1
|
Valsamaki A, Vazgiourakis V, Mantzarlis K, Stamatiou R, Makris D. MicroRNAs in Sepsis. Biomedicines 2024; 12:2049. [PMID: 39335561 PMCID: PMC11428652 DOI: 10.3390/biomedicines12092049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is an insidious and frequent condition of severe inflammation due to infections. Several biomarkers have been established for initial screening, but the non-specific nature of the existing biomarkers has led to the investigation of more sensitive and specific tools, such as microRNAs (miRs). These non-coding RNAs are involved in several diseases, including sepsis, due to their roles in cellular homeostasis. Herein, a literature overview was attempted to distinguish the most prominent miRs identified in septic conditions and their usefulness in diagnosis, prognosis and even classification of sepsis. miRs implicated in the regulation of pro and anti-inflammatory mechanisms, such as MIR-146a, MIR-155, MIR-181b, MIR-223-5p, MIR-494-3p, MIR-2055b, MIR-150 and MIR-143 have been pinpointed as acceptable testing tools. Furthermore, the use of miRs as screening panels, specific for septic parameters, such as type of causal infection, inflammation immune pathways affected (NF-kB, STAT/JACK), organs inflicted, as well as parallel screening of certain miRs alongside other long non-coding RNAs (LNCs), as co-regulators of sepsis progression. Overall, miRs exhibit benefits in terms of specificity and sensitivity, as well as practical ease of use and test stability. Furthermore, miRs could offer valuable insights into the molecular basis of disease causality and provide valuable therapeutic information.
Collapse
Affiliation(s)
- Asimina Valsamaki
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | | | | | - Rodopi Stamatiou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Demosthenes Makris
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
2
|
Picod A, Garcia B, Van Lier D, Pickkers P, Herpain A, Mebazaa A, Azibani F. Impaired angiotensin II signaling in septic shock. Ann Intensive Care 2024; 14:89. [PMID: 38877367 PMCID: PMC11178728 DOI: 10.1186/s13613-024-01325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Recent years have seen a resurgence of interest for the renin-angiotensin-aldosterone system in critically ill patients. Emerging data suggest that this vital homeostatic system, which plays a crucial role in maintaining systemic and renal hemodynamics during stressful conditions, is altered in septic shock, ultimately leading to impaired angiotensin II-angiotensin II type 1 receptor signaling. Indeed, available evidence from both experimental models and human studies indicates that alterations in the renin-angiotensin-aldosterone system during septic shock can occur at three distinct levels: 1. Impaired generation of angiotensin II, possibly attributable to defects in angiotensin-converting enzyme activity; 2. Enhanced degradation of angiotensin II by peptidases; and/or 3. Unavailability of angiotensin II type 1 receptor due to internalization or reduced synthesis. These alterations can occur either independently or in combination, ultimately leading to an uncoupling between the renin-angiotensin-aldosterone system input and downstream angiotensin II type 1 receptor signaling. It remains unclear whether exogenous angiotensin II infusion can adequately address all these mechanisms, and additional interventions may be required. These observations open a new avenue of research and offer the potential for novel therapeutic strategies to improve patient prognosis. In the near future, a deeper understanding of renin-angiotensin-aldosterone system alterations in septic shock should help to decipher patients' phenotypes and to implement targeted interventions.
Collapse
Affiliation(s)
- Adrien Picod
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France.
| | - Bruno Garcia
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire de Lille, Lille, France
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Lier
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care Medicine, St. Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Mebazaa
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France
- Department of Anesthesiology, Burns and Critical Care, Hopitaux Saint-Louis-Lariboisière, AP-HP, Paris, France
| | - Feriel Azibani
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France
| |
Collapse
|
3
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Papadopoulos KI, Papadopoulou A, Aw TC. Beauty and the beast: host microRNA-155 versus SARS-CoV-2. Hum Cell 2023; 36:908-922. [PMID: 36847920 PMCID: PMC9969954 DOI: 10.1007/s13577-023-00867-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) infection in the young and healthy usually results in an asymptomatic or mild viral syndrome, possibly through an erythropoietin (EPO)-dependent, protective evolutionary landscape. In the old and in the presence of co-morbidities, however, a potentially lethal coronavirus disease 2019 (COVID-19) cytokine storm, through unrestrained renin-angiotensin aldosterone system (RAAS) hyperactivity, has been described. Multifunctional microRNA-155 (miR-155) elevation in malaria, dengue virus (DENV), the thalassemias, and SARS-CoV-1/2, plays critical antiviral and cardiovascular roles through its targeted translational repression of over 140 genes. In the present review, we propose a plausible miR-155-dependent mechanism whereby the translational repression of AGRT1, Arginase-2 and Ets-1, reshapes RAAS towards Angiotensin II (Ang II) type 2 (AT2R)-mediated balanced, tolerable, and SARS-CoV-2-protective cardiovascular phenotypes. In addition, it enhances EPO secretion and endothelial nitric oxide synthase activation and substrate availability, and negates proinflammatory Ang II effects. Disrupted miR-155 repression of AT1R + 1166C-allele, significantly associated with adverse cardiovascular and COVID-19 outcomes, manifests its decisive role in RAAS modulation. BACH1 and SOCS1 repression creates an anti-inflammatory and cytoprotective milieu, robustly inducing antiviral interferons. MiR-155 dysregulation in the elderly, and in comorbidities, allows unimpeded RAAS hyperactivity to progress towards a particularly aggressive COVID-19 course. Elevated miR-155 in thalassemia plausibly engenders a favorable cardiovascular profile and protection against malaria, DENV, and SARS-CoV-2. MiR-155 modulating pharmaceutical approaches could offer novel therapeutic options in COVID-19.
