1
|
Baker A, Shah E, Ouyang A, Silver M, Tomko SR, Guilliams K, Said AS, Guerriero RM. Electroencephalographic Findings Add Prognostic Value to Clinical Features Associated with Mortality on Venoarterial Extracorporeal Support. Neurocrit Care 2025:10.1007/s12028-025-02248-7. [PMID: 40244546 DOI: 10.1007/s12028-025-02248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/05/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The objective of this study was to identify clinical and continuous electroencephalogram (cEEG) variables associated with outcomes of pediatric venoarterial (V-A) extracorporeal membrane oxygenation support (ECMO). METHODS We conducted a retrospective single-center study of pediatric patients on V-A ECMO between January 1, 2015, and September 30, 2020. Serial clinical and cEEG variables were collected to assess the relationship of pre- and on-ECMO variables with hospital mortality in patients who underwent cEEG monitoring. RESULTS Ninety-four patients undergoing V-A ECMO had cEEG monitoring, with a hospital mortality of 43%. Nonsurvivors had significantly lower pH and higher lactate levels prior to ECMO initiation. Nineteen (20%) had seizures, with 7 (7%) developing status epilepticus. In the first 24 h patients were on ECMO, unfavorable background score and lack of cEEG variability or reactivity were associated with mortality. A multivariable model investigating in-hospital mortality that included pH and lactate level 2 h prior to ECMO initiation, presence of electrographic seizures, and asymmetry on cEEG as variables, had an area under the receiver operating characteristic curve (AUROC) of 0.8 (95% confidence interval [CI] 0.74-0.86, p < 0.02). The model for on-ECMO mortality (ECMO nonsurvivors) that included pH 2 h prior to ECMO initiation, presence of electrographic seizures, and lack of variability/reactivity at any point on cEEG as variables had an AUROC of 0.85 (95% CI 0.8-0.9, p < 0.001). CONCLUSIONS These data demonstrate an association of evolving pre-ECMO impaired tissue oxygenation and on-ECMO neurophysiologic impairment, measured by cEEG, with mortality. They provide preliminary evidence that the timing of ECMO initiation, in relation to worsening tissue oxygenation, should be investigated further, and cEEG may be used to evaluate the potential impact on both neurologic injury and mortality.
Collapse
Affiliation(s)
- Alyson Baker
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Children's, Omaha, NE, USA
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO, 63110-1093, USA
| | - Ekta Shah
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO, 63110-1093, USA
- Division of Neurology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Ouyang
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO, 63110-1093, USA
| | - Maya Silver
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO, 63110-1093, USA
- Division of Pediatric Neurology, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, USA
| | - Stuart R Tomko
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO, 63110-1093, USA
| | - Kristin Guilliams
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO, 63110-1093, USA
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Ahmed S Said
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Institute of Informatics, Data Science, and Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| | - Réjean M Guerriero
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
2
|
Joram N, Thiagarajan RR, Bembea M, Cho SM, Guerguerian AM, Lorusso R, Polito A, Raman L, Sanford E, Shah N, Zaaqoq A, Hoskote A, Di Nardo M. Can we reduce the risk of neurological injury in critically ill children on initiation of ECLS? A narrative review of potential modifiable factors. Perfusion 2025; 40:29S-38S. [PMID: 40263906 DOI: 10.1177/02676591251329555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Neurological morbidity and mortality remain high in children requiring extracorporeal membrane oxygenation (ECMO). Although the severity of illness at the time of ECMO initiation and the nature of the underlying disease are strongly linked to the development of acute brain injury, several important factors are associated with neurological complications during ECMO support. Many of these factors, particularly those encountered during the early phase of ECMO initiation (first 24 hours), may be modifiable and represent potential targets for interventional studies aiming for improvement of neurological outcomes in pediatric ECMO patients. In this review from the European Extracorporeal Life Support Organization (EuroELSO) Working Group on Neurologic Monitoring and Outcome, we aim to summarize current knowledge on modifiable factors associated with brain injury during ECMO and their potential impact on outcome.
Collapse
Affiliation(s)
- N Joram
- Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France
| | - R R Thiagarajan
- Division of Cardiac Critical Care, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S M Cho
- Neuroscience Critical Care Division, Departments of Neurology, Neurosurgery, and Anaesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A M Guerguerian
- Department of Critical Care Medicine, The Hospital for Sick Children, University of Toronto, ON, Canada
| | - R Lorusso
- Cardiothoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - A Polito
- Pediatric Intensive Care Unit, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospital, Geneva, Switzerland
| | - L Raman
- Department of Pediatrics, Childrens Health, Dallas, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E Sanford
- Department of Pediatric Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - N Shah
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - A Zaaqoq
- University of Virginia, Charlottesville, VA, USA
| | - A Hoskote
- Department of Cardiac Intensive Care, Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, & UCL, Institute of Cardiovascular Science London, UK
| | - M Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Scholefield BR, Tijssen J, Ganesan SL, Kool M, Couto TB, Topjian A, Atkins DL, Acworth J, McDevitt W, Laughlin S, Guerguerian AM. Prediction of good neurological outcome after return of circulation following paediatric cardiac arrest: A systematic review and meta-analysis. Resuscitation 2025; 207:110483. [PMID: 39742939 DOI: 10.1016/j.resuscitation.2024.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
AIM To evaluate the ability of blood-biomarkers, clinical examination, electrophysiology, or neuroimaging, assessed within 14 days from return of circulation to predict good neurological outcome in children following out- or in-hospital cardiac arrest. METHODS Medline, EMBASE and Cochrane Trials databases were searched (2010-2023). Sensitivity and false positive rates (FPR) for good neurological outcome (defined as either 'no, mild, moderate disability or minimal change from baseline') in paediatric survivors were calculated for each predictor. Risk of bias was assessed using the QUIPS tool. RESULTS Thirty-five studies (2974 children) were included. The presence of any of the following had a FPR < 30% for predicting good neurological outcome with moderate (50-75%) or high (>75%) sensitivity: bilateral reactive pupillary light response within 12 h; motor component ≥ 4 on the Glasgow Coma Scale score at 6 h; bilateral somatosensory evoked potentials at 24-72 h; sleep spindles, and continuous cortical activity on electroencephalography within 24 h; or a normal brain MRI at 4-6d. Early (≤12 h) normal lactate levels (<2mmol/L) or normal s100b, NSE or MBP levels predicted good neurological outcome with FPR rate < 30% and low (<50%) sensitivity. All studies had moderate to high risk of bias with timing of measurement, definition of test, use of multi-modal tests, or outcome assessment heterogeneity. CONCLUSIONS Clinical examination, electrophysiology, neuroimaging or blood-biomarkers as individual tests can predict good neurological outcome after cardiac arrest in children. However, evidence is often low quality and studies are heterogeneous. Use of a standardised, multimodal, prognostic algorithm should be studied and is likely of added value over single modality testing.
Collapse
Affiliation(s)
- Barnaby R Scholefield
- Department of Critical Care Medicine, Hospital for Sick Children, Department of Paediatrics, University of Toronto, Neurosciences and Mental Health Program, Research Institute Toronto, ON, Canada.
| | - Janice Tijssen
- Western University, Department of Paediatrics, London, ON, Canada & Paediatric Critical Care Medicine, Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Saptharishi Lalgudi Ganesan
- Western University, Department of Paediatrics, London, ON, Canada & Paediatric Critical Care Medicine, Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Mirjam Kool
- Paediatric Intensive Care Unit, Birmingham Women's and Children's NHS Foundation Trust, UK
| | - Thomaz Bittencourt Couto
- Hospital Israelita Albert Einstein AND Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brasil
| | - Alexis Topjian
- The Children's Hospital of Philadelphia, Department of Anesthesiology and Critical Care Medicine, and and Pediatrics, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Dianne L Atkins
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jason Acworth
- Emergency Department, Queensland Children's Hospital, Brisbane, Australia
| | - Will McDevitt
- Department of Neurophysiology, Birmingham Women's and Children's NHS Foundation Trust, and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Suzanne Laughlin
- Department of Diagnostic and Interventional Radiology, Hospital for Sick Children, ON, Canada, Department of Medical Imaging, University of Toronto, ON, Canada
| | - Anne-Marie Guerguerian
- Department of Critical Care Medicine, Hospital for Sick Children, Department of Paediatrics, University of Toronto, Neurosciences and Mental Health Program, Research Institute Toronto, ON, Canada
| |
Collapse
|
4
|
Hong SJ, De Souza BJ, Penberthy KK, Hwang L, Procaccini DE, Kheir JN, Bembea MM. Plasma brain-related biomarkers and potential therapeutic targets in pediatric ECMO. Neurotherapeutics 2025; 22:e00521. [PMID: 39765416 PMCID: PMC11840354 DOI: 10.1016/j.neurot.2024.e00521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a technique used to support severe cardiopulmonary failure. Its potential life-saving benefits are tempered by the significant risk for acute brain injury (ABI), from both primary pathophysiologic factors and ECMO-related complications through central nervous system cellular injury, blood-brain barrier dysfunction (BBB), systemic inflammation and neuroinflammation, and coagulopathy. Plasma biomarkers are an emerging tool used to stratify risk for and diagnose ABI, and prognosticate neurofunctional outcomes. Components of the neurovascular unit have been rational targets for this inquiry in ECMO. Central nervous system (CNS) neuronal and astroglial cellular-derived neuron-specific enolase (NSE), tau, glial fibrillary acidic protein (GFAP) and S100β elevations have been detected in ABI and are associated with poorer outcomes. Evidence of BBB breakdown through peripheral blood detection of CNS cellular components NSE, GFAP, and S100β, as well as evidence of elevated BBB components vWF and PDGFRβ are associated with higher mortality and worse neurofunctional outcomes. Higher concentrations of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, TNF-α) are associated with abnormal neuroimaging, and proteomic expression panels reveal different coagulation and inflammatory responses. Abnormal coagulation profiles are common in ECMO with ongoing studies attempting to describe specific abnormalities either being causal or associated with neurologic outcomes; vWF has shown some promise. Understanding these mechanisms of injury through biomarker analysis supports potential neuroprotective strategies such as individualized blood pressure targets, judicious hypercarbia and hypoxemia correction, and immunomodulation (inhaled hydrogen and N-acetylcysteine). Further research continues to elucidate the role of biomarkers as predictors, prognosticators, and therapeutic targets.
