administration if SV increased by ≥10%. Receiver operating characteristic (ROC) curves for percent decrease in SV, VTI, and MAP by VTC were generated to evaluate their ability to discriminate fluid responders from nonresponders. Results Of the 58 patients analyzed, there were 32 responders (55%) and 26 nonresponders (45%). The basic characteristics were comparable between the two groups (p > 0.05). The area under the curve (AUC) for ΔSV-VTC, ΔVTI-VTC, and ΔMAP-VTC to discriminate responders from nonresponders were 0.81 (95% CI: 0.68-0.90), 0.79 (95% CI: 0.66-0.89), and 0.56 (95% CI: 0.42-0.69). The best threshold for ΔSV-VTC was -16.1% (sensitivity, 78.1%; specificity, 84.6%); the best threshold for ΔVTI-VTC was -14.5% (sensitivity, 78.1%; specificity, 80.8%). Conclusion Tidal volume challenge-induced relative change of stroke volume and velocity time integral can predict fluid responsiveness in patients during one-lung ventilation.Clinical Trial Registration: Chinese Clinical Trial Registry, No: chictr210051310.
Collapse
Affiliation(s)
| | | | | | | | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
33
|
Rajkumar KP, Hicks MH, Marchant B, Khanna AK. Blood Pressure Goals in Critically Ill Patients. Methodist Debakey Cardiovasc J 2023; 19:24-37. [PMID: 37547901 PMCID: PMC10402811 DOI: 10.14797/mdcvj.1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 08/08/2023] Open
Abstract
Blood pressure goals in the intensive care unit (ICU) have been extensively investigated in large datasets and have been associated with various harm thresholds at or greater than a mean pressure of 65 mm Hg. While it is difficult to perform interventional randomized trials of blood pressure in the ICU, important evidence does not support defense of a higher pressure, except in retrospective database analyses. Perfusion pressure may be a more important target than mean pressure, even more so in the vulnerable patient population. In the cardiac ICU, blood pressure targets are tailored to specific cardiac pathophysiology and patient characteristics. Generally, the goal is to maintain adequate blood pressure within a certain range to support cardiac function and to ensure end organ perfusion. Individualized targets demand the use of both invasive and noninvasive monitoring modalities and frequent titration of medications and/or mechanical circulatory support where necessary. In this review, we aim to identify appropriate blood pressure targets in the ICU, recognizing special patient populations and outlining the risk factors and predictors of end organ failure.
Collapse
Affiliation(s)
- Karuna Puttur Rajkumar
- Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, US
| | - Megan Henley Hicks
- Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, US
| | - Bryan Marchant
- Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, US
| | - Ashish K. Khanna
- Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, US
- Outcomes Research Consortium, Cleveland, Ohio, US
| |
Collapse
|
34
|
Oh AR, Lee JH. Predictors of fluid responsiveness in the operating room: a narrative review. Anesth Pain Med (Seoul) 2023; 18:233-243. [PMID: 37468195 PMCID: PMC10410540 DOI: 10.17085/apm.23072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Prediction of fluid responsiveness has been considered an essential tool for modern fluid management. However, most studies in this field have focused on patients in intensive care unit despite numerous research throughout several decades. Therefore, the present narrative review aims to show the representative method's feasibility, advantages, and limitations in predicting fluid responsiveness, focusing on the operating room environments. Firstly, we described the predictors of fluid responsiveness based on heart-lung interaction, including pulse pressure and stroke volume variations, the measurement of respiratory variations of inferior vena cava diameter, and the end-expiratory occlusion test and addressed their limitations. Subsequently, the passive leg raising test and mini-fluid challenge tests were also mentioned, which assess fluid responsiveness by mimicking a classic fluid challenge. In the last part of this review, we pointed out the pitfalls of fluid management based on fluid responsiveness prediction, which emphasized the importance of individualized decision-making. Understanding the available representative methods to predict fluid responsiveness and their associated benefits and drawbacks through this review will aid anesthesiologists in choosing the most reliable methods for optimal fluid administration in each patient during anesthesia in the operating room.