Collapse
Affiliation(s)
- K. I. Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Bangkok, 10310 Thailand
| | - A. Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63 Lund, Sweden
| | - T. C. Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889 Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
5
|
Formosa A, Turgeon P, dos Santos CC. Role of miRNA dysregulation in sepsis. Mol Med 2022; 28:99. [PMID: 35986237 PMCID: PMC9389495 DOI: 10.1186/s10020-022-00527-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Sepsis is defined as a state of multisystem organ dysfunction secondary to a dysregulated host response to infection and causes millions of deaths worldwide annually. Novel ways to counteract this disease are needed and such tools may be heralded by a detailed understanding of its molecular pathogenesis. MiRNAs are small RNA molecules that target mRNAs to inhibit or degrade their translation and have important roles in several disease processes including sepsis. Main body The current review adopted a strategic approach to analyzing the widespread literature on the topic of miRNAs and sepsis. A pubmed search of “miRNA or microRNA or small RNA and sepsis not review” up to and including January 2021 led to 1140 manuscripts which were reviewed. Two hundred and thirty-three relevant papers were scrutinized for their content and important themes on the topic were identified and subsequently discussed, including an in-depth look at deregulated miRNAs in sepsis in peripheral blood, myeloid derived suppressor cells and extracellular vesicles. Conclusion Our analysis yielded important observations. Certain miRNAs, namely miR-150 and miR-146a, have consistent directional changes in peripheral blood of septic patients across numerous studies with strong data supporting a role in sepsis pathogenesis. Furthermore, a large body of literature show miRNA signatures of clinical relevance, and lastly, many miRNAs deregulated in sepsis are associated with the process of endothelial dysfunction. This review offers a widespread, up-to-date and detailed discussion of the role of miRNAs in sepsis and is meant to stimulate further work in the field due to the potential of these small miRNAs in prompt diagnostics, prognostication and therapeutic agency. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00527-z.
Collapse
|
6
|
Xie S, Zhang M, Shi W, Xing Y, Huang Y, Fang W, Liu S, Chen M, Zhang T, Chen S, Zeng X, Wang S, Deng W, Tang Q. Long-Term Activation of Glucagon-like peptide-1 receptor by Dulaglutide Prevents Diabetic Heart Failure and Metabolic Remodeling in Type 2 Diabetes. J Am Heart Assoc 2022; 11:e026728. [PMID: 36172969 PMCID: PMC9673690 DOI: 10.1161/jaha.122.026728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Background Mechanistic insights of glucagon-like peptide-1 receptor agonists remain incompletely identified, despite the efficacy in heart failure observed in clinical trials. Here, we evaluated the effects of dulaglutide on heart complications and illuminated its underlying mechanism. Methods and Results We used mice with high-fat diet (HFD)/streptozotocin-induced type 2 diabetes to investigate the effects of dulaglutide upon diabetic cardiac dysfunction. After the onset of diabetes, control and diabetic mice were injected subcutaneously with either dulaglutide (type 2 diabetes-dulaglutide and control-dulaglutide groups) or vehicle (type 2 diabetes-vehicle and control-vehicle groups) for 8 weeks. Subsequently, heart characteristics, cardiometabolic profile and mitochondrial morphology and function were evaluated. Also, we analyzed the effects of dulaglutide on neonatal rat ventricular myocytes treated with high glucose plus palmitic acid. In addition, wild type and AMP-activated protein kinase α2 mutant mice were used to evaluate the underlying mechanism. In type 2 diabetes mouse model, dulaglutide ameliorated insulin resistance, improved glucose tolerance, reduced hyperlipidemia, and promoted fatty acid use in the myocardium. Dulaglutide treatment functionally attenuated cardiac remodeling and dysfunction and promoted metabolic reprogramming in diabetic mice. Furthermore, dulaglutide improved mitochondria fragmentation in myocytes, and simultaneously reinstated mitochondrial morphology and function in diabetic hearts. We also found that dulaglutide preserved AMP-activated protein kinase α2-dependent mitochondrial homeostasis, and the protective effects of dulaglutide on diabetic heart was almost abated by AMP-activated protein kinase α2 knockout. Conclusions Dulaglutide prevents diabetic heart failure and favorably affects myocardial metabolic remodeling by impeding mitochondria fragmentation, and we suggest a potential strategy to develop a long-term activation of glucagon-like peptide-1 receptor-based therapy to treat diabetes associated cardiovascular complications.