Collapse
Affiliation(s)
- Sue J Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley J De Souza
- Department of Critical Care Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kristen K Penberthy
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa Hwang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - John N Kheir
- Department of Cardiology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Melania M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Shappley RKH, Holder CM, Poplos CE, Anton-Martin P, Spentzas T, Whitaker TM, Karmarkar S, Shah SH, Sandhu HS. Standardized therapies after ECMO program (STEP); a novel approach to pediatric post-ECMO care. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2024; 56:94-100. [PMID: 39303130 DOI: 10.1051/ject/2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The study objective was to characterize compliance with Standardized Therapy after ECMO Program (STEP), an intentional discharge pathway for extracorporeal membrane oxygenation (ECMO) survivors in a US pediatric hospital. METHODS The program identified pediatric ECMO survivors before discharge, appropriate consultations were reviewed and requested, families were educated on ECMO sequelae, and ECMO summaries were sent to pediatricians. Compliance with institutional post-ECMO guidelines was evaluated before and after STEP implementation. RESULTS We identified 77 ECMO survivors to hospital discharge (36 [46.8%] before and 41 [53.2%] after STEP implementation). There was a significant increase in complete (38.8% vs. 74.2%, p < 0.001) and time-appropriate neurodevelopmental testing (71.4% vs. 95.6%, p = 0.03). Significant increase in inpatient evaluations by neurology (52.7% vs. 75.6%, p = 0.03) and audiology (66.7% vs. 87.8%, p = 0.02), and in referrals for outpatient audiology (66.6 vs. 95.1%, p = 0.002), physical therapy (P.T.) (63.8% vs. 95.1%, p = 0.001), occupational therapy (O.T.) (63.8% vs. 95.1%, p = 0.001) and speech-language pathology (S.L.P.) (55.5% vs. 95.1%, p < 0.001) were noted. CONCLUSION Implementing an intentional discharge pathway for pediatric ECMO survivors (STEP) successfully increases inpatient and outpatient compliance with hospital and Extracorporeal life support organization (ELSO) follow-up guidelines. It leads to timely and complete neurodevelopmental evaluation.
Collapse
Affiliation(s)
- Rebekah K H Shappley
- Department of Pediatrics, Division of Critical Care, University of Tennessee Health Science Center, Memphis, TN 38103, USA - Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Christen M Holder
- Department of Pediatrics, Division of Neurology, University of Tennessee Health Science Center, Memphis, TN 38103, USA - Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Constance E Poplos
- University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38103, USA
| | - Pilar Anton-Martin
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Thomas Spentzas
- Department of Pediatrics, Division of Critical Care, University of Tennessee Health Science Center, Memphis, TN 38103, USA - Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Toni M Whitaker
- Department of Pediatrics, Division of Development Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | - Samir H Shah
- Department of Pediatrics, Division of Critical Care, University of Tennessee Health Science Center, Memphis, TN 38103, USA - Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Hitesh S Sandhu
- Department of Pediatrics, Division of Critical Care, University of Tennessee Health Science Center, Memphis, TN 38103, USA - Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| |
Collapse
|
6
|
Turner AD, Streb MM, Ouyang A, Leonard SS, Hall TA, Bosworth CC, Williams CN, Guerriero RM, Hartman ME, Said AS, Guilliams KP. Long-Term Neurobehavioral and Functional Outcomes of Pediatric Extracorporeal Membrane Oxygenation Survivors. ASAIO J 2024; 70:409-416. [PMID: 38207105 PMCID: PMC11062843 DOI: 10.1097/mat.0000000000002135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
There are limited reports of neurobehavioral outcomes of children supported on extracorporeal membrane oxygenation (ECMO). This observational study aims to characterize the long-term (≥1 year) neurobehavioral outcomes, identify risk factors associated with neurobehavioral impairment, and evaluate the trajectory of functional status in pediatric ECMO survivors. Pediatric ECMO survivors ≥1-year postdecannulation and ≥3 years of age at follow-up were prospectively enrolled and completed assessments of adaptive behavior (Vineland Adaptive Behavior Scales, Third Edition [Vineland-3]) and functional status (Functional Status Scale [FSS]). Patient characteristics were retrospectively collected. Forty-one ECMO survivors cannulated at 0.0-19.8 years (median: 2.4 [IQR: 0.0, 13.1]) were enrolled at 1.3-12.8 years (median: 5.5 [IQR: 3.3, 6.5]) postdecannulation. ECMO survivors scored significantly lower than the normative population in the Vineland-3 Adaptive Behavior Composite (85 [IQR: 70, 99], P < 0.001) and all domains (Communication, Daily Living, Socialization, Motor). Independent risk factors for lower Vineland-3 composite scores included extracorporeal cardiopulmonary resuscitation, electrographic seizures during ECMO, congenital heart disease, and premorbid developmental delay. Of the 21 patients with impaired function at discharge (FSS ≥8), 86% reported an improved FSS at follow-up. Pediatric ECMO survivors have, on average, mild neurobehavioral impairment related to adaptive functioning years after decannulation. Continued functional recovery after hospital discharge is likely.
Collapse
Affiliation(s)
- Ashley D Turner
- From the Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Madison M Streb
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Amy Ouyang
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Skyler S Leonard
- Division of Pediatric Psychology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Trevor A Hall
- Division of Pediatric Psychology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | | | - Cydni N Williams
- Division of Pediatric Critical Care, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Réjean M Guerriero
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Mary E Hartman
- From the Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Ahmed S Said
- From the Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Kristin P Guilliams
- From the Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
7
|
Mensink HA, Desai A, Cvetkovic M, Davidson M, Hoskote A, O'Callaghan M, Thiruchelvam T, Roeleveld PP. The approach to extracorporeal cardiopulmonary resuscitation (ECPR) in children. A narrative review by the paediatric ECPR working group of EuroELSO. Perfusion 2024; 39:81S-94S. [PMID: 38651582 DOI: 10.1177/02676591241236139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Extracorporeal Cardiopulmonary Resuscitation (ECPR) has potential benefits compared to conventional Cardiopulmonary Resuscitation (CCPR) in children. Although no randomised trials for paediatric ECPR have been conducted, there is extensive literature on survival, neurological outcome and risk factors for survival. Based on current literature and guidelines, we suggest recommendations for deployment of paediatric ECPR emphasising the requirement for protocols, training, and timely intervention to enhance patient outcomes. Factors related to outcomes of paediatric ECPR include initial underlying rhythm, CCPR duration, quality of CCPR, medications during CCPR, cannulation site, acidosis and renal dysfunction. Based on current evidence and experience, we provide an approach to patient selection, ECMO initiation and management in ECPR regarding blood and sweep flow settings, unloading of the left ventricle, diagnostics whilst on ECMO, temperature targets, neuromonitoring as well as suggested weaning and decannulation strategies.
Collapse
Affiliation(s)
- H A Mensink
- Paediatric Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| | - A Desai
- Paediatric Intensive Care, Royal Brompton Hospital, London, UK
| | - M Cvetkovic
- Paediatric Cardiac Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - M Davidson
- Critical Care Medicine, Royal Hospital for Children, Glasgow, UK
| | - A Hoskote
- Paediatric Cardiac Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - M O'Callaghan
- Paediatric Cardiac Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - T Thiruchelvam
- Paediatric Cardiac Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - P P Roeleveld
- Paediatric Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
8
|
Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, Fernanda de Almeida M, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Daripa Kawakami M, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, John Madar R, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, et alBerg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, Fernanda de Almeida M, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Daripa Kawakami M, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, John Madar R, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, Gene Ong YK, Orkin AM, Parr MJ, Patocka C, Perkins GD, Perlman JM, Rabi Y, Raitt J, Ramachandran S, Ramaswamy VV, Raymond TT, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Singletary EM, Skrifvars MB, Smith CM, Soar J, Stassen W, Sugiura T, Tijssen JA, Topjian AA, Trevisanuto D, Vaillancourt C, Wyckoff MH, Wyllie JP, Yang CW, Yeung J, Zelop CM, Zideman DA, Nolan JP. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2024; 195:109992. [PMID: 37937881 DOI: 10.1016/j.resuscitation.2023.109992] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The International Liaison Committee on Resuscitation engages in a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation and first aid science. Draft Consensus on Science With Treatment Recommendations are posted online throughout the year, and this annual summary provides more concise versions of the final Consensus on Science With Treatment Recommendations from all task forces for the year. Topics addressed by systematic reviews this year include resuscitation of cardiac arrest from drowning, extracorporeal cardiopulmonary resuscitation for adults and children, calcium during cardiac arrest, double sequential defibrillation, neuroprognostication after cardiac arrest for adults and children, maintaining normal temperature after preterm birth, heart rate monitoring methods for diagnostics in neonates, detection of exhaled carbon dioxide in neonates, family presence during resuscitation of adults, and a stepwise approach to resuscitation skills training. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, using Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces list priority knowledge gaps for further research. Additional topics are addressed with scoping reviews and evidence updates.
