1
|
Zuckerberg JC, Ko T, Weeks MK, Widmann NJ, Kienzle MF, Gaudio HA, Silva LEV, Reeder RW, Sutton RM, Berg RA, Kilbaugh TJ, Morgan RW. Evaluation of coronary perfusion pressure and diastolic blood pressure calculation methods in a swine model of pediatric cardiopulmonary resuscitation. Resusc Plus 2025; 23:100928. [PMID: 40230368 PMCID: PMC11995776 DOI: 10.1016/j.resplu.2025.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Measurement of coronary perfusion pressure (CoPP) and diastolic blood pressure (DBP) during cardiopulmonary resuscitation (CPR) is important for titration of physiologic-directed CPR. However, agreement between different calculation methods and their relative performance as outcome discriminators are not well established. Methods Four calculation methods, differentiated by sampling technique, were retrospectively applied to pressure waveforms from piglet CPR: late diastole (CoPP65, DBP65), mid-diastole (CoPP50, DBP50), diastolic minimum (CoPPmin, DBPmin), and diastolic mean (CoPPmean, DBPmean). Intermethod agreement was assessed by Bland-Altman analysis and Cohen's kappa statistic. Logistic regression was used to evaluate performance in discriminating return of spontaneous circulation (ROSC) and to identify optimal thresholds. Results Relative to CoPP65, measurements by CoPP50, CoPPmin, and CoPPmean were within 5 mmHg limits of agreement (LOA) in 97%, 64%, and 99% of instances with kappa 0.88, 0.76, and 0.91, respectively. Relative to DBP65, measurements by DBP50, DBPmin, and DBPmean were within 5 mmHg LOA in 98%, 71%, and 99% of instances with kappa 0.90, 0.80, and 0.91, respectively. The areas under the ROC curves (AUC) for CoPP65, CoPP50, CoPPmin, and CoPPmean were 0.777, 0.792, 0.787, and 0.788, and optimal thresholds to discriminate ROSC were 15.3, 15.8, 12.3, and 14.7 mmHg, respectively. The AUCs for DBP65, DBP50, DBPmin, and DBPmean were 0.813, 0.827, 0.833, and 0.826, and optimal thresholds to discriminate ROSC were 28.6, 27.3, 26.2, and 29.7 mmHg, respectively. Conclusions During piglet CPR, measurements by late diastole, mid-diastole, and diastolic mean strongly agreed, whereas those at diastolic minimum were more discrepant. All methods performed similarly in discrimination of ROSC.
Collapse
Affiliation(s)
- Jeremy C. Zuckerberg
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiffany Ko
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - M. Katie Weeks
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nicholas J. Widmann
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Martha F. Kienzle
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hunter A. Gaudio
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luiz Eduardo V. Silva
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ron W. Reeder
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert M. Sutton
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert A. Berg
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Badurdeen S, Galinsky R, Roberts CT, Crossley KJ, Zahra VA, Thiel A, Pham Y, Davis PG, Hooper SB, Polglase GR, Camm EJ. Rapid oxygen titration following cardiopulmonary resuscitation mitigates cerebral overperfusion and striatal mitochondrial dysfunction in asphyxiated newborn lambs. J Cereb Blood Flow Metab 2025; 45:630-642. [PMID: 39576879 PMCID: PMC11584996 DOI: 10.1177/0271678x241302738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Asphyxiated neonates must have oxygenation rapidly restored to limit ongoing hypoxic-ischemic injury. However, the effects of transient hyperoxia after return of spontaneous circulation (ROSC) are poorly understood. We randomly allocated acutely asphyxiated, near-term lambs to cardiopulmonary resuscitation in 100% oxygen ("standard oxygen", n = 8) or air (n = 7) until 5 minutes after ROSC, or to resuscitation in 100% oxygen immediately weaned to air upon ROSC ("rapid-wean", n = 7). From 5 minutes post-ROSC, oxygen was titrated to target preductal oxygen saturation between 90-95%. Cerebral tissue oxygenation was transiently but markedly elevated following ROSC in the standard oxygen group compared to the air and rapid-wean groups. The air group had a delayed rise in cerebral tissue oxygenation from 5 minutes after ROSC coincident with up-titration of oxygen. These alterations in oxygen kinetics corresponded with similar overshoots in cerebral perfusion (pressure and flow), indicating a physiological mechanism. Transient cerebral tissue hyperoxia in the standard oxygen and air groups resulted in significant alterations in mitochondrial respiration and dynamics, relative to the rapid-wean group. Overall, rapid-wean of oxygen following ROSC preserved striatal mitochondrial respiratory function and reduced the expression of genes involved in free radical generation and apoptosis, suggesting a potential therapeutic strategy to limit cerebral reperfusion injury.
Collapse
Affiliation(s)
- Shiraz Badurdeen
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Melbourne Children’s Global Health, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Calum T Roberts
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Monash Newborn, Monash Children’s Hospital, Clayton, Australia
| | - Kelly J Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Alison Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Peter G Davis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Paediatrics, Monash University, Clayton, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Gaudio HA, Padmanabhan V, Landis WP, Silva LEV, Slovis J, Starr J, Weeks MK, Widmann NJ, Forti RM, Laurent GH, Ranieri NR, Mi F, Degani RE, Hallowell T, Delso N, Calkins H, Dobrzynski C, Haddad S, Kao SH, Hwang M, Shi L, Baker WB, Tsui F, Morgan RW, Kilbaugh TJ, Ko TS. A novel translational bioinformatics framework for facilitating multimodal data analyses in preclinical models of neurological injury. Sci Rep 2024; 14:30710. [PMID: 39730412 DOI: 10.1038/s41598-024-79973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/13/2024] [Indexed: 12/29/2024] Open
Abstract
Pediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for treatment of secondary neurological injury. Translational, preclinical research facilitates the development of solutions to address this growing issue but is hindered by a lack of available data frameworks and standards for the management, processing, and analysis of multimodal datasets. Here, we present a generalizable data framework that was implemented for large animal research at the Children's Hospital of Philadelphia to address this technological gap. The presented framework culminates in a custom, interactive dashboard for exploratory analysis and filtered dataset download. Compared with existing clinical and preclinical data management solutions, the presented framework better enables management of various data types (single measure, repeated measures, time series, and imaging), integration of datasets for comparison across experimental models, cohorts, and groups, and facilitation of predictive modeling from integrated datasets. Further, a predictive model development use case demonstrated utilization and value of the data framework. The general outline of a preclinical data framework presented here can serve as a template for other translational research labs that generate heterogeneous datasets and require a dynamic platform that can easily evolve alongside their research.
Collapse
Affiliation(s)
- Hunter A Gaudio
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Viveknarayanan Padmanabhan
- Translational Research Informatics Group, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - William P Landis
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Luiz E V Silva
- Tsui Laboratory, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julia Slovis
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jonathan Starr
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Katie Weeks
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nicholas J Widmann
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rodrigo M Forti
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gerard H Laurent
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nicolina R Ranieri
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Frank Mi
- Tsui Laboratory, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rinat E Degani
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Thomas Hallowell
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nile Delso
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hannah Calkins
- Arcus Library Science Team, Department of Biomedical Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christiana Dobrzynski
- Arcus Library Science Team, Department of Biomedical Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sophie Haddad
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Shih-Han Kao
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lingyun Shi
- Tsui Laboratory, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Wesley B Baker
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fuchiang Tsui
- Tsui Laboratory, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ryan W Morgan
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Todd J Kilbaugh
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tiffany S Ko
- Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Silva LEV, Gaudio HA, Widmann NJ, Forti RM, Padmanabhan V, Senthil K, Slovis JC, Mavroudis CD, Lin Y, Shi L, Baker WB, Morgan RW, Kilbaugh TJ, Tsui FR, Ko TS. Amplitude spectrum area is dependent on the electrocardiogram magnitude: evaluation of different normalization approaches. Physiol Meas 2024; 45:115005. [PMID: 39536707 DOI: 10.1088/1361-6579/ad9233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Objective.Amplitude Spectrum Area (AMSA) of the electrocardiogram (ECG) waveform during ventricular fibrillation (VF) has shown promise as a predictor of defibrillation success during cardiopulmonary resuscitation (CPR). However, AMSA relies on the magnitude of the ECG waveform, raising concerns about reproducibility across different settings that may introduce magnitude bias. This study aimed to evaluate different AMSA normalization approaches and their impact on removing bias while preserving predictive value.Approach.ECG were recorded in 118 piglets (1-2 months old) during a model of asphyxia-associated VF cardiac arrest and CPR. An initial subset (91/118) was recorded using one device (Device 1), and the remaining piglets were recorded in the second device (Device 2). Raw AMSA and three ECG magnitude metrics were estimated to assess magnitude-related bias between devices. Five AMSA normalization approaches were assessed for their ability to remove detected bias and to classify defibrillation success.Main results.Device 2 showed significantly lower ECG magnitude and raw AMSA compared to Device 1. CPR-based AMSA normalization approaches mitigated device-associated bias. Raw AMSA normalized by the average AMSA in the 1st minute of CPR (AMSA1m-cpr) exhibited the best sensitivity and specificity for classification of successful and unsuccessful defibrillation. While the optimal AMSA1m-cprthresholds for balanced sensitivity and specificity were consistent across both devices, the optimal raw AMSA thresholds varied between the two devices. The area under the receiver operating characteristic curve for AMSA1m-cprdid not significantly differ from raw AMSA for both devices (Device 1: 0.74 vs. 0.88,P= 0.14; Device 2: 0.56 vs. 0.59,P= 0.81).Significance.Unlike raw AMSA, AMSA1m-cprdemonstrated consistent results across different devices while maintaining predictive value for defibrillation success. This consistency has important implications for the widespread use of AMSA and the development of future guidelines on optimal AMSA thresholds for successful defibrillation.
Collapse
Affiliation(s)
- Luiz E V Silva
- Tsui Laboratory, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, United States of America
| | - Hunter A Gaudio
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Nicholas J Widmann
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Rodrigo M Forti
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Viveknarayanan Padmanabhan
- Translational Research Informatics Group (TRiG), Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, United States of America
| | - Kumaran Senthil
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Julia C Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Lingyun Shi
- Tsui Laboratory, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, United States of America
| | - Wesley B Baker
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Fuchiang Rich Tsui
- Tsui Laboratory, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19146, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Tiffany S Ko
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| |
Collapse
|
5
|
Chun MK, Park JS, Han J, Jhang WK, Kim DH. The association between initial post-resuscitation diastolic blood pressure and survival after pediatric cardiac arrest: a retrospective study. BMC Pediatr 2024; 24:563. [PMID: 39232714 PMCID: PMC11373354 DOI: 10.1186/s12887-024-05037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Limited research has analyzed the association between diastolic blood pressure (DBP) and survival after pediatric cardiopulmonary resuscitation (CPR). This study aimed to explore the association between post-resuscitation diastolic blood pressure and survival in pediatric patients who underwent CPR. METHOD This retrospective single-center study included pediatric patients admitted to the pediatric intensive care unit of Asan Medical Center between January 2016 to November 2022. Patients undergoing extracorporeal CPR and those with unavailable data were excluded. The primary endpoint was survival to ICU discharge. RESULTS A total of 106 patients were included, with 67 (63.2%) achieving survival to ICU discharge. Multivariate logistic regression analysis identified DBP within 1 h after ROSC as the sole significant variable (p = 0.002, aOR, 1.043; 95% CI, 1.016-1.070). Additionally, DBP within 1 h demonstrated an area under the ROC curve of 0.7 (0.592-0.809) for survival to ICU discharge, along with mean blood pressure within the same timeframe. CONCLUSION Our study highlights the importance of DBP within 1-hour post-ROSC as a significant prognostic factor for survival to ICU discharge. However, further validation through further prospective large-scale studies is warranted to confirm the appropriate post-resuscitation DBP of pediatric patients.
Collapse
Affiliation(s)
- Min Kyo Chun
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Sung Park
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeeho Han
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Kyoung Jhang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Hyun Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Han J, Ahn KJ, Cha KC, Kim SJ, Jung WJ, Roh YI, Yoon YR, Hwang SO. Prediction of blood pressure using chest compression waveform during cardiopulmonary resuscitation. Resuscitation 2024; 202:110331. [PMID: 39053839 DOI: 10.1016/j.resuscitation.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aimed to predict blood pressure during CPR using chest compression waveform information obtained from a CPR feedback device. METHODS Quantitative data including chest compression waveforms from a CPR feedback device and the blood pressure measured by arterial cannulation in patients with cardiac arrest during CPR were used. Forty-one features to predict blood pressure were selected from chest compression waveform and demographic characteristics with neighborhood component analysis algorithm. Optimized Gaussian process regression was used as a machine learning algorithm. RESULTS A total of 14,619 datasets from 19 patients with cardiac arrest (mean age: 66 ± 13 years, 14 men) were used in the analysis. The model could predict blood pressure with high precision and low bias for almost the whole range of systolic (SBP), diastolic (DBP), and mean arterial blood pressure (MAP). The correlation coefficients (r) between the predicted and actual values were 0.954 (95% confidence interval: 0.951-0.957, p < 0.001) for SBP, 0.926 (95% confidence interval: 0.921-0.931, p < 0.001) for DBP, and 0.958 (95% confidence interval: 0.955-0.961, p < 0.001) for MBP, which all indicated a very good agreement. CONCLUSIONS Blood pressure generated by chest compressions can be predicted with high accuracy by a machine learning method using chest compression waveform information obtained from a CPR feedback device and the patient's demographic characteristics. Real-time provision of the predicted blood pressure can be used to monitor the quality and efficacy of CPR.
Collapse
Affiliation(s)
- Jiho Han
- Department of Biomedical Engineering, Yonsei University, South Korea.
| | - Kyo Jin Ahn
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine.
| | - Kyoung-Chul Cha
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine.
| | - Sun Ju Kim
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine.
| | - Woo Jin Jung
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine.
| | - Young-Il Roh
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine.
| | - Young Ro Yoon
- Department of Biomedical Engineering, Yonsei University, South Korea.
| | - Sung Oh Hwang
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine.
| |
Collapse
|
7
|
Kim T, Suh GJ, Kim KS, Kim H, Park H, Kwon WY, Park J, Sim J, Hur S, Lee JC, Shin DA, Cho WS, Kim BJ, Kwon S, Lee YJ. Development of artificial intelligence-driven biosignal-sensitive cardiopulmonary resuscitation robot. Resuscitation 2024; 202:110354. [PMID: 39122176 DOI: 10.1016/j.resuscitation.2024.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
AIM OF THE STUDY We evaluated whether an artificial intelligence (AI)-driven robot cardiopulmonary resuscitation (CPR) could improve hemodynamic parameters and clinical outcomes. METHODS We developed an AI-driven CPR robot which utilizes an integrated feedback system with an AI model predicting carotid blood flow (CBF). Twelve pigs were assigned to the AI robot group (n = 6) and the LUCAS 3 group (n = 6). They underwent 6 min of CPR after 7 min of ventricular fibrillation. In the AI robot group, the robot explored for the optimal compression position, depth and rate during the first 270-second period, and continued CPR with the optimal setup during the next 90-second period and beyond. The primary outcome was CBF during the last 90-second period. The secondary outcomes were coronary perfusion pressure (CPP), end-tidal carbon dioxide level (ETCO2) and return of spontaneous circulation (ROSC). RESULTS The AI model's prediction performance was excellent (Pearson correlation coefficient = 0.98). CBF did not differ between the two groups [estimate and standard error (SE), -23.210 ± 20.193, P = 0.250]. CPP, ETCO2 level and rate of ROSC also did not show difference [estimate and SE, -0.214 ± 7.245, P = 0.976 for CPP; estimate and SE, 1.745 ± 3.199, P = 0.585 for ETCO2; 5/6 (83.3%) vs. 4/6 (66.7%), P = 1.000 for ROSC). CONCLUSION This study provides proof of concept that an AI-driven CPR robot in porcine cardiac arrest is feasible. Compared to a LUCAS 3, an AI-driven CPR robot produced comparable hemodynamic and clinical outcomes.
