1
|
Zanza C, Longhitano Y, Planinsic R, Voza A, Tesauro M, Caputo G, Rubulotta F, La Via L. The Immunomodulatory Effects of Nutritional Supplements in Traumatic Brain Injury. J Intensive Care Med 2025:8850666251337378. [PMID: 40289554 DOI: 10.1177/08850666251337378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Traumatic brain injury (TBI) remains a leading cause of mortality and disability worldwide, characterized by complex pathophysiological processes that extend beyond the initial trauma. The inflammatory response following TBI plays a crucial role in patient outcomes, presenting both protective and potentially detrimental effects. This narrative review examines the current evidence regarding the role of nutritional supplements in modulating the inflammatory response after TBI. Recent research has demonstrated that various nutritional interventions, including probiotics, immunonutrition formulas, vitamin D, and taurine supplementation, can significantly influence inflammatory markers and clinical outcomes. Probiotics have shown particular promise in reducing inflammatory mediators and infection rates, while also decreasing hospital and ICU length of stay. Immunonutrition, especially through vitamin D supplementation, demonstrates significant effects on consciousness levels and ventilation requirements. The timing of nutritional intervention emerges as critical, with the early post-injury period (24-72 h) representing a crucial window for therapeutic intervention. The gut-brain axis appears central to these effects, with nutritional supplements potentially modulating both central and systemic inflammatory responses. While these interventions show promising results in reducing inflammatory markers and improving short-term outcomes, their impact on mortality rates remains limited. Future research should focus on optimizing nutritional protocols, understanding individual patient factors, and investigating long-term functional outcomes. This review supports a paradigm shift in approaching nutritional support in TBI, transitioning from viewing it as merely supportive care to recognizing it as an active therapeutic intervention that can significantly influence patient outcomes.
Collapse
Affiliation(s)
- Christian Zanza
- Geriatric Medicine Residency Program, University of Rome "Tor Vergata", Rome, Italy
| | - Yaroslava Longhitano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raymond Planinsic
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Antonio Voza
- Department of Emergency Medicine, Emergency Medicine Residency Program-IRCCS-Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Manfredi Tesauro
- Geriatric Medicine Residency Program, University of Rome "Tor Vergata", Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giorgia Caputo
- Department of Anesthesia and Intensive Care, University Hospital San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Francesca Rubulotta
- Department of Anesthesia and Intensive Care 1, Azienda Ospedaliero Universitaria Policlinico, Catania, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- IWIN Foundation, Agira, Italy
| | - Luigi La Via
- Department of Anesthesia and Intensive Care 1, Azienda Ospedaliero Universitaria Policlinico, Catania, Italy
| |
Collapse
|
2
|
Oami T, Yamamoto A, Ishida S, Kondo K, Hata N, Oshima T. Critical Care Nutrition from a Metabolic Point of View: A Narrative Review. Nutrients 2025; 17:1352. [PMID: 40284216 PMCID: PMC12029973 DOI: 10.3390/nu17081352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier dysfunction, which contribute to increased morbidity and mortality. Emerging evidence highlights the role of the gut microbiome and its metabolites in modulating systemic inflammation and immune responses during critical illness. This narrative review explores the metabolic evolution of critically ill patients, the impact of gut dysbiosis on disease progression, and the potential role of nutrition in modulating metabolism and improving patient outcomes. Methods: A comprehensive literature search was conducted across PubMed and Google Scholar for articles published up to February 2025. Search terms included "critical illness", "metabolism", "gut microbiota", "nutrition", and related keywords. Articles published in English addressing metabolic alterations, microbiome changes, and nutritional strategies in critically ill patients were included. After screening for eligibility, relevant articles were synthesized to outline current knowledge and identify gaps. Results: Metabolic changes in critical illness progress through distinct phases, from catabolism-driven hypermetabolism to gradual recovery. Gut dysbiosis, characterized by a loss of microbial diversity and increased gut permeability, contributes to systemic inflammation and organ dysfunction. Nutritional strategies, including enteral nutrition, probiotics, prebiotics, and metabolomics-driven interventions, may help restore microbial balance, preserve gut barrier integrity, and modulate immune and metabolic responses. Future nutrition therapy should focus on metabolic modulation rather than solely addressing nutrient deficits. Conclusions: Advances in gut microbiome research and metabolomics offer new avenues for personalized nutrition strategies tailored to the metabolic demands of critically ill patients. Integrating these approaches may improve clinical and functional recovery while mitigating the long-term consequences of critical illness.
Collapse
Affiliation(s)
- Takehiko Oami
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan; (T.O.)
| | - Akiyuki Yamamoto
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan; (T.O.)
| | - Shigenobu Ishida
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan; (T.O.)
| | - Kengo Kondo
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan; (T.O.)
| | - Nanami Hata
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan; (T.O.)
| | - Taku Oshima
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan; (T.O.)