Collapse
|
9
|
Pinto NP, Scholefield BR, Topjian AA. Pediatric cardiac arrest: A review of recovery and survivorship. Resuscitation 2024; 194:110075. [PMID: 38097105 DOI: 10.1016/j.resuscitation.2023.110075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Neethi P Pinto
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | | | - Alexis A Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Berg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, de Almeida MF, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Kawakami MD, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, Madar RJ, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, et alBerg KM, Bray JE, Ng KC, Liley HG, Greif R, Carlson JN, Morley PT, Drennan IR, Smyth M, Scholefield BR, Weiner GM, Cheng A, Djärv T, Abelairas-Gómez C, Acworth J, Andersen LW, Atkins DL, Berry DC, Bhanji F, Bierens J, Bittencourt Couto T, Borra V, Böttiger BW, Bradley RN, Breckwoldt J, Cassan P, Chang WT, Charlton NP, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Dassanayake V, Davis PG, Dawson JA, de Almeida MF, De Caen AR, Deakin CD, Dicker B, Douma MJ, Eastwood K, El-Naggar W, Fabres JG, Fawke J, Fijacko N, Finn JC, Flores GE, Foglia EE, Folke F, Gilfoyle E, Goolsby CA, Granfeldt A, Guerguerian AM, Guinsburg R, Hatanaka T, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hsu CH, Ikeyama T, Isayama T, Johnson NJ, Kapadia VS, Kawakami MD, Kim HS, Kleinman ME, Kloeck DA, Kudenchuk P, Kule A, Kurosawa H, Lagina AT, Lauridsen KG, Lavonas EJ, Lee HC, Lin Y, Lockey AS, Macneil F, Maconochie IK, Madar RJ, Malta Hansen C, Masterson S, Matsuyama T, McKinlay CJD, Meyran D, Monnelly V, Nadkarni V, Nakwa FL, Nation KJ, Nehme Z, Nemeth M, Neumar RW, Nicholson T, Nikolaou N, Nishiyama C, Norii T, Nuthall GA, Ohshimo S, Olasveengen TM, Ong YKG, Orkin AM, Parr MJ, Patocka C, Perkins GD, Perlman JM, Rabi Y, Raitt J, Ramachandran S, Ramaswamy VV, Raymond TT, Reis AG, Reynolds JC, Ristagno G, Rodriguez-Nunez A, Roehr CC, Rüdiger M, Sakamoto T, Sandroni C, Sawyer TL, Schexnayder SM, Schmölzer GM, Schnaubelt S, Semeraro F, Singletary EM, Skrifvars MB, Smith CM, Soar J, Stassen W, Sugiura T, Tijssen JA, Topjian AA, Trevisanuto D, Vaillancourt C, Wyckoff MH, Wyllie JP, Yang CW, Yeung J, Zelop CM, Zideman DA, Nolan JP. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2023; 148:e187-e280. [PMID: 37942682 PMCID: PMC10713008 DOI: 10.1161/cir.0000000000001179] [Show More Authors] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The International Liaison Committee on Resuscitation engages in a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation and first aid science. Draft Consensus on Science With Treatment Recommendations are posted online throughout the year, and this annual summary provides more concise versions of the final Consensus on Science With Treatment Recommendations from all task forces for the year. Topics addressed by systematic reviews this year include resuscitation of cardiac arrest from drowning, extracorporeal cardiopulmonary resuscitation for adults and children, calcium during cardiac arrest, double sequential defibrillation, neuroprognostication after cardiac arrest for adults and children, maintaining normal temperature after preterm birth, heart rate monitoring methods for diagnostics in neonates, detection of exhaled carbon dioxide in neonates, family presence during resuscitation of adults, and a stepwise approach to resuscitation skills training. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, using Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces list priority knowledge gaps for further research. Additional topics are addressed with scoping reviews and evidence updates.
Collapse
|
11
|
Butt W. Cardiopulmonary Resuscitation, Epinephrine, and Extracorporeal Membrane Oxygenation: Finding the Right Balance. Pediatr Crit Care Med 2023; 24:975-978. [PMID: 37916882 DOI: 10.1097/pcc.0000000000003355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Affiliation(s)
- Warwick Butt
- Intensive Care Unit, Royal Children's Hospital, Melbourne, VC, Australia
| |
Collapse
|
12
|
Kucher NM, Marquez AM, Guerguerian AM, Moga MA, Vargas-Gutierrez M, Todd M, Honjo O, Haller C, Goco G, Floh AA. Epinephrine Dosing Use During Extracorporeal Cardiopulmonary Resuscitation: Single-Center Retrospective Cohort. Pediatr Crit Care Med 2023; 24:e531-e539. [PMID: 37439601 DOI: 10.1097/pcc.0000000000003323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
OBJECTIVES During pediatric cardiac arrest, contemporary guidelines recommend dosing epinephrine at regular intervals, including in patients requiring extracorporeal membrane oxygenation (ECMO). The impact of epinephrine-induced vasoconstriction on systemic afterload and venoarterial ECMO support is not well-defined. DESIGN Nested retrospective observational study within a single center. The primary exposure was time from last dose of epinephrine to initiation of ECMO flow; secondary exposures included cumulative epinephrine dose and arrest time. Systemic afterload was assessed by mean arterial pressure and use of systemic vasodilator therapy; ECMO pump flow and Vasoactive-Inotrope Score (VIS) were used as measures of ECMO support. Clearance of lactate was followed post-cannulation as a marker of systemic perfusion. SETTING PICU and cardiac ICU in a quaternary-care center. PATIENTS Patients 0-18 years old who required ECMO cannulation during resuscitation over the 6 years, 2014-2020. Patients were excluded if ECMO was initiated before cardiac arrest or if the resuscitation record was incomplete. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 92 events in 87 patients, with 69 events having complete data for analysis. The median (interquartile range) of total epinephrine dosing was 65 mcg/kg (37-101 mcg/kg), with the last dose given 6 minutes (2-16 min) before the initiation of ECMO flows. Shorter interval between last epinephrine dose and ECMO initiation was associated with increased use of vasodilators within 6 hours of ECMO ( p = 0.05), but not with mean arterial pressure after 1 hour of support (estimate, -0.34; p = 0.06). No other associations were identified between epinephrine delivery and mean arterial blood pressure, vasodilator use, pump speed, VIS, or lactate clearance. CONCLUSIONS There is limited evidence to support the idea that regular dosing of epinephrine during cardiac arrest is associated with increased in afterload after ECMO cannulation. Additional studies are needed to validate findings against ECMO flows and clinically relevant outcomes.
Collapse
Affiliation(s)
- Nicholas M Kucher
- Department of Critical Care Medicine, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alexandra M Marquez
- Department of Critical Care Medicine, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne-Marie Guerguerian
- Department of Critical Care Medicine, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael-Alice Moga
- Department of Critical Care Medicine, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
- Labatt Family Heart Centre, Division of Pediatric Cardiology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Mariella Vargas-Gutierrez
- Department of Critical Care Medicine, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mark Todd
- Department of Respiratory Therapy, The Hospital for Sick Children, Toronto, ON, Canada
| | - Osami Honjo
- Labatt Family Heart Centre, Division of Cardiac Surgery, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Christoph Haller
- Labatt Family Heart Centre, Division of Cardiac Surgery, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Geraldine Goco
- Department of Critical Care Medicine, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alejandro A Floh
- Department of Critical Care Medicine, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
- Labatt Family Heart Centre, Division of Pediatric Cardiology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
13
|
Brown SR, Frazier M, Roberts J, Wolfe H, Tegtmeyer K, Sutton R, Dewan M. CPR Quality and Outcomes After Extracorporeal Life Support for Pediatric In-Hospital Cardiac Arrest. Resuscitation 2023:109874. [PMID: 37327853 DOI: 10.1016/j.resuscitation.2023.109874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/18/2023]
Abstract
AIM of Study: To determine outcomes in pediatric patients who had an in-hospital cardiac arrest and subsequently received extracorporeal cardiopulmonary resuscitation (ECPR). Our secondary objective was to identify cardiopulmonary resuscitation (CPR) event characteristics and CPR quality metrics associated with survival after ECPR. METHODS Multicenter retrospective cohort study of pediatric patients in the pediRES-Q database who received ECPR after in-hospital cardiac arrest between July 1, 2015 and June 2, 2021. Primary outcome was survival to ICU discharge. Secondary outcomes were survival to hospital discharge and favorable neurologic outcome at ICU and hospital discharge. RESULTS Among 124 patients included in this study, median age was 0.9 years (IQR 0.2-5) and the majority of patients had primarily cardiac disease (92 patients, 75%). Survival to ICU discharge occurred in 61/120 (51%) patients, 36/61 (59%) of whom had favorable neurologic outcome. No demographic or clinical variables were associated with survival after ECPR. CONCLUSION In this multicenter retrospective cohort study of pediatric patients who received ECPR for IHCA we found a high rate of survival to ICU discharge with good neurologic outcome.
Collapse
Affiliation(s)
- Stephanie R Brown
- Section of Pediatric Critical Care Medicine, Oklahoma Children's Hospital, Oklahoma City, OK, USA; Division of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Maria Frazier
- Division of Pediatric Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan Roberts
- Division of Pediatric Critical Care Medicine, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Heather Wolfe
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ken Tegtmeyer
- Division of Pediatric Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Robert Sutton
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maya Dewan
- Division of Pediatric Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
14
|
Sanford EL, Bhaskar P, Li X, Thiagarajan R, Raman L. Hypothermia after Extracorporeal Cardiopulmonary Resuscitation Not Associated with Improved Neurologic Complications or Survival in Children: an Analysis of the ELSO Registry. Resuscitation 2023:109852. [PMID: 37245646 DOI: 10.1016/j.resuscitation.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
AIM To analyze the association between hypothermia and neurologic complications among children who were treated with extracorporeal cardiopulmonary resuscitation (ECPR) using the Extracorporeal Life Support Organization (ELSO) international registry METHODS: We conducted a retrospective, multicenter, database study utilizing ELSO data for ECPR encounters from January 1, 2011, through December 31, 2019. Exclusion criteria included multiple ECMO runs and lack of variable data. The primary exposure was hypothermia under 34 degrees Celsius for greater than 24 hours. The primary outcome, determined a priori, was a composite of neurologic complications defined by ELSO registry including brain death, seizures, infarction, hemorrhage, diffuse ischemia. Secondary outcomes were mortality on ECMO and mortality prior to hospital discharge. Multivariable logistic regression determined the odds of neurologic complications, mortality on ECMO or prior to hospital discharge associated with hypothermia after adjustment for available pertinent covariables. RESULTS Of the 2,289 ECPR encounters, no difference in odds of neurologic complications were found between the hypothermia and non-hypothermia groups (AOR 1.10, 95% CI 0.80-1.51). However, hypothermia exposure was associated with decreased odds of mortality on ECMO (AOR 0.76, 95% CI 0.59-0.97), but no difference in mortality prior to hospital discharge (AOR 0.96, 95% CI 0.76-1.21) CONCLUSION: Analysis of a large, multicenter, international dataset demonstrates that hypothermia for greater than 24 hours among children who undergo ECPR is not associated with decreased neurologic complications or mortality benefit at time of hospital discharge.
