1
|
Nguyen DN, Huyghens L, Nguyen TM, Diltoer M, Jonckheer J, Cools W, Segers L, Schiettecatte J, Vincent JL. Alterations in Regional Brain Microcirculation in Patients with Sepsis: A Prospective Study Using Contrast-Enhanced Brain Ultrasound. Neurocrit Care 2025; 42:428-439. [PMID: 39313698 DOI: 10.1007/s12028-024-02117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Alterations in regional brain microcirculation have not been well studied in patients with sepsis. Regional brain microcirculation can be studied using contrast-enhanced brain ultrasound (CEUS) with microbubble administration. METHODS CEUS was used to assess alterations in regional brain microcirculation on 3 consecutive days in 58 patients with sepsis and within 24 h of intensive care unit admission in 10 aged-matched nonseptic postoperative patients. Time-intensity perfusion curve variables (time-to-peak and peak intensity) were measured in different regions of interest of the brain parenchyma. The mean arterial pressure, cardiac index (using transthoracic echocardiography), global cerebral blood flow (using echo-color Doppler of the carotid and vertebral arteries), mean flow velocities of the middle cerebral arteries, and brain autoregulation (using transcranial echo-color Doppler) were measured simultaneously. The presence of structural brain injury in patients with sepsis was confirmed on computed tomography imaging, and encephalopathy, including coma and delirium, was evaluated using the Glasgow Coma Scale and the Confusion Assessment Method in the Intensive Care Unit. RESULTS Of the 58 patients with sepsis, 42 (72%) developed acute encephalopathy and 11 (19%) had some form of structural brain injury. Brain autoregulation was impaired in 23 (40%) of the patients with sepsis. Brain microcirculation alterations were observed in the left lentiform nucleus and left white matter of the temporoparietal region of the middle cerebral artery in the sepsis nonsurvivors but not in the survivors or postoperative patients. The alterations were characterized by prolonged time-to-peak (p < 0.01) and decreased peak intensity (p < 0.01) on the time-intensity perfusion curve. Prolonged time-to-peak but not decreased peak intensity was independently associated with worse outcome (p = 0.03) but not with the development of encephalopathy (p = 0.77). CONCLUSIONS Alterations in regional brain microcirculation are present in critically ill patients with sepsis and are associated with poor outcome. Trial registration Registered retrospectively on December 19, 2019.
Collapse
Affiliation(s)
- Duc Nam Nguyen
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Luc Huyghens
- Brain Resuscitation in Neurosciences Research Group, Faculty of Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Truc Mai Nguyen
- Department of Geriatrics, University Hospital Vaudois, Lausanne, Switzerland
| | - Marc Diltoer
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Joop Jonckheer
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Wilfried Cools
- Department of Biostatistics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lotte Segers
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Johan Schiettecatte
- Department of Immunochemistry, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Sun M, Li F, Wang Y, Miao M, Lu Z, Chen WM, Wu SY, Zhang J. Postoperative sepsis and its sequential impact on dementia. Crit Care 2025; 29:66. [PMID: 39915868 PMCID: PMC11800527 DOI: 10.1186/s13054-025-05276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Postoperative sepsis is a severe complication associated with increased mortality and potential long-term cognitive decline, including dementia. However, the relationship between postoperative sepsis and dementia remains poorly understood. METHODS This retrospective cohort study used data from the National Database in Taiwan, covering the period from January 1, 2005, to December 31, 2022. The index period for surgeries was set between January 1, 2008, and December 31, 2013, allowing the identification of patients without prior dementia. A landmark period of 12 months following surgery was defined to capture the number of postoperative sepsis events, which were then analyzed for their impact on dementia risk. After 1:4 propensity score matching (PSM), dementia and mortality were evaluated using Cox proportional hazards and Fine-Gray competing risk models. RESULTS Following PSM, 778 patients were in the postoperative sepsis group and 3,112 in the non-postoperative sepsis group. Dementia incidence was higher in the postoperative sepsis group (26%) compared to the non- postoperative sepsis group (13.6%), with a hazard ratio (HR) of 1.25 (95% CI, 1.03-1.52). A dose-response relationship was observed, with dementia rates of 24.5% for one postoperative sepsis event and 34.9% for two or more events, the latter showing an HR of 1.77 (95% CI, 1.17-2.66). Mortality was also elevated in the postoperative sepsis group (40.5% vs. 31.6%; HR 1.45, 95% CI, 1.28-1.65). CONCLUSIONS Postoperative sepsis is significantly associated with increased dementia risk in a dose-dependent manner. These findings highlight the importance of enhancing perioperative infection control to reduce both immediate and long-term cognitive complications.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
| | - Fangfang Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
| | - Mengrong Miao
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
| | - Zhongyuan Lu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, No. 83, Nanchang St., Luodong Township, Yilan County, 265, Taiwan.