Collapse
Affiliation(s)
- Ah Ran Oh
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Seoul, Korea
| | - Jong-Hwan Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
35
|
Wan JJ, Chen J, Xu L, Peng K, Xie J. PASSIVE LEG RAISING-INDUCED CHANGES IN PEAK VELOCITY VARIATION OF LEFT VENTRICULAR OUTFLOW TRACT TO PREDICT FLUID RESPONSIVENESS IN POSTOPERATIVE CRITICALLY ILL ELDERLY PATIENTS. Shock 2023; 60:18-23. [PMID: 37179250 DOI: 10.1097/shk.0000000000002143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
ABSTRACT Background : Accurate prediction of fluid responsiveness is important for postoperative critically ill elderly patients. The objective of this study was to evaluate the predictive values of peak velocity variation (ΔVpeak) and passive leg raising (PLR)-induced changes in ΔVpeak (ΔVpeak PLR ) of the left ventricular outflow tract to predict fluid responsiveness in postoperative critically ill elderly patients. Method : Seventy-two postoperative elderly patients with acute circulatory failure who were mechanically ventilated with sinus rhythm were enrolled in our study. Pulse pressure variation (PPV), ΔVpeak, and stroke volume were collected at baseline and after PLR. An increase of >10% in stroke volume after PLR defined fluid responsiveness. Receiver operating characteristic curves and gray zones were constructed to assess the ability of ΔVpeak and ΔVpeak PLR to predict fluid responsiveness. Results : Thirty-two patients were fluid responders. The area under the receiver operating characteristic curves (AUC) for baseline PPV and ΔVpeak to predict fluid responsiveness was 0.768 (95% confidence interval [CI], 0.653-0.859; P < 0.001) and 0.899 (95% CI, 0.805-0.958; P < 0.001) with gray zones of 7.63% to 12.66% that included 41 patients (56.9%) and 9.92% to 13.46% that included 28 patients (38.9%). ΔPPV PLR predicted fluid responsiveness with an AUC of 0.909 (95% CI, 0.818-0.964; P < 0.001), and the gray zone was 1.49% to 2.93% and included 20 patients (27.8%). ΔVpeak PLR predicted fluid responsiveness with an AUC of 0.944 (95% CI, 0.863-0.984; P < 0.001), and the gray zone was 1.48% to 2.46% and included six patients (8.3%). Conclusions : Passive leg raising-induced changes in peak velocity variation of blood flow in the left ventricular outflow tract accurately predicted fluid responsiveness with a small gray zone in postoperative critically ill elderly patients.
Collapse
Affiliation(s)
- Jing-Jie Wan
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Intensive Care Unit of the Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Xu
- Intensive Care Unit of the Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Peng
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | | |
Collapse
|
36
|
Prezioso C, Trotta R, Cavallo E, Fusina F, Malpetti E, Albani F, Caserta R, Rosano A, Natalini G. Central venous pressure and dynamic indices to assess fluid appropriateness in critically ill patients: A pilot study. PLoS One 2023; 18:e0285935. [PMID: 37200296 PMCID: PMC10194867 DOI: 10.1371/journal.pone.0285935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND The correct identification of the appropriateness of fluid administration is important for the treatment of critically ill patients. Static and dynamic indices used to identify fluid responsiveness have been developed throughout the years, nonetheless fluid responsiveness does not indicate that fluid administration is appropriate, and indexes to evaluate appropriateness of fluid administration are lacking. The aim of this study was to evaluate if central venous pressure (CVP) anddynamic indices could correctly identify fluid appropriateness for critically ill patients. METHODS Data from 31 ICU patients, for a total of 53 observations, was included in the analysis. Patients were divided into two cohorts based on the appropriateness of fluid administration. Fluid appropriateness was defined in presence of a low cardiac index (< 2.5 l/min/m2) without any sign of fluid overload, as assessed by global end-diastolic volume index, extravascular lung water index or pulmonary artery occlusion pressure. RESULTS For 10 patients, fluid administration was deemed appropriate, while for 21 patients it was deemed inappropriate. Central venous pressure was not different between the two cohorts (mean CVP 11 (4) mmHg in the fluid inappropriate group, 12 (4) mmHg in the fluid appropriate group, p 0.58). The same is true for pulse pressure variation (median PPV 5 [2, 9] % in the fluid inappropriate group, 4 [3, 13] % in the fluid appropriate group, p 0.57), for inferior vena cava distensibility (mean inferior vena cava distensibility 24 (14) % in the fluid inappropriate group, 22 (16) % in the fluid appropriate group, p 0.75) and for changes in end tidal carbon dioxide during a passive leg raising test (median d.ETCO2 1.5 [0.0, 2.0]% in the fluid inappropriate group, 1.0 [0.0, 2.0] % in the fluid appropriate group, p 0.98). There was no association between static and dynamic indices and fluid appropriateness. CONCLUSIONS Central venous pressure, pulse pressure variation, changes in end tidal carbon dioxide during a passive leg raising test, inferior vena cava distensibility were not associated with fluid appropriateness in our cohorts.
Collapse
Affiliation(s)
- Chiara Prezioso
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Roberta Trotta
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Erika Cavallo
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Federica Fusina
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Elena Malpetti
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Filippo Albani
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Rosalba Caserta
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Antonio Rosano
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Giuseppe Natalini
- Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| |
Collapse
|
37
|
Teboul JL. How to integrate hemodynamic variables during resuscitation of septic shock? JOURNAL OF INTENSIVE MEDICINE 2023; 3:131-137. [PMID: 37188115 PMCID: PMC10175700 DOI: 10.1016/j.jointm.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 05/17/2023]
Abstract
Resuscitation of septic shock is a complex issue because the cardiovascular disturbances that characterize septic shock vary from one patient to another and can also change over time in the same patient. Therefore, different therapies (fluids, vasopressors, and inotropes) should be individually and carefully adapted to provide personalized and adequate treatment. Implementation of this scenario requires the collection and collation of all feasible information, including multiple hemodynamic variables. In this review article, we propose a logical stepwise approach to integrate relevant hemodynamic variables and provide the most appropriate treatment for septic shock.