Collapse
Affiliation(s)
- Saiyang Xie
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Min Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Wenke Shi
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Yun Xing
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Yan Huang
- Department of EndocrinologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
| | - Wen‐xi Fang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Shi‐qiang Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Meng‐Ya Chen
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Tong Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan UniversityWuhanP.R. China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan UniversityWuhanP.R. China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan UniversityWuhanP.R. China
| | - Wei Deng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Qizhu Tang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| |
Collapse
|
7
|
Garcia B, Su F, Dewachter L, Favory R, Khaldi A, Moiroux-Sahraoui A, Annoni F, Vasques-Nóvoa F, Rocha-Oliveira E, Roncon-Albuquerque R, Hubesch G, Njimi H, Vincent JL, Taccone FS, Creteur J, Herpain A. Myocardial effects of angiotensin II compared to norepinephrine in an animal model of septic shock. Crit Care 2022; 26:281. [PMID: 36117167 PMCID: PMC9482744 DOI: 10.1186/s13054-022-04161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Angiotensin II is one of the vasopressors available for use in septic shock. However, its effects on the septic myocardium remain unclear. The aim of the study was to compare the effects of angiotensin II and norepinephrine on cardiac function and myocardial oxygen consumption, inflammation and injury in experimental septic shock. METHODS This randomized, open-label, controlled study was performed in 20 anesthetized and mechanically ventilated pigs. Septic shock was induced by fecal peritonitis in 16 animals, and four pigs served as shams. Resuscitation with fluids, antimicrobial therapy and abdominal drainage was initiated one hour after the onset of septic shock. Septic pigs were randomly allocated to receive one of the two drugs to maintain mean arterial pressure between 65 and 75 mmHg for 8 h. RESULTS There were no differences in MAP, cardiac output, heart rate, fluid balance or tissue perfusion indices in the two treatment groups but myocardial oxygen consumption was greater in the norepinephrine-treated animals. Myocardial mRNA expression of interleukin-6, interleukin-6 receptor, interleukin-1 alpha, and interleukin-1 beta was higher in the norepinephrine than in the angiotensin II group. CONCLUSIONS In septic shock, angiotensin II administration is associated with a similar level of cardiovascular resuscitation and less myocardial oxygen consumption, and inflammation compared to norepinephrine.
Collapse
Affiliation(s)
- Bruno Garcia
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium.
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France.
| | - Fuhong Su
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Raphaël Favory
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Amina Khaldi
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Filippo Annoni
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Estela Rocha-Oliveira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Roberto Roncon-Albuquerque
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Emergency and Intensive Care Medicine, São João Hospital Center, Porto, Portugal
| | - Geraldine Hubesch
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Vincent
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio S Taccone
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
9
|
Vasques‐Nóvoa F, Angélico‐Gonçalves A, Alvarenga JM, Nobrega J, Cerqueira RJ, Mancio J, Leite‐Moreira AF, Roncon‐Albuquerque R. Myocardial oedema: pathophysiological basis and implications for the failing heart. ESC Heart Fail 2022; 9:958-976. [PMID: 35150087 PMCID: PMC8934951 DOI: 10.1002/ehf2.13775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
Myocardial fluid homeostasis relies on a complex interplay between microvascular filtration, interstitial hydration, cardiomyocyte water uptake and lymphatic removal. Dysregulation of one or more of these mechanisms may result in myocardial oedema. Interstitial and intracellular fluid accumulation disrupts myocardial architecture, intercellular communication, and metabolic pathways, decreasing contractility and increasing myocardial stiffness. The widespread use of cardiac magnetic resonance enabled the identification of myocardial oedema as a clinically relevant imaging finding with prognostic implications in several types of heart failure. Furthermore, growing experimental evidence has contributed to a better understanding of the physical and molecular interactions in the microvascular barrier, myocardial interstitium and lymphatics and how they might be disrupted in heart failure. In this review, we summarize current knowledge on the factors controlling myocardial water balance in the healthy and failing heart and pinpoint the new potential therapeutic avenues.