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan.
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan.
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan.
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Eskandari R, Milkovich S, Kamar F, Goldman D, Welsh DG, Ellis CG, Diop M. Non-invasive point-of-care optical technique for continuous in vivo assessment of microcirculatory function: Application to a preclinical model of early sepsis. FASEB J 2024; 38:e70204. [PMID: 39628290 PMCID: PMC11615564 DOI: 10.1096/fj.202401889r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/08/2024]
Abstract
Increased amplitude of peripheral vasomotion is a potential early marker of sepsis-related microcirculatory impairment; however, previous reports relied on clinically unsuitable invasive techniques. Hyperspectral near-infrared spectroscopy (hsNIRS) and diffuse correlation spectroscopy (DCS) are non-invasive, bedside techniques that can be paired to continuously monitor tissue hemoglobin content (HbT), oxygenation (StO2), and perfusion (rBF) to detect vasomotion as low-frequency microhemodynamic oscillations. While previous studies have primarily focused on the peripheral microcirculation, cerebral injury is also a common occurrence in sepsis and hsNIRS-DCS could be used to assess cerebral microcirculatory function. This work aimed to use a hybrid hsNIRS-DCS system to continuously monitor changes in the peripheral and cerebral microcirculation in a rat model of early sepsis. It was hypothesized that the skeletal muscle would be a more sensitive early indicator of sepsis-related changes in microhemodynamics than the brain. Control animals received saline while the experimental group received fecal slurry to induce sepsis. Subsequently, hsNIRS-DCS measurements were acquired from the skeletal muscle and brain for 6 h. Peripheral rBF rapidly decreased in septic animals, but there were no significant changes in peripheral HbT or StO2, nor cerebral HbT, rBF, or StO2. The power of low-frequency peripheral oscillations in all parameters (i.e., HbT, StO2, and rBF) as well as cerebral HbT oscillations were elevated in septic animals during the final 4 h. These findings suggest that in the early stages of sepsis, while vital organs like the brain are partly protected, changes in peripheral perfusion and vasomotor activity can be detected using hsNIRS-DCS. Future work will apply the technique to ICU patients.
Collapse
Affiliation(s)
- Rasa Eskandari
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | | | - Farah Kamar
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | - Daniel Goldman
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
| | - Donald G. Welsh
- Robarts Research InstituteWestern UniversityLondonOntarioCanada
- Department of Physiology and PharmacologyWestern UniversityLondonOntarioCanada
| | - Christopher G. Ellis
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Robarts Research InstituteWestern UniversityLondonOntarioCanada
| | - Mamadou Diop
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
4
|
Bai G, Ling J, Lu J, Fang M, Yu S. Adiponectin receptor agonist AdipoRon alleviates memory impairment in the hippocampus of septic mice. Behav Brain Res 2024; 472:115174. [PMID: 39098398 DOI: 10.1016/j.bbr.2024.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common and severe clinical feature of sepsis; however, therapeutic approaches are limited because of the unclear pathogenesis. Adiponectin receptor agonist (AdipoRon) is a small-molecule agonist of the adiponectin receptor that exhibits anti-inflammatory and memory-improving effects in various diseases. In the present study, we established lipopolysaccharide (LPS)-induced mice models of SAE and found that Adiponectin receptor 1 (AdipoR1) was significantly decreased in the hippocampus. Administration of AdipoRon improves memory impairment, mitigates synaptic damage, and alleviates neuronal death. Furthermore, AdipoRon reduces the number of microglia. More importantly, AdipoRon promotes the phosphorylation of adenosine 5 '-monophosphate activated protein kinase (pAMPK). In conclusion, AdipoRon is protective against SAE-induced memory decline and brain injury in the SAE models via activating the hippocampal adenosine 5 '-monophosphate activated protein kinase (AMPK).
