1
|
Ferreira Alves G, Aimaretti E, da Silveira Hahmeyer ML, Einaudi G, Porchietto E, Rubeo C, Marzani E, Aragno M, da Silva-Santos JE, Cifani C, Fernandes D, Collino M. Pharmacological inhibition of CK2 by silmitasertib mitigates sepsis-induced circulatory collapse, thus improving septic outcomes in mice. Biomed Pharmacother 2024; 178:117191. [PMID: 39079263 DOI: 10.1016/j.biopha.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Casein kinase II (CK2) has recently emerged as a pivotal mediator in the propagation of inflammation across various diseases. Nevertheless, its role in the pathogenesis of sepsis remains unexplored. Here, we investigated the involvement of CK2 in sepsis progression and the potential beneficial effects of silmitasertib, a selective and potent CK2α inhibitor, currently under clinical trials for COVID-19 and cancer. Sepsis was induced by caecal ligation and puncture (CLP) in four-month-old C57BL/6OlaHsd mice. One hour after the CLP/Sham procedure, animals were assigned to receive silmitasertib (50 mg/kg/i.v.) or vehicle. Plasma/organs were collected at 24 h for analysis. A second set of experiments was performed for survival rate over 120 h. Septic mice developed multiorgan failure, including renal dysfunction due to hypoperfusion (reduced renal blood flow) and increased plasma levels of creatinine. Renal derangements were associated with local overactivation of CK2, and downstream activation of the NF-ĸB-iNOS-NO axis, paralleled by a systemic cytokine storm. Interestingly, all markers of injury/inflammation were mitigated following silmitasertib administration. Additionally, when compared to sham-operated mice, sepsis led to vascular hyporesponsiveness due to an aberrant systemic and local release of NO. Silmitasertib restored sepsis-induced vascular abnormalities. Overall, these pharmacological effects of silmitasertib significantly reduced sepsis mortality. Our findings reveal, for the first time, the potential benefits of a selective and potent CK2 inhibitor to counteract sepsis-induced hyperinflammatory storm, vasoplegia, and ultimately prolonging the survival of septic mice, thus suggesting a pivotal role of CK2 in sepsis and silmitasertib as a novel powerful pharmacological tool for drug repurposing in sepsis.
Collapse
Affiliation(s)
- Gustavo Ferreira Alves
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil; Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Chiara Rubeo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Enrica Marzani
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Massimo Collino
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy.
| |
Collapse
|
2
|
Matsuda N, Machida T, Hattori Y. [Molecular mechanisms underlying the pathogenesis of septic multiple organ failure]. Nihon Yakurigaku Zasshi 2024; 159:101-106. [PMID: 38432917 DOI: 10.1254/fpj.23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Sepsis is defined as the body's overwhelming and life-threatening response to infection that can lead to tissue damage, organ failure, and death. Since bacterial infection is one of the main causes of sepsis, appropriate antimicrobial therapy remains the cornerstone of sepsis and septic shock management. However, since sepsis is a multifaceted chaos involving inflammation and anti-inflammation disbalance leading to the unregulated widespread release of inflammatory mediators, cytokines, and pathogen-related molecules leading to system-wide organ dysfunction, the whole body control to prevent the progression of organ dysfunction is needed. In sepsis and septic shock, pathogen-associated molecular patterns (PAMPs), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host. PAMPs are recognized by pattern recognizing receptors (PRRs) expressed on immune-reactive cells. PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Thus, most PRRs respond to PAMPs or DAMPs by triggering activation of transcriptional factors, NF-κB, AP1, and STAT-3. On the other hand, sepsis leads to immune (lymphocytes and macrophages) and nonimmune (endothelial and epithelial cells) cell death. Apoptosis has been the major focus of research on cell death in sepsis, but autophagy, necrosis, necroptosis, pyroptosis, NETosis, and ferroptosis may also play an important role in this critical situation. The recent development in our understanding regarding the cellular pathogenesis of sepsis will help in developing new treatment of sepsis.