Collapse
Affiliation(s)
- Francisco Vasques‐Nóvoa
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - António Angélico‐Gonçalves
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - José M.G. Alvarenga
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - João Nobrega
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Rui J. Cerqueira
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Jennifer Mancio
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Adelino F. Leite‐Moreira
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| | - Roberto Roncon‐Albuquerque
- Cardiovascular R&D Center, Faculty of MedicineUniversity of PortoPortoPortugal
- Department of Surgery and Physiology, Faculty of MedicineUniversity of PortoAl. Prof. Hernâni MonteiroPorto4200‐319Portugal
| |
Collapse
|
10
|
Sankar S, Maruthai K, Bobby Z, Adhisivam B. MicroRNA Expression in Neonates with Late-onset Sepsis - A Cross-sectional Comparative Study. Immunol Invest 2022; 51:1647-1659. [PMID: 35026963 DOI: 10.1080/08820139.2021.2020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neonatal sepsis is a major health concern among neonates with higher morbidity and mortality rate. Studies have recently speculated the importance of differential expression of circulating mature micro-RNAs (miRNAs) which could serve as diagnostic as well as prognostic markers for risk of mortality in neonatal sepsis. This study aimed to analyze the expression pattern and to assess the diagnostic/prognostic value of miRNAs miR-21, miR-29a miR-31, miR-146a, and miR-155 in late-onset neonatal sepsis. METHODS A cross-sectional comparative study was conducted including 42 healthy controls and 42 neonates with late-onset neonatal sepsis. SYBR green-based miScript RT-PCR assay was used for the expression analysis and the comparative Ct method 2-delta (Ct) method was used for relative quantification of the candidate miRNAs in plasma. Significantly higher expression of miR-21 and miR-155 and lower expression of miR-29a and miR-146a was observed in cases compared to control except miR-31. In subgroups analysis, miR-21(p = .03) showed a significant difference between pre-term and term neonates and miR-31 (p = .01) and miR-155 (p = .03) showed a significant difference between low-birth-weight and normal-birth-weight neonates. miR-146a showed significantly lower expression in the non-survivor group compared to the survivor group (p = .005). A receiver operating characteristic curve (ROC) analysis of miR-21 and miR-29a (0.829 and 0.787 AUC of ROC curves) showed good discrimination for the identification of sepsis from non-sepsis neonates. CONCLUSION The current study shows evidence of differential expression of miRNAs in neonatal sepsis and this altered expression of candidate miRNAs could be involved in immune dysregulation, thus leading to sepsis-related severity in newborns.
Collapse
Affiliation(s)
- Saranya Sankar
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| | - Kathirvel Maruthai
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| | - Bethou Adhisivam
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (Jipmer), Puducherry, India
| |
Collapse
|
11
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Leite S, Moreira-Costa L, Cerqueira R, Sousa-Mendes C, Angélico-Gonçalves A, Fontoura D, Vasques-Nóvoa F, Leite-Moreira AF, Lourenço AP. Chronic Sildenafil Therapy in the ZSF1 Obese Rat Model of Metabolic Syndrome and Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol Ther 2021; 26:690-701. [PMID: 34328815 DOI: 10.1177/10742484211034253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although decreased protein kinase G (PKG) activity was proposed as potential therapeutic target in heart failure with preserved ejection fraction (HFpEF), randomized clinical trials (RCTs) with type-5 phosphodiesterase inhibitors (PDE5i) showed neutral results. Whether specific subgroups of HFpEF patients may benefit from PDE5i remains to be defined. Our aim was to test chronic sildenafil therapy in the young male ZSF1 obese rat model of HFpEF with severe hypertension and metabolic syndrome. Sixteen-week-old ZSF1 obese rats were randomly assigned to receive sildenafil 100 mg·Kg-1·d-1 dissolved in drinking water (ZSF1 Ob SIL, n = 8), or placebo (ZSF1 Ob PL, n = 8). A group of Wistar-Kyoto rats served as control (WKY, n = 8). Four weeks later animals underwent effort tests, glucose metabolism studies, hemodynamic evaluation, and samples were collected for aortic ring preparation, left ventricular (LV) myocardial adenosine triphosphate (ATP) quantification, immunoblotting and histology. ZSF1 Ob PL rats showed systemic hypertension, aortic stiffening, impaired LV relaxation and increased LV stiffness, with preserved ejection fraction and cardiac index. Their endurance capacity was decreased as assessed by maximum workload and peak oxygen consumption (V˙O2) and respiratory quotient were increased, denoting more reliance on anaerobic metabolism. Additionally, ATP levels were decreased. Chronic sildenafil treatment attenuated hypertension and decreased LV stiffness, modestly enhancing effort tolerance with a concomitant increase in peak, ATP levels and VASP phosphorylation. Chronic sildenafil therapy in this model of HFpEF of the young male with extensive and poorly controlled comorbidities has beneficial cardiovascular effects which support RCTs in HFpEF patient subgroups with similar features.