Collapse
Affiliation(s)
- Guangyang Bai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Shanshan Yu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
5
|
Fan TH, Premraj L, Roberts J, Lydston M, Robba C, Hager D, Suarez JI, Battaglini D, Cho SM. In-Hospital Neurologic Complications, Neuromonitoring, and Long-Term Neurologic Outcomes in Patients With Sepsis: A Systematic Review and Meta-Analysis. Crit Care Med 2024; 52:452-463. [PMID: 37921513 PMCID: PMC10923122 DOI: 10.1097/ccm.0000000000006096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Although delirium is well described in patients with sepsis, there are limited data on other neurologic complications. We aimed to systematically review the prevalence, neuromonitoring tools, and neurocognitive outcomes in sepsis patients with neurologic complications. DATA SOURCES MEDLINE and six other databases (Embase, Web of Science, Cochrane CENTRAL, and ClinicalTrials.gov ) were searched through January 2023. STUDY SELECTION Studies of adult patients with sepsis reported neurologic complications, use of neuromonitoring tools, neuropathology, and cognitive outcomes. DATA EXTRACTION Two independent reviewers extracted the data. Random-effect meta-analyses were used to pool data. DATA SYNTHESIS Seventy-four studies ( n = 146,855) were included. Neurologic complications were reported in 38 studies ( n = 142,193) including septic encephalopathy (36%, 95% CI, 27-46%; I 2 = 99%), ischemic stroke (5%, 95% CI, 2.1-11.5; I 2 = 99%), intracranial hemorrhage (2%, 95% CI, 1.0-4.4%; I 2 = 96%), seizures (1%, 95% CI, 0.2-7%; I 2 = 96%), posterior reversible encephalopathy syndrome (9%), and hypoxic-ischemic brain injury (7%). In the meta-regression analysis, pulmonary infection, sepsis induced by a gram-positive organism, higher sequential organ failure assessment score, acute physiology and chronic health evaluation II score at admission, and longer ICU length of stay were associated with higher risk of developing septic encephalopathy. Three studies ( n = 159) reported postmortem neuropathological findings, acute brain injury was noted in 47% of patients. Twenty-six studies ( n = 1,358) reported the use of neuromonitoring tools, electroencephalogram was the most used tool for seizure detection. Transcranial Doppler and near infrared spectroscopy were used for monitoring cerebral hemodynamic changes to detect early ischemia. Six studies reported cognitive outcomes ( n = 415) up to 12 months postdischarge and cognitive impairment (≥ one domain) was reported in 30%. CONCLUSIONS In-hospital neurologic complications are common in patients with sepsis. However, the mechanism and timing of those sepsis-associated complications are poorly understood and there are limited data on standardized neuromonitoring in this population.
Collapse
Affiliation(s)
- Tracey H Fan
- Department of Neurology, Neurocritical Care Division, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lavienraj Premraj
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Jacob Roberts
- School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Melissa Lydston
- Treadwell Virtual Library, Massachusetts General Hospital, Boston, MA
| | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genova, Italy
| | - David Hager
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Jose I. Suarez
- Divisions of Neuroscience Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Denise Battaglini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genova, Italy
| | - Sung-Min Cho
- Divisions of Neuroscience Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
6
|
Oswald T, Christopherson T, Kankam O. Capacity to consent for treatment: who decides? Br J Hosp Med (Lond) 2023; 84:1-3. [PMID: 37364876 DOI: 10.12968/hmed.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Affiliation(s)
- Thomas Oswald
- Department of Stroke Medicine, Eastbourne District General Hospital, East Sussex Healthcare NHS Trust, Eastbourne, UK
| | - Thereza Christopherson
- Department of Respiratory Medicine, Conquest Hospital, East Sussex Healthcare NHS Trust, Hastings, UK
| | - Osei Kankam
- Department of Respiratory Medicine, Conquest Hospital, East Sussex Healthcare NHS Trust, Hastings, UK
| |
Collapse
|
7
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
8
|
Lu X, Qin M, Walline JH, Gao Y, Yu S, Ge Z, Gong C, Zhu H, Annane D, Li Y. CLINICAL PHENOTYPES OF SEPSIS-ASSOCIATED ENCEPHALOPATHY: A RETROSPECTIVE COHORT STUDY. Shock 2023; 59:583-590. [PMID: 36821412 PMCID: PMC10082059 DOI: 10.1097/shk.0000000000002092] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