Collapse
Affiliation(s)
- Naoyuki Matsuda
- Department of Emergency & Critical Care Medicine, Nagoya University Graduate School of Medicine
| | - Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido
| |
Collapse
|
3
|
Imbaby S, Hattori Y. Stattic ameliorates the cecal ligation and puncture-induced cardiac injury in septic mice via IL-6-gp130-STAT3 signaling pathway. Life Sci 2023; 330:122008. [PMID: 37549828 DOI: 10.1016/j.lfs.2023.122008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
AIM Sepsis-induced cardiac dysfunction is the leading cause of higher morbidity and mortality with poor prognosis in septic patients. Our recent previous investigation provides evidence of the hallmarks of signal transducer and activator of transcription3 (STAT3) activation in sepsis and targeting of STAT3 with Stattic, a small-molecule inhibitor of STAT3, has beneficial effects in various septic tissues. We investigated the possible cardioprotective effects of Stattic on cardiac inflammation and dysfunction in mice with cecal ligation and puncture (CLP)-induced sepsis. MAIN METHODS A polymicrobial sepsis model was induced by CLP in mice and Stattic (25 mg/kg) was intraperitoneally given at one and twelve hours after CLP operation. The cecum was exposed in sham-control mice without CLP. After 18 h of surgery, electrocardiogram (ECG) for anaesthized mice was registered followed by collecting of samples of blood and tissues for bimolecular and histopathological assessments. Myeloperoxidase, a marker of neutrophil infiltration, was assessed immunohistochemically. KEY FINDINGS CLP profoundly impaired cardiac functions as evidenced by ECG changes in septic mice as well as elevation of cardiac enzymes, and inflammatory markers with myocardial histopathological and immunohistochemical alterations. While, Stattic markedly reversed the CLP-induced cardiac abnormalities and restored the cardiac function by its anti-inflammatory activities. SIGNIFICANCE Stattic treatment had potential beneficial effects against sepsis-induced cardiac inflammation, dysfunction and damage. Its cardioprotective effects were possibly attributed to its anti-inflammatory activities by targeting STAT3 and downregulation of IL-6 and gp130. Our investigations suggest that Stattic could be a promising target for management of cardiac sepsis and inflammation-related cardiac damage.
Collapse
Affiliation(s)
- Samar Imbaby
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
4
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Tomita K, Saito Y, Suzuki T, Imbaby S, Hattori K, Matsuda N, Hattori Y. Vascular endothelial growth factor contributes to lung vascular hyperpermeability in sepsis-associated acute lung injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2365-2374. [PMID: 32696151 PMCID: PMC7371837 DOI: 10.1007/s00210-020-01947-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a prime regulator of vascular permeability. Acute lung injury (ALI) is characterized by high-permeability pulmonary edema in addition to refractory hypoxemia and diffuse pulmonary infiltrates. In this study, we examined whether VEGF can be implicated as a pulmonary vascular permeability factor in sepsis-associated ALI. We found that a great increase in lung vascular leak occurred in mice instilled intranasally with lipopolysaccharide (LPS), as assessed by IgM levels in bronchoalveolar lavage fluid. Treatment with the VEGF-neutralizing monoclonal antibody bevacizumab significantly reduced this hyperpermeability response, suggesting active participation of VEGF in non-cardiogenic lung edema associated with LPS-induced ALI. However, this was not solely attributable to excessive levels of intrapulmonary VEGF. Expression levels of VEGF were significantly reduced in lung tissues from mice with both intranasal LPS administration and cecal ligation and puncture (CLP)-induced sepsis, which may stem from decreases in non-endothelial cells-dependent VEGF production in the lungs. In support of this assumption, stimulation with LPS and interferon-γ (IFN-γ) significantly increased VEGF in human pulmonary microvascular endothelial cells (HPMECs) at mRNA and protein levels. Furthermore, a significant rise in plasma VEGF levels was observed in CLP-induced septic mice. The increase in VEGF released from HPMECs after LPS/IFN-γ challenge was completely blocked by either specific inhibitor of mitogen-activated protein kinase (MAPK) subgroups. Taken together, our results indicate that VEGF can contribute to the development of non-cardiogenic lung edema in sepsis-associated ALI due to increased VEGF secretion from pulmonary vascular endothelial cells through multiple MAPK-dependent pathways.