Collapse
Affiliation(s)
- Sara Leite
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Anta Family Health Unit, Espinho/Gaia Healthcare Centre, Espinho, Portugal
| | - Liliana Moreira-Costa
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal
| | - Rui Cerqueira
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Department of Cardiothoracic Surgery, São João Hospital Centre, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal
| | | | - Dulce Fontoura
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Department of Internal Medicine, São João Hospital Centre, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Department of Cardiothoracic Surgery, São João Hospital Centre, Porto, Portugal
| | - André P Lourenço
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Department of Anesthesiology, São João Hospital Centre, Porto, Portugal
| |
Collapse
|
13
|
Abstract
Septic cardiomyopathy is an increasingly relevant topic in clinical management of septic shock. However, pathophysiological mechanisms and long-term consequences of sepsis-induced myocardial injury are still poorly understood. Herein, new clinical and histological evidence is provided suggesting an association of myocardial edema formation with tissue injury and subsequent remodeling in septic shock patients. This preliminary data supports myocardial edema as a potentially relevant and largely unexplored mechanism of human septic cardiomyopathy.
Collapse
|
14
|
Gastrodin alleviates inflammatory injury of cardiomyocytes in septic shock mice via inhibiting NLRP3 expression. In Vitro Cell Dev Biol Anim 2021; 57:571-581. [PMID: 34106415 DOI: 10.1007/s11626-021-00593-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
Septic shock leads to myocardial dysfunction and induces inflammation. Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes are involved in inflammation, and gastrodin can inhibit the activity of inflammasomes. Our study aimed to explore the effect of gastrodin against septic shock-induced injury through inhibiting NLRP3. Before establishing septic shock mice model, the mice were injected with gastrodin of various concentrations. The cardiac function of mice was detected by a PowerLab, and the histopathological changes of mouse myocardial tissues were detected by hematoxylin-eosin staining. Apoptosis of cardiomyocytes from mice was detected by TUNEL assay, and IL-1β concentration was detected by enzyme-linked immunosorbent assay. After culture in vitro and treatment with gastrodin, lipopolysaccharide (LPS), and NLRP3 vector, the cell viability and apoptosis of cardiomyocytes were detected by cell counting kit-8 and flow cytometry respectively. Besides, the expressions of NLRP3, Caspase-1, IL-1β, Bax, and Bcl-2 in mouse myocardial tissue or cultured cardiomyocytes were detected by Western blot. Gastrodin improved survival and promoted the recovery of cardiac function in septic shock mice, as it reversed the abnormality of left ventricular function indices in septic shock mice. Besides, gastrodin decreased IL-1β concentration and apoptosis in myocardial tissues of septic shock mice and decreased apoptosis and increased cell viability in LPS-induced cardiomyocytes. In addition, gastrodin downregulated NLRP3, Caspase-1, IL-1β, and Bax expressions and upregulated Bcl-2 expression in myocardial tissues of septic shock mice and LPS-induced cardiomyocytes. NLRP3 overexpression reversed the effect of gastrodin on LPS-induced cardiomyocytes. Gastrodin promoted cardiac function recovery and protected cardiomyocytes against septic shock-induced injury by regulating NLRP3.
Collapse
|
15
|
Huang X, Neckenig M, Sun J, Jia D, Dou Y, Ai D, Nan Z, Qu X. Vitamin E succinate exerts anti-tumour effects on human cervical cancer cells via the CD47-SIRPɑ pathway both in vivo and in vitro. J Cancer 2021; 12:3877-3886. [PMID: 34093795 PMCID: PMC8176246 DOI: 10.7150/jca.52315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/22/2021] [Indexed: 12/09/2022] Open
Abstract
Vitamin E succinate (RRR-a-tocopheryl succinate, VES) acts as a potent agent for cancer therapy and has no toxic and side effects on normal tissue cells. However, the mechanism by which VES mediates the effects are not yet fully understood. Here, we hypothesised that VES mediates antitumour activity on human cervical cancer cells via the CD47-SIRPɑ pathway in vivo and in vitro. Results indicated that the human cervical cancer HeLa cells treated with VES were more efficiently engulfed by THP-1-derived macrophages. In response to VES, the protein expression of CD47 on cell membranes and the mRNA level of CD47 in different human cervical cancer cells significantly decreased. And the level of calreticulin (CRT) mRNA in the VES-treated cells increased. By contrast, CRT protein expression was not altered. miRNA-155, miRNA-133 and miRNA-326 were up-regulated in the VES-treated HeLa cells. Knocking down miRNA-155 and miRNA-133 by RNA interference increased CD47 protein expression in the VES-treated cells. In vivo efficacy was determined in BALB/C nude mice with HeLa xenografts. Results showed that VES reduced tumour growth, increased overall survival and inhibited CD47 in the tumour transcriptionally and translationally. Furthermore, inflammatory factors (TNF-α, IL-12, IFN-γ, IL-2 and IL-10) in the spleen were altered because of VES treatment. Our results suggest that VES-induced antitumour activity is coupled to the CD47-SIRPɑ pathway in human cervical HeLa cancer cells.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Nutrition, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Markus Neckenig
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Jintang Sun