ABSTRACT Background: Sepsis-associated encephalopathy (SAE) is a dysfunction of the central nervous system experienced during sepsis with variable clinical and pathophysiologic features. We sought to identify distinct SAE phenotypes in relation to clinical outcomes. Methods: The Medical Information Mart for Intensive Care IV (MIMIC-IV) database and the eICU database were used to conduct a retrospective cohort study. Adult sepsis patients were included and SAE was defined as having a Glasgow Coma Scale (GCS) score ˂15 or delirium. The following our clinical phenotypes were defined as: ischemic-hypoxic, metabolic, mixed (ischemic-hypoxic and metabolic), and unclassified. The primary outcome was in-hospital mortality. Results: The study enrolled 4,120 sepsis patients, 2,239 from MIMIC-IV (including 1,489 patients with SAE, 67%), and 1,881 from eICU (1,291, 69%). For the SAE cohort, 2,780 patients in total were enrolled (median age, 67 years; interquartile range, 56-76.8; 1,589 (57%) were male; median GCS score was 12 [8-14]; median Sequential Organ Failure Assessment score was 6 [4-9]). The SAE phenotype distributions between the MIMIC-IV and eICU cohorts were as follows (39% vs. 35% ischemic-hypoxic, P = 0.043; 38% vs. 40% metabolic, P = 0.239; 15% vs. 15% mixed, P = 0.972; 38% vs. 40% unclassified, P = 0.471). For the overall cohort, the in-hospital mortality for patients with ischemic-hypoxic, metabolic, mixed, or unclassified phenotypes was 33.9% (95% confidence interval, 0.3-0.37), 28.4% (0.26-0.31), 41.5% (0.37-0.46), and 14.2% (0.12-0.16), respectively. In the multivariable logistic analysis, the mixed phenotype was associated with the highest risk of in-hospital mortality after adjusting for age, sex, GCS, and modified Sequential Organ Failure Assessment score (adjusted odds ratio, 2.11; 95% confidence interval, 1.67-2.67; P < 0.001). Conclusions: Four SAE phenotypes had different clinical outcomes. The mixed phenotype had the worst outcomes. Further understanding of these phenotypes in sepsis may improve trial design and targeted SAE management.
Collapse
Affiliation(s)
- Xin Lu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mubing Qin
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Joseph Harold Walline
- Department of Emergency Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Yanxia Gao
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyuan Yu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zengzheng Ge
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chao Gong
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Djillali Annane
- General intensive care unit, Raymond Poincaré hospital (APHP), Garches, France
- School of medicine Simone Veil, University Paris Saclay–campus UVSQ, Gif-sur-Yvette, France
- FHU SEPSIS, U1173, University Paris Saclay, INSERM, Gif-sur-Yvette, France
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Yang M, He Y, Xin Y, Jiang J, Tian M, Tan J, Deng S, Gong Y. Identification of biomarkers and therapeutic targets related to Sepsis-associated encephalopathy in rats by quantitative proteomics. BMC Genomics 2023; 24:4. [PMID: 36600206 DOI: 10.1186/s12864-022-09101-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a common and severe complication of sepsis. While several studies have reported the proteomic alteration in plasma, urine, heart, etc. of sepsis, few research focused on the brain tissue. This study aims at discovering the differentially abundant proteins in the brains of septic rats to identify biomarkers of SAE. METHODS The Prague-Dawley rats were randomly divided into sepsis (n = 6) or sham (n = 6) groups, and then the whole brain tissue was dissected at 24 h after surgery for further protein identification by Quantitative iTRAQ LC-MS/MS Proteomics. Ingenuity pathway analysis, Gene ontology knowledgebase, and STRING database are used to explore the biological significance of proteins with altered concentration. RESULTS Among the total of 3163 proteins identified in the brain tissue, 57 were increased while 38 were decreased in the sepsis group compared to the sham group. Bioinformatic analyses suggest that the differentially abundant proteins are highly related to cellular microtubule metabolism, energy production, nucleic acid metabolism, neurological disease, etc. Additionally, acute phase response signaling was possibly activated and PI3K/AKT signaling was suppressed during sepsis. An interaction network established by IPA revealed that Akt1, Gc-globulin, and ApoA1 were the core proteins. The increase of Gc-globulin and the decrease of Akt1 and ApoA1 were confirmed by Western blot. CONCLUSION Based on the multifunction of these proteins in several brain diseases, we first propose that Gc-globulin, ApoA1, PI3K/AKT pathway, and acute phase response proteins (hemopexin and cluster of alpha-2-macroglobulin) could be potential candidates for the diagnosis and treatment of SAE. These results may provide new insights into the pathologic mechanism of SAE, yet further research is required to explore the functional implications and clinical applications of the differentially abundant proteins in the brains of sepsis group.