- Institute for Advanced Academic Research, Chiba University, Chiba 263-8522, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
3
|
Chen TA, Chuang YT, Pai SC, Zheng JF. The Potential of Probiotics in Reducing Ventilator-Associated Pneumonia: A Literature-Based Analysis. Microorganisms 2025; 13:856. [PMID: 40284692 PMCID: PMC12029436 DOI: 10.3390/microorganisms13040856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Ventilator-associated pneumonia (VAP) remains a significant concern in intensive care units (ICUs), contributing to increased morbidity, mortality, and healthcare costs. Probiotics and synbiotics have been explored as potential preventive measures due to their ability to modulate gut microbiota, reduce pathogenic colonization, enhance immune responses, and maintain intestinal barrier integrity. While some randomized controlled trials (RCTs) suggest that specific strains, such as Lactobacillus rhamnosus GG and Bifidobacterium breve, may reduce VAP incidence, larger trials have not confirmed significant benefits. Systematic reviews and meta-analyses indicate a potential 28-38% relative risk reduction in VAP, but evidence quality remains low due to methodological limitations and study heterogeneity. Economic evaluations also question the cost effectiveness of probiotic use in ICU settings. Future research should focus on large-scale, multicenter RCTs to determine the optimal strains, dosages, and administration methods, along with standardized diagnostic criteria. Until stronger evidence emerges, probiotics should be considered an adjunctive rather than a primary VAP prevention strategy.
Collapse
Affiliation(s)
- Tao-An Chen
- Division of Respiratory Therapy, Department of Chest Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan; (T.-A.C.); (S.-C.P.)
| | - Ya-Ting Chuang
- Surgical Intensive Care Unit, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Szu-Chi Pai
- Division of Respiratory Therapy, Department of Chest Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan; (T.-A.C.); (S.-C.P.)
| | - Jin-Fu Zheng
- Department of Gastroenterology Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| |
Collapse
|
4
|
Chen TA, Chuang YT, Pai SC, Zheng JF. The Potential of Probiotics in Reducing Ventilator-Associated Pneumonia: A Literature-Based Analysis. Microorganisms 2025; 13:856. [DOI: https:/doi.org/10.3390/microorganisms13040856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Ventilator-associated pneumonia (VAP) remains a significant concern in intensive care units (ICUs), contributing to increased morbidity, mortality, and healthcare costs. Probiotics and synbiotics have been explored as potential preventive measures due to their ability to modulate gut microbiota, reduce pathogenic colonization, enhance immune responses, and maintain intestinal barrier integrity. While some randomized controlled trials (RCTs) suggest that specific strains, such as Lactobacillus rhamnosus GG and Bifidobacterium breve, may reduce VAP incidence, larger trials have not confirmed significant benefits. Systematic reviews and meta-analyses indicate a potential 28–38% relative risk reduction in VAP, but evidence quality remains low due to methodological limitations and study heterogeneity. Economic evaluations also question the cost effectiveness of probiotic use in ICU settings. Future research should focus on large-scale, multicenter RCTs to determine the optimal strains, dosages, and administration methods, along with standardized diagnostic criteria. Until stronger evidence emerges, probiotics should be considered an adjunctive rather than a primary VAP prevention strategy.
Collapse
Affiliation(s)
- Tao-An Chen
- Division of Respiratory Therapy, Department of Chest Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Ya-Ting Chuang
- Surgical Intensive Care Unit, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Szu-Chi Pai
- Division of Respiratory Therapy, Department of Chest Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Jin-Fu Zheng
- Department of Gastroenterology Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| |
Collapse
|
5
|
Oami T, Shimazui T, Yumoto T, Otani S, Hayashi Y, Coopersmith CM. Gut integrity in intensive care: alterations in host permeability and the microbiome as potential therapeutic targets. J Intensive Care 2025; 13:16. [PMID: 40098052 PMCID: PMC11916345 DOI: 10.1186/s40560-025-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The gut has long been hypothesized to be the "motor" of critical illness, propagating inflammation and playing a key role in multiple organ dysfunction. However, the exact mechanisms through which impaired gut integrity potentially contribute to worsened clinical outcome remain to be elucidated. Critical elements of gut dysregulation including intestinal hyperpermeability and a perturbed microbiome are now recognized as potential therapeutic targets in critical care. MAIN BODY The gut is a finely tuned ecosystem comprising ~ 40 trillion microorganisms, a single cell layer intestinal epithelia that separates the host from the microbiome and its products, and the mucosal immune system that actively communicates in a bidirectional manner. Under basal conditions, these elements cooperate to maintain a finely balanced homeostasis benefitting both the host and its internal microbial community. Tight junctions between adjacent epithelial cells selectively transport essential molecules while preventing translocation of pathogens. However, critical illness disrupts gut barrier function leading to increased gut permeability, epithelial apoptosis, and immune activation. This disruption is further exacerbated by a shift in the microbiome toward a "pathobiome" dominated by pathogenic microbes with increased expression of virulence factors, which intensifies systemic inflammation and accelerates organ dysfunction. Research has highlighted several potential therapeutic targets to restore gut integrity in the host, including the regulation of epithelial cell function, modulation of tight junction proteins, and inhibition of epithelial apoptosis. Additionally, microbiome-targeted therapies, such as prebiotics, probiotics, fecal microbiota transplantation, and selective decontamination of the digestive tract have also been extensively investigated to promote restoration of gut homeostasis in critically ill patients. Future research is needed to validate the potential efficacy of these interventions in clinical settings and to determine if the gut can be targeted in an individualized fashion. CONCLUSION Increased gut permeability and a disrupted microbiome are common in critical illness, potentially driving dysregulated systemic inflammation and organ dysfunction. Therapeutic strategies to modulate gut permeability and restore the composition of microbiome hold promise as novel treatments for critically ill patients.