Collapse
|
38
|
D'Arrigo S, Dell'Anna AM, Sandroni C, Messina A, Cacciola S, Pacini C, Antonelli M. Can carotid artery Doppler variations induced by the end-expiratory occlusion maneuver predict fluid responsiveness in septic shock patients? Crit Care 2023; 27:153. [PMID: 37076861 PMCID: PMC10116770 DOI: 10.1186/s13054-023-04422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND An increase in cardiac index (CI) during an end-expiratory occlusion test (EEOt) predicts fluid responsiveness in ventilated patients. However, if CI monitoring is unavailable or the echocardiographic window is difficult, using the carotid Doppler (CD) could be a feasible alternative to track CI changes. This study investigates whether changes in CD peak velocity (CDPV) and corrected flow time (cFT) during an EEOt were correlated with CI changes and if CDPV and cFT changes predicted fluid responsiveness in patients with septic shock. METHODS Prospective, single-center study in adults with hemodynamic instability. The CDPV and cFT on carotid artery Doppler and hemodynamic variables from the pulse contour analysis EV1000™ were recorded at baseline, during a 20-s EEOt, and after fluid challenge (500 mL). We defined responders as those who increased CI ≥ 15% after a fluid challenge. RESULTS We performed 44 measurements in 18 mechanically ventilated patients with septic shock and without arrhythmias. The fluid responsiveness rate was 43.2%. The changes in CDPV were significantly correlated with changes in CI during EEOt (r = 0.51 [0.26-0.71]). A significant, albeit lower correlation, was found for cFT (r = 0.35 [0.1-0.58]). An increase in CI ≥ 5.35% during EEOt predicted fluid responsiveness with 78.9% sensitivity and 91.7% specificity, with an area under the ROC curve (AUROC) of 0.85. An increase in CDPV ≥ 10.5% during an EEOt predicted fluid responsiveness with 96.2% specificity and 53.0% sensitivity with an AUROC of 0.74. Sixty-one percent of CDPV measurements (from - 13.5 to 9.5 cm/s) fell within the gray zone. The cFT changes during EEOt did not accurately predict fluid responsiveness. CONCLUSIONS In septic shock patients without arrhythmias, an increase in CDPV greater than 10.5% during a 20-s EEOt predicted fluid responsiveness with > 95% specificity. Carotid Doppler combined with EEOt may help optimize preload when invasive hemodynamic monitoring is unavailable. However, the 61% gray zone is a major limitation (retrospectively registered on Clinicaltrials.gov NCT04470856 on July 14, 2020).
Collapse
Affiliation(s)
- Sonia D'Arrigo
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, 00168, Rome, Italy
| | - Antonio Maria Dell'Anna
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, 00168, Rome, Italy
| | - Claudio Sandroni
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, 00168, Rome, Italy.
| | - Antonio Messina
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Sofia Cacciola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, 00168, Rome, Italy
| | - Chiara Pacini
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, 00168, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
39
|
Horejsek J, Balík M, Kunstýř J, Michálek P, Brožek T, Kopecký P, Fink A, Waldauf P, Pořízka M. Prediction of Fluid Responsiveness Using Combined End-Expiratory and End-Inspiratory Occlusion Tests in Cardiac Surgical Patients. J Clin Med 2023; 12:jcm12072569. [PMID: 37048651 PMCID: PMC10094769 DOI: 10.3390/jcm12072569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
End-expiratory occlusion (EEO) and end-inspiratory occlusion (EIO) tests have been successfully used to predict fluid responsiveness in various settings using calibrated pulse contour analysis and echocardiography. The aim of this study was to test if respiratory occlusion tests predicted fluid responsiveness reliably in cardiac surgical patients with protective ventilation. This single-centre, prospective study, included 57 ventilated patients after elective coronary artery bypass grafting who were indicated for fluid expansion. Baseline echocardiographic measurements were obtained and patients with significant cardiac pathology were excluded. Cardiac index (CI), stroke volume and stroke volume variation were recorded using uncalibrated pulse contour analysis at baseline, after performing EEO and EIO tests and after volume expansion (7 mL/kg of succinylated gelatin). Fluid responsiveness was defined as an increase in cardiac index by 15%. Neither EEO, EIO nor their combination predicted fluid responsiveness reliably in our study. After a combined EEO and EIO, a cut-off point for CI change of 16.7% predicted fluid responsiveness with a sensitivity of 61.8%, specificity of 69.6% and ROC AUC of 0.593. In elective cardiac surgical patients with protective ventilation, respiratory occlusion tests failed to predict fluid responsiveness using uncalibrated pulse contour analysis.