Collapse
Affiliation(s)
- Ethan L Sanford
- Division of Critical Care, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Children's Medical Center, Dallas, TX, USA; Outcomes Research Consortium.
| | - Priya Bhaskar
- Division of Critical Care, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xilong Li
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ravi Thiagarajan
- Division of Cardiovascular Critical Care, Department of Pediatrics, Harvard University, Boston, MA, United States
| | - Lakshmi Raman
- Division of Critical Care, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
15
|
Pollack BE, Kirsch R, Chapman R, Hyslop R, MacLaren G, Barbaro RP. Extracorporeal Membrane Oxygenation Then and Now; Broadening Indications and Availability. Crit Care Clin 2023; 39:255-275. [PMID: 36898772 DOI: 10.1016/j.ccc.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life support technology provided to children to support respiratory failure, cardiac failure, or cardiopulmonary resuscitation after failure of conventional management. Over the decades, ECMO has expanded in use, advanced in technology, shifted from experimental to a standard of care, and evidence supporting its use has increased. The expanded ECMO indications and medical complexity of children have also necessitated focused studies in the ethical domain such as decisional authority, resource allocation, and equitable access.
Collapse
Affiliation(s)
- Blythe E Pollack
- Division of Pediatric Critical Care, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Roxanne Kirsch
- Division Cardiac Critical Care, Department Critical Care Medicine, 555 Univeristy Avenue, Toronto, ON, Canada M5G 1X8; Department of Bioethics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1XB
| | - Rachel Chapman
- Department of Pediatrics, Division of Neonatology and the Fetal and Neonatal Institute, Children's Hospital, 4650 Sunset Blvd., Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Robert Hyslop
- Heart Institute, Children's Hospital Colorado, 13123 E. 16th Ave, Aurora, CO 80045, USA
| | - Graeme MacLaren
- Cardiothoracic Intensive Care Unit, National University Health System, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Ryan P Barbaro
- Division of Pediatric Critical Care, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Susan B. Miester Child Health Evaluation and Research Center, Univeristy of Michigan, NCRC Building 16, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Cvetkovic M, Chiarini G, Belliato M, Delnoij T, Zanatta P, Taccone FS, Miranda DDR, Davidson M, Matta N, Davis C, IJsselstijn H, Schmidt M, Broman LM, Donker DW, Vlasselaers D, David P, Di Nardo M, Muellenbach RM, Mueller T, Barrett NA, Lorusso R, Belohlavek J, Hoskote A. International survey of neuromonitoring and neurodevelopmental outcome in children and adults supported on extracorporeal membrane oxygenation in Europe. Perfusion 2023; 38:245-260. [PMID: 34550013 DOI: 10.1177/02676591211042563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Adverse neurological events during extracorporeal membrane oxygenation (ECMO) are common and may be associated with devastating consequences. Close monitoring, early identification and prompt intervention can mitigate early and late neurological morbidity. Neuromonitoring and neurocognitive/neurodevelopmental follow-up are critically important to optimize outcomes in both adults and children. OBJECTIVE To assess current practice of neuromonitoring during ECMO and neurocognitive/neurodevelopmental follow-up after ECMO across Europe and to inform the development of neuromonitoring and follow-up guidelines. METHODS The EuroELSO Neurological Monitoring and Outcome Working Group conducted an electronic, web-based, multi-institutional, multinational survey in Europe. RESULTS Of the 211 European ECMO centres (including non-ELSO centres) identified and approached in 23 countries, 133 (63%) responded. Of these, 43% reported routine neuromonitoring during ECMO for all patients, 35% indicated selective use, and 22% practiced bedside clinical examination alone. The reported neuromonitoring modalities were NIRS (n = 88, 66.2%), electroencephalography (n = 52, 39.1%), transcranial Doppler (n = 38, 28.5%) and brain injury biomarkers (n = 33, 24.8%). Paediatric centres (67%) reported using cranial ultrasound, though the frequency of monitoring varied widely. Before hospital discharge following ECMO, 50 (37.6%) reported routine neurological assessment and 22 (16.5%) routinely performed neuroimaging with more paediatric centres offering neurological assessment (65%) as compared to adult centres (20%). Only 15 (11.2%) had a structured longitudinal follow-up pathway (defined followup at regular intervals), while 99 (74.4%) had no follow-up programme. The majority (n = 96, 72.2%) agreed that there should be a longitudinal structured follow-up for ECMO survivors. CONCLUSIONS This survey demonstrated significant variability in the use of different neuromonitoring modalities during and after ECMO. The perceived importance of neuromonitoring and follow-up was noted to be very high with agreement for a longitudinal structured follow-up programme, particularly in paediatric patients. Scientific society endorsed guidelines and minimum standards should be developed to inform local protocols.
Collapse
Affiliation(s)
- Mirjana Cvetkovic
- Cardiac Intensive Care and ECMO, Great Ormond Street Hospital for Children NHS Foundation Trust & UCL Great Ormond Street Institute of Child Health, London, UK
| | - Giovanni Chiarini
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,2nd Intensive Care Unit, Spedali Civili, University of Brescia, Brescia, Italy
| | - Mirko Belliato
- Second Anaesthesia and Intensive Care Unit, S. Matteo Hospital, IRCCS, Pavia, Italy
| | - Thijs Delnoij
- Department of Cardiology and Department of Intensive Care Unit, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paolo Zanatta
- Anaesthesia and Multi-Speciality Intensive Care, Integrated University Hospital of Verona, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care Medicine, Université Libre de Bruxelles, Hopital Erasme, Bruxelles, Belgium
| | - Dinis Dos Reis Miranda
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Nashwa Matta
- Neonatal Unit, Princess Royal Maternity, Glasgow, Scotland
| | - Carl Davis
- Surgery Unit, Royal Hospital for Children, Glasgow, Scotland
| | - Hanneke IJsselstijn
- Pediatric Surgery and Intensive Care, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Matthieu Schmidt
- Sorbonne Université, INSERM UMRS_1166-iCAN, Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Medical Intensive Care Unit, Paris, France
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Dirk W Donker
- Intensive Care Center, University Medical Centre, Utrecht, The Netherlands
| | - Dirk Vlasselaers
- Department Intensive Care Medicine, University Hospital Leuven, Leuven, Belgium
| | - Piero David
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Di Nardo
- Paediatric Intensive Care, Bambino Gesù Children's Hospital, Rome, Italy
| | - Ralf M Muellenbach
- Department of Anaesthesia and Intensive Care, Klinikum Kassel GmbH, Kassel, Germany
| | | | - Nicholas A Barrett
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Jan Belohlavek
- 2nd Department of Internal Medicine, Cardiovascular Medicine, General Teaching Hospital and 1st Medical School, Charles University in Prague, Praha, Czech Republic
| | - Aparna Hoskote
- Cardiac Intensive Care and ECMO, Great Ormond Street Hospital for Children NHS Foundation Trust & UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
17
|
Ferrada P, Cannon JW, Kozar RA, Bulger EM, Sugrue M, Napolitano LM, Tisherman SA, Coopersmith CM, Efron PA, Dries DJ, Dunn TB, Kaplan LJ. Surgical Science and the Evolution of Critical Care Medicine. Crit Care Med 2023; 51:182-211. [PMID: 36661448 DOI: 10.1097/ccm.0000000000005708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surgical science has driven innovation and inquiry across adult and pediatric disciplines that provide critical care regardless of location. Surgically originated but broadly applicable knowledge has been globally shared within the pages Critical Care Medicine over the last 50 years.
Collapse
Affiliation(s)
- Paula Ferrada
- Division of Trauma and Acute Care Surgery, Department of Surgery, Inova Fairfax Hospital, Falls Church, VA
| | - Jeremy W Cannon
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemary A Kozar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Eileen M Bulger
- Division of Trauma, Burn and Critical Care Surgery, Department of Surgery, University of Washington at Seattle, Harborview, Seattle, WA
| | - Michael Sugrue
- Department of Surgery, Letterkenny University Hospital, County of Donegal, Ireland
| | - Lena M Napolitano
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Samuel A Tisherman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Craig M Coopersmith
- Division of General Surgery, Department of Surgery, Emory University, Emory Critical Care Center, Atlanta, GA
| | - Phil A Efron
- Department of Surgery, Division of Critical Care, University of Florida, Gainesville, FL
| | - David J Dries
- Department of Surgery, University of Minnesota, Regions Healthcare, St. Paul, MN
| | - Ty B Dunn
- Division of Transplant Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lewis J Kaplan
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Section of Surgical Critical Care, Surgical Services, Philadelphia, PA
| |
Collapse
|
18
|
Hoskote A, Hunfeld M, O'Callaghan M, IJsselstijn H. Neonatal ECMO survivors: The late emergence of hidden morbidities - An unmet need for long-term follow-up. Semin Fetal Neonatal Med 2022; 27:101409. [PMID: 36456434 DOI: 10.1016/j.siny.2022.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aparna Hoskote
- Cardiac Intensive Care Unit, Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| | - Maayke Hunfeld
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, the Netherlands
| | - Maura O'Callaghan
- Cardiac Intensive Care Unit, Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Hanneke IJsselstijn
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
19
|
Characteristics of pediatric non-cardiac eCPR programs in United States and Canadian hospitals: A cross-sectional survey. J Pediatr Surg 2022; 57:892-895. [PMID: 35618493 DOI: 10.1016/j.jpedsurg.2022.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To characterize practices surrounding pediatric eCPR in the U.S. and Canada. METHODS Cross-sectional survey of U.S. and Canadian hospitals with non-cardiac eCPR programs. Variables included hospital and surgical group demographics, eCPR inclusion/exclusion criteria, cannulation approaches, and outcomes (survival to decannulation and survival to discharge). RESULTS Surveys were completed by 40 hospitals in the United States (37) and Canada (3) among an estimated 49 programs (82% response rate). Respondents tended to work in >200 bed free-standing children's hospitals (27, 68%). Pediatric general surgeons respond to activations in 32 (80%) cases, with a median group size of 7 (IQR 5,9.5); 8 (20%) responding institutions take in-house call and 63% have a formal back-up system for eCPR. Dedicated simulation programs were reported by 22 (55%) respondents. Annual eCPR activations average approximately 6/year; approximately 39% of patients survived to decannulation, with 35% surviving to discharge. Cannulations occurred in a variety of settings and were mostly done through the neck at the purview of cannulating surgeon/proceduralist. Exclusion criteria used by hospitals included pre-hospital arrest (21, 53%), COVID+ (5, 13%), prolonged CPR (18, 45%), lethal chromosomal anomalies (15, 38%) and terminal underlying disease (14, 35%). CONCLUSIONS While there are some similarities regarding inclusion/exclusion criteria, cannulation location and modality and follow-up in pediatric eCPR, these are not standard across multiple institutions. Survival to discharge after eCPR is modest but data on cost and long-term neurologic sequela are lacking. Codification of indications and surgical approaches may help clarify the utility and success of eCPR.