Collapse
Affiliation(s)
- Taegyun Kim
- Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Hayoung Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Heesu Park
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Jaeheung Park
- Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea.
| | - Jaehoon Sim
- Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Sungmoon Hur
- Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jung Chan Lee
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Biomedical Engineering and Innovative Medical Technology Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Dong Ah Shin
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Woo Sang Cho
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Byung Jun Kim
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Soyoon Kwon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Ye Ji Lee
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
8
|
Jiang L, Chen S, Pan X, Zhang J, Yin X, Guo C, Sun M, Ding B, Zhai X, Li K, Wang J, Chen Y. Estimation of invasive coronary perfusion pressure using electrocardiogram and Photoplethysmography in a porcine model of cardiac arrest. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108284. [PMID: 38924799 DOI: 10.1016/j.cmpb.2024.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Coronary perfusion pressure (CPP) indicates spontaneous return of circulation and is recommended for high-quality cardiopulmonary resuscitation (CPR). This study aimed to investigate a method for non-invasive estimation of CPP using electrocardiography (ECG) and photoplethysmography (PPG) during CPR. METHODS Nine pigs were used in this study. ECG, PPG, invasive arterial blood pressure (ABP), and right atrial pressure (RAP) signals were simultaneously recorded. The CPPs were estimated using three datasets: (a) ECG, (b) PPG, and (c) ECG and PPG, and were compared with invasively measured CPPs. Four machine-learning algorithms, namely support vector regression, random forest (RF), K-nearest neighbor, and gradient-boosted regression tree, were used for estimation of CPP. RESULTS The RF model with a combined ECG and PPG dataset achieved better estimation of CPP than the other algorithms. Specifically, the mean absolute error was 4.49 mmHg, the root mean square error was 6.15 mm Hg, and the adjusted R2 was 0.75. A strong correlation was found between the non-invasive estimation and invasive measurement of CPP (r = 0.88), which supported our hypothesis that machine-learning-based analysis of ECG and PPG parameters can provide a non-invasive estimation of CPP for CPR. CONCLUSIONS This study proposes a novel estimation of CPP using ECG and PPG with machine-learning-based algorithms. Non-invasively estimated CPP showed a high correlation with invasively measured CPP and may serve as an easy-to-use physiological indicator for high-quality CPR treatment.
Collapse
Affiliation(s)
- Lijun Jiang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Research Center for Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, Chinese Ministry of Education, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Shuxin Chen
- The Institute of Intelligent Medical, Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Research Center for Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, Chinese Ministry of Education, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Research Center for Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, Chinese Ministry of Education, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Research Center for Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, Chinese Ministry of Education, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Chang Guo
- The Institute of Intelligent Medical, Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Mingze Sun
- The Institute of Intelligent Medical, Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Bozhi Ding
- The Institute of Intelligent Medical, Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Research Center for Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, Chinese Ministry of Education, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ke Li
- The Institute of Intelligent Medical, Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China.
| | - Jiali Wang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Research Center for Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, Chinese Ministry of Education, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Research Center for Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, Chinese Ministry of Education, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
9
|
Senthil K, Ranganathan A, Piel S, Hefti MM, Reeder RW, Kirschen MP, Starr J, Morton S, Gaudio HA, Slovis JC, Herrmann JR, Berg RA, Kilbaugh TJ, Morgan RW. Elevated serum neurologic biomarker profiles after cardiac arrest in a porcine model. Resusc Plus 2024; 19:100726. [PMID: 39149222 PMCID: PMC11325790 DOI: 10.1016/j.resplu.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Swine exhibit cerebral cortex mitochondrial dysfunction and neuropathologic injury after hypoxic cardiac arrest treated with hemodynamic-directed CPR (HD-CPR) despite normal Cerebral Performance Category scores. We analyzed the temporal evolution of plasma protein biomarkers of brain injury and inflammatory cytokines, as well as cerebral cortical mitochondrial injury and neuropathology for five days following pediatric asphyxia-associated cardiac arrest treated with HD-CPR. Methods One-month-old swine underwent asphyxia associated cardiac arrest, 10-20 min of HD-CPR (goal SBP 90 mmHg, coronary perfusion pressure 20 mmHg), and randomization to post-ROSC survival duration (24, 48, 72, 96, 120 h; n = 3 per group) with standardized post-resuscitation care. Plasma neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and cytokine levels were collected pre-injury and 1, 6, 24, 48, 72, 96, and 120 h post-ROSC. Cerebral cortical tissue was assessed for: mitochondrial respirometry, mass, and dynamic proteins; oxidative injury; and neuropathology. Results Relative to pre-arrest baseline (9.4 pg/ml [6.7-12.6]), plasma NfL was increased at all post-ROSC time points. Each sequential NfL measurement through 48 h was greater than the previous value {1 h (12.7 pg/ml [8.4-14.6], p = 0.01), 6 h (30.9 pg/ml [17.7-44.0], p = 0.0004), 24 h (59.4 pg/ml [50.8-96.1], p = 0.0003) and 48 h (85.7 pg/ml [61.9-118.7], p = 0.046)}. Plasma GFAP, inflammatory cytokines or cerebral cortical tissue measurements were not demonstrably different between time points. Conclusions In a swine model of pediatric cardiac arrest, plasma NfL had an upward trajectory until 48 h post-ROSC after which it remained elevated through five days, suggesting it may be a sensitive marker of neurologic injury following pediatric cardiac arrest.
Collapse
Affiliation(s)
- Kumaran Senthil
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Abhay Ranganathan
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Sarah Piel
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
- University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Department of Cardiology, Pulmonology and Vascular Medicine, Germany
- University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Cardiovascular Research Institute, Germany
| | | | - Ron W Reeder
- University of Utah, Department of Pediatrics, USA
| | - Matthew P Kirschen
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Jonathan Starr
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Sarah Morton
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Hunter A Gaudio
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Julia C Slovis
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Jeremy R Herrmann
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Robert A Berg
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Todd J Kilbaugh
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Ryan W Morgan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| |
Collapse
|
10
|
Herrmann JR, Morgan RW, Berg RA. No to iNO? Not so fast. Resuscitation 2024; 202:110364. [PMID: 39168233 DOI: 10.1016/j.resuscitation.2024.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Jeremy R Herrmann
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States.
| |
Collapse
|
11
|
Yin RT, Berve PO, Skaalhegg T, Elola A, Taylor TG, Walker RG, Aramendi E, Chapman FW, Wik L. Recovery of arterial blood pressure after chest compression pauses in patients with out-of-hospital cardiac arrest. Resuscitation 2024; 201:110311. [PMID: 38992561 DOI: 10.1016/j.resuscitation.2024.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND AIMS Chest compressions generating good perfusion during cardiopulmonary resuscitation (CPR) in cardiac arrest patients are critical for positive patient outcomes. Conventional wisdom advises minimizing compression pauses because several compressions are required to recover arterial blood pressure (ABP) back to pre-pause values. Our study examines how compression pauses influence ABP recovery post-pause in out-of-hospital cardiac arrest. METHODS We analyzed data from a subset of a prospective, randomized LUCAS 2 Active Decompression trial. Patients were treated by an anesthesiologist-staffed rapid response car program in Oslo, Norway (2015-2017) with mechanical chest compressions using the LUCAS device at 102 compressions/min. Patients with an ABP signal during CPR and at least one compression pause >2 sec were included. Arterial cannulation, compression pauses, and ECG during the pause were verified by physician review of patient records and physiological signals. Pauses were excluded if return of spontaneous circulation occurred during the pause (pressure pulses associated with ECG complexes). Compression, mean, and decompression ABP for 10 compressions before/after each pause and the mean ABP during the pause were measured with custom MATLAB code. The relationship between pause duration and ABP recovery was investigated using linear regression. RESULTS We included 56 patients with a total of 271 pauses (pause duration: median = 11 sec, Q1 = 7 sec, Q3 = 18 sec). Mean ABP dropped from 53 ± 10 mmHg for the last pre-pause compression to 33 ± 7 mmHg during the pause. Compression and mean ABP recovered to >90% of pre-pause pressure within 2 compressions, or 1.7 sec. Pause duration did not affect the recovery of ABP post-pause (R2: 0.05, 0.03, 0.01 for compression, mean, and decompression ABP, respectively). CONCLUSIONS ABP generated by mechanical CPR recovered quickly after pauses. Recovery of ABP after a pause was independent of pause duration.
Collapse
Affiliation(s)
- Rose T Yin
- Stryker Emergency Care, Redmond, WA 98052, USA
| | - Per Olav Berve
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Prehospital Emergency Medicine (NAKOS), Division of Prehospital Services, Oslo University Hospital, Oslo, Norway; Doctor Car 119, Air Ambulance Department, Division of Prehospital Care, Oslo University Hospital, Oslo, Norway
| | - Tore Skaalhegg
- Norwegian National Advisory Unit on Prehospital Emergency Medicine (NAKOS), Division of Prehospital Services, Oslo University Hospital, Oslo, Norway
| | - Andoni Elola
- BioRes Group, Department of Electronic Technology, University of the Basque Country (UPV/EHU), Eibar, Spain
| | | | | | - Elisabete Aramendi
- BioRes Group, Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | - Lars Wik
- Norwegian National Advisory Unit on Prehospital Emergency Medicine (NAKOS), Division of Prehospital Services, Oslo University Hospital, Oslo, Norway; Doctor Car 119, Air Ambulance Department, Division of Prehospital Care, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
12
|
Brainard BM, Lane SL, Burkitt-Creedon JM, Boller M, Fletcher DJ, Crews M, Fausak ED. 2024 RECOVER Guidelines: Monitoring. Evidence and knowledge gap analysis with treatment recommendations for small animal CPR. J Vet Emerg Crit Care (San Antonio) 2024; 34 Suppl 1:76-103. [PMID: 38924672 DOI: 10.1111/vec.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To systematically review evidence on and devise treatment recommendations for patient monitoring before, during, and following CPR in dogs and cats, and to identify critical knowledge gaps. DESIGN Standardized, systematic evaluation of literature pertinent to peri-CPR monitoring following Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. Prioritized questions were each reviewed by Evidence Evaluators, and findings were reconciled by Monitoring Domain Chairs and Reassessment Campaign on Veterinary Resuscitation (RECOVER) Co-Chairs to arrive at treatment recommendations commensurate to quality of evidence, risk:benefit relationship, and clinical feasibility. This process was implemented using an Evidence Profile Worksheet for each question that included an introduction, consensus on science, treatment recommendations, justification for these recommendations, and important knowledge gaps. A draft of these worksheets was distributed to veterinary professionals for comment for 4 weeks prior to finalization. SETTING Transdisciplinary, international collaboration in university, specialty, and emergency practice. RESULTS Thirteen questions pertaining to hemodynamic, respiratory, and metabolic monitoring practices for identification of cardiopulmonary arrest, quality of CPR, and postcardiac arrest care were examined, and 24 treatment recommendations were formulated. Of these, 5 recommendations pertained to aspects of end-tidal CO2 (ETco2) measurement. The recommendations were founded predominantly on very low quality of evidence, with some based on expert opinion. CONCLUSIONS The Monitoring Domain authors continue to support initiation of chest compressions without pulse palpation. We recommend multimodal monitoring of patients at risk of cardiopulmonary arrest, at risk of re-arrest, or under general anesthesia. This report highlights the utility of ETco2 monitoring to verify correct intubation, identify return of spontaneous circulation, evaluate quality of CPR, and guide basic life support measures. Treatment recommendations further suggest intra-arrest evaluation of electrolytes (ie, potassium and calcium), as these may inform outcome-relevant interventions.
Collapse
Affiliation(s)
- Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Selena L Lane
- Veterinary Emergency Group, Cary, North Carolina, USA
| | - Jamie M Burkitt-Creedon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Manuel Boller
- VCA Canada Central Victoria Veterinary Hospital, Victoria, British Columbia, Canada
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel J Fletcher
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Molly Crews
- Department of Small animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Erik D Fausak
- University Library, University of California, Davis, Davis, California, USA
| |
Collapse
|
13
|
Piel S, McManus MJ, Heye KN, Beaulieu F, Fazelinia H, Janowska JI, MacTurk B, Starr J, Gaudio H, Patel N, Hefti MM, Smalley ME, Hook JN, Kohli NV, Bruton J, Hallowell T, Delso N, Roberts A, Lin Y, Ehinger JK, Karlsson M, Berg RA, Morgan RW, Kilbaugh TJ. Effect of dimethyl fumarate on mitochondrial metabolism in a pediatric porcine model of asphyxia-induced in-hospital cardiac arrest. Sci Rep 2024; 14:13852. [PMID: 38879681 PMCID: PMC11180202 DOI: 10.1038/s41598-024-64317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.
Collapse
Affiliation(s)
- Sarah Piel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.
| | - Meagan J McManus
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kristina N Heye
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Forrest Beaulieu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Joanna I Janowska
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Bryce MacTurk
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hunter Gaudio
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nisha Patel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Martin E Smalley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Neha V Kohli
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - James Bruton
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Thomas Hallowell
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nile Delso
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Anna Roberts
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yuxi Lin
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | | | - Robert A Berg
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Ryan W Morgan
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
14
|
Bray J, Rea T, Parnia S, Morgan RW, Wik L, Sutton R. Wolf Creek XVII Part 6: Physiology-Guided CPR. Resusc Plus 2024; 18:100589. [PMID: 38444864 PMCID: PMC10912729 DOI: 10.1016/j.resplu.2024.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Introduction Physiology-guided cardiopulmonary resuscitation (CPR) offers the potential to optimize resuscitation and enable early prognosis. Methods Physiology-Guided CPR was one of six focus topic for the Wolf Creek XVII Conference held on June 14-17, 2023 in Ann Arbor, Michigan, USA. International thought leaders and scientists in the field of cardiac arrest resuscitation from academia and industry were invited. Participants submitted via online survey knowledge gaps, barriers to translation and research priorities for each focus topic. Expert panels used the survey results and their own perspectives and insights to create and present a preliminary unranked list for each category, which was then debated, revised and ranked by all attendees to identify the top 5 for each category. Results Top knowledge gaps include identifying optimal strategies for the evaluation of physiology-guided CPR and the optimal values for existing patients using patient outcomes. The main barriers to translation are the limited usability outside of critical care environments and the training and equipment required for monitoring. The top research priorities are the development of clinically feasible and reliable methods to continuously and non-invasively monitor physiology during CPR and prospective human studies proving targeting parameters during CPR improves outcomes. Conclusion Physiology-guided CPR has the potential to provide individualized resuscitation and move away from a one-size-fits-all approach. Current understanding is limited, and clinical trials are lacking. Future developments need to consider the clinical application and applicability of measurement to all healthcare settings. Therefore, clinical trials using physiology-guided CPR for individualisation of resuscitation efforts are needed.