Collapse
|
40
|
Monnet X, Lai C, Teboul JL. How I personalize fluid therapy in septic shock? Crit Care 2023; 27:123. [PMID: 36964573 PMCID: PMC10039545 DOI: 10.1186/s13054-023-04363-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/17/2023] [Indexed: 03/26/2023] Open
Abstract
During septic shock, fluid therapy is aimed at increasing cardiac output and improving tissue oxygenation, but it poses two problems: it has inconsistent and transient efficacy, and it has many well-documented deleterious effects. We suggest that there is a place for its personalization according to the patient characteristics and the clinical situation, at all stages of circulatory failure. Regarding the choice of fluid for volume expansion, isotonic saline induces hyperchloremic acidosis, but only for very large volumes administered. We suggest that balanced solutions should be reserved for patients who have already received large volumes and in whom the chloremia is rising. The initial volume expansion, intended to compensate for the constant hypovolaemia in the initial phase of septic shock, cannot be adapted to the patient's weight only, as suggested by the Surviving Sepsis Campaign, but should also consider potential absolute hypovolemia induced by fluid losses. After the initial fluid infusion, preload responsiveness may rapidly disappear, and it should be assessed. The choice between tests used for this purpose depends on the presence or absence of mechanical ventilation, the monitoring in place and the risk of fluid accumulation. In non-intubated patients, the passive leg raising test and the mini-fluid challenge are suitable. In patients without cardiac output monitoring, tests like the tidal volume challenge, the passive leg raising test and the mini-fluid challenge can be used as they can be performed by measuring changes in pulse pressure variation, assessed through an arterial line. The mini-fluid challenge should not be repeated in patients who already received large volumes of fluids. The variables to assess fluid accumulation depend on the clinical condition. In acute respiratory distress syndrome, pulmonary arterial occlusion pressure, extravascular lung water and pulmonary vascular permeability index assess the risk of worsening alveolar oedema better than arterial oxygenation. In case of abdominal problems, the intra-abdominal pressure should be taken into account. Finally, fluid depletion in the de-escalation phase is considered in patients with significant fluid accumulation. Fluid removal can be guided by preload responsiveness testing, since haemodynamic deterioration is likely to occur in patients with a preload dependent state.
Collapse
Affiliation(s)
- Xavier Monnet
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France.
| | - Christopher Lai
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Jean-Louis Teboul
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
41
|
Lai C, Monnet X, Teboul JL. Hemodynamic Implications of Prone Positioning in Patients with ARDS. Crit Care 2023; 27:98. [PMID: 36941694 PMCID: PMC10027593 DOI: 10.1186/s13054-023-04369-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Christopher Lai
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | - Xavier Monnet
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Louis Teboul
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
42
|
Does tidal volume challenge improve the feasibility of pulse pressure variation in patients mechanically ventilated at low tidal volumes? A systematic review and meta-analysis. Crit Care 2023; 27:45. [PMID: 36732851 PMCID: PMC9893685 DOI: 10.1186/s13054-023-04336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pulse pressure variation (PPV) has been widely used in hemodynamic assessment. Nevertheless, PPV is limited in low tidal volume ventilation. We conducted this systematic review and meta-analysis to evaluate whether the tidal volume challenge (TVC) could improve the feasibility of PPV in patients ventilated at low tidal volumes. METHODS PubMed, Embase and Cochrane Library inception to October 2022 were screened for diagnostic researches relevant to the predictability of PPV change after TVC in low tidal volume ventilatory patients. Summary receiving operating characteristic curve (SROC), pooled sensitivity and specificity were calculated. Subgroup analyses were conducted for possible influential factors of TVC. RESULTS Ten studies with a total of 429 patients and 457 measurements were included for analysis. The predictive performance of PPV was significantly lower than PPV change after TVC in low tidal volume, with mean area under the receiving operating characteristic curve (AUROC) of 0.69 ± 0.13 versus 0.89 ± 0.10. The SROC of PPV change yielded an area under the curve of 0.96 (95% CI 0.94, 0.97), with overall pooled sensitivity and specificity of 0.92 (95% CI 0.83, 0.96) and 0.88 (95% CI 0.76, 0.94). Mean and median cutoff value of the absolute change of PPV (△PPV) were 2.4% and 2%, and that of the percentage change of PPV (△PPV%) were 25% and 22.5%. SROC of PPV change in ICU group, supine or semi-recumbent position group, lung compliance less than 30 cm H2O group, moderate positive end-expiratory pressure (PEEP) group and measurements devices without transpulmonary thermodilution group yielded 0.95 (95%0.93, 0.97), 0.95 (95% CI 0.92, 0.96), 0.96 (95% CI 0.94, 0.97), 0.95 (95% CI 0.93, 0.97) and 0.94 (95% CI 0.92, 0.96) separately. The lowest AUROCs of PPV change were 0.59 (95% CI 0.31, 0.88) in prone position and 0.73 (95% CI 0.60, 0.84) in patients with spontaneous breathing activity. CONCLUSIONS TVC is capable to help PPV overcome limitations in low tidal volume ventilation, wherever in ICU or surgery. The accuracy of TVC is not influenced by reduced lung compliance, moderate PEEP and measurement tools, but TVC should be cautious applied in prone position and patients with spontaneous breathing activity. Trial registration PROSPERO (CRD42022368496). Registered on 30 October 2022.