Collapse
Affiliation(s)
- Miaoxian Yang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Yu He
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Yuewen Xin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Junliang Jiang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Jiaying Tan
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China. .,Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China.
| |
Collapse
|
10
|
Zhang LQ, Zaikos TD, Kannapadi N, Laws L, Shah P, Troncoso JC, Stephens RS, Nyquist P, Cho SM. Neuropathology Associated with Acute Respiratory Distress Syndrome: An Autopsy Study. Ann Am Thorac Soc 2023; 20:155-159. [PMID: 36190782 PMCID: PMC9819270 DOI: 10.1513/annalsats.202205-453rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Lucy Q. Zhang
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | | | | | - Lindsay Laws
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | - Pavan Shah
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | | | | | - Paul Nyquist
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | - Sung-Min Cho
- Johns Hopkins University School of MedicineBaltimore, Maryland
| |
Collapse
|
11
|
Elbert JA, Rissi DR. Neuropathologic changes associated with systemic bacterial infection in 28 dogs. J Vet Diagn Invest 2022; 34:752-756. [PMID: 35684962 DOI: 10.1177/10406387221102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although systemic bacterial infection (SBI) is a common cause of sepsis and death in dogs, the neuropathology of canine SBI has been poorly characterized. Here we describe the neuropathologic features of SBI in a retrospective series of 28 dogs. The mean age of affected dogs was 5.5 y, and there was no sex or breed predisposition. Gross lesions in the brain were reported in 13 cases (46%) and consisted mainly of leptomeningeal hemorrhages in 10 of these cases (77%). Associated extraneural lesions included suppurative mitral valve endocarditis (12 cases; 43%) and pneumonia (10 cases; 36%). The main neurohistologic findings were neutrophilic (suppurative) and/or fibrinous meningoencephalitis with hemorrhage, vasculitis, thrombosis, and neuronal necrosis. Intralesional bacteria were observed in neutrophils or macrophages in 10 cases (77%). The putative primary site of infection was determined in 16 cases (57%) and consisted of pneumonia (6 cases; 38%), pyelonephritis (4 cases; 25%), and skin lesions (3 cases; 19%). Bacterial culture of fresh or frozen tissue samples yielded bacterial growth in 26 cases (93%), including Streptococcus canis (6 cases; 23%), Escherichia coli (4 cases; 15%), and Staphylococcus intermedius (3 cases; 12%).
Collapse
Affiliation(s)
- Jessica A Elbert
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Rissi
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Spectroscopy detects skeletal muscle microvascular dysfunction during onset of sepsis in a rat fecal peritonitis model. Sci Rep 2022; 12:6339. [PMID: 35428849 PMCID: PMC9012880 DOI: 10.1038/s41598-022-10208-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/15/2022] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a dysregulated host inflammatory response to infection potentially leading to life-threatening organ dysfunction. The objectives of this study were to determine whether early microvascular dysfunction (MVD) in skeletal muscle can be detected as dynamic changes in microvascular hemoglobin (MVHb) levels using spectroscopy and whether MVD precedes organ histopathology in septic peritonitis. Skeletal muscle of male Sprague-Dawley rats was prepared for intravital microscopy. After intraperitoneal injection of fecal slurry or saline, microscopy and spectroscopy recordings were taken for 6 h. Capillary red blood cell (RBC) dynamics and SO2 were quantified from digitized microscopy frames and MVHb levels were derived from spectroscopy data. Capillary RBC dynamics were significantly decreased by 4 h after peritoneal infection and preceded macrohemodynamic changes. At the same time, low-frequency oscillations in MVHb levels exhibited a significant increase in Power in parts of the muscle and resembled oscillations in RBC dynamics and SO2. After completion of microscopy, tissues were collected. Histopathological alterations were not observed in livers, kidneys, brains, or muscles 6 h after induction of peritonitis. The findings of this study show that, in our rat model of sepsis, MVD occurs before detectable organ histopathology and includes ~ 30-s oscillations in MVHb. Our work highlights MVHb oscillations as one of the indicators of MVD onset and provides a foundation for the use of non-invasive spectroscopy to continuously monitor MVD in septic patients.