Collapse
|
20
|
Mandigers L, Boersma E, den Uil CA, Gommers D, Bělohlávek J, Belliato M, Lorusso R, dos Reis Miranda D. Systematic review and meta-analysis comparing low-flow duration of extracorporeal and conventional cardiopulmonary resuscitation. Interact Cardiovasc Thorac Surg 2022; 35:6674514. [PMID: 36000900 PMCID: PMC9491846 DOI: 10.1093/icvts/ivac219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
OBJECTIVES
After cardiac arrest, a key factor determining survival outcomes is low-flow duration. Our aims were to determine the relation of survival and low-flow duration of extracorporeal cardiopulmonary resuscitation (ECPR) and conventional cardiopulmonary resuscitation (CCPR) and if these 2 therapies have different short-term survival curves in relation to low-flow duration.
METHODS
We searched Embase, Medline, Web of Science and Google Scholar from inception up to April 2021. A linear mixed-effect model was used to describe the course of survival over time, based on study-specific and time-specific aggregated survival data.
RESULTS
We included 42 observational studies reporting on 1689 ECPR and 375 751 CCPR procedures. Of the included studies, 25 included adults, 13 included children and 4 included both. In adults, survival curves decline rapidly over time (ECPR 37.2%, 29.8%, 23.8% and 19.1% versus CCPR-shockable 36.8%, 7.2%, 1.4% and 0.3% for 15, 30, 45 and 60 min low-flow, respectively). ECPR was associated with a statistically significant slower decline in survival than CCPR with initial shockable rhythms (CCPR-shockable). In children, survival curves decline rapidly over time (ECPR 43.6%, 41.7%, 39.8% and 38.0% versus CCPR-shockable 48.6%, 20.5%, 8.6% and 3.6% for 15, 30, 45 and 60 min low-flow, respectively). ECPR was associated with a statistically significant slower decline in survival than CCPR-shockable.
CONCLUSIONS
The short-term survival of ECPR and CCPR-shockable patients both decline rapidly over time, in adults as well as in children. This decline of short-term survival in relation to low-flow duration in ECPR was slower than in conventional cardiopulmonary resuscitation.
Trial registration
Prospero: CRD42020212480, 2 October 2020.
Collapse
Affiliation(s)
- Loes Mandigers
- Department of Adult Intensive Care, Erasmus University Medical Center , Rotterdam, Netherlands
- Department of Cardiology, Maasstad Hospital , Rotterdam, Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus University Medical Center , Rotterdam, Netherlands
| | - Corstiaan A den Uil
- Department of Adult Intensive Care, Erasmus University Medical Center , Rotterdam, Netherlands
- Department of Cardiology, Erasmus University Medical Center , Rotterdam, Netherlands
- Department of Intensive Care, Maasstad Hospital , Rotterdam, Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus University Medical Center , Rotterdam, Netherlands
| | - Jan Bělohlávek
- Department of Cardiovascular Medicine, 2nd Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| | - Mirko Belliato
- UOC Anestesia e Rianimazione 2 Cardiopolmonare, Fondazione IRCC Policlinico San Matteo , Pavia, Italy
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht , Maastricht, Netherlands
| | - Dinis dos Reis Miranda
- Department of Adult Intensive Care, Erasmus University Medical Center , Rotterdam, Netherlands
| |
Collapse
|
21
|
Huebschmann NA, Cook NE, Murphy S, Iverson GL. Cognitive and Psychological Outcomes Following Pediatric Cardiac Arrest. Front Pediatr 2022; 10:780251. [PMID: 35223692 PMCID: PMC8865388 DOI: 10.3389/fped.2022.780251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrest is a rare event in children and adolescents. Those who survive may experience a range of outcomes, from good functional recovery to severe and permanent disability. Many children experience long-term cognitive impairment, including deficits in attention, language, memory, and executive functioning. Deficits in adaptive behavior, such as motor functioning, communication, and daily living skills, have also been reported. These children have a wide range of neurological outcomes, with some experiencing specific deficits such as aphasia, apraxia, and sensorimotor deficits. Some children may experience emotional and psychological difficulties, although many do not, and more research is needed in this area. The burden of pediatric cardiac arrest on the child's family and caregivers can be substantial. This narrative review summarizes current research regarding the cognitive and psychological outcomes following pediatric cardiac arrest, identifies areas for future research, and discusses the needs of these children for rehabilitation services and academic accommodations.
Collapse
Affiliation(s)
- Nathan A Huebschmann
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,New York University Grossman School of Medicine, New York, NY, United States
| | - Nathan E Cook
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| | - Sarah Murphy
- Division of Pediatric Critical Care, MassGeneral Hospital for Children, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Spaulding Research Institute, Charlestown, MA, United States
| |
Collapse
|
22
|
Ijsselstijn H, Schiller RM, Holder C, Shappley RKH, Wray J, Hoskote A. Extracorporeal Life Support Organization (ELSO) Guidelines for Follow-up After Neonatal and Pediatric Extracorporeal Membrane Oxygenation. ASAIO J 2021; 67:955-963. [PMID: 34324443 DOI: 10.1097/mat.0000000000001525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Neonates and children who have survived critical illness severe enough to require extracorporeal membrane oxygenation (ECMO) are at risk for neurologic insults, neurodevelopmental delays, worsening of underlying medical conditions, and development of new medical comorbidities. Structured neurodevelopmental follow-up is recommended for early identification and prompt interventions of any neurodevelopmental delays. Even children who initially survive this critical illness without new medical or neurologic deficits remain at risk of developing new morbidities/delays at least through adolescence, highlighting the importance of structured follow-up by personnel knowledgeable in the sequelae of critical illness and ECMO. Structured follow-up should be multifaceted, beginning predischarge and continuing as a coordinated effort after discharge through adolescence. Predischarge efforts should consist of medical and neurologic evaluations, family education, and co-ordination of long-term ECMO care. After discharge, programs should recommend a compilation of pediatric care, disease-specific care for underlying or acquired conditions, structured ECMO/neurodevelopmental care including school performance, parental education, and support. Institutionally, regionally, and internationally available resources will impact the design of individual center's follow-up program. Additionally, neurodevelopmental testing will need to be culturally and lingually appropriate for centers' populations. Thus, ECMO centers should adapt follow-up program to their specific populations and resources with the predischarge and postdischarge components described here.