Collapse
|
43
|
Carsetti A, Vitali E, Pesaresi L, Antolini R, Casarotta E, Damiani E, Adrario E, Donati A. Anesthetic management of patients with sepsis/septic shock. Front Med (Lausanne) 2023; 10:1150124. [PMID: 37035341 PMCID: PMC10076637 DOI: 10.3389/fmed.2023.1150124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, while septic shock is a subset of sepsis with persistent hypotension requiring vasopressors to maintain a mean arterial pressure (MAP) of ≥65 mmHg and having a serum lactate level of >2 mmol/L, despite adequate volume resuscitation. Sepsis and septic shock are medical emergencies and time-dependent diseases with a high mortality rate for which early identification, early antibiotic therapy, and early source control are paramount for patient outcomes. The patient may require surgical intervention or an invasive procedure aiming to control the source of infection, and the anesthesiologist has a pivotal role in all phases of patient management. During the preoperative assessment, patients should be aware of all possible organ dysfunctions, and the severity of the disease combined with the patient's physiological reserve should be carefully assessed. All possible efforts should be made to optimize conditions before surgery, especially from a hemodynamic point of view. Anesthetic agents may worsen the hemodynamics of shock patients, and the anesthesiologist must know the properties of each anesthetic agent. All possible efforts should be made to maintain organ perfusion supporting hemodynamics with fluids, vasoactive agents, and inotropes if required.
Collapse
Affiliation(s)
- Andrea Carsetti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- *Correspondence: Andrea Carsetti
| | - Eva Vitali
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Pesaresi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Riccardo Antolini
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erika Casarotta
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Damiani
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Erica Adrario
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Abele Donati
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| |
Collapse
|
44
|
Monnet X, Malbrain MLNG, Pinsky MR. The prediction of fluid responsiveness. Intensive Care Med 2023; 49:83-86. [PMID: 36323911 DOI: 10.1007/s00134-022-06900-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xavier Monnet
- AP-HP, Service de médecine intensive-réanimationHôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France.
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland.,International Fluid Academy, Lovenjoel, Belgium.,Medical Data Management, Medaman, Geel, Belgium
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Carioca FDL, de Souza FM, de Souza TB, Rubio AJ, Brandão MB, Nogueira RJN, de Souza TH. Point-of-care ultrasonography to predict fluid responsiveness in children: A systematic review and meta-analysis. Paediatr Anaesth 2023; 33:24-37. [PMID: 36222022 DOI: 10.1111/pan.14574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Point-of-care ultrasonography (POCUS) is proposed as a valuable method for hemodynamic monitoring and several ultrasound-based predictors of fluid responsiveness have been studied. The main objective of this study was to assess the accuracy of these predictors in children. METHODS PubMed, Embase, Scopus, ClinicalTrials.gov, and Cochrane Library databases were searched for relevant publications through July 2022. Pediatric studies reporting accuracy estimates of ultrasonographic predictors of fluid responsiveness were included since they had used a standard definition of fluid responsiveness and had performed an adequate fluid challenge. RESULTS Twenty-three studies involving 1028 fluid boluses were included, and 12 predictors were identified. A positive response to fluid infusion was observed in 59.7% of cases. The vast majority of participants were mechanically ventilated (93.4%). The respiratory variation in aortic blood flow peak velocity (∆Vpeak) was the most studied predictor, followed by the respiratory variation in inferior vena cava diameter (∆IVC). The pooled sensitivity and specificity of ∆Vpeak were 0.84 (95% CI, 0.76-0.90) and 0.82 (95% CI, 0.75-0.87), respectively, and the area under the summary receiver operating characteristic curve (AUSROC) was 0.89 (95% CI, 0.86-0.92). The ∆IVC presented a pooled sensitivity and specificity of 0.79 (95% CI, 0.62-0.90) and 0.70 (95% CI, 0.51-0.84), respectively, and an AUSROC of 0.81 (95% CI, 0.78-0.85). Significant heterogeneity in accuracy estimates across studies was observed. CONCLUSIONS POCUS has the potential to accurately predict fluid responsiveness in children. However, only ∆Vpeak was found to be a reliable predictor. There is a lack of evidence supporting the use of POCUS to guide fluid therapy in spontaneously breathing children.