Collapse
Affiliation(s)
- Janet Bray
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Prehospital, Resuscitation and Emergency Care Research Unit, Curtin University, Perth, Australia
| | - Tom Rea
- Emergency Medical Services Division of Public Health - Seattle & King County, United States, Department of Medicine, University of Washington, United States
| | - Sam Parnia
- New York University Grossman School of Medicine, New York, New York, United States
| | - Ryan W. Morgan
- Children's Hospital of Philadelphia, Philadelphia, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Lars Wik
- National Service of Competence for Prehospital Acute Medicine (NAKOS), Department of Air Ambulance, Oslo, Norway
- Oslo University Hospital HF, Oslo, Norway
- Ullevål Hospital, Oslo, Norway
| | - Robert Sutton
- Children's Hospital of Philadelphia, Philadelphia, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
15
|
Greenwood JC, Morgan RW, Abella BS, Shofer FS, Baker WB, Lewis A, Ko TS, Forti RM, Yodh AG, Kao SH, Shin SS, Kilbaugh TJ, Jang DH. Carbon monoxide as a cellular protective agent in a swine model of cardiac arrest protocol. PLoS One 2024; 19:e0302653. [PMID: 38748750 PMCID: PMC11095756 DOI: 10.1371/journal.pone.0302653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.
Collapse
Affiliation(s)
- John C. Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ryan W. Morgan
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Benjamin S. Abella
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Frances S. Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Wesley B. Baker
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Alistair Lewis
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Tiffany S. Ko
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Rodrigo M. Forti
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Shih-Han Kao
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Samuel S. Shin
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Todd J. Kilbaugh
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
16
|
Morin CMD, Cheung PY, Lee TF, O'Reilly M, Schmölzer GM. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets. Pediatr Res 2024; 95:988-995. [PMID: 36932182 DOI: 10.1038/s41390-023-02563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Pediatric resuscitation guidelines recommend continuous chest compression with asynchronized ventilation (CCaV) during cardiopulmonary resuscitation. We recently described that providing a constant high distending pressure, or sustained inflation (SI) while performing continuous chest compressions (CC = CC + SI) reduces time to return of spontaneous circulation (ROSC) in neonatal and pediatric piglets with asphyxia-induced cardiac arrest. METHODS To determine if CC + SI compared to CCaV will improve frequency of achieving ROSC and reduce time to ROSC in asphyxiated pediatric piglets. Twenty-eight pediatric piglets (21-24 days old) were anesthetized and asphyxiated by clamping the endotracheal tube. Piglets were randomized to CC + SI or CCaV for resuscitation (n = 14/group). Heart rate, arterial blood pressure, carotid blood flow, cerebral oxygenation, and respiratory parameters were continuously recorded throughout the experiment. RESULTS The mean(SD) duration of resuscitation was significantly reduced with CC + SI compared to CCaV with 208(190) vs. 388(258)s, p = 0.045, respectively. The number of piglets achieving ROSC with CC + SI and CCaV were 12/14 vs. 6/14, p = 0.046. Minute ventilation, end-tidal carbon dioxide, ventilation rate, and positive end expiratory pressures were also significantly improved with CC + SI. CONCLUSIONS CC + SI improves duration of resuscitation and increases number of piglets achieving ROSC secondary to improved minute ventilation. IMPACT Chest compressions superimposed with sustained inflation resulted in shorter duration of resuscitation Chest compressions superimposed with sustained inflation resulted in higher number of piglets achieving return of spontaneous circulation Further animal studies are needed to examine chest compressions superimposed with sustained inflation.
Collapse
Affiliation(s)
- Chelsea M D Morin
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Po-Yin Cheung
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tze-Fun Lee
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan O'Reilly
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Georg M Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Andersen LW, Vammen L, Granfeldt A. Animal research in cardiac arrest. Resusc Plus 2024; 17:100511. [PMID: 38148966 PMCID: PMC10750107 DOI: 10.1016/j.resplu.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The purpose of this narrative review is to provide an overview of lessons learned from experimental cardiac arrest studies, limitations, translation to clinical studies, ethical considerations and future directions. Cardiac arrest animal studies have provided valuable insights into the pathophysiology of cardiac arrest, the effects of various interventions, and the development of resuscitation techniques. However, there are limitations to animal models that should be considered when interpreting results. Systematic reviews have demonstrated that animal models rarely reflect the clinical condition seen in humans, nor the complex treatment that occurs during and after a cardiac arrest. Furthermore, animal models of cardiac arrest are at a significant risk of bias due to fundamental issues in performing and/or reporting critical methodological aspects. Conducting clinical trials targeting the management of rare cardiac arrest causes like e.g. hyperkalemia and pulmonary embolism is challenging due to the scarcity of eligible patients. For these research questions, animal models might provide the highest level of evidence and can potentially guide clinical practice. To continuously push cardiac arrest science forward, animal studies must be conducted and reported rigorously, designed to avoid bias and answer specific research questions. To ensure the continued relevance and generation of valuable new insights from animal studies, new approaches and techniques may be needed, including animal register studies, systematic reviews and multilaboratory trials.
Collapse
Affiliation(s)
- Lars W. Andersen
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
- Department of Anesthesiology and Intensive Care, Viborg Regional Hospital, Viborg, Denmark
- Prehospital Emergency Medical Services, Central Region Denmark, Denmark
| | - Lauge Vammen
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
18
|
Gottula AL, Maciel CB, Nishikimi M, Kalra R, Sunshine J, Morgan RW. Wolf Creek XVII part 9: Wolf Creek Innovator in Cardiac Arrest and Resuscitation Science Award. Resusc Plus 2024; 17:100519. [PMID: 38076386 PMCID: PMC10698667 DOI: 10.1016/j.resplu.2023.100519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2023] Open
Abstract
The Wolf Creek Conferences on Cardiac Arrest Resuscitation began in 1975, and have served as an important forum for thought leaders and scientists from industry and academia to come together with the common goal of advancing the field of cardiac arrest resuscitation. The Wolf Creek XVII Conference was hosted by the Max Harry Weil Institute of Critical Care Research and Innovation in Ann Arbor, Michigan on June 14-17, 2023. A new component of the conference was the Wolf Creek Innovator in Cardiac Arrest and Resuscitation Science Award competition. The competition was designed to recognize early career investigators from around the world who's science is challenging the current paradigms in the field. Finalists were selected by a panel of international experts and invited to present in-person at the conference. The winner was chosen by electronic vote of conference participants and awarded a $10,0000 cash prize. Finalists included Carolina Barbosa Maciel from the University of Florida, Adam Gottula from the University of Michigan, Rajat Kalra from the University of Minnesota, Ryan Morgan from the Children's Hospital of Philadelphia, Mitsuaki Nishikimi form Hiroshima University, and Jacob Sunshine from the University of Washington. Ryan Morgan from the Children's Hospital of Philadelphia was selected as the 2023 Wolf Creek Innovator Awardee. This manuscript provides a summary of the work presented by each of the finalists and provides a preview of the future of resuscitation science.
Collapse
Affiliation(s)
- Adam L. Gottula
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Texas IPS, San Antonio, TX 78229, USA
- Institute for Extracorporeal Life Support, San Antonio, TX 78229, USA
| | - Carolina B. Maciel
- Department of Neurology, Division of Neurocritical Care, University of Florida College of Medicine, Gainesville, FL 32611, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Mitsuaki Nishikimi
- Laboratory of Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
| | - Rajat Kalra
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob Sunshine
- Department of Anesthesiology, University of Washington, Seattle, WA 98195, USA
| | - Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Resuscitation Science Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Morgan RW, Reeder RW, Bender D, Cooper KK, Friess SH, Graham K, Meert KL, Mourani PM, Murray R, Nadkarni VM, Nataraj C, Palmer CA, Srivastava N, Tilford B, Wolfe HA, Yates AR, Berg RA, Sutton RM. Associations Between End-Tidal Carbon Dioxide During Pediatric Cardiopulmonary Resuscitation, Cardiopulmonary Resuscitation Quality, and Survival. Circulation 2024; 149:367-378. [PMID: 37929615 PMCID: PMC10841728 DOI: 10.1161/circulationaha.123.066659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Supported by laboratory and clinical investigations of adult cardiopulmonary arrest, resuscitation guidelines recommend monitoring end-tidal carbon dioxide (ETCO2) as an indicator of cardiopulmonary resuscitation (CPR) quality, but they note that "specific values to guide therapy have not been established in children." METHODS This prospective observational cohort study was a National Heart, Lung, and Blood Institute-funded ancillary study of children in the ICU-RESUS trial (Intensive Care Unit-Resuscitation Project; NCT02837497). Hospitalized children (≤18 years of age and ≥37 weeks postgestational age) who received chest compressions of any duration for cardiopulmonary arrest, had an endotracheal or tracheostomy tube at the start of CPR, and evaluable intra-arrest ETCO2 data were included. The primary exposure was event-level average ETCO2 during the first 10 minutes of CPR (dichotomized as ≥20 mm Hg versus <20 mm Hg on the basis of adult literature). The primary outcome was survival to hospital discharge. Secondary outcomes were sustained return of spontaneous circulation, survival to discharge with favorable neurological outcome, and new morbidity among survivors. Poisson regression measured associations between ETCO2 and outcomes as well as the association between ETCO2 and other CPR characteristics: (1) invasively measured systolic and diastolic blood pressures, and (2) CPR quality and chest compression mechanics metrics (ie, time to CPR start; chest compression rate, depth, and fraction; ventilation rate). RESULTS Among 234 included patients, 133 (57%) had an event-level average ETCO2 ≥20 mm Hg. After controlling for a priori covariates, average ETCO2 ≥20 mm Hg was associated with a higher incidence of survival to hospital discharge (86/133 [65%] versus 48/101 [48%]; adjusted relative risk, 1.33 [95% CI, 1.04-1.69]; P=0.023) and return of spontaneous circulation (95/133 [71%] versus 59/101 [58%]; adjusted relative risk, 1.22 [95% CI, 1.00-1.49]; P=0.046) compared with lower values. ETCO2 ≥20 mm Hg was not associated with survival with favorable neurological outcome or new morbidity among survivors. Average 2 ≥20 mm Hg was associated with higher systolic and diastolic blood pressures during CPR, lower CPR ventilation rates, and briefer pre-CPR arrest durations compared with lower values. Chest compression rate, depth, and fraction did not differ between ETCO2 groups. CONCLUSIONS In this multicenter study of children with in-hospital cardiopulmonary arrest, ETCO2 ≥20 mm Hg was associated with better outcomes and higher intra-arrest blood pressures, but not with chest compression quality metrics.
Collapse
Affiliation(s)
- Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania (R.W.M., K.K.C., K.G., V.M.N., H.A.W., R.A.B., R.M.S.)
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City (R.W.R., C.A.P.)
| | - Dieter Bender
- Villanova Center for Analytics of Dynamic Systems, Villanova University, PA (D.B., C.N.)
| | - Kellimarie K Cooper
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania (R.W.M., K.K.C., K.G., V.M.N., H.A.W., R.A.B., R.M.S.)
| | - Stuart H Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (S.H.F.)
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania (R.W.M., K.K.C., K.G., V.M.N., H.A.W., R.A.B., R.M.S.)
| | - Kathleen L Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit (K.L.M., B.T.)
| | - Peter M Mourani
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora (P.M.M.)
| | - Robert Murray
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus (R.M., A.R.Y.)
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania (R.W.M., K.K.C., K.G., V.M.N., H.A.W., R.A.B., R.M.S.)
| | - Chandrasekhar Nataraj
- Villanova Center for Analytics of Dynamic Systems, Villanova University, PA (D.B., C.N.)
| | - Chella A Palmer
- Department of Pediatrics, University of Utah, Salt Lake City (R.W.R., C.A.P.)
| | - Neeraj Srivastava
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles (N.S.)
| | - Bradley Tilford
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit (K.L.M., B.T.)
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania (R.W.M., K.K.C., K.G., V.M.N., H.A.W., R.A.B., R.M.S.)
| | - Andrew R Yates
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus (R.M., A.R.Y.)
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania (R.W.M., K.K.C., K.G., V.M.N., H.A.W., R.A.B., R.M.S.)
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania (R.W.M., K.K.C., K.G., V.M.N., H.A.W., R.A.B., R.M.S.)
| |
Collapse
|
20
|
Silva LEV, Shi L, Gaudio HA, Padmanabhan V, Morgan RW, Slovis JM, Forti RM, Morton S, Lin Y, Laurent GH, Breimann J, Yun BH, Ranieri NR, Bowe M, Baker WB, Kilbaugh TJ, Ko TS, Tsui FR. Prediction of Return of Spontaneous Circulation in a Pediatric Swine Model of Cardiac Arrest Using Low-Resolution Multimodal Physiological Waveforms. IEEE J Biomed Health Inform 2023; 27:4719-4727. [PMID: 37478027 PMCID: PMC10756325 DOI: 10.1109/jbhi.2023.3297927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Monitoring physiological waveforms, specifically hemodynamic variables (e.g., blood pressure waveforms) and end-tidal CO2 (EtCO2), during pediatric cardiopulmonary resuscitation (CPR) has been demonstrated to improve survival rates and outcomes when compared to standard depth-guided CPR. However, waveform guidance has largely been based on thresholds for single parameters and therefore does not leverage all the information contained in multimodal data. We hypothesize that the combination of multimodal physiological features improves the prediction of the return of spontaneous circulation (ROSC), the clinical indicator of short-term CPR success. We used machine learning algorithms to evaluate features extracted from eight low-resolution (4 samples per minute) physiological waveforms to predict ROSC. The waveforms were acquired from the 2nd to 10th minute of CPR in pediatric swine models of cardiac arrest (N = 89, 8-12 kg). The waveforms were divided into segments with increasing length (both forward and backward) for feature extraction, and machine learning algorithms were trained for ROSC prediction. For the full CPR period (2nd to 10th minute), the area under the receiver operating characteristics curve (AUC) was 0.93 (95% CI: 0.87-0.99) for the multivariate model, 0.70 (0.55-0.85) for EtCO2 and 0.80 (0.67-0.93) for coronary perfusion pressure. The best prediction performances were achieved when the period from the 6th to the 10th minute was included. Poor predictions were observed for some individual waveforms, e.g., right atrial pressure. In conclusion, multimodal waveform features carry relevant information for ROSC prediction. Using multimodal waveform features in CPR guidance has the potential to improve resuscitation success and reduce mortality.