Collapse
|
13
|
Barichello T, Generoso JS, Dominguini D, Córneo E, Giridharan VV, Sahrapour TA, Simões LR, Rosa MID, Petronilho F, Ritter C, Sharshar T, Dal-Pizzol F. Postmortem Evidence of Brain Inflammatory Markers and Injury in Septic Patients: A Systematic Review. Crit Care Med 2022; 50:e241-e252. [PMID: 34402457 DOI: 10.1097/ccm.0000000000005307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Sepsis is a life-threatening organ dysfunction caused by a host's unregulated immune response to eliminate the infection. After hospitalization, sepsis survivors often suffer from long-term impairments in memory, attention, verbal fluency, and executive functioning. To understand the effects of sepsis and the exacerbated peripheral inflammatory response in the brain, we asked the question: What are the findings and inflammatory markers in the brains of deceased sepsis patients? To answer this question, we conducted this systematic review by the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. DATA SOURCES Relevant studies were identified by searching the PubMed/National Library of Medicine, PsycINFO, EMBASE, Bibliographical Index in Spanish in Health Sciences, Latin American and Caribbean Health Sciences Literature, and Web of Science databases for peer-reviewed journal articles published on April 05, 2021. STUDY SELECTION A total of 3,745 articles were included in the primary screening; after omitting duplicate articles, animal models, and reviews, 2,896 articles were selected for the study. These studies were selected based on the title and abstract, and 2,772 articles were still omitted based on the exclusion criteria. DATA EXTRACTION The complete texts of the remaining 124 articles were obtained and thoroughly evaluated for the final screening, and 104 articles were included. DATA SYNTHESIS The postmortem brain had edema, abscess, hemorrhagic and ischemic injuries, infarction, hypoxia, atrophy, hypoplasia, neuronal loss, axonal injuries, demyelination, and necrosis. CONCLUSIONS The mechanisms by which sepsis induces brain dysfunction are likely to include vascular and neuronal lesions, followed by the activation of glial cells and the presence of peripheral immune cells in the brain.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Taha A Sahrapour
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Lutiana R Simões
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Maria Inês da Rosa
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Santa Catarina, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Tarek Sharshar
- Department of Neurointensive Care and Neuroanesthesia, GHU Paris Psychiatrie et Neuroscience, Paris, France
- Université de Paris, Paris, France
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| |
Collapse
|
14
|
Becker AE, Teixeira SR, Lunig NA, Mondal A, Fitzgerald JC, Topjian AA, Weiss SL, Griffis H, Schramm SE, Traynor DM, Vossough A, Kirschen MP. Sepsis-Related Brain MRI Abnormalities Are Associated With Mortality and Poor Neurological Outcome in Pediatric Sepsis. Pediatr Neurol 2022; 128:1-8. [PMID: 34992035 PMCID: PMC9685598 DOI: 10.1016/j.pediatrneurol.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND It is not known whether brain magnetic resonance imaging (MRI) abnormalities in pediatric sepsis are associated with clinical outcomes. Study objectives were to (1) determine the prevalence and type of sepsis-related neuroimaging abnormalities evident on clinically indicated brain MRI in children with sepsis and (2) test the association of these abnormalities with mortality, new disability, length of stay (LOS), and MRI indication. METHODS Retrospective cohort study of 140 pediatric patients with sepsis and a clinically indicated brain MRI obtained within 60 days of sepsis onset at a single, large academic pediatric intensive care unit (PICU). Two radiologists systematically reviewed the first post-sepsis brain MRI and determined which abnormalities were sepsis-related. Outcomes compared in patients with versus without sepsis-related MRI abnormalities. RESULTS PICU mortality was 7%. Thirty patients had one or more sepsis-related MRI abnormality, yielding a prevalence of 21% (95% confidence interval 15%, 28%). Among those, 53% (16 of 30) had sepsis-related white matter signal abnormalities; 53% (16 of 30) sepsis-related ischemia, infarction, or thrombosis; and 27% (eight of 30) sepsis-related posterior reversible encephalopathy. Patients with one or more sepsis-related MRI abnormality had increased mortality (17% vs 5%; P = 0.04), new neurological disability at PICU discharge (32% vs 11%; P = 0.03), and longer PICU LOS (median 18 vs 11 days; P = 0.04) compared with patients without. CONCLUSIONS In children with sepsis and a clinically indicated brain MRI, 21% had a sepsis-related MRI abnormality. Sepsis-related MRI abnormalities were associated with increased mortality, new neurological disability, and longer PICU LOS.