Collapse
Affiliation(s)
- Takehiko Oami
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA, 30322, USA
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Shimazui
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA, 30322, USA
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tetsuya Yumoto
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA, 30322, USA
- Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shunsuke Otani
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA, 30322, USA
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yosuke Hayashi
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA, 30322, USA
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Soranno DE, Coopersmith CM, Brinkworth JF, Factora FNF, Muntean JH, Mythen MG, Raphael J, Shaw AD, Vachharajani V, Messer JS. A review of gut failure as a cause and consequence of critical illness. Crit Care 2025; 29:91. [PMID: 40011975 PMCID: PMC11866815 DOI: 10.1186/s13054-025-05309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
In critical illness, all elements of gut function are perturbed. Dysbiosis develops as the gut microbial community loses taxonomic diversity and new virulence factors appear. Intestinal permeability increases, allowing for translocation of bacteria and/or bacterial products. Epithelial function is altered at a cellular level and homeostasis of the epithelial monolayer is compromised by increased intestinal epithelial cell death and decreased proliferation. Gut immunity is impaired with simultaneous activation of maladaptive pro- and anti-inflammatory signals leading to both tissue damage and susceptibility to infections. Additionally, splanchnic vasoconstriction leads to decreased blood flow with local ischemic changes. Together, these interrelated elements of gastrointestinal dysfunction drive and then perpetuate multi-organ dysfunction syndrome. Despite the clear importance of maintaining gut homeostasis, there are very few reliable measures of gut function in critical illness. Further, while multiple therapeutic strategies have been proposed, most have not been shown to conclusively demonstrate benefit, and care is still largely supportive. The key role of the gut in critical illness was the subject of the tenth Perioperative Quality Initiative meeting, a conference to summarize the current state of the literature and identify key knowledge gaps for future study. This review is the product of that conference.
Collapse
Affiliation(s)
- Danielle E Soranno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | - Jessica F Brinkworth
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Faith N F Factora
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Julia H Muntean
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Monty G Mythen
- Perioperative Medicine, University College London, London, England
| | - Jacob Raphael
- Anesthesiology and Perioperative Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew D Shaw
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Vidula Vachharajani
- Department of Pulmonary and Critical Care, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Jeannette S Messer
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Farrell MS, Bongiovanni T, Cuschieri J, Egodage T, Elkbuli A, Gelbard R, Jawa R, Mitha S, Nassar AK, Pathak A, Peralta R, Putnam T, Stein DM. Geriatric nutrition in the surgical patient: an American Association for the Surgery of Trauma Critical Care and Geriatric Trauma Committees clinical consensus document. Trauma Surg Acute Care Open 2025; 10:e001602. [PMID: 39906299 PMCID: PMC11792288 DOI: 10.1136/tsaco-2024-001602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/26/2024] [Indexed: 02/06/2025] Open
Affiliation(s)
| | - Tasce Bongiovanni
- Surgery, University of San Francisco, San Francisco, California, USA
| | - Joseph Cuschieri
- Surgery at ZSFG, University of California San Francisco, San Francisco, California, USA
| | - Tanya Egodage
- Surgery, Cooper University Health Care, Camden, New Jersey, USA
| | - Adel Elkbuli
- Department of Surgery, Orlando Regional Medical Center, Orlando, Florida, USA
| | - Rondi Gelbard
- Department of Surgery, University of Alabama at Birmingham Center for Health Promotion, Birmingham, Alabama, USA
| | - Randeep Jawa
- Stony Brook University, Stony Brook, New York, USA
| | - Samrah Mitha
- Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Aussama Khalaf Nassar
- Department of Surgery, Section of Acute Care Surgery, Stanford University, Stanford, California, USA
| | - Abhijit Pathak
- Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ruben Peralta
- Surgery/Trauma Section, Hamad General Hospital, Doha, Qatar
- Hamad Medical Corporation, Hamad General Hospital, Doha, Qatar
| | - Tyler Putnam
- Department of Surgery, Baystate Medical Center, Springfield, Massachusetts, USA
| | | |