Collapse
Affiliation(s)
- Fernando de Lima Carioca
- Department of Pediatrics, Clinics Hospital of the State University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiana Mendes de Souza
- Pediatric Intensive Care Unit, Department of Pediatrics, Clinics Hospital of the State University of Campinas (UNICAMP), Campinas, Brazil
| | - Thalita Belato de Souza
- Pediatric Intensive Care Unit, Department of Pediatrics, Clinics Hospital of the State University of Campinas (UNICAMP), Campinas, Brazil
| | - Aline Junqueira Rubio
- Pediatric Intensive Care Unit, Department of Pediatrics, Clinics Hospital of the State University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Barciela Brandão
- Pediatric Intensive Care Unit, Department of Pediatrics, Clinics Hospital of the State University of Campinas (UNICAMP), Campinas, Brazil
| | - Roberto José Negrão Nogueira
- Pediatric Intensive Care Unit, Department of Pediatrics, Clinics Hospital of the State University of Campinas (UNICAMP), Campinas, Brazil
| | - Tiago Henrique de Souza
- Pediatric Intensive Care Unit, Department of Pediatrics, Clinics Hospital of the State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
46
|
Shi R, Ayed S, Moretto F, Azzolina D, De Vita N, Gavelli F, Carelli S, Pavot A, Lai C, Monnet X, Teboul JL. Tidal volume challenge to predict preload responsiveness in patients with acute respiratory distress syndrome under prone position. Crit Care 2022; 26:219. [PMID: 35850771 PMCID: PMC9294836 DOI: 10.1186/s13054-022-04087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Prone position is frequently used in patients with acute respiratory distress syndrome (ARDS), especially during the Coronavirus disease 2019 pandemic. Our study investigated the ability of pulse pressure variation (PPV) and its changes during a tidal volume challenge (TVC) to assess preload responsiveness in ARDS patients under prone position.
Methods
This was a prospective study conducted in a 25-bed intensive care unit at a university hospital. We included patients with ARDS under prone position, ventilated with 6 mL/kg tidal volume and monitored by a transpulmonary thermodilution device. We measured PPV and its changes during a TVC (ΔPPV TVC6–8) after increasing the tidal volume from 6 to 8 mL/kg for one minute. Changes in cardiac index (CI) during a Trendelenburg maneuver (ΔCITREND) and during end-expiratory occlusion (EEO) at 8 mL/kg tidal volume (ΔCI EEO8) were recorded. Preload responsiveness was defined by both ΔCITREND ≥ 8% and ΔCI EEO8 ≥ 5%. Preload unresponsiveness was defined by both ΔCITREND < 8% and ΔCI EEO8 < 5%.
Results
Eighty-four sets of measurements were analyzed in 58 patients. Before prone positioning, the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen was 104 ± 27 mmHg. At the inclusion time, patients were under prone position for 11 (2–14) hours. Norepinephrine was administered in 83% of cases with a dose of 0.25 (0.15–0.42) µg/kg/min. The positive end-expiratory pressure was 14 (11–16) cmH2O. The driving pressure was 12 (10–17) cmH2O, and the respiratory system compliance was 32 (22–40) mL/cmH2O. Preload responsiveness was detected in 42 cases. An absolute change in PPV ≥ 3.5% during a TVC assessed preload responsiveness with an area under the receiver operating characteristics (AUROC) curve of 0.94 ± 0.03 (sensitivity: 98%, specificity: 86%) better than that of baseline PPV (0.85 ± 0.05; p = 0.047). In the 56 cases where baseline PPV was inconclusive (≥ 4% and < 11%), ΔPPV TVC6–8 ≥ 3.5% still enabled to reliably assess preload responsiveness (AUROC: 0.91 ± 0.05, sensitivity: 97%, specificity: 81%; p < 0.01 vs. baseline PPV).
Conclusion
In patients with ARDS under low tidal volume ventilation during prone position, the changes in PPV during a TVC can reliably assess preload responsiveness without the need for cardiac output measurements.
Trial registration: ClinicalTrials.gov (NCT04457739). Registered 30 June 2020 —Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT04457739
Collapse
|
47
|
De Backer D, Aissaoui N, Cecconi M, Chew MS, Denault A, Hajjar L, Hernandez G, Messina A, Myatra SN, Ostermann M, Pinsky MR, Teboul JL, Vignon P, Vincent JL, Monnet X. How can assessing hemodynamics help to assess volume status? Intensive Care Med 2022; 48:1482-1494. [PMID: 35945344 PMCID: PMC9363272 DOI: 10.1007/s00134-022-06808-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023]
Abstract
In critically ill patients, fluid infusion is aimed at increasing cardiac output and tissue perfusion. However, it may contribute to fluid overload which may be harmful. Thus, volume status, risks and potential efficacy of fluid administration and/or removal should be carefully evaluated, and monitoring techniques help for this purpose. Central venous pressure is a marker of right ventricular preload. Very low values indicate hypovolemia, while extremely high values suggest fluid harmfulness. The pulmonary artery catheter enables a comprehensive assessment of the hemodynamic profile and is particularly useful for indicating the risk of pulmonary oedema through the pulmonary artery occlusion pressure. Besides cardiac output and preload, transpulmonary thermodilution measures extravascular lung water, which reflects the extent of lung flooding and assesses the risk of fluid infusion. Echocardiography estimates the volume status through intravascular volumes and pressures. Finally, lung ultrasound estimates lung edema. Guided by these variables, the decision to infuse fluid should first consider specific triggers, such as signs of tissue hypoperfusion. Second, benefits and risks of fluid infusion should be weighted. Thereafter, fluid responsiveness should be assessed. Monitoring techniques help for this purpose, especially by providing real time and precise measurements of cardiac output. When decided, fluid resuscitation should be performed through fluid challenges, the effects of which should be assessed through critical endpoints including cardiac output. This comprehensive evaluation of the risk, benefits and efficacy of fluid infusion helps to individualize fluid management, which should be preferred over a fixed restrictive or liberal strategy.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Boulevard du Triomphe 201, 1160, Brussels, Belgium.