Collapse
Affiliation(s)
- Andrew E. Becker
- Department of Anesthesiology & Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Sara R. Teixeira
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nicholas A. Lunig
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Antara Mondal
- Department of Biomedical & Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Julie C. Fitzgerald
- Department of Anesthesiology & Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,CHOP Pediatric Sepsis Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alexis A. Topjian
- Department of Anesthesiology & Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Scott L. Weiss
- Department of Anesthesiology & Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,CHOP Pediatric Sepsis Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Heather Griffis
- Department of Biomedical & Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Stephanie E. Schramm
- Department of Anesthesiology & Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Danielle M. Traynor
- Department of Anesthesiology & Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Arastoo Vossough
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew P. Kirschen
- Department of Anesthesiology & Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Biomarker Panel to Differentiate Brain Injury From Brain Dysfunction in Patients With Sepsis-Associated Encephalopathy. Crit Care Med 2021; 48:e436-e437. [PMID: 32301790 DOI: 10.1097/ccm.0000000000004266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gu M, Mei XL, Zhao YN. Sepsis and Cerebral Dysfunction: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Potential Therapeutic Approaches. Neurotox Res 2020; 39:489-503. [PMID: 32876918 DOI: 10.1007/s12640-020-00270-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Sepsis-associated cerebral dysfunction is complex pathophysiology, generated from primary infections that are developed elsewhere in the body. The neonates, elderly population and chronically ill and long-term hospitalized patients are predominantly vulnerable to sepsis and related cerebral damage. Generally, electrophysiological recordings, severity and sedation scales, computerized imaging and spectroscopy techniques are used for its detection and diagnosis. About the underlying mechanisms, enhanced blood-brain barrier permeability and metalloprotease activity, tight junction protein loss and endothelial cell degeneration promote the influx of inflammatory and toxic mediators into the brain, triggering cerebrovascular damage. An altered neutrophil count and phenotype further dysregulate the normal neuroimmune responses and neuroendocrine stability via modulated activation of protein kinase C-delta, nuclear factor kappa-B and sphingolipid signaling. Glial activation, together with pro-inflammatory cytokines and chemokines and the Toll-like receptor, destabilize the immune system. Moreover, superoxides and hydroperoxides generate oxidative stress and perturb mitochondrial dynamics and ATP synthesis, propagating neuronal injury cycle. Activated mitochondrial apoptotic pathway, characterized by increased caspase-3 and caspase-9 cleavage and Bax/Bcl2 ratio in the hippocampal and cortical neurons, stimulate neurocognitive impairments. Additionally, altered LC3-II/I and P62/SQSTM1, p-mTOR, p-AMPK1 and p-ULK1 levels and dysregulated autophagosome-lysosome fusion decrease neuronal and glial energy homeostasis. The therapies and procedures for attenuating sepsis-induced brain damage include early resuscitation, cerebral blood flow autoregulation, implantable electric vagus nerve stimulation, antioxidants, statins, glucocorticoids, neuroimmune axis modulators and PKCδ inhibitors. The current review enumerates the pathophysiology of sepsis-induced brain damage, its diagnosis, the role of critical inducers and mediators and, ultimately, therapeutic measures attenuating cerebrovascular degeneration.