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Di Jia
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Dou
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Dan Ai
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaodi Nan
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Abdellatif M, Trummer-Herbst V, Koser F, Durand S, Adão R, Vasques-Nóvoa F, Freundt JK, Voglhuber J, Pricolo MR, Kasa M, Türk C, Aprahamian F, Herrero-Galán E, Hofer SJ, Pendl T, Rech L, Kargl J, Anto-Michel N, Ljubojevic-Holzer S, Schipke J, Brandenberger C, Auer M, Schreiber R, Koyani CN, Heinemann A, Zirlik A, Schmidt A, von Lewinski D, Scherr D, Rainer PP, von Maltzahn J, Mühlfeld C, Krüger M, Frank S, Madeo F, Eisenberg T, Prokesch A, Leite-Moreira AF, Lourenço AP, Alegre-Cebollada J, Kiechl S, Linke WA, Kroemer G, Sedej S. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci Transl Med 2021; 13:eabd7064. [PMID: 33568522 PMCID: PMC7611499 DOI: 10.1126/scitranslmed.abd7064] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/05/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent and intractable form of cardiac decompensation commonly associated with diastolic dysfunction. Here, we show that diastolic dysfunction in patients with HFpEF is associated with a cardiac deficit in nicotinamide adenine dinucleotide (NAD+). Elevating NAD+ by oral supplementation of its precursor, nicotinamide, improved diastolic dysfunction induced by aging (in 2-year-old C57BL/6J mice), hypertension (in Dahl salt-sensitive rats), or cardiometabolic syndrome (in ZSF1 obese rats). This effect was mediated partly through alleviated systemic comorbidities and enhanced myocardial bioenergetics. Simultaneously, nicotinamide directly improved cardiomyocyte passive stiffness and calcium-dependent active relaxation through increased deacetylation of titin and the sarcoplasmic reticulum calcium adenosine triphosphatase 2a, respectively. In a long-term human cohort study, high dietary intake of naturally occurring NAD+ precursors was associated with lower blood pressure and reduced risk of cardiac mortality. Collectively, these results suggest NAD+ precursors, and especially nicotinamide, as potential therapeutic agents to treat diastolic dysfunction and HFpEF in humans.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | | | - Franziska Koser
- Institute of Physiology II, University of Münster, Münster 48149, Germany
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris 75006, France
| | - Rui Adão
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
- Department of Surgery and Physiology, Cardiovascular Research and Development Centre (UnIC), Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | - Francisco Vasques-Nóvoa
- Department of Surgery and Physiology, Cardiovascular Research and Development Centre (UnIC), Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | - Johanna K Freundt
- Institute of Physiology II, University of Münster, Münster 48149, Germany
| | - Julia Voglhuber
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
- BioTechMed Graz, Graz 8010, Austria
| | | | - Michael Kasa
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris 75006, France
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz 8010, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz 8010, Austria
| | - Lavinia Rech
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz 8010, Austria
| | | | - Senka Ljubojevic-Holzer
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
- BioTechMed Graz, Graz 8010, Austria
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Martina Auer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz 8010, Austria
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz 8010, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz 8010, Austria
| | - Chintan N Koyani
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Akos Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz 8010, Austria
| | - Andreas Zirlik
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Albrecht Schmidt
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Dirk von Lewinski
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Daniel Scherr
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
- BioTechMed Graz, Graz 8010, Austria
| | | | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Saša Frank
- BioTechMed Graz, Graz 8010, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz 8010, Austria
| | - Frank Madeo
- BioTechMed Graz, Graz 8010, Austria
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz 8010, Austria
| | - Tobias Eisenberg
- BioTechMed Graz, Graz 8010, Austria
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz 8010, Austria
| | - Andreas Prokesch
- BioTechMed Graz, Graz 8010, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz 8010, Austria
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz 8010, Austria
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular Research and Development Centre (UnIC), Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | - André P Lourenço
- Department of Surgery and Physiology, Cardiovascular Research and Development Centre (UnIC), Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | | | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
- VASCage, Research Centre for Promoting Vascular Health in the Ageing Community, Innsbruck 6020, Austria
| | - Wolfgang A Linke
- Institute of Physiology II, University of Münster, Münster 48149, Germany
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris 75006, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215000, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Solna 17164, Sweden
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria.