| | - Nadia Aissaoui
- Assistance publique des hôpitaux de Paris (APHP), Cochin Hospital, Intensive Care Medicine, médecine interne reanimation, Université de Paris and Paris Cardiovascular Research Center, INSERM U970, 25 rue Leblanc, 75015, Paris, France
| | - Maurizio Cecconi
- Humanitas Clinical and Research Center-IRCCS, Rozzano, MI, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Michelle S Chew
- Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - André Denault
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Critical Care Division, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Ludhmila Hajjar
- Departamento de Cardiopneumologia, InCor, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Glenn Hernandez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio Messina
- Humanitas Clinical and Research Center-IRCCS, Rozzano, MI, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- Department of Intensive Care, King's College London, Guy's & St Thomas' Hospital, London, UK
| | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean-Louis Teboul
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Philippe Vignon
- Medical-surgical ICU and Inserm CIC 1435, Dupuytren Teaching Hospital, 87000, Limoges, France
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Univ Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Xavier Monnet
- AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
48
|
Kulkarni AP, Govil D, Samavedam S, Srinivasan S, Ramasubban S, Venkataraman R, Pichamuthu K, Jog SA, Divatia JV, Myatra SN. ISCCM Guidelines for Hemodynamic Monitoring in the Critically Ill. Indian J Crit Care Med 2022; 26:S66-S76. [PMID: 36896359 PMCID: PMC9989872 DOI: 10.5005/jp-journals-10071-24301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Hemodynamic assessment along with continuous monitoring and appropriate therapy forms an integral part of management of critically ill patients with acute circulatory failure. In India, the infrastructure in ICUs varies from very basic facilities in smaller towns and semi-urban areas, to world-class, cutting-edge technology in corporate hospitals, in metropolitan cities. Surveys and studies from India suggest a wide variation in clinical practices due to possible lack of awareness, expertise, high costs, and lack of availability of advanced hemodynamic monitoring devices. We, therefore, on behalf of the Indian Society of Critical Care Medicine (ISCCM), formulated these evidence-based guidelines for optimal use of various hemodynamic monitoring modalities keeping in mind the resource-limited settings and the specific needs of our patients. When enough evidence was not forthcoming, we have made recommendations after achieving consensus amongst members. Careful integration of clinical assessment and critical information obtained from laboratory data and monitoring devices should help in improving outcomes of our patients. How to cite this article Kulkarni AP, Govil D, Samavedam S, Srinivasan S, Ramasubban S, Venkataraman R, et al. ISCCM Guidelines for Hemodynamic Monitoring in the Critically Ill. Indian J Crit Care Med 2022;26(S2):S66-S76.
Collapse
Affiliation(s)
- Atul Prabhakar Kulkarni
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Deepak Govil
- Institute of Critical Care and Anesthesia, Medanta - The Medicity, Gurugram, Haryana, India
| | - Srinivas Samavedam
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| | | | | | - Ramesh Venkataraman
- Department of Critical Care Medicine, Apollo Hospitals, Chennai, Tamil Nadu, India
| | - Kishore Pichamuthu
- Department of Medical Intensive Care Unit, Christian Medical College Hospital, Vellore, Tamil Nadu, India
| | - Sameer Arvind Jog
- Department of Critical Care Medicine, Deenanath Mangeshkar Hospital and Research Center, Pune, Maharashtra India
| | - Jigeeshu V Divatia
- Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra India
| | - Sheila Nainan Myatra
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
49
|
Arumugam R, Thomas S, Jacob NSM, Nadaraj A, George SP, Singh G. Relationship between pulse pressure variation and stroke volume variation with changes in cardiac index during hypotension in patients undergoing major spine surgeries in prone position - A prospective observational study. J Anaesthesiol Clin Pharmacol 2022; 38:553-559. [PMID: 36778833 PMCID: PMC9912902 DOI: 10.4103/joacp.joacp_594_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Aims Dynamic indices such as pulse pressure variation (PPV) and stroke volume variation (SVV) are better predictors of fluid responsiveness than static indices. There is a strong correlation between PPV and SVV in the prone position when assessed with the fluid challenge. However, this correlation has not been established during intraoperative hypotension. Our study aimed to assess the correlation between PPV and SVV during hypotension in the prone position and its relationship with cardiac index (CI). Material and Methods Thirty patients aged 18-70 years of ASA class I-III, undergoing spine procedures in the prone position were recruited for this prospective observational study. Hemodynamic variables such as heart rate (HR), mean arterial pressure (MAP), PPV, SVV, and CI were measured at baseline (after induction of anesthesia and positioning in the prone position). This set of variables were collected at the time of hypotension (T-before) and after correction (T-after) with either fluids or vasopressors. HR and MAP are presented as median with inter quartile range and compared by Mann-Whitney U test. Reliability was measured by intraclass correlation coefficients (ICC). Generalized estimating equations were performed to assess the change of CI with changes in PPV and SVV. Results A statistically significant linear relationship between PPV and SVV was observed. The ICC between change in PPV and SVV during hypotension was 0.9143, and after the intervention was 0.9091 (P < 0.001). Regression of changes in PPV and SVV on changes in CI depicted the reciprocal change in CI which was not statistically significant. Conclusion PPV is a reliable surrogate of SVV during intraoperative hypotension in the prone position.