Collapse
Affiliation(s)
- Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xiang-Lin Mei
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Ya-Nan Zhao
- Neurology Department, China-Japan Union Hospital of Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
17
|
|
18
|
Mankowski RT, Anton SD, Ghita GL, Brumback B, Cox MC, Mohr AM, Leeuwenburgh C, Moldawer LL, Efron PA, Brakenridge SC, Moore FA. Older Sepsis Survivors Suffer Persistent Disability Burden and Poor Long-Term Survival. J Am Geriatr Soc 2020; 68:1962-1969. [PMID: 32294254 DOI: 10.1111/jgs.16435] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Sepsis has been called a "disease of the elderly," and as in-hospital mortality has decreased, more sepsis survivors are progressing into poorly characterized long-term outcomes. The purpose of this study was to describe the current epidemiology of sepsis in older adults compared with middle-aged and young adults. DESIGN Prospective longitudinal study with young (≤45 years), middle-aged (46-64 years), and older (≥65 years) patient groups. SETTING University tertiary medical center. PARTICIPANTS A total of 328 adult surgical intensive care unit (ICU) sepsis patients. MEASUREMENTS Patients were characterized by (1) baseline demographics and predisposition, (2) septic event, (3) hospital outcomes and discharge disposition, (4) 12-month mortality, and (5) Zubrod Performance Status, physical function (Short Physical Performance Battery and handgrip strength), and cognitive function (Hopkins Verbal Learning Test, Controlled Oral Word Association, and Mini-Mental Status Examination) at 3-, 6-, and 12-month follow-up. Loss to follow-up was due to death (in 68), consent withdrawal (in 32), and illness and scheduling difficulties: month 3 (in 51), month 6 (in 29), and month 12 (in 20). RESULTS Compared with young and middle-aged patients, older patients had (1) significantly more comorbidities at presentation (eg, chronic renal disease 6% vs 12% vs 21%), intra-abdominal infections (14% vs 25% vs 37%), septic shock (12% vs 25% vs 36%), and organ dysfunctions; (2) higher 30-day mortality (6% vs 4% vs 17%) and fewer ICU-free days (median = 25 vs 23 vs 20); (3) more progression into chronic critical illness (22% vs 34% vs 42%) with higher poor disposition discharge to non-home destinations (19% vs 40% vs 62%); (4) worse 12-month mortality (11% vs 14% vs 33%); and (5) poorer Zubrod Performance Status and objectively measured physical and cognitive functions with only slight improvement over 12-month follow-up. CONCLUSION Compared with younger patients, older sepsis survivors suffer both a higher persistent disability burden and 12-month mortality.
Collapse
Affiliation(s)
- Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, USA
| | - Stephen D Anton
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Gabriela L Ghita
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Babette Brumback
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA.,Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Michael C Cox
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Alicia M Mohr
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | | | - Frederick A Moore
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
19
|
Hjorthøj C, Starzer MSK, Benros ME, Nordentoft M. Infections as a Risk Factor for and Prognostic Factor After Substance-Induced Psychoses. Am J Psychiatry 2020; 177:335-341. [PMID: 32046532 DOI: 10.1176/appi.ajp.2019.19101047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Previous studies have suggested that infections increase the risk of schizophrenia. In this study, the authors aimed to investigate 1) whether infections increase the risk of substance-induced psychosis, and 2) whether infections increase the risk of converting from substance-induced psychosis to schizophrenia. METHODS The study data were drawn from the combined nationwide Danish registers and included all people born in Denmark since 1981. The authors used Cox proportional hazards regression with infections as time-varying covariates, estimating hazard ratios and 95% confidence intervals. Infections were operationalized both as any infection and by the site of infection. RESULTS The study included 2,256,779 individuals, for whom 3,618 cases of incident substance-induced psychosis were recorded. Any infection increased the risk of substance-induced psychosis (hazard ratio=1.30, 95% CI=1.22-1.39). For the first 2 years, the risk was doubled. Hepatitis was the infection most strongly associated with substance-induced psychosis (hazard ratio=3.42, 95% CI=2.47-4.74). Different types of infections were linked with different types of substance-induced psychosis. Most associations remained significant after controlling for potential confounders, such as substance use disorders. Only hepatitis predicted conversion to schizophrenia after substance-induced psychosis (hazard ratio=1.87, 95% CI=1.07- 3.26). CONCLUSIONS The study results support the hypothesis of an immunological component to psychosis.
Collapse
Affiliation(s)
- Carsten Hjorthøj
- Copenhagen Research Center for Mental Health-CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Hjorthøj, Starzer, Benros, Nordentoft); Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) (Hjorthøj, Benros, Nordentoft); and Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen (Hjorthøj)
| | - Marie Stefanie Kejser Starzer
- Copenhagen Research Center for Mental Health-CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Hjorthøj, Starzer, Benros, Nordentoft); Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) (Hjorthøj, Benros, Nordentoft); and Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen (Hjorthøj)
| | - Michael Eriksen Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Hjorthøj, Starzer, Benros, Nordentoft); Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) (Hjorthøj, Benros, Nordentoft); and Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen (Hjorthøj)
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health-CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Hjorthøj, Starzer, Benros, Nordentoft); Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) (Hjorthøj, Benros, Nordentoft); and Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen (Hjorthøj)
| |
Collapse
|