- BioTechMed Graz, Graz 8010, Austria
- Faculty of Medicine, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|
17
|
Laundos TL, Vasques-Nóvoa F, Gomes RN, Sampaio-Pinto V, Cruz P, Cruz H, Santos JM, Barcia RN, Pinto-do-Ó P, Nascimento DS. Consistent Long-Term Therapeutic Efficacy of Human Umbilical Cord Matrix-Derived Mesenchymal Stromal Cells After Myocardial Infarction Despite Individual Differences and Transient Engraftment. Front Cell Dev Biol 2021; 9:624601. [PMID: 33614654 PMCID: PMC7890004 DOI: 10.3389/fcell.2021.624601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
Human mesenchymal stem cells gather special interest as a universal and feasible add-on therapy for myocardial infarction (MI). In particular, human umbilical cord matrix-derived mesenchymal stromal cells (UCM-MSC) are advantageous since can be easily obtained and display high expansion potential. Using isolation protocols compliant with cell therapy, we previously showed UCM-MSC preserved cardiac function and attenuated remodeling 2 weeks after MI. In this study, UCM-MSC from two umbilical cords, UC-A and UC-B, were transplanted in a murine MI model to investigate consistency and durability of the therapeutic benefits. Both cellular products improved cardiac function and limited adverse cardiac remodeling 12 weeks post-ischemic injury, supporting sustained and long-term beneficial therapeutic effect. Donor associated variability was found in the modulation of cardiac remodeling and activation of the Akt-mTOR-GSK3β survival pathway. In vitro, the two cell products displayed similar ability to induce the formation of vessel-like structures and comparable transcriptome in normoxia and hypoxia, apart from UCM-MSCs proliferation and expression differences in a small subset of genes associated with MHC Class I. These findings support that UCM-MSC are strong candidates to assist the treatment of MI whilst calling for the discussion on methodologies to characterize and select best performing UCM-MSC before clinical application.
Collapse
Affiliation(s)
- Tiago L. Laundos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Cardiovascular RandD Center, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Internal Medicine, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Rita N. Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Vasco Sampaio-Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | | | | | | | | | - Perpétua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Diana S. Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
18
|
MicroRNA-155: Regulation of Immune Cells in Sepsis. Mediators Inflamm 2021; 2021:8874854. [PMID: 33505221 PMCID: PMC7810547 DOI: 10.1155/2021/8874854] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small noncoding RNAs which regulate gene expression at the posttranscriptional level. miR-155 is encoded by the miR-155 host gene (miR155HG), also known as the noncoding B cell integration cluster (BIC). MicroRNAs are widely expressed in various hematopoietic cells and are involved in regulating the immune system. In this review, we summarized how miR-155 modulates specific immune cells and the regulatory role of miR-155 in sepsis. miR-155 is expressed by different populations of innate and adaptive immune cells and is involved in the regulation of development, proliferation, and function in these cells. Sepsis is associated with uncontrollable inflammatory responses, accompanied by unacceptably high mortality. Due to the inadequacy of diagnostic markers as well as treatment strategies, treating sepsis can be a huge challenge. So far, a large number of experiments have shown that the expression of miR-155 is increased at an early stage of sepsis and that this increase is positively correlated with disease progression and severity. In addition, by blocking the proinflammatory effects of miR-155, it can effectively improve sepsis-related organ injury, providing novel insights to identify potential biomarkers and therapeutic targets for sepsis. However, since most of the current research is limited to animal experiments, further clinical research is required to determine the function of miR-155 and its mechanism related to sepsis.
Collapse
|
19
|
Argirò A, Olivotto I. The coronary microcirculation in sepsis: not of micro-importance. Glob Cardiol Sci Pract 2020; 2020:e202030. [PMID: 33598490 PMCID: PMC7868102 DOI: 10.21542/gcsp.2020.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Alessia Argirò
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
20
|
Expression Profiling of Long Noncoding RNA and Messenger RNA in a Cecal Ligation and Puncture-Induced Colon Injury Mouse Model. Mediators Inflamm 2020; 2020:8925973. [PMID: 33204219 PMCID: PMC7657679 DOI: 10.1155/2020/8925973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background Emerging evidence reveals that long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of sepsis. However, the detailed regulatory mechanisms of lncRNAs or whether certain lncRNA could serve as a biomarker in the septic colon remains unclear. The aim of this study was to investigate the profiles of lncRNAs and mRNAs in the septic colon through whole-transcriptome RNA sequencing and to reveal the associated regulatory mechanism. Method and Result We established a mouse model of sepsis by cecal ligation and puncture (CLP). Colon samples were collected upon CLP or sham surgery after 24 h. Whole-transcriptome RNA sequencing was performed to profile the relative expressions of lncRNAs and mRNAs. 808 lncRNAs and 1509 mRNAs were differentially found in the septic group compared with the sham group. Bioinformatics analysis including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis (KEGG) was performed to predict the potential functions of these RNAs. GO analysis showed that the altered lncRNAs were enriched and involved in multiple immune responses, which may be a response to sepsis stress. KEGG analysis indicated that upregulated lncRNAs were significantly enriched in the p53 signaling pathway, NF-κB signaling pathway, and HIF-1 signaling pathway. Downregulated lncRNAs were mostly found to be involved in tight junction, leukocyte transendothelial migration, and HIF-1 signaling pathway. Conclusion Our results indicate that these altered lncRNAs and mRNAs may have crucial roles in the pathogenesis of sepsis. This study could contribute to extending the understanding of the function of lncRNAs in sepsis, which may help in searching for new diagnostic biomarkers and therapeutic targets to treat sepsis.