Collapse
|
21
|
Marijon E, Narayanan K, Smith K, Barra S, Basso C, Blom MT, Crotti L, D'Avila A, Deo R, Dumas F, Dzudie A, Farrugia A, Greeley K, Hindricks G, Hua W, Ingles J, Iwami T, Junttila J, Koster RW, Le Polain De Waroux JB, Olasveengen TM, Ong MEH, Papadakis M, Sasson C, Shin SD, Tse HF, Tseng Z, Van Der Werf C, Folke F, Albert CM, Winkel BG. The Lancet Commission to reduce the global burden of sudden cardiac death: a call for multidisciplinary action. Lancet 2023; 402:883-936. [PMID: 37647926 DOI: 10.1016/s0140-6736(23)00875-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 09/01/2023]
Abstract
Despite major advancements in cardiovascular medicine, sudden cardiac death (SCD) continues to be an enormous medical and societal challenge, claiming millions of lives every year. Efforts to prevent SCD are hampered by imperfect risk prediction and inadequate solutions to specifically address arrhythmogenesis. Although resuscitation strategies have witnessed substantial evolution, there is a need to strengthen the organisation of community interventions and emergency medical systems across varied locations and health-care structures. With all the technological and medical advances of the 21st century, the fact that survival from sudden cardiac arrest (SCA) remains lower than 10% in most parts of the world is unacceptable. Recognising this urgent need, the Lancet Commission on SCD was constituted, bringing together 30 international experts in varied disciplines. Consistent progress in tackling SCD will require a completely revamped approach to SCD prevention, with wide-sweeping policy changes that will empower the development of both governmental and community-based programmes to maximise survival from SCA, and to comprehensively attend to survivors and decedents' families after the event. International collaborative efforts that maximally leverage and connect the expertise of various research organisations will need to be prioritised to properly address identified gaps. The Commission places substantial emphasis on the need to develop a multidisciplinary strategy that encompasses all aspects of SCD prevention and treatment. The Commission provides a critical assessment of the current scientific efforts in the field, and puts forth key recommendations to challenge, activate, and intensify efforts by both the scientific and global community with new directions, research, and innovation to reduce the burden of SCD worldwide.
Collapse
Affiliation(s)
- Eloi Marijon
- Division of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France.
| | - Kumar Narayanan
- Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France; Medicover Hospitals, Hyderabad, India
| | - Karen Smith
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Silverchain Group, Melbourne, VIC, Australia
| | - Sérgio Barra
- Department of Cardiology, Hospital da Luz Arrábida, Vila Nova de Gaia, Portugal
| | - Cristina Basso
- Cardiovascular Pathology Unit-Azienda Ospedaliera and Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Marieke T Blom
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lia Crotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy; Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Cardiomyopathy Unit and Laboratory of Cardiovascular Genetics, Department of Cardiology, Milan, Italy
| | - Andre D'Avila
- Department of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Cardiology, Hospital SOS Cardio, Santa Catarina, Brazil
| | - Rajat Deo
- Department of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Florence Dumas
- Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France; Emergency Department, Cochin Hospital, Paris, France
| | - Anastase Dzudie
- Cardiology and Cardiac Arrhythmia Unit, Department of Internal Medicine, DoualaGeneral Hospital, Douala, Cameroon; Yaounde Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon
| | - Audrey Farrugia
- Hôpitaux Universitaires de Strasbourg, France, Strasbourg, France
| | - Kaitlyn Greeley
- Division of Cardiology, European Georges Pompidou Hospital, AP-HP, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France; Paris-Sudden Death Expertise Center (Paris-SDEC), Paris, France
| | | | - Wei Hua
- Cardiac Arrhythmia Center, FuWai Hospital, Beijing, China
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
| | - Taku Iwami
- Kyoto University Health Service, Kyoto, Japan
| | - Juhani Junttila
- MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Rudolph W Koster
- Heart Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Theresa M Olasveengen
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital and Institute of Clinical Medicine, Oslo, Norway
| | - Marcus E H Ong
- Singapore General Hospital, Duke-NUS Medical School, Singapore
| | - Michael Papadakis
- Cardiovascular Clinical Academic Group, St George's University of London, London, UK
| | | | - Sang Do Shin
- Department of Emergency Medicine at the Seoul National University College of Medicine, Seoul, South Korea
| | - Hung-Fat Tse
- University of Hong Kong, School of Clinical Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zian Tseng
- Division of Cardiology, UCSF Health, University of California, San Francisco Medical Center, San Francisco, California
| | - Christian Van Der Werf
- University of Amsterdam, Heart Center, Amsterdam, Netherlands; Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Fredrik Folke
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Gregers Winkel
- Department of Cardiology, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
22
|
Coult J, Yang BY, Kwok H, Kutz JN, Boyle PM, Blackwood J, Rea TD, Kudenchuk PJ. Prediction of Shock-Refractory Ventricular Fibrillation During Resuscitation of Out-of-Hospital Cardiac Arrest. Circulation 2023; 148:327-335. [PMID: 37264936 DOI: 10.1161/circulationaha.122.063651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Out-of-hospital cardiac arrest due to shock-refractory ventricular fibrillation (VF) is associated with relatively poor survival. The ability to predict refractory VF (requiring ≥3 shocks) in advance of repeated shock failure could enable preemptive targeted interventions aimed at improving outcome, such as earlier administration of antiarrhythmics, reconsideration of epinephrine use or dosage, changes in shock delivery strategy, or expedited invasive treatments. METHODS We conducted a cohort study of VF out-of-hospital cardiac arrest to develop an ECG-based algorithm to predict patients with refractory VF. Patients with available defibrillator recordings were randomized 80%/20% into training/test groups. A random forest classifier applied to 3-s ECG segments immediately before and 1 minute after the initial shock during cardiopulmonary resuscitation was used to predict the need for ≥3 shocks based on singular value decompositions of ECG wavelet transforms. Performance was quantified by area under the receiver operating characteristic curve. RESULTS Of 1376 patients with VF out-of-hospital cardiac arrest, 311 (23%) were female, 864 (63%) experienced refractory VF, and 591 (43%) achieved functional neurological survival. Total shock count was associated with decreasing likelihood of functional neurological survival, with a relative risk of 0.95 (95% CI, 0.93-0.97) for each successive shock (P<0.001). In the 275 test patients, the area under the receiver operating characteristic curve for predicting refractory VF was 0.85 (95% CI, 0.79-0.89), with specificity of 91%, sensitivity of 63%, and a positive likelihood ratio of 6.7. CONCLUSIONS A machine learning algorithm using ECGs surrounding the initial shock predicts patients likely to experience refractory VF, and could enable rescuers to preemptively target interventions to potentially improve resuscitation outcome.
Collapse
Affiliation(s)
- Jason Coult
- Department of Medicine (J.C., T.D.R.), University of Washington, Seattle
| | - Betty Y Yang
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas (B.Y.Y.)
| | - Heemun Kwok
- Department of Applied Mathematics (J.N.K.), University of Washington, Seattle
| | - J Nathan Kutz
- Department of Applied Mathematics (J.N.K.), University of Washington, Seattle
| | - Patrick M Boyle
- Department of Bioengineering (P.M.B.), University of Washington, Seattle
- Institute for Stem Cell and Regenerative Medicine (P.M.B.), University of Washington, Seattle
- Center for Cardiovascular Biology (P.M.B.), University of Washington, Seattle
| | - Jennifer Blackwood
- Emergency Medical Services Division, Public Health - Seattle & King County, Seattle, WA (J.B., T.D.R.)
| | - Thomas D Rea
- Department of Medicine (J.C., T.D.R.), University of Washington, Seattle
- Emergency Medical Services Division, Public Health - Seattle & King County, Seattle, WA (J.B., T.D.R.)
| | | |
Collapse
|
23
|
Kienzle MF, Morgan RW, Alvey JS, Reeder R, Berg RA, Nadkarni V, Topjian AA, Lasa JJ, Raymond TT, Sutton RM. Clinician-reported physiologic monitoring of cardiopulmonary resuscitation quality during pediatric in-hospital cardiac arrest: A propensity-weighted cohort study. Resuscitation 2023; 188:109807. [PMID: 37088272 PMCID: PMC10773163 DOI: 10.1016/j.resuscitation.2023.109807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
AIMS The primary objective was to determine the association between clinician-reported use of end-tidal CO2 (ETCO2) or diastolic blood pressure (DBP) to monitor cardiopulmonary resuscitation (CPR) quality during pediatric in-hospital cardiac arrest (pIHCA) and survival outcomes. DESIGN A retrospective cohort study was performed in two cohorts: (1) Patients with an invasive airway in place at the time of arrest to evaluate ETCO2 use, and (2) patients with an arterial line in place at the time of arrest to evaluate DBP use. The primary exposure was clinician-reported use of ETCO2 or DBP. The primary outcome was return of spontaneous circulation (ROSC). Propensity-weighted logistic regression evaluated the association between monitoring and outcomes. SETTING Hospitals reporting to the American Heart Association's Get With The Guidelines®- Resuscitation registry (2007-2021). PATIENTS Children with index IHCA with an invasive airway or arterial line at the time of arrest. RESULTS Between January 2007 and May 2021, there were 15,280 pediatric CPR events with an invasive airway or arterial line in place at the time of arrest. Of 7159 events with an invasive airway, 6829 were eligible for analysis. Of 2978 events with an arterial line, 2886 were eligible. Clinicians reported using ETCO2 in 1335/6829 (20%) arrests and DBP in 1041/2886 (36%). Neither exposure was associated with ROSC. ETCO2 monitoring was associated with higher odds of 24-hour survival (aOR 1.17 [1.02, 1.35], p = 0.03). CONCLUSIONS Neither clinician-reported ETCO2 monitoring nor DBP monitoring during pIHCA were associated with ROSC. Monitoring of ETCO2 was associated with 24-hour survival.
Collapse
Affiliation(s)
- Martha F Kienzle
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Jessica S Alvey
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Vinay Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Alexis A Topjian
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Javier J Lasa
- Department of Pediatrics, Children's Medical Center, University of Texas - Southwestern, Dallas, TX, United States
| | - Tia T Raymond
- Department of Pediatrics, Medical City Children's Hospital, Dallas, TX, United States
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
24
|
Vammen L, Johannsen CM, Baltsen CD, Nørholt C, Eggertsen M, Mortensen S, Vormfenne L, Povlsen A, Donnino MW, Løfgren B, Andersen LW, Granfeldt A. Thiamine for the Treatment of Cardiac Arrest-Induced Neurological Injury: A Randomized, Blinded, Placebo-Controlled Experimental Study. J Am Heart Assoc 2023; 12:e028558. [PMID: 36942758 PMCID: PMC10122898 DOI: 10.1161/jaha.122.028558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
Background Thiamine supplementation has demonstrated protective effects in a mouse model of cardiac arrest. The aim of this study was to investigate the neuroprotective effects of thiamine in a clinically relevant large animal cardiac arrest model. The hypothesis was that thiamine reduces neurological injury evaluated by neuron-specific enolase levels. Methods and Results Pigs underwent myocardial infarction and subsequently 9 minutes of untreated cardiac arrest. Twenty minutes after successful resuscitation, the pigs were randomized to treatment with either thiamine or placebo. All pigs underwent 40 hours of intensive care and were awakened for assessment of functional neurological outcome up until 9 days after cardiac arrest. Nine pigs were included in both groups, with 8 in each group surviving the entire intensive care phase. Mean area under the curve for neuron-specific enolase was similar between groups, with 81.5 μg/L per hour (SD, 20.4) in the thiamine group and 80.5 μg/L per hour (SD, 18.3) in the placebo group, with an absolute difference of 1.0 (95% CI, -57.8 to 59.8; P=0.97). Likewise, there were no absolute difference in neurological deficit score at the end of the protocol (2 [95% CI, -38 to 42]; P=0.93). There was no absolute mean group difference in lactate during the intensive care period (1.1 mmol/L [95% CI, -0.5 to 2.7]; P=0.16). Conclusions In this randomized, blinded, placebo-controlled trial using a pig cardiac arrest model with myocardial infarction and long intensive care and observation for 9 days, thiamine showed no effect in changes to functional neurological outcome or serum levels of neuron-specific enolase. Thiamine treatment had no effect on lactate levels after successful resuscitation.
Collapse
Affiliation(s)
- Lauge Vammen
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Cecilie Munch Johannsen
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Casper Nørholt
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Mark Eggertsen
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Signe Mortensen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Lasse Vormfenne
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Amalie Povlsen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Cardiothoracic AnesthesiaCopenhagen University Hospital, RigshospitaletRisskovDenmark
| | - Michael W. Donnino
- Center for Resuscitation Science, Department of Emergency MedicineBeth Israel Deaconess Medical CenterBostonMAUSA
- Department of Internal Medicine, Division of PulmonaryCritical Care, and Sleep Medicine, Beth Israel Deaconess Medical CenterBostonMAUSA
| | - Bo Løfgren
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Research Center for Emergency MedicineAarhus University HospitalAarhusDenmark
- Department of MedicineRanders Regional HospitalRandersDenmark
| | - Lars W. Andersen
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Prehospital Emergency Medical ServicesCentral Denmark RegionAarhusDenmark
| | - Asger Granfeldt
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
25
|
Morgan RW, Berg RA, Reeder RW, Carpenter TC, Franzon D, Frazier AH, Graham K, Meert KL, Nadkarni VM, Naim MY, Tilford B, Wolfe HA, Yates AR, Sutton RM. The physiologic response to epinephrine and pediatric cardiopulmonary resuscitation outcomes. Crit Care 2023; 27:105. [PMID: 36915182 PMCID: PMC10012560 DOI: 10.1186/s13054-023-04399-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Epinephrine is provided during cardiopulmonary resuscitation (CPR) to increase systemic vascular resistance and generate higher diastolic blood pressure (DBP) to improve coronary perfusion and attain return of spontaneous circulation (ROSC). The DBP response to epinephrine during pediatric CPR and its association with outcomes have not been well described. Thus, the objective of this study was to measure the association between change in DBP after epinephrine administration during CPR and ROSC. METHODS This was a prospective multicenter study of children receiving ≥ 1 min of CPR with ≥ 1 dose of epinephrine and evaluable invasive arterial BP data in the 18 ICUs of the ICU-RESUS trial (NCT02837497). Blood pressure waveforms underwent compression-by-compression quantitative analysis. The mean DBP before first epinephrine dose was compared to mean DBP two minutes post-epinephrine. Patients with ≥ 5 mmHg increase in DBP were characterized as "responders." RESULTS Among 147 patients meeting inclusion criteria, 66 (45%) were characterized as responders and 81 (55%) were non-responders. The mean increase in DBP with epinephrine was 4.4 [- 1.9, 11.5] mmHg (responders: 13.6 [7.5, 29.3] mmHg versus non-responders: - 1.5 [- 5.0, 1.5] mmHg; p < 0.001). After controlling for a priori selected covariates, epinephrine response was associated with ROSC (aRR 1.60 [1.21, 2.12]; p = 0.001). Sensitivity analyses identified similar associations between DBP response thresholds of ≥ 10, 15, and 20 mmHg and ROSC; DBP responses of ≥ 10 and ≥ 15 mmHg were associated with higher aRR of survival to hospital discharge and survival with favorable neurologic outcome (Pediatric Cerebral Performance Category score of 1-3 or no worsening from baseline). CONCLUSIONS The change in DBP following epinephrine administration during pediatric in-hospital CPR was associated with return of spontaneous circulation.