Collapse
Affiliation(s)
- Rajasekar Arumugam
- Department of Cardiothoracic Anaesthesia, Critical Care and ECMO, Manchester University Hospital NHS Foundation Trust, United Kingdom
| | - Susan Thomas
- Department of Anaesthesiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nisha Sara M Jacob
- Department of Anaesthesia, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ambily Nadaraj
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sajan P. George
- Department of Anaesthesiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Georgene Singh
- Department of Anaesthesiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
50
|
Chen Y, Liu Z, Fang J, Xie Y, Zhang M, Yang J. Correlation of carotid corrected flow time and respirophasic variation in blood flow peak velocity with stroke volume variation in elderly patients under general anaesthesia. BMC Anesthesiol 2022; 22:246. [PMID: 35927621 PMCID: PMC9351080 DOI: 10.1186/s12871-022-01792-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate assessment of volume responsiveness in elderly patients is important as it may reduce the risk of post-operative complications and enhance surgical recovery. This study evaluated the utility of two Doppler ultrasound-derived parameters, the carotid corrected flow time (FTc) and respirophasic variation in carotid artery blood flow peak velocity (ΔVpeak), to predict volume responsiveness in elderly patients under general anaesthesia. METHODS A total of 97 elderly patients undergoing elective abdominal surgery under general anaesthesia were enrolled in this prospective observational study. After entering the operating room, all patients underwent radial artery puncture connected with a LiDCO device to measure stroke volume variation (SVV), and fluid therapy was performed after anaesthesia induction. Patients were classified as responders if SVV ≥ 13% before fluid challenge and nonresponders if SVV < 13%. The FTc, ΔVpeak, SVV and haemodynamic data were measured by ultrasound at baseline (T0) and before (T1) and after (T2) fluid challenge. The correlations between the Doppler ultrasound-derived parameters and SVV were analysed, and the receiver operating characteristic (ROC) curves was computed to characterize both FTc and ΔVpeak as measures of volume responsiveness in elderly patients. RESULTS Forty-one (42.3%) patients were fluid responders. Carotid FTc before fluid challenge was negatively correlated with SVV before fluid challenge (r = -0.77; P < 0.01), and ΔVpeak was positively correlated with SVV (r = 0.72; P < 0.01). FTc and ΔVpeak predicted SVV ≥ 13% after general anaesthesia in elderly patients, with areas under the receiver operating characteristic curves (AUROCs) of 0.811 [95% confidence interval (CI), 0.721-0.900; P < 0.001] and 0.781 (95% CI, 0.686-0.875; P < 0.001), respectively. The optimal cut-off values of FTc and ΔVpeak to predict SVV ≥ 13% were 340.74 ms (sensitivity of 76.8%; specificity of 80.5%) and 11.69% (sensitivity of 78.0%; specificity of 67.9%), respectively. CONCLUSIONS There was a good correlation between carotid artery ultrasound parameters and SVV. FTc predicted fluid responsiveness better than ΔVpeak in elderly patients during general anaesthesia. Further study is needed before these parameters can be recommended for clinical application. TRIAL REGISTRATION www.chictr.org.cn (ChiCTR2000031193); registered 23 March 2020.
Collapse
Affiliation(s)
- Yu Chen
- Department of Anaesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Sciences and Technology of China, Hefei, 230001, Anhui, China
| | - Ziyou Liu
- Department of Anaesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Sciences and Technology of China, Hefei, 230001, Anhui, China
| | - Jun Fang
- Department of Anaesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Sciences and Technology of China, Hefei, 230001, Anhui, China
| | - Yanhu Xie
- Department of Anaesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Sciences and Technology of China, Hefei, 230001, Anhui, China
| | - Min Zhang
- Department of Anaesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Sciences and Technology of China, Hefei, 230001, Anhui, China
| | - Jia Yang
- Department of Anaesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Sciences and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|