Collapse
|
21
|
Cavaillon J, Singer M, Skirecki T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Mol Med 2020; 12:e10128. [PMID: 32176432 PMCID: PMC7136965 DOI: 10.15252/emmm.201810128] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis has been identified by the World Health Organization (WHO) as a global health priority. There has been a tremendous effort to decipher underlying mechanisms responsible for organ failure and death, and to develop new treatments. Despite saving thousands of animals over the last three decades in multiple preclinical studies, no new effective drug has emerged that has clearly improved patient outcomes. In the present review, we analyze the reasons for this failure, focusing on the inclusion of inappropriate patients and the use of irrelevant animal models. We advocate against repeating the same mistakes and propose changes to the research paradigm. We discuss the long-term consequences of surviving sepsis and, finally, list some putative approaches-both old and new-that could help save lives and improve survivorship.
Collapse
Affiliation(s)
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care MedicineUniversity College LondonLondonUK
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care MedicineCentre of Postgraduate Medical EducationWarsawPoland
| |
Collapse
|
22
|
Long noncoding RNAs as novel players in the pathogenesis of hypertension. Hypertens Res 2020; 43:597-608. [PMID: 32020084 DOI: 10.1038/s41440-020-0408-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are non-(protein)-coding RNAs longer than ~200 nucleotides and have been reported to be involved in multiple human diseases by regulating gene expression. A growing body of evidence has demonstrated that lncRNAs are also widely implicated in mechanisms of hypertension, including regulation of the proliferation, migration, and apoptosis of VSMCs; the production of iNOS and NO; and the angiogenic function of endothelial cells. Several lncRNAs were also differentially expressed in the renal and cardiac tissues of hypertensive rats and even in placental samples from preeclampsia patients. In particular, several circulating lncRNAs have been identified as novel biomarkers of hypertension. In this review, we summarize the current studies of lncRNAs in the pathogenesis of hypertension in order to aid in better understanding the molecular mechanism of hypertension and provide a basis to explore new therapeutic targets.
Collapse
|
23
|
Abstract
Cardiovascular disease is an enormous socioeconomic burden worldwide and remains a leading cause of mortality and disability despite significant efforts to improve treatments and personalize healthcare. Heart failure is the main manifestation of cardiovascular disease and has reached epidemic proportions. Heart failure follows a loss of cardiac homeostasis, which relies on a tight regulation of gene expression. This regulation is under the control of multiple types of RNA molecules, some encoding proteins (the so-called messenger RNAs) and others lacking protein-coding potential, named noncoding RNAs. In this review article, we aim to revisit the notion of regulatory RNA, which has been thus far mainly confined to noncoding RNA. Regulatory RNA, which we propose to abbreviate as regRNA, can include both protein-coding RNAs and noncoding RNAs, as long as they contribute, directly or indirectly, to the regulation of gene expression. We will address the regulation and functional role of messenger RNAs, microRNAs, long noncoding RNAs, and circular RNAs (ie, regRNAs) in heart failure. We will debate the utility of regRNAs to diagnose, prognosticate, and treat heart failure, and we will provide directions for future work.
Collapse
Affiliation(s)
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | - Gabriela M. Kuster
- Clinic of Cardiology and Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland (G.M.K.)
| | - Emma L. Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | - Kerrie Ford
- Imperial College London, United Kingdom (K.F., C.E.)
| | - Iain B. Squire
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Biomedical Research Centre, Glenfield Hospital, United Kingdom (I.B.S.)
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
| | | | | | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg (C.P.d.C.G., Y.D.)
| | - On behalf of the EU-CardioRNA COST Action (CA17129)
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg (C.P.d.C.G., Y.D.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (B.S., E.L.R., S.H.)
- Clinic of Cardiology and Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland (G.M.K.)
- Imperial College London, United Kingdom (K.F., C.E.)
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Biomedical Research Centre, Glenfield Hospital, United Kingdom (I.B.S.)
- IRCCS Policlinico San Donato, Milan, Italy (F.M.)
| |
Collapse
|
24
|
Abdellatif M, Sedej S, Madeo F, Kroemer G. Cardioprotective effects of autophagy induction in sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S61. [PMID: 30613636 PMCID: PMC6291539 DOI: 10.21037/atm.2018.10.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 01/12/2023]
Affiliation(s)
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Frank Madeo
- BioTechMed Graz, Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|