Collapse
Affiliation(s)
- Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA.
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Aisha H Frazier
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Kathleen L Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Bradley Tilford
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | - Andrew R Yates
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Wood Building - 6104, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
26
|
Andersen HB, Andersen M, Andelius TCK, Pedersen MV, Løfgren B, Pedersen M, Ringgaard S, Kyng KJ, Henriksen TB. Epinephrine vs placebo in neonatal resuscitation: ROSC and brain MRS/MRI in term piglets. Pediatr Res 2023; 93:511-519. [PMID: 35681089 DOI: 10.1038/s41390-022-02126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND We aimed to investigate the effect of epinephrine vs placebo on return of spontaneous circulation (ROSC) and brain magnetic resonance spectroscopy and imaging (MRS/MRI) in newborn piglets with hypoxic cardiac arrest (CA). METHODS Twenty-five piglets underwent hypoxia induced by endotracheal tube clamping until CA. The animals were randomized to CPR + intravenous epinephrine or CPR + placebo (normal saline). The primary outcome was ROSC, and secondary outcomes included time-to-ROSC, brain MRS/MRI, and composite endpoint of death or severe brain MRS/MRI abnormality. RESULTS ROSC was more frequent in animals treated with epinephrine than placebo; 10/13 vs 4/12, RR = 2.31 (95% CI: 1.09-5.77). We found no difference in time-to-ROSC (120 (113-211) vs 153 (116-503) seconds, p = 0.7) or 6-h survival (7/13 vs 3/12, p = 0.2). Among survivors, there was no difference between groups in brain MRS/MRI. We found no difference in the composite endpoint of death or severe brain MRS/MRI abnormality; RR = 0.7 (95% CI: 0.37-1.19). CONCLUSIONS Resuscitation with epinephrine compared to placebo improved ROSC frequency after hypoxic CA in newborn piglets. We found no difference in time-to-ROSC or the composite endpoint of death or severe brain MRS/MRI abnormality. IMPACT In a newborn piglet model of hypoxic cardiac arrest, resuscitation with epinephrine compared to placebo improved the rate of return of spontaneous circulation and more than doubled the 6-h survival. Brain MRS/MRI biomarkers were used to evaluate the effect of epinephrine vs placebo. We found no difference between groups in the composite endpoint of death or severe brain MRS/MRI abnormality. This study adds to the limited evidence regarding the effect and safety of epinephrine; the lack of high-quality evidence from randomized clinical trials was highlighted in the latest ILCOR 2020 guidelines, and newborn animal studies were specifically requested.
Collapse
Affiliation(s)
- Hannah B Andersen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Mads Andersen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ted C K Andelius
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette V Pedersen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Løfgren
- Research Center for Emergency, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kasper J Kyng
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B Henriksen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Berg RA, Morgan RW, Reeder RW, Ahmed T, Bell MJ, Bishop R, Bochkoris M, Burns C, Carcillo JA, Carpenter TC, Dean JM, Diddle JW, Federman M, Fernandez R, Fink EL, Franzon D, Frazier AH, Friess SH, Graham K, Hall M, Hehir DA, Horvat CM, Huard LL, Maa T, Manga A, McQuillen PS, Meert KL, Mourani PM, Nadkarni VM, Naim MY, Notterman D, Palmer CA, Pollack MM, Sapru A, Schneiter C, Sharron MP, Srivastava N, Tabbutt S, Tilford B, Viteri S, Wessel D, Wolfe HA, Yates AR, Zuppa AF, Sutton RM. Diastolic Blood Pressure Threshold During Pediatric Cardiopulmonary Resuscitation and Survival Outcomes: A Multicenter Validation Study. Crit Care Med 2023; 51:91-102. [PMID: 36519983 PMCID: PMC9970166 DOI: 10.1097/ccm.0000000000005715] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Arterial diastolic blood pressure (DBP) greater than 25 mm Hg in infants and greater than 30 mm Hg in children greater than 1 year old during cardiopulmonary resuscitation (CPR) was associated with survival to hospital discharge in one prospective study. We sought to validate these potential hemodynamic targets in a larger multicenter cohort. DESIGN Prospective observational study. SETTING Eighteen PICUs in the ICU-RESUScitation prospective trial from October 2016 to March 2020. PATIENTS Children less than or equal to 18 years old with CPR greater than 30 seconds and invasive blood pressure (BP) monitoring during CPR. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Invasive BP waveform data and Utstein-style CPR data were collected, including prearrest patient characteristics, intra-arrest interventions, and outcomes. Primary outcome was survival to hospital discharge, and secondary outcomes were return of spontaneous circulation (ROSC) and survival to hospital discharge with favorable neurologic outcome. Multivariable Poisson regression models with robust error estimates evaluated the association of DBP greater than 25 mm Hg in infants and greater than 30 mm Hg in older children with these outcomes. Among 1,129 children with inhospital cardiac arrests, 413 had evaluable DBP data. Overall, 85.5% of the patients attained thresholds of mean DBP greater than or equal to 25 mm Hg in infants and greater than or equal to 30 mm Hg in older children. Initial return of circulation occurred in 91.5% and 25% by placement on extracorporeal membrane oxygenator. Survival to hospital discharge occurred in 58.6%, and survival with favorable neurologic outcome in 55.4% (i.e. 94.6% of survivors had favorable neurologic outcomes). Mean DBP greater than 25 mm Hg for infants and greater than 30 mm Hg for older children was significantly associated with survival to discharge (adjusted relative risk [aRR], 1.32; 1.01-1.74; p = 0.03) and ROSC (aRR, 1.49; 1.12-1.97; p = 0.002) but did not reach significance for survival to hospital discharge with favorable neurologic outcome (aRR, 1.30; 0.98-1.72; p = 0.051). CONCLUSIONS These validation data demonstrate that achieving mean DBP during CPR greater than 25 mm Hg for infants and greater than 30 mm Hg for older children is associated with higher rates of survival to hospital discharge, providing potential targets for DBP during CPR.
Collapse
Affiliation(s)
- Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Tageldin Ahmed
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Michael J Bell
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC
| | - Robert Bishop
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Matthew Bochkoris
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Candice Burns
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI
| | - Joseph A Carcillo
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - J Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - J Wesley Diddle
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC
| | - Myke Federman
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA
| | - Richard Fernandez
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Aisha H Frazier
- Alfred I. duPont Hospital for Children, Wilmington, DE
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Stuart H Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Mark Hall
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH
| | - David A Hehir
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Christopher M Horvat
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Leanna L Huard
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA
| | - Tensing Maa
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH
| | - Arushi Manga
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Kathleen L Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Peter M Mourani
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
- Department of Pediatrics, University of Arkansas for Medical Sciences, and Arkansas Children's Research Institute, Little Rock, AR
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Chella A Palmer
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Murray M Pollack
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC
| | - Anil Sapru
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA
| | - Carleen Schneiter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Matthew P Sharron
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC
| | - Neeraj Srivastava
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA
| | - Sarah Tabbutt
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Bradley Tilford
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Shirley Viteri
- Alfred I. duPont Hospital for Children, Wilmington, DE
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - David Wessel
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Andrew R Yates
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
Owyang CG, Abualsaud R, Agarwal S, Del Rios M, Grossestreuer AV, Horowitz JM, Johnson NJ, Kotini-Shah P, Mitchell OJL, Morgan RW, Moskowitz A, Perman SM, Rittenberger JC, Sawyer KN, Yuriditsky E, Abella BS, Teran F. Latest in Resuscitation Research: Highlights From the 2021 American Heart Association's Resuscitation Science Symposium. J Am Heart Assoc 2022; 11:e026191. [PMID: 36172932 DOI: 10.1161/jaha.122.026191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Clark G Owyang
- Division of Pulmonary and Critical Care Medicine Weill Cornell Medicine/New York Presbyterian Hospital New York NY.,Department of Emergency Medicine Weill Cornell Medicine/New York Presbyterian Hospital New York NY
| | - Rana Abualsaud
- Department of Emergency Medicine Weill Cornell Medicine/New York Presbyterian Hospital New York NY
| | - Sachin Agarwal
- Division of Neurocritical Care & Hospitalist Neurology Columbia University Irving Medical Center New York NY
| | - Marina Del Rios
- Department of Emergency Medicine University of Iowa Iowa City IA
| | | | - James M Horowitz
- Division of Cardiology, Department of Medicine NYU Langone Health New York NY
| | - Nicholas J Johnson
- Department of Emergency Medicine and Division of Pulmonary, Critical Care, and Sleep Medicine University of Washington Seattle WA
| | - Pavitra Kotini-Shah
- Department of Emergency Medicine University of Illinois at Chicago Chicago IL
| | - Oscar J L Mitchell
- Division of Pulmonary, Allergy, and Critical Care Medicine University of Pennsylvania Philadelphia PA
| | - Ryan W Morgan
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine Children's Hospital of Philadelphia Philadelphia PA
| | - Ari Moskowitz
- Division of Critical Care Medicine Montefiore Medical Center New York NY
| | - Sarah M Perman
- Department of Emergency Medicine University of Colorado School of Medicine Aurora CO
| | - Jon C Rittenberger
- Department of Emergency Medicine Guthrie-Robert Packer Hospital, Geisinger Commonwealth Medical College Scranton PA
| | - Kelly N Sawyer
- Department of Emergency Medicine University of Pittsburgh Pittsburgh PA
| | - Eugene Yuriditsky
- Division of Cardiology, Department of Medicine NYU Langone Health New York NY
| | - Benjamin S Abella
- Department of Emergency Medicine Center for Resuscitation Science, University of Pennsylvania Philadelphia PA
| | - Felipe Teran
- Department of Emergency Medicine Weill Cornell Medicine/New York Presbyterian Hospital New York NY
| |
Collapse
|
29
|
Hwang M, Sridharan A, Freeman CW, Viaene AN, Kilbaugh TJ. Contrast-Enhanced Ultrasound of Brain Perfusion in Cardiopulmonary Resuscitation. Ultrasound Q 2022; 38:257-261. [PMID: 35221316 PMCID: PMC9402813 DOI: 10.1097/ruq.0000000000000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT To evaluate the feasibility and potential utility of contrast-enhanced ultrasound for real-time imaging of whole-brain perfusion during cardiopulmonary resuscitation (CPR), cardiac arrest was induced in 8- to 7-week-old 10-kg piglets ( Sus scrofa domesticus ). Contrast-enhanced ultrasound was performed through a parietal cranial window in the coronal plane visualizing the thalami during hemodynamic-directed CPR. Whole-brain mean and maximum pixel intensities in each slice during resuscitation were calculated. Piglets were monitored for 24 hours postarrest. Seven piglets achieved return of spontaneous circulation and 6 survived to 24 hours. Of the 6 surviving piglets, 2 piglets demonstrated greater intra-CPR brain enhancement at maximum 73.2% and 42.1% and mean 36.7% and 31.9% enhancement above background, respectively, compared with maximum 5.8%, 22.9%, 6.0%, and 26.6% and mean 5.1%, 8.9%, 2.9%, and 6.6% above background, respectively, in the other 4. Intra-CPR average mean arterial pressures were similar between all 6 surviving piglets. One piglet achieved return of spontaneous circulation but expired 10 minutes later with enhancement maximum 45.2% and mean 18.9% enhancement above background. The final piglet did not achieve return of spontaneous circulation and exhibited minimal enhancement at maximum 2.8% and mean 0.9% enhancement above background. Contrast-enhanced ultrasound can detect brain perfusion during CPR, identifying a spectrum of cerebral blood flow responses in the brain despite similar systemic hemodynamics. This novel application can form the basis for future large animal model studies and eventually human clinical studies to further explore the neurologic implications of cerebral blood flow responses during resuscitation and stimulate novel strategies for optimizing brain perfusion restoration.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Anush Sridharan
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colbey W. Freeman
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Health System, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
30
|
White BR, Ko TS, Morgan RW, Baker WB, Benson EJ, Lafontant A, Starr JP, Landis WP, Andersen K, Jahnavi J, Breimann J, Delso N, Morton S, Roberts AL, Lin Y, Graham K, Berg RA, Yodh AG, Licht DJ, Kilbaugh TJ. Low frequency power in cerebral blood flow is a biomarker of neurologic injury in the acute period after cardiac arrest. Resuscitation 2022; 178:12-18. [PMID: 35817269 PMCID: PMC9580006 DOI: 10.1016/j.resuscitation.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022]
Abstract
AIM Cardiac arrest often results in severe neurologic injury. Improving care for these patients is difficult as few noninvasive biomarkers exist that allow physicians to monitor neurologic health. The amount of low-frequency power (LFP, 0.01-0.1 Hz) in cerebral haemodynamics has been used in functional magnetic resonance imaging as a marker of neuronal activity. Our hypothesis was that increased LFP in cerebral blood flow (CBF) would be correlated with improvements in invasive measures of neurologic health. METHODS We adapted the use of LFP for to monitoring of CBF with diffuse correlation spectroscopy. We asked whether LFP (or other optical biomarkers) correlated with invasive microdialysis biomarkers (lactate-pyruvate ratio - LPR - and glycerol concentration) of neuronal injury in the 4 h after return of spontaneous circulation in a swine model of paediatric cardiac arrest (Sus scrofa domestica, 8-11 kg, 51% female). Associations were tested using a mixed linear effects model. RESULTS We found that higher LFP was associated with higher LPR and higher glycerol concentration. No other biomarkers were associated with LPR; cerebral haemoglobin concentration, oxygen extraction fraction, and one EEG metric were associated with glycerol concentration. CONCLUSION Contrary to expectations, higher LFP in CBF was correlated with worse invasive biomarkers. Higher LFP may represent higher neurologic activity, or disruptions in neurovascular coupling. Either effect may be harmful in the acute period after cardiac arrest. Thus, these results suggest our methodology holds promise for development of new, clinically relevant biomarkers than can guide resuscitation and post-resuscitation care. Institutional protocol number: 19-001327.