Collapse
Affiliation(s)
- Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Medical Environment Engineering Group, Center for Environmental Engineering, Shimizu Corporation, Institute of Technology, Tokyo, 135-0044, Japan
| | - Yuna Saito
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Center for Clinical Training, Juntendo University Urayasu Hospital, Urayasu, 279-0021, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- J-Pharma Co., Ltd., Yokohama, 230-0046, Japan
| | - Samar Imbaby
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, 061-0293, Japan.
| |
Collapse
|
6
|
Beneficial effect of STAT3 decoy oligodeoxynucleotide transfection on organ injury and mortality in mice with cecal ligation and puncture-induced sepsis. Sci Rep 2020; 10:15316. [PMID: 32943679 PMCID: PMC7498613 DOI: 10.1038/s41598-020-72136-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a major clinical challenge with unacceptably high mortality. The signal transducers and activators of transcription (STAT) family of transcription factors is known to activate critical mediators of cytokine responses, and, among this family, STAT3 is implicated to be a key transcription factor in both immunity and inflammatory pathways. We investigated whether in vivo introduction of synthetic double-stranded STAT3 decoy oligodeoxynucleotides (ODNs) can provide benefits for reducing organ injury and mortality in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. We found that STAT3 was rapidly activated in major end-organ tissues following CLP, which was accompanied by activation of the upstream kinase JAK2. Transfection of STAT3 decoy ODNs downregulated pro-inflammatory cytokine/chemokine overproduction in CLP mice. Moreover, STAT3 decoy ODN transfection significantly reduced the increases in tissue mRNAs and proteins of high mobility group box 1 (HMGB1) and strongly suppressed the excessive elevation in serum HMGB1 levels in CLP mice. Finally, STAT3 decoy ODN administration minimized the development of sepsis-driven major end-organ injury and led to a significant survival advantage in mice after CLP. Our results suggest a critical role of STAT3 in the sepsis pathophysiology and the potential usefulness of STAT3 decoy ODNs for sepsis gene therapy.
Collapse
|
7
|
Wu M, Hu N, Du X, Wei J. Application of CRISPR/Cas9 technology in sepsis research. Brief Funct Genomics 2020; 19:229-234. [PMID: 32058568 DOI: 10.1093/bfgp/elz040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas9, as a new genome-editing tool, offers new approaches to understand and treat diseases, which is being rapidly applied in various areas of biomedical research including sepsis field. The type II prokaryotic CRISPR/Cas system uses a single-guide RNA (sgRNA) to target the Cas9 nuclease to a specific genomic sequence, which is introduced into disease models for functional characterization and for testing of therapeutic strategies. This incredibly precise technology can be used for therapeutic research of gene-related diseases and to program any sequence in a target cell. Most importantly, the multifunctional capacity of this technology allows simultaneous editing of several genes. In this review, we focus on the basic principles, advantages and limitations of CRISPR/Cas9 and the use of the CRISPR/Cas9 system as a powerful tool in sepsis research and as a new strategy for the treatment of sepsis.
Collapse
|
8
|
Hattori Y, Hattori K, Suzuki T, Palikhe S, Matsuda N. Nucleic-acid based gene therapy approaches for sepsis. Eur J Pharmacol 2018; 833:403-410. [PMID: 29935173 DOI: 10.1016/j.ejphar.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Despite advances in overall medical care, sepsis and its sequelae continue to be an embarrassing clinical entity with an unacceptably high mortality rate. The central reason for high morbidity and high mortality of sepsis and its sequelae is the lack of an effective treatment. Previous clinical trials have largely failed to identify an effective therapeutic target to improve clinical outcomes in sepsis. Thus, the key goal favoring the outcome of septic patients is to devise innovative and evolutionary therapeutic strategies. Gene therapy can be considered as one of the most promising novel therapeutic approaches for nasty disorders. Since a number of transcription factors, such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), play a pivotal role in the pathophysiology of sepsis that can be characterized by the induction of multiple genes and their products, sepsis may be regarded as a gene-related disorder and gene therapy may be considered a promising novel therapeutic approach for treatment of sepsis. In this review article, we provide an up-to-date summary of the gene-targeting approaches, which have been developed in animal models of sepsis. Our review sheds light on the molecular basis of sepsis pathology for the development of novel gene therapy approaches and leads to the conclusion that future research efforts may fully take into account gene therapy for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|