Collapse
Affiliation(s)
- Hanneke Ijsselstijn
- From the Department of Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Raisa M Schiller
- Department of Pediatric Surgery/IC Children and Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Christen Holder
- Division of Neurosciences, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rebekah K H Shappley
- Division of Pediatric Critical Care, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jo Wray
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Aparna Hoskote
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
23
|
Dalton HJ, Berg RA, Nadkarni VM, Kochanek PM, Tisherman SA, Thiagarajan R, Alexander P, Bartlett RH. Cardiopulmonary Resuscitation and Rescue Therapies. Crit Care Med 2021; 49:1375-1388. [PMID: 34259654 DOI: 10.1097/ccm.0000000000005106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The history of cardiopulmonary resuscitation and the Society of Critical Care Medicine have much in common, as many of the founders of the Society of Critical Care Medicine focused on understanding and improving outcomes from cardiac arrest. We review the history, the current, and future state of cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Heidi J Dalton
- Heart and Vascular Institute and Department of Pediatrics, INOVA Fairfax Medical Center, Falls Church, VA. Department of Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA. Department of Anesthesiology/Critical Care Medicine, Peter Safer Resuscitation Center, Pittsburgh, PA. Department of Surgery, R Adams Cowley Shock Trauma Center, Baltimore, MD. Department of Cardiology, Division of Cardiovascular Critical Care, Boston Children's Hospital, Boston, MA. Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee J, Kim DK, Kang EK, Kim JT, Na JY, Park B, Yeom SR, Oh JS, Jhang WK, Jeong SI, Jung JH, Choi YH, Choi JY, Park JD, Hwang SO. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 6. Pediatric basic life support. Clin Exp Emerg Med 2021; 8:S65-S80. [PMID: 34034450 PMCID: PMC8171176 DOI: 10.15441/ceem.21.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jisook Lee
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Do Kyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eun Kyeong Kang
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jin-Tae Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Korea
| | - Bobae Park
- Department of Nursing, Seoul National University Hospital, Seoul, Korea
| | - Seok Ran Yeom
- Department of Emergency Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Joo Suk Oh
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Won Kyoung Jhang
- Department of Pediatrics, Children's Hospital Asan Medical Center, Seoul, Korea
| | - Soo In Jeong
- Department of Pediatrics, Ajou University Hospital, Suwon, Korea
| | - Jin Hee Jung
- Department of Emergency Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Yu Hyeon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jea Yeon Choi
- Department of Emergency Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Oh Hwang
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | |
Collapse
|
25
|
Choi YH, Kim DK, Kang EK, Kim JT, Na JY, Park B, Yeom SR, Oh JS, Lee J, Jhang WK, Jeong SI, Jung JH, Choi JY, Park JD, Hwang SO. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 7. Pediatric advanced life support. Clin Exp Emerg Med 2021; 8:S81-S95. [PMID: 34034451 PMCID: PMC8171177 DOI: 10.15441/ceem.21.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yu Hyeon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Do Kyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eun Kyeong Kang
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jin-Tae Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Korea
| | - Bobae Park
- Department of Nursing, Seoul National University Hospital, Seoul, Korea
| | - Seok Ran Yeom
- Department of Emergency Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Joo Suk Oh
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jisook Lee
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
| | - Won Kyoung Jhang
- Department of Pediatrics, Children's Hospital, Asan Medical Center, Seoul, Korea
| | - Soo In Jeong
- Department of Pediatrics, Ajou University Hospital, Suwon, Korea
| | - Jin Hee Jung
- Department of Emergency Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Jea Yeon Choi
- Department of Emergency Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Oh Hwang
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | |
Collapse
|
26
|
Kumar KM. ECPR-extracorporeal cardiopulmonary resuscitation. Indian J Thorac Cardiovasc Surg 2021; 37:294-302. [PMID: 33432257 PMCID: PMC7787697 DOI: 10.1007/s12055-020-01072-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022] Open
Abstract
Extracorporeal cardiopulmonary resuscitation (ECPR) is a salvage procedure in which extracorporeal membrane oxygenation (ECMO) is initiated emergently on patients who have had cardiac arrest (CA) and on whom the conventional cardiopulmonary resuscitation (CCPR) has failed. Awareness and usage of ECPR are increasing all over the world. Significant advancements have taken place in the ECPR initiation techniques, in its device and in its post-procedure care. ECPR is a team work requiring multidisciplinary experts, highly skilled health care workers and adequate infrastructure with appropriate devices. Perfect coordination and communication among team members play a vital role in the outcome of the ECPR patients. Ethical, legal and financial issues need to be considered before initiation of ECPR and while withdrawing the support when the ECPR is futile. Numerous studies about ECPR are being published more frequently in the last few years. Hence, keeping updated about the ECPR is very important for proper selection of cases and its management. This article reviews various aspects of ECPR and relevant literature to date.
Collapse
Affiliation(s)
- Kuppuswamy Madhan Kumar
- Heart and Lung Transplant Centre, Heart Institute, Apollo Hospitals, Ground floor, Main Block 21, Greams Lane off, Greams Road, Chennai, 600006 India
| |
Collapse
|
27
|
Guerguerian AM, Sano M, Todd M, Honjo O, Alexander P, Raman L. Pediatric Extracorporeal Cardiopulmonary Resuscitation ELSO Guidelines. ASAIO J 2021; 67:229-237. [PMID: 33627593 DOI: 10.1097/mat.0000000000001345] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Anne-Marie Guerguerian
- From the Department of Critical Care Medicine, The Hospital for Sick Kids, University of Toronto, Toronto
| | - Minako Sano
- Department of Anesthesiology, Division of Cardiac Anesthesiology, The Hospital for Sick Kids, University of Toronto, Toronto
| | - Mark Todd
- From the Department of Critical Care Medicine, The Hospital for Sick Kids, University of Toronto, Toronto
| | - Osami Honjo
- Department of Surgery, Division of Cardiothoracic Surgery, The Hospital for Sick Kids, University of Toronto, Toronto
| | - Peta Alexander
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Lakshmi Raman
- Department of Pediatrics, UTSouthwestern Medical Center, Dallas, Texas
| |
Collapse
|
28
|
Acute kidney injury after in-hospital cardiac arrest. Resuscitation 2021; 160:49-58. [PMID: 33450335 DOI: 10.1016/j.resuscitation.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
AIM Determine 1) frequency and risk factors for acute kidney injury (AKI) after in-hospital cardiac arrest (IHCA) in the Therapeutic Hypothermia after Pediatric Cardiac Arrest In-Hospital (THAPCA-IH) trial and associated outcomes; 2) impact of temperature management on post-IHCA AKI. METHODS Secondary analysis of THAPCA-IH; a randomized controlled multi-national trial at 37 children's hospitals. ELIGIBILITY Serum creatinine (Cr) within 24 h of randomization. OUTCOMES Prevalence of severe AKI defined by Stage 2 or 3 Kidney Disease Improving Global Outcomes Cr criteria. 12-month survival with favorable neurobehavioral outcome. Analyses stratified by entire cohort and cardiac subgroup. Risk factors and outcomes compared among cohorts with and without severe AKI. RESULTS Subject randomization: 159 to hypothermia, 154 to normothermia. Overall, 80% (249) developed AKI (any stage), and 66% (207) developed severe AKI. Cardiac patients (204, 65%) were more likely to develop severe AKI (72% vs 56%,p = 0.006). Preexisting cardiac or renal conditions, baseline lactate, vasoactive support, and systolic blood pressure were associated with severe AKI. Comparing hypothermia versus normothermia, there were no differences in severe AKI rate (63% vs 70%,p = 0.23), peak Cr, time to peak Cr, or freedom from mortality or severe AKI (p = 0.14). Severe AKI was associated with decreased hospital survival (48% vs 65%,p = 0.006) and decreased 12-month survival with favorable neurobehavioral outcome (30% vs 53%,p < 0.001). CONCLUSION Severe post-IHCA AKI occurred frequently especially in those with preexisting cardiac or renal conditions and peri-arrest hemodynamic instability. Severe AKI was associated with decreased survival with favorable neurobehavioral outcome. Hypothermia did not decrease incidence of severe AKI post-IHCA.
Collapse
|
29
|
Mechanical circulatory support in paediatric population. Cardiol Young 2021; 31:31-37. [PMID: 33423709 DOI: 10.1017/s1047951120004849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Extra-corporeal membrane oxygenation is a life-saving modality to support the cardiac and/or pulmonary system as a form of life support in resuscitation, post-cardiotomy, as a bridge to cardiac transplantation and in respiratory failure. Its use in the paediatric and neonatal population has proven incredibly useful. However, extra-corporeal membrane oxygenation is also associated with a greater rate of mortality and complications, particularly in those with co-morbidities. As a result, interventions such as ventricular assist devices have been trialled in these patients. In this review, we provide a comprehensive analysis of the current literature on extra-corporeal membrane oxygenation for cardiac support in the paediatric and neonatal population. We evaluate its effectiveness in comparison to other forms of mechanical circulatory support and focus on areas for future development.
Collapse
|
30
|
Esangbedo ID, Brunetti MA, Campbell FM, Lasa JJ. Pediatric Extracorporeal Cardiopulmonary Resuscitation: A Systematic Review. Pediatr Crit Care Med 2020; 21:e934-e943. [PMID: 32345933 DOI: 10.1097/pcc.0000000000002373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This systematic review aims to summarize the body of available literature on pediatric extracorporeal cardiopulmonary resuscitation in order to delineate current utilization, practices, and outcomes, while highlighting gaps in current knowledge. DATA SOURCES PubMed, Embase, Scopus, Cochrane Library, and ClinicalTrials.gov databases. STUDY SELECTION We searched for peer-reviewed original research publications on pediatric extracorporeal cardiopulmonary resuscitation (patients < 18 yr old) and were inclusive of all publication years. DATA EXTRACTION Our systematic review used the structured Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. Our initial literature search was performed on February 11, 2019, with an updated search performed on August 28, 2019. Three physician reviewers independently assessed the retrieved studies to determine inclusion in the systematic review synthesis. Using selected search terms, a total of 4,095 publications were retrieved, of which 96 were included in the final synthesis. Risk of bias in included studies was assessed using the Risk of Bias in Non-Randomized Studies of Interventions-I tool. DATA SYNTHESIS There were no randomized controlled trials of extracorporeal cardiopulmonary resuscitation use in pediatrics. A vast majority of pediatric extracorporeal cardiopulmonary resuscitation publications were single-center retrospective studies reporting outcomes after in-hospital cardiac arrest. Most pediatric extracorporeal cardiopulmonary resuscitation use in published literature is in cardiac patients. Survival to hospital discharge after extracorporeal cardiopulmonary resuscitation for pediatric in-hospital cardiac arrest ranged from 8% to 80% in included studies, and there was an association with improved outcomes in cardiac patients. Thirty-one studies reported neurologic outcomes after extracorporeal cardiopulmonary resuscitation, of which only six were prospective follow-up studies. We summarize the available literature on: determination of candidacy, timing of activation of extracorporeal cardiopulmonary resuscitation, staffing/logistics, cannulation strategies, outcomes, and the use of simulation for training. CONCLUSIONS This review highlights gaps in our understanding of best practices for pediatric extracorporeal cardiopulmonary resuscitation. We summarize current studies available and provide a framework for the development of future studies.