Collapse
Affiliation(s)
- Brian R White
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States.
| | - Tiffany S Ko
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Wesley B Baker
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Emilie J Benson
- Department of Physics and Astronomy, University of Pennsylvania, United States
| | - Alec Lafontant
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Jonathan P Starr
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - William P Landis
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Kristen Andersen
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Jharna Jahnavi
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Jake Breimann
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Nile Delso
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Sarah Morton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Anna L Roberts
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, United States
| | - Daniel J Licht
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, United States
| |
Collapse
|
31
|
Coult J, Kwok H, Eftestøl T, Bhandari S, Blackwood J, Sotoodehnia N, Kudenchuk PJ, Rea TD. Continuous Assessment of Ventricular Fibrillation Prognostic Status during CPR: Implications for Resuscitation. Resuscitation 2022; 179:152-162. [PMID: 36031076 DOI: 10.1016/j.resuscitation.2022.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Ventricular fibrillation (VF) waveform measures reflect myocardial physiologic status. Continuous assessment of VF prognosis using such measures could guide resuscitation, but has not been possible due to CPR artifact in the ECG. A recently-validated VF measure (termed VitalityScore), which estimates the probability (0-100%) of return-of-rhythm (ROR) after shock, can assess VF during CPR, suggesting potential for continuous application during resuscitation. OBJECTIVE We evaluated VF using VitalityScore to characterize VF prognostic status continuously during resuscitation. METHODS We characterized VF using VitalityScore during 60 seconds of CPR and 10 seconds of subsequent pre-shock CPR interruption in patients with out-of-hospital VF arrest. VitalityScore utility was quantified using area under the receiver operating characteristic curve (AUC). VitalityScore trends over time were estimated using mixed-effects models, and associations between trends and ROR were evaluated using logistic models. A sensitivity analysis characterized VF during protracted (100-second) periods of CPR. RESULTS We evaluated 724 VF episodes among 434 patients. After an initial decline from 0-8 seconds following VF onset, VitalityScore increased slightly during CPR from 8-60 seconds (slope: 0.18 %/min). During the first 10 seconds of subsequent pre-shock CPR interruption, VitalityScore declined (slope: -14 %/min). VitalityScore predicted ROR throughout CPR with AUCs 0.73-0.75. Individual VitalityScore trends during 8-60 seconds of CPR were marginally associated with subsequent ROR (adjusted odds ratio for interquartile slope change (OR)=1.10, p=0.21), and became significant with protracted (≥100 seconds) CPR duration (OR=1.28, p=0.006). CONCLUSION VF prognostic status can be continuously evaluated during resuscitation, a development that could translate to patient-specific resuscitation strategies.
Collapse
Affiliation(s)
- Jason Coult
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Heemun Kwok
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Trygve Eftestøl
- Department of Electrical and Computer Science, University of Stavanger, Stavanger, Norway
| | - Shiv Bhandari
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer Blackwood
- Seattle-King County Department of Public Health, King County Emergency Medical Services, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Peter J Kudenchuk
- Seattle-King County Department of Public Health, King County Emergency Medical Services, Seattle, WA, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas D Rea
- Department of Medicine, University of Washington, Seattle, WA, USA; Seattle-King County Department of Public Health, King County Emergency Medical Services, Seattle, WA, USA
| |
Collapse
|
32
|
Senthil K, Hefti MM, Singh LN, Morgan RW, Mavroudis CD, Ko T, Gaudio H, Nadkarni VM, Ehinger J, Berg RA, Sutton RM, McGowan FX, Kilbaugh TJ. Transcriptome and metabolome after porcine hemodynamic-directed CPR compared with standard CPR and sham controls. Resusc Plus 2022; 10:100243. [PMID: 35592874 PMCID: PMC9111986 DOI: 10.1016/j.resplu.2022.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The effect of cardiac arrest (CA) on cerebral transcriptomics and metabolomics is unknown. We previously demonstrated hemodynamic-directed CPR (HD-CPR) improves survival with favorable neurologic outcomes versus standard CPR (Std-CPR). We hypothesized HD-CPR would preserve the cerebral transcriptome and metabolome compared to Std-CPR. Design Randomized pre-clinical animal trial. Setting Large animal resuscitation laboratory at an academic children’s hospital. Subjects Four-week-old female piglets (8–11 kg). Interventions Pigs (1-month-old), three groups: 1) HD-CPR (compression depth to systolic BP 90 mmHg, vasopressors to coronary perfusion pressure 20 mmHg); 2) Std-CPR and 3) shams (no CPR). HD-CPR and Std-CPR underwent asphyxia, induced ventricular fibrillation, 10–20 min of CPR and post-resuscitation care. Primary outcomes at 24 h in cerebral cortex: 1) transcriptomic analysis (n = 4 per treatment arm, n = 8 sham) of 1727 genes using differential gene expression and 2) metabolomic analysis (n = 5 per group) of 27 metabolites using one-way ANOVA, post-hoc Tukey HSD. Measurements and main results 65 genes were differentially expressed between HD-CPR and Std-CPR and 72 genes between Std-CPR and sham, but only five differed between HD-CPR and sham. Std-CPR increased the concentration of five AA compared to HD-CPR and sham, including the branched chain amino acids (BCAA), but zero metabolites differed between HD-CPR and sham. Conclusions In cerebral cortex 24 h post CA, Std-CPR resulted in a different transcriptome and metabolome compared with either HD-CPR or sham. HD-CPR preserves the transcriptome and metabolome, and is neuroprotective. Global molecular analyses may be a novel method to assess efficacy of clinical interventions and identify therapeutic targets. Institutional protocol number IAC 16-001023.
Collapse
Affiliation(s)
- Kumaran Senthil
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
- Corresponding author at: Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Marco M. Hefti
- University of Iowa, Division of Pathology, United States
| | - Larry N. Singh
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Ryan W. Morgan
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Constantine D. Mavroudis
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Cardiothoracic Surgery, United States
| | - Tiffany Ko
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Neurology, United States
| | - Hunter Gaudio
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Vinay M. Nadkarni
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Johannes Ehinger
- Lund University, Mitochondrial Medicine, Sweden
- Skåne University Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Sweden
| | - Robert A. Berg
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Robert M. Sutton
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Francis X. McGowan
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Todd J. Kilbaugh
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| |
Collapse
|
33
|
Shin SS, Sridharan A, Khaw K, Hallowell T, Morgan RW, Kilbaugh TJ, Hwang M. Intracranial Pressure and Cerebral Hemodynamic Monitoring After Cardiac Arrest in Pediatric Pigs Using Contrast Ultrasound-Derived Parameters. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1425-1432. [PMID: 34524698 PMCID: PMC8920953 DOI: 10.1002/jum.15825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES We explore the correlation of contrast-enhanced ultrasound (CEUS) parameters to intracranial pressure (ICP) in a porcine experimental model of pediatric cardiac arrest. METHODS Eleven pediatric pigs underwent electrically induced cardiac arrest followed by cardiopulmonary resuscitation. ICP was measured using intracranial bolt monitor and CEUS was monitored through a cranial window. Various CEUS parameters were monitored at baseline, immediately post return of spontaneous circulation (ROSC), 1 hour-post ROSC, and 3 hours post-ROSC. RESULTS There was significant ICP correlation with wash-out slope assessed by CEUS time intensity curve analysis at immediate post-ROSC. At 3 hours post-ROSC there was also significant negative correlation between ICP and peak enhancement which may be due to the evolution of anoxic injury. CONCLUSION The use of CEUS in assessing disruption of cerebral hemodynamics and ICP post cardiac arrest will need future validation and comparison to other imaging modalities. The correlation between CEUS parameters and ICP may be due to the alterations in cerebral autoregulation that result from anoxic brain injury.
Collapse
Affiliation(s)
- Samuel S Shin
- Department of Neurocritical Care, Hospital of University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina Khaw
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Hallowell
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Kim S, Park I, Lee JH, Kim S, Jang DH, Jo YH. Vagus Nerve Stimulation Improves Mitochondrial Dysfunction in Post–cardiac Arrest Syndrome in the Asphyxial Cardiac Arrest Model in Rats. Front Neurosci 2022; 16:762007. [PMID: 35692415 PMCID: PMC9178208 DOI: 10.3389/fnins.2022.762007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral mitochondrial dysfunction during post–cardiac arrest syndrome (PCAS) remains unclear, resulting in a lack of therapeutic options that protect against cerebral ischemia–reperfusion injury. We aimed to assess mitochondrial dysfunction in the hippocampus after cardiac arrest and whether vagus nerve stimulation (VNS) can improve mitochondrial dysfunction and neurological outcomes. In an asphyxial cardiac arrest model, male Sprague–Dawley rats were assigned to the vagus nerve isolation (CA) or VNS (CA + VNS) group. Cardiopulmonary resuscitation was performed 450 s after pulseless electrical activity. After the return of spontaneous circulation (ROSC), left cervical VNS was performed for 3 h in the CA + VNS group. Mitochondrial respiratory function was evaluated using high-resolution respirometry of the hippocampal tissue. The neurologic deficit score (NDS) and overall performance category (OPC) were assessed at 24, 48, and 72 h after resuscitation. The leak respiration and oxidative phosphorylation capacity of complex I (OXPHOS CI) at 6 h after ROSC were significantly higher in the CA + VNS group than in the CA group (p = 0.0308 and 0.0401, respectively). Compared with the trends of NDS and OPC in the CA group, the trends of those in the CA + VNS group were significantly different, thus suggesting a favorable neurological outcome in the CA + VNS group (p = 0.0087 and 0.0064 between times × groups interaction, respectively). VNS ameliorated mitochondrial dysfunction after ROSC and improved neurological outcomes in an asphyxial cardiac arrest rat model.
Collapse
Affiliation(s)
- Seonghye Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Inwon Park
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Jae Hyuk Lee,
| | - Serin Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Dong-Hyun Jang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
Francoeur C, Landis WP, Winters M, Naim MY, Donoghue A, Dominick CL, Huh JW, MacDonald JM, Lang SS, Yuan I, Berg RA, Nadkarni VM, Kilbaugh TJ, Sutton RM, Kirschen MP, Morgan RW, Topjian AA. Near-infrared spectroscopy during cardiopulmonary resuscitation for pediatric cardiac arrest: a prospective, observational study. Resuscitation 2022; 174:35-41. [PMID: 35314211 PMCID: PMC9724995 DOI: 10.1016/j.resuscitation.2022.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023]
Abstract
AIM Cerebral oxygenation (rSO2) is not routinely measured during pediatric cardiopulmonary resuscitation (CPR). We aimed to determine whether higher intra-arrest rSO2 was associated with return of spontaneous circulation (ROSC) and survival to hospital discharge. METHODS Prospective, single-center observational study of cerebral oximetry using near-infrared spectroscopy (NIRS) during pediatric cardiac arrest from 2016 to 2020. Eligible patients had ≥30 s of rSO2 data recorded during CPR. We compared median rSO2 and percentage of rSO2 measurements above a priori thresholds for the entire event and the final five minutes of the CPR event between patients with and without ROSC and survival to discharge. RESULTS Twenty-one patients with 23 CPR events were analyzed. ROSC was achieved in 17/23 (73.9%) events and five/21 (23.8%) patients survived to discharge. The median rSO2 was higher for events with ROSC vs. no ROSC for the overall event (62% [56%, 70%] vs. 45% [35%, 51%], p = 0.025) and for the final 5 minutes of the event (66% [55%, 72%] vs. 43% [35%, 44%], p = 0.01). Patients with ROSC had a higher percentage of measurements above 50% during the final five minutes of CPR (100% [100%, 100%] vs. 0% [0%, 29%], p = 0.01). There was no association between rSO2 and survival to discharge. CONCLUSIONS Higher cerebral rSO2 during CPR for pediatric cardiac arrest was associated with higher rates of ROSC but not with survival to discharge.
Collapse
Affiliation(s)
- C Francoeur
- Department of Pediatrics, CHU de Québec - Université Laval Research Center, Quebec, Canada.
| | - W P Landis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Winters
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Y Naim
- The Cardiac Center, Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - A Donoghue
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - C L Dominick
- Department of Respiratory Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J W Huh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J M MacDonald
- Division of Pediatric Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, OH, USA
| | - S S Lang
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - I Yuan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - R A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - V M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - T J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - R M Sutton
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - R W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - A A Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Lauridsen KG, Raymond T, Sutton RM. Hemodynamic-directed pediatric cardiopulmonary resuscitation using ET-CO2: Are physiologic targets really patient Centric? Resuscitation 2021; 170:324-326. [PMID: 34826582 DOI: 10.1016/j.resuscitation.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Kasper G Lauridsen
- Research Center for Emergency Medicine, Aarhus University Hospital, Denmark; Emergency Department, Randers Regional Hospital, Denmark; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States.
| | - Tia Raymond
- Department of Pediatrics, Cardiac Intensive Care, Medical City Children's Hospital, United States
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; University of Pennsylvania, Perelman School of Medicine, United States
| |
Collapse
|
37
|
Liang L, Li Z, Chen R, Liu S, Zhou T, Jiang L, Tang W, Jiang J, Yang Z. Compression depth of 30 mm has similar efficacy and fewer complications versus 50 mm during mechanical chest compression with miniaturized chest compressor in a porcine model of cardiac arrest. J Thorac Dis 2021; 13:5788-5798. [PMID: 34795927 PMCID: PMC8575856 DOI: 10.21037/jtd-21-812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022]
Abstract
Background Current guidelines recommend a 50 mm or greater compression depth for manual chest compression in adults. However, whether this uniform compression depth is a suitable requirement for mechanical CPR remains to be determined. We hypothesized that a relatively shallow compression depth (30 mm) would have similar hemodynamic efficacy but fewer complications versus the standard compression depth (50 mm) during mechanical cardiopulmonary resuscitation (CPR) with the miniaturized chest compressor (MCC) in a porcine model. Methods In the current study, we used a total of 16 domestic male pigs (38±2 kg). All pigs were exposed to 7 min of ventricular fibrillation (VF) followed by 5 min of CPR. Then the animals were randomly assigned to the shallow (30 mm) group and the standard (50 mm) group. At the second min of CPR, every pig was given epinephrine (20 µg/kg) through the femoral vein and repeated every 3 min. First defibrillation was delivered with a single 120 J shock at 5 min of CPR. Hemodynamics, carotid blood flow (CBF), end-tidal carbon dioxide (ETCO2), coronary perfusion pressure (CPP), intrathoracic pressure (ITP) and arterial blood gas were measured. Rib fractures and lung injuries, as indicated by ground-glass opacification (GGO), as well as intense parenchymal opacification (IPO), were assessed and calculated by quantitative computed tomography (QCT) scan. Results We found no significant differences in CPP, CBF, or ETCO2 between the both groups throughout the CPR period. After administration of epinephrine, the CPP of all animals increased while ETCO2 and CBF decreased during CPR. A significantly lower intrathoracic positive pressure (ITPP) and systolic artery pressure (SAP) were measured in the shallow group at the first min of CPR. However, we didn’t find remarkable differences in these values between the both groups for the next 4 min of CPR. All animals were successfully resuscitated. The shallow group had significantly lower IPO QCT scores compared with the standard group. We found no significant differences in GGO QCT scores after resuscitation between both groups. Conclusions Relatively shallow compression depth has similar hemodynamic efficacy but fewer complications versus the standard compression depth.