Collapse
Affiliation(s)
- Ivie D Esangbedo
- Division of Pediatric Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Children's Medical Center Dallas, Dallas, TX
| | - Marissa A Brunetti
- Division of Pediatric Cardiac Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Frank M Campbell
- University of Pennsylvania, Biomedical Library, Philadelphia, PA
| | - Javier J Lasa
- Sections of Cardiology and Critical Care Medicine, Baylor College of Medicine, Houston, TX
- Texas Children's Hospital, Houston, TX
| |
Collapse
|
31
|
Extracorporeal Cardiopulmonary Resuscitation: So Many Questions, How Much Time Have You Got? Pediatr Crit Care Med 2020; 21:917-918. [PMID: 33009310 DOI: 10.1097/pcc.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
de la Llana RA, Marsney RL, Gibbons K, Anderson B, Haisz E, Johnson K, Black A, Venugopal PS, Mattke AC. Merging Two Hospitals: The Effects on Pediatric Extracorporeal Cardiopulmonary Resuscitation Outcomes. J Pediatr Intensive Care 2020; 10:202-209. [PMID: 34395038 DOI: 10.1055/s-0040-1715853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022] Open
Abstract
In this article, a retrospective study was performed to describe the impact of merging two pediatric intensive care units on the overall and neurocognitive outcomes of children who required extracorporeal cardiopulmonary resuscitation (ECPR). Results from three cohorts were compared: 2008 to 2014: premerge, 2014 to 2017: initial time period postmerge, and 2018 to 2019: established merge. Survival to hospital discharge (and with good neurological outcome) was of 68% (61%), 46% (36%), and 79% (71%), respectively, for the three time periods. Merging two hospitals resulted in a nonsignificant trend toward temporary worse outcomes in pediatric patients requiring ECPR.
Collapse
Affiliation(s)
- Rebecca Anderson de la Llana
- Pediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia.,Pediatric Critical Care Research Group, Centre for Child Health Research, The University of Queensland, Brisbane, Australia
| | - Renate Le Marsney
- Pediatric Critical Care Research Group, Centre for Child Health Research, The University of Queensland, Brisbane, Australia
| | - Kristen Gibbons
- Pediatric Critical Care Research Group, Centre for Child Health Research, The University of Queensland, Brisbane, Australia
| | - Benjamin Anderson
- Department of Cardiology, Queensland Children's Hospital, Brisbane, Australia.,School of Medicine, The University of Queensland, Brisbane, Australia
| | - Emma Haisz
- Pediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia.,Pediatric Critical Care Research Group, Centre for Child Health Research, The University of Queensland, Brisbane, Australia
| | - Kerry Johnson
- Pediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia.,Pediatric Critical Care Research Group, Centre for Child Health Research, The University of Queensland, Brisbane, Australia.,School of Medicine, The University of Queensland, Brisbane, Australia
| | - Anthony Black
- Department of Perfusion, Queensland Children's Hospital, Brisbane, Australia
| | - Prem Sundar Venugopal
- Pediatric Critical Care Research Group, Centre for Child Health Research, The University of Queensland, Brisbane, Australia.,Department of Perfusion, Queensland Children's Hospital, Brisbane, Australia.,Department of Cardiothoracic Surgery, Queensland Children's Hospital, Brisbane, Australia
| | - Adrian Christian Mattke
- Pediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia.,Pediatric Critical Care Research Group, Centre for Child Health Research, The University of Queensland, Brisbane, Australia.,School of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Neurological Monitoring and Complications of Pediatric Extracorporeal Membrane Oxygenation Support. Pediatr Neurol 2020; 108:31-39. [PMID: 32299748 PMCID: PMC7698354 DOI: 10.1016/j.pediatrneurol.2020.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Extracorporeal membrane oxygenation is extracorporeal life support for life-threatening cardiopulmonary failure. Since its introduction, the use of extracorporeal membrane oxygenation has expanded to patients with more complex comorbidities without change in patient mortality rates. Although many patients survive, significant neurological complications like seizures, ischemic strokes, and intracranial hemorrhage can occur during extracorporeal membrane oxygenation care. The risks of these complications often add to the complexity of decision-making surrounding extracorporeal membrane oxygenation support. In this review, we discuss the pathophysiology and incidence of neurological complications in children supported on extracorporeal membrane oxygenation, factors influencing the incidence of these complications, commonly used neurological monitoring modalities, and outcomes for this complex patient population. We discuss the current literature on the use of electroencephalography for both seizure detection and monitoring of background electroencephalographic changes, in addition to the use of less commonly used imaging modalities like transcranial Doppler. We summarize the knowledge gaps and the lack of clinical consensus guidelines for managing these potentially life-changing neurological complications. Finally, we discuss future work to further understand the pathophysiology of extracorporeal membrane oxygenation-related neurological complications.
Collapse
|
34
|
Survival and Mid-Term Neurologic Outcome After Extracorporeal Cardiopulmonary Resuscitation in Children. Pediatr Crit Care Med 2020; 21:e316-e324. [PMID: 32343108 DOI: 10.1097/pcc.0000000000002291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Extracorporeal cardiopulmonary resuscitation in children with refractory cardiac arrest has been shown to improve survival, however, risk factors associated with mortality and neurologic impairments are not well defined. We analyzed our recent institutional experience with pediatric extracorporeal cardiopulmonary resuscitation to identify variables associated with survival and neurocognitive outcome. DESIGN Retrospective observational study. SETTING Pediatric cardiology and congenital heart surgery departments of a tertiary referral heart center. PATIENTS Seventy-two consecutive children (median age, 0.3 yr [0.0-1.9 yr]) who underwent extracorporeal cardiopulmonary resuscitation at our institution during the study period from 2005 to 2016. INTERVENTIONS Not applicable. MEASUREMENTS AND MAIN RESULTS Median duration of resuscitation was 60 minutes (42-80 min) and median extracorporeal support duration was 5.4 days (2.2-7.9 d). Forty-three (59.7%) extracorporeal cardiopulmonary resuscitation events occurred during off-hours, however, neither duration of resuscitation (65 min [49-89 min] vs 51 min [35-80 min]; p = 0.16) nor survival (34.9% vs 37.9%; p = 0.81) differed significantly compared to working hours. Congenital heart disease was present in 84.7% of the patients. Survival to hospital discharge was 36.1%; younger age, higher lactate levels after resuscitation, acute kidney injury, renal replacement therapy, hepatic injury, and complexity of prior cardiothoracic surgical procedures were significantly associated with mortality. At mid-term follow-up (median, 4.1 yr [3.7-6.1 yr]), 22 patients (84.6% of discharge survivors) were still alive with 77.3% having a favorable neurologic outcome. High lactate levels, arrest location other than ICU, and requirement for renal replacement therapy were associated with unfavorable neurologic outcome. Interestingly, longer duration of resuscitation did not negatively impact survival or neurologic outcome. CONCLUSIONS Extracorporeal cardiopulmonary resuscitation is a valuable tool for the treatment of children with refractory cardiac arrest and a favorable neurologic outcome can be achieved in the majority of survivors even after prolonged resuscitation. Mortality after extracorporeal cardiopulmonary resuscitation in postcardiac surgery children is associated with procedural complexity.
Collapse
|
35
|
Chen X, Zhen Z, Na J, Wang Q, Gao L, Yuan Y. Associations of therapeutic hypothermia with clinical outcomes in patients receiving ECPR after cardiac arrest: systematic review with meta-analysis. Scand J Trauma Resusc Emerg Med 2020; 28:3. [PMID: 31937354 PMCID: PMC6961259 DOI: 10.1186/s13049-019-0698-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Therapeutic hypothermia has been recommended for eligible patients after cardiac arrest (CA) in order to improve outcomes. Up to now, several comparative observational studies have evaluated the combined use of extracorporeal cardiopulmonary resuscitation (ECPR) and therapeutic hypothermia in adult patients with CA. However, the effects of therapeutic hypothermia in adult CA patients receiving ECPR are inconsistent. METHODS Relevant studies in English databases (PubMed, ISI web of science, OVID, and Embase) were systematically searched up to September 2019. Odds ratios (ORs) from eligible studies were extracted and pooled to summarize the associations of therapeutic hypothermia with favorable neurological outcomes and survival in adult CA patients receiving ECPR. RESULTS 13 articles were included in the present meta-analysis study. There were nine studies with a total of 806 cases reporting the association of therapeutic hypothermia with neurological outcomes in CA patients receiving ECPR. Pooling analysis suggested that therapeutic hypothermia was significantly associated with favorable neurological outcomes in overall (N = 9, OR = 3.507, 95%CI = 2.194-5.607, P < 0.001, fixed-effects model) and in all subgroups according to control type, regions, sample size, CA location, ORs obtained methods, follow-up period, and modified Newcastle Ottawa Scale (mNOS) scores. There were nine studies with a total of 806 cases assessing the association of therapeutic hypothermia with survival in CA patients receiving ECPR. After pooling the ORs, therapeutic hypothermia was found to be significantly associated with survival in overall (N = 9, OR = 2.540, 95%CI = 1.245-5.180, P = 0.010, random-effects model) and in some subgroups. Publication bias was found when evaluating the association of therapeutic hypothermia with neurological outcomes in CA patients receiving ECPR. Additional trim-and-fill analysis estimated four "missing" studies, which adjusted the effect size to 2.800 (95%CI = 1.842-4.526, P < 0.001, fixed-effects model) for neurological outcomes. CONCLUSIONS Therapeutic hypothermia may be associated with favorable neurological outcomes and survival in adult CA patients undergoing ECPR. However, the result should be treated carefully because it is a synthesis of low-level evidence and other limitations exist in present study. It is necessary to perform randomized controlled trials to validate our result before considering the result in clinical practices.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56, Nanlishilu, District Xicheng, Beijing, 100045 China
| | - Zhen Zhen
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56, Nanlishilu, District Xicheng, Beijing, 100045 China
| | - Jia Na
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56, Nanlishilu, District Xicheng, Beijing, 100045 China
| | - Qin Wang
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56, Nanlishilu, District Xicheng, Beijing, 100045 China
| | - Lu Gao
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56, Nanlishilu, District Xicheng, Beijing, 100045 China
| | - Yue Yuan
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56, Nanlishilu, District Xicheng, Beijing, 100045 China
| |
Collapse
|
36
|
Gul SS, Cohen SA, Avery KL, Balakrishnan MP, Balu R, Chowdhury MAB, Crabb D, Huesgen KW, Hwang CW, Maciel CB, Murphy TW, Han F, Becker TK. Cardiac arrest: An interdisciplinary review of the literature from 2018. Resuscitation 2020; 148:66-82. [PMID: 31945428 DOI: 10.1016/j.resuscitation.2019.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/15/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The Interdisciplinary Cardiac Arrest Research Review (ICARE) group was formed in 2018 to conduct a systematic annual search of peer-reviewed literature relevant to cardiac arrest (CA). The goals of the review are to illustrate best practices and help reduce knowledge silos by disseminating clinically relevant advances in the field of CA across disciplines. METHODS An electronic search of PubMed using keywords related to CA was conducted. Title and abstracts retrieved by these searches were screened for relevancy, separated by article type (original research or review), and sorted into 7 categories. Screened manuscripts underwent standardized scoring of overall methodological quality and importance. Articles scoring higher than 99 percentiles by category-type were selected for full critique. Systematic differences between editors and reviewer scores were assessed using Wilcoxon signed-rank test. RESULTS A total of 9119 articles were identified on initial search; of these, 1214 were scored after screening for relevance and deduplication, and 80 underwent full critique. Prognostication & Outcomes category comprised 25% and Epidemiology & Public Health 17.5% of fully reviewed articles. There were no differences between editor and reviewer scoring. CONCLUSIONS The total number of articles demonstrates the need for an accessible source summarizing high-quality research findings to serve as a high-yield reference for clinicians and scientists seeking to absorb the ever-growing body of CA-related literature. This may promote further development of the unique and interdisciplinary field of CA medicine.