Collapse
Affiliation(s)
- Lian Liang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zuyong Li
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ran Chen
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Siqi Liu
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianen Zhou
- Department of Emergency, the First People's Hospital of Foshan, Foshan, China
| | - Longyuan Jiang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanchun Tang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Jiang
- Department of Emergency, the First People's Hospital of Foshan, Foshan, China
| | - Zhengfei Yang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Shepard LN, Berg RA, Morgan RW. Pulse oximetry plethysmography: A new approach for physiology-directed CPR? Resuscitation 2021; 169:198-200. [PMID: 34757060 DOI: 10.1016/j.resuscitation.2021.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Lindsay N Shepard
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
39
|
Shaffner DH, Callaway CW. Epinephrine Administration Intervals: Seeing the Forest for the Trees. Am J Respir Crit Care Med 2021; 204:885-887. [PMID: 34411505 PMCID: PMC8534614 DOI: 10.1164/rccm.202107-1667ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Donald H Shaffner
- Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore, Maryland
| | - Clifton W Callaway
- Department of Emergency Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Slovis JC, Morgan RW, Kilbaugh TJ, Berg RA. Adrenaline effects on cerebral physiology during cardiac arrest: More to this story. Resuscitation 2021; 168:216-218. [PMID: 34560235 DOI: 10.1016/j.resuscitation.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Julia C Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, United States
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, United States
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, United States.
| |
Collapse
|
41
|
Su C, Xiao Y, Zhang G, Liang L, Li H, Cheng C, Jin T, Bradley J, Peberdy MA, Ornato JP, Mangino MJ, Tang W. Exogenous Nicotinamide Adenine Dinucleotide Attenuates Postresuscitation Myocardial and Neurologic Dysfunction in a Rat Model of Cardiac Arrest. Crit Care Med 2021; 50:e189-e198. [PMID: 34637412 DOI: 10.1097/ccm.0000000000005268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the therapeutic potential and underlying mechanisms of exogenous nicotinamide adenine dinucleotide+ on postresuscitation myocardial and neurologic dysfunction in a rat model of cardiac arrest. DESIGN Thirty-eight rats were randomized into three groups: 1) Sham, 2) Control, and 3) NAD. Except for the sham group, untreated ventricular fibrillation for 6 minutes followed by cardiopulmonary resuscitation was performed in the control and NAD groups. Nicotinamide adenine dinucleotide+ (20 mg/kg) was IV administered at the onset of return of spontaneous circulation. SETTING University-affiliated research laboratory. SUBJECTS Sprague-Dawley rats. INTERVENTIONS Nicotinamide adenine dinucleotide+. MEASUREMENTS AND MAIN RESULTS Hemodynamic and myocardial function were measured at baseline and within 4 hours following return of spontaneous circulation. Survival analysis and Neurologic Deficit Score were performed up to 72 hours after return of spontaneous circulation. Adenosine triphosphate (adenosine triphosphate) level was measured in both brain and heart tissue. Mitochondrial respiratory chain function, acetylation level, and expression of Sirtuin3 and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 (NDUFA9) in isolated mitochondrial protein from both brain and heart tissue were evaluated at 4 hours following return of spontaneous circulation. The results demonstrated that nicotinamide adenine dinucleotide+ treatment improved mean arterial pressure (at 1 hr following return of spontaneous circulation, 94.69 ± 4.25 mm Hg vs 89.57 ± 7.71 mm Hg; p < 0.05), ejection fraction (at 1 hr following return of spontaneous circulation, 62.67% ± 6.71% vs 52.96% ± 9.37%; p < 0.05), Neurologic Deficit Score (at 24 hr following return of spontaneous circulation, 449.50 ± 82.58 vs 339.50 ± 90.66; p < 0.05), and survival rate compared with that of the control group. The adenosine triphosphate level and complex I respiratory were significantly restored in the NAD group compared with those of the control group. In addition, nicotinamide adenine dinucleotide+ treatment activated the Sirtuin3 pathway, down-regulating acetylated-NDUFA9 in the isolated mitochondria protein. CONCLUSIONS Exogenous nicotinamide adenine dinucleotide+ treatment attenuated postresuscitation myocardial and neurologic dysfunction. The responsible mechanisms may involve the preservation of mitochondrial complex I respiratory capacity and adenosine triphosphate production, which involves the Sirtuin3-NDUFA9 deacetylation.
Collapse
Affiliation(s)
- Chenglei Su
- Department of Emergency Medicine Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA. Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Soochow, China. Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA. Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA. Department of Surgery, Virginia Commonwealth University Health System, Richmond, VA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Putzer G, Martini J, Spraider P, Abram J, Hornung R, Schmidt C, Bauer M, Pinggera D, Krapf C, Hell T, Glodny B, Helbok R, Mair P. Adrenaline improves regional cerebral blood flow, cerebral oxygenation and cerebral metabolism during CPR in a porcine cardiac arrest model using low-flow extracorporeal support. Resuscitation 2021; 168:151-159. [PMID: 34363854 DOI: 10.1016/j.resuscitation.2021.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/05/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The effects of adrenaline on cerebral blood vessels during cardiopulmonary resuscitation (CPR) are not well understood. We developed an extracorporeal CPR model that maintains constant low systemic blood flow while allowing adrenaline-associated effects on cerebral vasculature to be assessed at different mean arterial pressure (MAP) levels independently of the effects on systemic blood flow. METHODS After eight minutes of cardiac arrest, low-flow extracorporeal life support (ECLS) (30 ml/kg/min) was started in fourteen pigs. After ten minutes, continuous adrenaline administration was started to achieve MAP values of 40 (n = 7) or 60 mmHg (n = 7). Measurements included intracranial pressure (ICP), cerebral perfusion pressure (CePP), laser-Doppler-derived regional cerebral blood flow (CBF), cerebral regional oxygen saturation (rSO2), brain tissue oxygen tension (PbtO2) and extracellular cerebral metabolites assessed by cerebral microdialysis. RESULTS During ECLS without adrenaline, regional CBF increased by only 5% (25th to 75th percentile: -3 to 14; p=0.2642) and PbtO2 by 6% (0-15; p=0.0073) despite a significant increase in MAP to 28 mmHg (25-30; p<0.0001) and CePP to 10 mmHg (8-13; p<0.0001). Accordingly, cerebral microdialysis parameters showed a profound hypoxic-ischemic pattern. Adrenaline administration significantly improved regional CBF to 29±14% (p=0.0098) and 61±25% (p<0.001) and PbtO2 to 15±11% and 130±82% (both p<0.001) of baseline in the MAP 40 mmHg and MAP 60 mmHg groups, respectively. Importantly, MAP of 60 mmHg was associated with metabolic improvement. CONCLUSION This study shows that adrenaline administration during constant low systemic blood flow increases CePP, regional CBF, cerebral oxygenation and cerebral metabolism.
Collapse
Affiliation(s)
- Gabriel Putzer
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria
| | - Judith Martini
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria.
| | - Patrick Spraider
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria
| | - Julia Abram
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria
| | - Rouven Hornung
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria
| | - Christine Schmidt
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria
| | - Marlies Bauer
- Department of Neurosurgery, Medical University of Innsbruck, Austria
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Austria
| | - Tobias Hell
- Department of Mathematics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, Austria
| | - Bernhard Glodny
- Department of Radiology, Medical University of Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Austria
| | - Peter Mair
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria
| |
Collapse
|
43
|
Schmölzer GM, Patel SD, Monacelli S, Kim SY, Shim GH, Lee TF, O'Reilly M, Cheung PY. Sustained Inflation During Chest Compression: A New Technique of Pediatric Cardiopulmonary Resuscitation That Improves Recovery and Survival in a Pediatric Porcine Model. J Am Heart Assoc 2021; 10:e019136. [PMID: 34284596 PMCID: PMC8475686 DOI: 10.1161/jaha.120.019136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Chest compression (CC) during sustained inflations (CC+SI) compared with CC with asynchronized ventilation (CCaV) during cardiopulmonary resuscitation in asphyxiated pediatric piglets will reduce time to return of spontaneous circulation (ROSC). Methods and Results Piglets (20–23 days of age, weighing 6.2–10.2 kg) were anesthetized, intubated, instrumented, and exposed to asphyxia. Cardiac arrest was defined as mean arterial blood pressure <25 mm Hg with bradycardia. After cardiac arrest, piglets were randomized to CC+SI (n=12) or CCaV (n=12) or sham (n=8). Sham‐operated animals had no asphyxia. Heart rate, arterial blood pressure, carotid blood flow, cerebral oxygenation, and respiratory parameters were continuously recorded. There were no differences in baseline parameters or the duration and degree of asphyxiation. Median (interquartile range) Time to ROSC was 248 (41–346) seconds compared with 720 (167–720) seconds in the CC+SI group and CCaV group, respectively (P=0.0292). There was a 100% higher rate of ROSC in the CC+SI group versus CCaV group, with 10 (83%) versus 5 (42%) achieving ROSC (P=0.089), respectively. Piglets in the CC+SI and CCaV groups received intravenous epinephrine boluses to achieve ROSC (8/12 versus 10/12 P=0.639). There was a significantly higher minute ventilation in the CC+SI group, which was secondary to a 5‐fold increase in the number of inflations per minute and a 1.5‐fold increase in tidal volume. Conclusions CC+SI reduced time to ROSC and improved survival compared with using CCaV. CC+SI allowed passive ventilation of the lung while providing chest compressions. This technique warrants further studies to examine the potential to improve outcomes in pediatric patients with cardiac arrest. Registration URL: https://www.preclinicaltrials.eu; Unique identifier: PCTE0000152.
Collapse
Affiliation(s)
- Georg M Schmölzer
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation Royal Alexandra Hospital Edmonton Alberta Canada.,Department of Pediatrics University of Alberta Edmonton Alberta Canada
| | - Siddhi D Patel
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation Royal Alexandra Hospital Edmonton Alberta Canada.,Department of Pediatrics University of Alberta Edmonton Alberta Canada
| | - Sveva Monacelli
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation Royal Alexandra Hospital Edmonton Alberta Canada.,Department of Pediatrics University of Alberta Edmonton Alberta Canada
| | - Seung Yeon Kim
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation Royal Alexandra Hospital Edmonton Alberta Canada.,Department of Pediatrics Eulji University Hospital Daejeon Korea
| | - Gyu-Hong Shim
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation Royal Alexandra Hospital Edmonton Alberta Canada.,Department of Pediatrics Inje University Sanggye Paik Hospital Seoul Korea
| | - Tze-Fun Lee
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation Royal Alexandra Hospital Edmonton Alberta Canada
| | - Megan O'Reilly
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation Royal Alexandra Hospital Edmonton Alberta Canada
| | - Po-Yin Cheung
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation Royal Alexandra Hospital Edmonton Alberta Canada.,Department of Pediatrics University of Alberta Edmonton Alberta Canada
| |
Collapse
|
44
|
Bridges MA, Siegel JB, Kim J, Quinn KM, Kwon JH, Gerry B, Rajab TK. Devices to enhance organ perfusion during cardiopulmonary resuscitation. Expert Rev Med Devices 2021; 18:771-781. [PMID: 34170796 DOI: 10.1080/17434440.2021.1948835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The recommended method of cardiopulmonary resuscitation (CPR) has been closed-chest cardiac compressions, but the development of CPR adjunctive devices has called into question the efficacy and role of these adjunctive devices. In this review, we provide a comprehensive evaluation and discussion on the commercially available noninvasive CPR adjuncts used during out-of-hospital cardiac arrest (OHCA). AREAS COVERED We review the three most common CPR adjunctive devices: the piston mechanism, the load distributing band, and the impedance threshold device. All three CPR adjunctive devices have preclinical data to support their use during cardiac arrest. In clinical trials, limited data show improvement in survival and neurologic recovery for these devices, and there is insufficient high-level evidence to support their use over manual chest compressions. However, there is a role for them when adequate manual chest compressions are not feasible. EXPERT OPINION The commercially available CPR adjuncts do not consistently show improved outcomes in the literature. There is still a need for research and development into innovative solutions to improve OHCA survival and neurologic recovery. Efforts focused on increasing the speed of CPR initiation and increasing perfusion to the cerebral and coronary vasculature have the potential to advance resuscitative practices.
Collapse
Affiliation(s)
- Matthew A Bridges
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Julie B Siegel
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Joshua Kim
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Kristen M Quinn
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jennie H Kwon
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Brielle Gerry
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Taufiek Konrad Rajab
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
45
|
Volk LE, Mavroudis CD, Ko T, Hallowell T, Delso N, Roberts AL, Starr J, Landis W, Lin Y, Hefti M, Morgan RW, Melchior RW, Rosenthal TM, Chappell A, Fisher D, Dreher M, Licht DJ, Chen J, Gaynor JW, Mascio CE, Kilbaugh TJ. Increased cerebral mitochondrial dysfunction and reactive oxygen species with cardiopulmonary bypass. Eur J Cardiothorac Surg 2021; 59:1256-1264. [PMID: 33367535 DOI: 10.1093/ejcts/ezaa439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Neurodevelopmental injury after cardiac surgery using cardiopulmonary bypass (CPB) for congenital heart defects is common, but the mechanism behind this injury is unclear. This study examines the impact of CPB on cerebral mitochondrial reactive oxygen species (ROS) generation and mitochondrial bioenergetics. METHODS Twenty-three piglets (mean weight 4.2 ± 0.5 kg) were placed on CPB for either 1, 2, 3 or 4 h (n = 5 per group) or underwent anaesthesia without CPB (sham, n = 3). Microdialysis was used to measure metabolic markers of ischaemia. At the conclusion of CPB or 4 h of sham, brain tissue was harvested. Utilizing high-resolution respirometry, with simultaneous fluorometric analysis, mitochondrial respiration and ROS were measured. RESULTS There were no significant differences in markers of ischaemia between sham and experimental groups. Sham animals had significantly higher mitochondrial respiration than experimental animals, including maximal oxidative phosphorylation capacity of complex I (OXPHOSCI) (3.25 ± 0.18 vs 4-h CPB: 1.68 ± 0.10, P < 0.001) and maximal phosphorylating respiration capacity via convergent input through complexes I and II (OXPHOSCI+CII) (7.40 ± 0.24 vs 4-h CPB: 3.91 ± 0.20, P < 0.0001). At 4-h, experimental animals had significantly higher ROS related to non-phosphorylating respiration through complexes I and II (ETSCI+CII) than shams (1.08 ± 0.13 vs 0.64 ± 0.04, P = 0.026). CONCLUSIONS Even in the absence of local markers of ischaemia, CPB is associated with decreased mitochondrial respiration relative to shams irrespective of duration. Exposure to 4 h of CPB resulted in a significant increase in cerebral mitochondrial ROS formation compared to shorter durations. Further study is needed to improve the understanding of cerebral mitochondrial health and its effects on the pathophysiology of neurological injury following exposure to CPB.
Collapse
Affiliation(s)
- Lindsay E Volk
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiffany Ko
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas Hallowell
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nile Delso
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna L Roberts
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan Starr
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William Landis
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuxi Lin
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marco Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ryan W Morgan
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard W Melchior
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tami M Rosenthal
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander Chappell
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas Fisher
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly Dreher
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Licht
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan Chen
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher E Mascio
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
46
|
Kool M, Atkins DL, Van de Voorde P, Maconochie IK, Scholefield BR. Focused echocardiography, end-tidal carbon dioxide, arterial blood pressure or near-infrared spectroscopy monitoring during paediatric cardiopulmonary resuscitation: A scoping review. Resusc Plus 2021; 6:100109. [PMID: 34228034 PMCID: PMC8244529 DOI: 10.1016/j.resplu.2021.100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
AIM To evaluate the individual use and predictive value of focused echocardiography, end-tidal carbon dioxide (EtCO2), invasive arterial blood pressure (BP) and near-infrared spectroscopy (NIRS) during cardiopulmonary resuscitation (CPR) in children. METHODS This scoping review was undertaken as part of the continuous evidence evaluation process of the International Liaison Committee on Resuscitation (ILCOR) and based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) extension for scoping reviews. PubMed, MEDLINE, CINAHL and EMBASE were searched from the last ILCOR reviews until September 2020. We included all published studies evaluating the effect of echocardiography, EtCO2, BP or NIRS guided CPR on clinical outcomes and quality of CPR. RESULTS We identified eight observational studies, including 288 children. Two case series reported the use of echocardiography, one in detecting pulmonary emboli, the second in cardiac standstill, where contractility was regained with the use of extracorporeal membrane oxygenation. The two studies describing EtCO2 were ambivalent regarding the association between mean values and any outcomes. Mean diastolic BP was associated with increased survival and favourable neurological outcome, but not with new substantive morbidity in two studies describing an overlapping population. NIRS values reflected changes in EtCO2 and cerebral blood volume index in two studies, with lower values in patients who did not achieve return of circulation. CONCLUSION Although there seems some beneficial effect of these intra-arrest variables, higher quality paediatric studies are needed to evaluate whether echocardiography, EtCO2, BP or NIRS guided CPR could improve outcomes.
Collapse
Key Words
- Arterial blood pressure
- BP, blood pressure (invasive arterial)
- BVI, blood volume index
- CA, cardiac arrest
- CI, confidence interval
- CPR, cardiopulmonary resuscitation
- CSF, cerebrospinal fluid
- Cardiopulmonary resuscitation
- CoSTR, consensus on science with treatment recommendations
- ECG, electrocardiogram
- ECMO, extracorporeal membrane oxygenation
- ECPR, extracorporeal cardiopulmonary resuscitation
- ED, emergency department
- End-tidal CO2
- EtCO2, end-tidal carbon dioxide
- ICP, intracranial pressure
- IHCA, in-hospital cardiac arrest
- ILCOR, international liaison committee on resuscitation
- NICU, neonatal intensive care unit
- NIRS, near-infrared spectroscopy
- Near-infrared spectroscopy
- OHCA, out-of-hospital cardiac arrest
- OR, odds ratio
- PCICU, paediatric cardiac intensive care unit
- PE, pulmonary emboli
- PICU, paediatric intensive care unit
- PRISMA, preferred reporting items for systematic reviews and meta-analyses
- Paediatric life support
- Point-of-care ultrasound
- RCT, randomized controlled trial
- ROC, receiver operating characteristic
- ROSC, return of spontaneous circulation
- RR, relative risk
- RV, right ventricle
- SD, standard deviation
- USA, United States of America
- rcSO2, regional cerebral oxygen saturations
Collapse
Affiliation(s)
- Mirjam Kool
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Paediatric Intensive Care Unit, Birmingham Children’s Hospital NHS Trust, Steelhouse Lane, Birmingham, United Kingdom
| | - Dianne L. Atkins
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Patrick Van de Voorde
- Department of Emergency Medicine, Ghent University Hospital, Ghent, Belgium
- EMS Dispatch Center Eastern Flanders, Federal Department of Health, Belgium
| | - Ian K. Maconochie
- Paediatric Emergency Department, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Barnaby R. Scholefield
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Paediatric Intensive Care Unit, Birmingham Children’s Hospital NHS Trust, Steelhouse Lane, Birmingham, United Kingdom
| |
Collapse
|
47
|
Senthil K, Morgan RW, Hefti MM, Karlsson M, Lautz AJ, Mavroudis CD, Ko T, Nadkarni VM, Ehinger J, Berg RA, Sutton RM, McGowan FX, Kilbaugh TJ. Haemodynamic-directed cardiopulmonary resuscitation promotes mitochondrial fusion and preservation of mitochondrial mass after successful resuscitation in a pediatric porcine model. Resusc Plus 2021; 6:100124. [PMID: 34223382 PMCID: PMC8244484 DOI: 10.1016/j.resplu.2021.100124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023] Open
Abstract
Objective Cerebral mitochondrial dysfunction is a key mediator of neurologic injury following cardiac arrest (CA) and is regulated by the balance of fusion and fission (mitochondrial dynamics). Under stress, fission can decrease mitochondrial mass and signal apoptosis, while fusion promotes oxidative phosphorylation efficiency. This study evaluates mitochondrial dynamics and content in brain tissue 24 h after CA between two cardiopulmonary resuscitation (CPR) strategies. Interventions Piglets (1 month), previously randomized to three groups: (1) Std-CPR (n = 5); (2) HD-CPR (n = 5; goal systolic blood pressure 90 mmHg, goal coronary perfusion pressure 20 mmHg); (3) Shams (n = 7). Std-CPR and HD-CPR groups underwent 7 min of asphyxia, 10 min of CPR, and standardized post-resuscitation care. Primary outcomes: (1) cerebral cortical mitochondrial protein expression for fusion (OPA1, OPA1 long to short chain ratio, MFN2) and fission (DRP1, FIS1), and (2) mitochondrial mass by citrate synthase activity. Secondary outcomes: (1) intra-arrest haemodynamics and (2) cerebral performance category (CPC) at 24 h. Results HD-CPR subjects had higher total OPA1 expression compared to Std-CPR (1.52; IQR 1.02-1.69 vs 0.67; IQR 0.54-0.88, p = 0.001) and higher OPA1 long to short chain ratio than both Std-CPR (0.63; IQR 0.46-0.92 vs 0.26; IQR 0.26-0.31, p = 0.016) and shams. Citrate synthase activity was lower in Std-CPR than sham (11.0; IQR 10.15-12.29 vs 13.4; IQR 12.28-15.66, p = 0.047), but preserved in HD-CPR. HD-CPR subjects had improved intra-arrest haemodynamics and CPC scores at 24 h compared to Std-CPR. Conclusions Following asphyxia-associated CA, HD-CPR exhibits increased pro-mitochondrial fusion protein expression, preservation of mitochondrial mass, improved haemodynamics and superior neurologic scoring compared to Std-CPR. Institutional protocol number IAC 16-001023.
Collapse
Affiliation(s)
- Kumaran Senthil
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Ryan W Morgan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Marco M Hefti
- University of Iowa, Division of Pathology, United States
| | | | - Andrew J Lautz
- Cincinnati Children's Hospital Medical Center, Division of Critical Care Medicine, United States
| | - Constantine D Mavroudis
- Department of Neurosurgery, Righospitalet, Copenhagen, Denmark.,Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Division of Cardiothoracic Surgery, United States
| | - Tiffany Ko
- Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Division of Neurology, United States
| | - Vinay M Nadkarni
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | | | - Robert A Berg
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Robert M Sutton
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Francis X McGowan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Todd J Kilbaugh
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| |
Collapse
|
48
|
Morgan RW, Sutton RM, Himebauch AS, Roberts AL, Landis WP, Lin Y, Starr J, Ranganathan A, Delso N, Mavroudis CD, Volk L, Slovis J, Marquez AM, Nadkarni VM, Hefti M, Berg RA, Kilbaugh TJ. A randomized and blinded trial of inhaled nitric oxide in a piglet model of pediatric cardiopulmonary resuscitation. Resuscitation 2021; 162:274-283. [PMID: 33766668 DOI: 10.1016/j.resuscitation.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 01/17/2023]
Abstract
AIM Inhaled nitric oxide (iNO) during cardiopulmonary resuscitation (CPR) improved systemic hemodynamics and outcomes in a preclinical model of adult in-hospital cardiac arrest (IHCA) and may also have a neuroprotective role following cardiac arrest. The primary objectives of this study were to determine if iNO during CPR would improve cerebral hemodynamics and mitochondrial function in a pediatric model of lipopolysaccharide-induced shock-associated IHCA. METHODS After lipopolysaccharide infusion and ventricular fibrillation induction, 20 1-month-old piglets received hemodynamic-directed CPR and were randomized to blinded treatment with or without iNO (80 ppm) during and after CPR. Defibrillation attempts began at 10 min with a 20-min maximum CPR duration. Cerebral tissue from animals surviving 1-h post-arrest underwent high-resolution respirometry to evaluate the mitochondrial electron transport system and immunohistochemical analyses to assess neuropathology. RESULTS During CPR, the iNO group had higher mean aortic pressure (41.6 ± 2.0 vs. 36.0 ± 1.4 mmHg; p = 0.005); diastolic BP (32.4 ± 2.4 vs. 27.1 ± 1.7 mmHg; p = 0.03); cerebral perfusion pressure (25.0 ± 2.6 vs. 19.1 ± 1.8 mmHg; p = 0.02); and cerebral blood flow relative to baseline (rCBF: 243.2 ± 54.1 vs. 115.5 ± 37.2%; p = 0.02). Among the 8/10 survivors in each group, the iNO group had higher mitochondrial Complex I oxidative phosphorylation in the cerebral cortex (3.60 [3.56, 3.99] vs. 3.23 [2.44, 3.46] pmol O2/s mg; p = 0.01) and hippocampus (4.79 [4.35, 5.18] vs. 3.17 [2.75, 4.58] pmol O2/s mg; p = 0.02). There were no other differences in mitochondrial respiration or brain injury between groups. CONCLUSIONS Treatment with iNO during CPR resulted in superior systemic hemodynamics, rCBF, and cerebral mitochondrial Complex I respiration in this pediatric cardiac arrest model.
Collapse
Affiliation(s)
- Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States.
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Adam S Himebauch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Anna L Roberts
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - William P Landis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Jonathan Starr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Abhay Ranganathan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Nile Delso
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Constantine D Mavroudis
- Department of Surgery, Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, United States
| | - Lindsay Volk
- Department of Surgery, Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, United States
| | - Julia Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Alexandra M Marquez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Marco Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| |
Collapse
|
49
|
Morgan RW, Kirschen MP, Kilbaugh TJ, Sutton RM, Topjian AA. Pediatric In-Hospital Cardiac Arrest and Cardiopulmonary Resuscitation in the United States: A Review. JAMA Pediatr 2021; 175:293-302. [PMID: 33226408 PMCID: PMC8787313 DOI: 10.1001/jamapediatrics.2020.5039] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE Pediatric in-hospital cardiac arrest (IHCA) occurs frequently and is associated with high morbidity and mortality. The objective of this narrative review is to summarize the current knowledge and recommendations regarding pediatric IHCA and cardiopulmonary resuscitation (CPR). OBSERVATIONS Each year, more than 15 000 children receive CPR for cardiac arrest during hospitalization in the United States. As many as 80% to 90% survive the event, but most patients do not survive to hospital discharge. Most IHCAs occur in intensive care units and other monitored settings and are associated with respiratory failure or shock. Bradycardia with poor perfusion is the initial rhythm in half of CPR events, and only about 10% of events have an initial shockable rhythm. Pre-cardiac arrest systems focus on identifying at-risk patients and ensuring that they are in monitored settings. Important components of CPR include high-quality chest compressions, timely defibrillation when indicated, appropriate ventilation and airway management, administration of epinephrine to increase coronary perfusion pressure, and treatment of the underlying cause of cardiac arrest. Extracorporeal CPR and measurement of physiological parameters are evolving areas in improving outcomes. Structured post-cardiac arrest care focused on targeted temperature management, optimization of hemodynamics, and careful intensive care unit management is associated with improved survival and neurological outcomes. CONCLUSIONS AND RELEVANCE Pediatric IHCA occurs frequently and has a high mortality rate. Early identification of risk, prevention, delivery of high-quality CPR, and post-cardiac arrest care can maximize the chances of achieving favorable outcomes. More research in this field is warranted.
Collapse
Affiliation(s)
- Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Matthew P. Kirschen
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Robert M. Sutton
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Alexis A. Topjian
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
50
|
Non-invasive diffuse optical neuromonitoring during cardiopulmonary resuscitation predicts return of spontaneous circulation. Sci Rep 2021; 11:3828. [PMID: 33589662 PMCID: PMC7884428 DOI: 10.1038/s41598-021-83270-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Neurologic injury is a leading cause of morbidity and mortality following pediatric cardiac arrest. In this study, we assess the feasibility of quantitative, non-invasive, frequency-domain diffuse optical spectroscopy (FD-DOS) neuromonitoring during cardiopulmonary resuscitation (CPR), and its predictive utility for return of spontaneous circulation (ROSC) in an established pediatric swine model of cardiac arrest. Cerebral tissue optical properties, oxy- and deoxy-hemoglobin concentration ([HbO2], [Hb]), oxygen saturation (StO2) and total hemoglobin concentration (THC) were measured by a FD-DOS probe placed on the forehead in 1-month-old swine (8–11 kg; n = 52) during seven minutes of asphyxiation followed by twenty minutes of CPR. ROSC prediction and time-dependent performance of prediction throughout early CPR (< 10 min), were assessed by the weighted Youden index (Jw, w = 0.1) with tenfold cross-validation. FD-DOS CPR data was successfully acquired in 48/52 animals; 37/48 achieved ROSC. Changes in scattering coefficient (785 nm), [HbO2], StO2 and THC from baseline were significantly different in ROSC versus No-ROSC subjects (p < 0.01) after 10 min of CPR. Change in [HbO2] of + 1.3 µmol/L from 1-min of CPR achieved the highest weighted Youden index (0.96) for ROSC prediction. We demonstrate feasibility of quantitative, non-invasive FD-DOS neuromonitoring, and stable, specific, early ROSC prediction from the third minute of CPR.
Collapse
|