Collapse
Affiliation(s)
- Sarah S Gul
- Department of Surgery, Yale University, New Haven, CT, United States
| | - Scott A Cohen
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - K Leslie Avery
- Division of Pediatric Critical Care, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | | | - Ramani Balu
- Division of Neurocritical Care, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | | | - David Crabb
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Karl W Huesgen
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Charles W Hwang
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Carolina B Maciel
- Division of Neurocritical Care, Department of Neurology, University of Florida, Gainesville, FL, United States; Department of Neurology, Yale University, New Haven, CT, United States
| | - Travis W Murphy
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Francis Han
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Torben K Becker
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States.
| | | |
Collapse
|
37
|
Improving Pediatric Extracorporeal Cardiopulmonary Resuscitation Means Delivering Best Care and Measuring Impact Beyond Survival. Crit Care Med 2020; 47:613-615. [PMID: 30882435 DOI: 10.1097/ccm.0000000000003673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Duff JP, Topjian AA, Berg MD, Chan M, Haskell SE, Joyner BL, Lasa JJ, Ley SJ, Raymond TT, Sutton RM, Hazinski MF, Atkins DL. 2019 American Heart Association Focused Update on Pediatric Advanced Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2020; 145:peds.2019-1361. [PMID: 31727859 DOI: 10.1542/peds.2019-1361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This 2019 focused update to the American Heart Association pediatric advanced life support guidelines follows the 2018 and 2019 systematic reviews performed by the Pediatric Life Support Task Force of the International Liaison Committee on Resuscitation. It aligns with the continuous evidence review process of the International Liaison Committee on Resuscitation, with updates published when the International Liaison Committee on Resuscitation completes a literature review based on new published evidence. This update provides the evidence review and treatment recommendations for advanced airway management in pediatric cardiac arrest, extracorporeal cardiopulmonary resuscitation in pediatric cardiac arrest, and pediatric targeted temperature management during post-cardiac arrest care. The writing group analyzed the systematic reviews and the original research published for each of these topics. For airway management, the writing group concluded that it is reasonable to continue bag-mask ventilation (versus attempting an advanced airway such as endotracheal intubation) in patients with out-of-hospital cardiac arrest. When extracorporeal membrane oxygenation protocols and teams are readily available, extracorporeal cardiopulmonary resuscitation should be considered for patients with cardiac diagnoses and in-hospital cardiac arrest. Finally, it is reasonable to use targeted temperature management of 32°C to 34°C followed by 36°C to 37.5°C, or to use targeted temperature management of 36°C to 37.5°C, for pediatric patients who remain comatose after resuscitation from out-of-hospital cardiac arrest or in-hospital cardiac arrest.
Collapse
|
39
|
MacLaren G, Brown KL, Thiagarajan RR. What’s new in paediatric extracorporeal life support? Intensive Care Med 2019; 46:492-494. [DOI: 10.1007/s00134-019-05861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
|
40
|
Duff JP, Topjian AA, Berg MD, Chan M, Haskell SE, Joyner BL, Lasa JJ, Ley SJ, Raymond TT, Sutton RM, Hazinski MF, Atkins DL. 2019 American Heart Association Focused Update on Pediatric Advanced Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2019; 140:e904-e914. [PMID: 31722551 DOI: 10.1161/cir.0000000000000731] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This 2019 focused update to the American Heart Association pediatric advanced life support guidelines follows the 2018 and 2019 systematic reviews performed by the Pediatric Life Support Task Force of the International Liaison Committee on Resuscitation. It aligns with the continuous evidence review process of the International Liaison Committee on Resuscitation, with updates published when the International Liaison Committee on Resuscitation completes a literature review based on new published evidence. This update provides the evidence review and treatment recommendations for advanced airway management in pediatric cardiac arrest, extracorporeal cardiopulmonary resuscitation in pediatric cardiac arrest, and pediatric targeted temperature management during post-cardiac arrest care. The writing group analyzed the systematic reviews and the original research published for each of these topics. For airway management, the writing group concluded that it is reasonable to continue bag-mask ventilation (versus attempting an advanced airway such as endotracheal intubation) in patients with out-of-hospital cardiac arrest. When extracorporeal membrane oxygenation protocols and teams are readily available, extracorporeal cardiopulmonary resuscitation should be considered for patients with cardiac diagnoses and in-hospital cardiac arrest. Finally, it is reasonable to use targeted temperature management of 32°C to 34°C followed by 36°C to 37.5°C, or to use targeted temperature management of 36°C to 37.5°C, for pediatric patients who remain comatose after resuscitation from out-of-hospital cardiac arrest or in-hospital cardiac arrest.
Collapse
|
41
|
Klingkowski U, Kropshofer G, Crazzolara R, Schachner T, Cortina G. Refractory hyperkalaemic cardiac arrest – What to do first: Treat the reversible cause or initiate E-CPR? Resuscitation 2019; 142:81. [DOI: 10.1016/j.resuscitation.2019.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
|
42
|
Transforming Data Into a Crystal Ball-Predicting Outcomes After Extracorporeal Membrane Oxygenation. Pediatr Crit Care Med 2019; 20:490-491. [PMID: 31058786 DOI: 10.1097/pcc.0000000000001910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Meert K, Slomine BS, Silverstein FS, Christensen J, Ichord R, Telford R, Holubkov R, Dean JM, Moler FW. One-year cognitive and neurologic outcomes in survivors of paediatric extracorporeal cardiopulmonary resuscitation. Resuscitation 2019; 139:299-307. [PMID: 30818016 DOI: 10.1016/j.resuscitation.2019.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To describe one-year cognitive and neurologic outcomes among extracorporeal cardiopulmonary resuscitation (ECPR) survivors enrolled in the Therapeutic Hypothermia after Paediatric Cardiac Arrest In-Hospital (THAPCA-IH) trial; and compare outcomes between survivors who received ECPR, later extracorporeal membrane oxygenation (ECMO), or no ECMO. METHODS All children recruited to THAPCA-IH were comatose post-arrest. Neurobehavioral function was assessed by caregivers using the Vineland Adaptive Behaviour Scales, 2nd edition (VABS-II) at pre-arrest baseline and 12 months post-arrest. Age-appropriate cognitive performance measures (Mullen Scales of Early Learning or Wechsler Abbreviated Scale of Intelligence) and neurologic examinations were obtained 12 months post-arrest. VABS-II and cognitive performance measures were transformed to standard scores (mean = 100, SD = 15) with higher scores representing better performance. Only children with broadly normal pre-arrest function (VABS-II ≥70) were included in this analysis. RESULTS One-year follow-up was attained for 127 survivors with pre-arrest VABS-II ≥70. Of these, 57 received ECPR, 14 received ECMO later in their course, and 56 did not receive ECMO. VABS-II assessments were completed at 12 months for 55 (96.5%) ECPR survivors, cognitive testing for 44 (77.2%) and neurologic examination for 47 (82.5%). At 12 months, 39 (70.9%) ECPR survivors had VABS-II scores ≥70. On cognitive testing, 24 (54.6%) had scores ≥70, and on neurologic examination, 28 (59.5%) had no/minimal to mild impairment. Cognitive and neurologic score distributions were similar between ECPR, later ECMO and no ECMO groups. CONCLUSIONS Many ECPR survivors had favourable outcomes although impairments were common. ECPR survivors had similar outcomes to other survivors who were initially comatose post-arrest.
Collapse
Affiliation(s)
- Kathleen Meert
- Children's Hospital of Michigan, Wayne State University, 3901 Beaubien Boulevard, Detroit, MI, 48201, USA.
| | - Beth S Slomine
- Kennedy Krieger Institute, Johns Hopkins University, 707 North Broadway, Baltimore, MD, 21205, USA
| | | | - James Christensen
- Kennedy Krieger Institute, Johns Hopkins University, 707 North Broadway, Baltimore, MD, 21205, USA
| | - Rebecca Ichord
- Children's Hospital of Philadelphia, University of Pennsylvania, 3410 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Russell Telford
- University of Utah, 295 Chipeta Way, P.O. Box 581289, Salt Lake City, UT, 84158, USA
| | - Richard Holubkov
- University of Utah, 295 Chipeta Way, P.O. Box 581289, Salt Lake City, UT, 84158, USA
| | - J Michael Dean
- University of Utah, 295 Chipeta Way, P.O. Box 581289, Salt Lake City, UT, 84158, USA
| | - Frank W Moler
- CS Mott Children's Hospital, University of Michigan, 1500 East Hospital Drive, Ann Arbor, MI, 48109-5636, USA
| | | |
Collapse
|
44
|
Resuscitating Hearts and Minds: 1-Year Outcomes Following Extracorporeal Membrane Oxygenation for Cardiac Arrest. Crit Care Med 2019; 47:476-477. [PMID: 30768507 DOI: 10.1097/ccm.0000000000003597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|