Collapse
|
8
|
Park H, Lynch E, Tillman A, Lewis K, Jin Z, Uhlemann AC, Abrams JA, Freedberg DE. A phase 2 randomized, placebo-controlled trial of inulin for the prevention of gut pathogen colonization and infection among patients admitted to the intensive care unit for sepsis. Crit Care 2025; 29:21. [PMID: 39806400 PMCID: PMC11731134 DOI: 10.1186/s13054-024-05232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Patients admitted to the intensive care unit (ICU) often have gut colonization with pathogenic bacteria and such colonization is associated with increased risk for death and infection. We conducted a trial to determine whether a prebiotic would improve the gut microbiome to decrease gut pathogen colonization and decrease downstream risk for infection among newly admitted medical ICU patients with sepsis. METHODS This was a randomized, double-blind, placebo-controlled trial of adults who were admitted to the medical ICU for sepsis and were receiving broad-spectrum antibiotics. Participants were randomized 1:1:1 to placebo, inulin 16 g/day, or inulin 32 g/day which were given for seven days. The trial primary outcome was a surrogate measure for gut colonization resistance, namely the within-individual change from ICU admission to Day 3 in the relative abundance of short chain fatty acid (SCFA)-producing bacteria based on rectal swabs. Additional outcomes sought to evaluate the impact of inulin on the gut microbiome and downstream clinical effects. RESULTS Ninety participants were analyzed including 30 in each study group. There was no difference between study groups in the within-individual change in the relative abundance of SCFA-producing bacteria from ICU admission to ICU Day 3 (placebo: 0.0% change, IQR - 8·0% to + 7·4% vs. combined inulin: 0·0% change, IQR - 10·1% to + 4·8%; p = 0·91). At end-of-treatment on ICU Day 7, inulin did not affect SCFA-producer levels, microbiome diversity, or rates of gut colonization with pathogenic bacteria. After 30 days of clinical follow-up, inulin did not affect rates of death or clinical, culture-proven infection. Patients who died or developed culture-proven infections had lower relative abundance of SCFA-producing bacteria at ICU admission compared to those who did not (p = 0·03). CONCLUSIONS Prebiotic fiber had minimal impact on the gut microbiome in the ICU and did not improve clinical outcomes. TRIAL REGISTRATION Clinicaltrials.gov: NCT03865706.
Collapse
Affiliation(s)
- Heekuk Park
- Division of Infectious Diseases & Microbiome Core Facility, Columbia University Irving Medical Center, 630 West 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Elissa Lynch
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, 630 West 168th Street, P&S 3-401, New York, NY, 10032, USA
| | - Alice Tillman
- Division of Infectious Diseases & Microbiome Core Facility, Columbia University Irving Medical Center, 630 West 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Kristen Lewis
- Division of Infectious Diseases & Microbiome Core Facility, Columbia University Irving Medical Center, 630 West 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Zhezhen Jin
- Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY, 10032, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases & Microbiome Core Facility, Columbia University Irving Medical Center, 630 West 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, 630 West 168th Street, P&S 3-401, New York, NY, 10032, USA
| | - Daniel E Freedberg
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, 630 West 168th Street, P&S 3-401, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Anvarifard P, Anbari M, Ghalichi F, Ghoreishi Z, Zarezadeh M. The effectiveness of probiotics as an adjunct therapy in patients under mechanical ventilation: an umbrella systematic review and meta-analysis. Food Funct 2024; 15:5737-5751. [PMID: 38771159 DOI: 10.1039/d3fo04653b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The literature regarding the role of probiotics in critically ill patients who have undergone mechanical ventilation (MV) is unclear; therefore, this umbrella systematic review and meta-analysis was carried out to clarify the effects of probiotics on the clinical outcomes of mechanically ventilated patients. The Scopus, PubMed/Medline, ISI Web of Science, and Google Scholar online databases were searched up to February 2023. All meta-analyses evaluating the impact of probiotics in patients under MV were considered eligible. The assessment of multiple systematic reviews (AMSTAR) questionnaire was used to evaluate the quality of the studies. Data were pooled using the random-effects approach. Thirty meta-analyses and nine clinical outcomes were re-analyzed. Probiotics significantly decreased ventilator-associated pneumonia (VAP) incidence, nosocomial infections, intensive care unit (ICU) length of stay, hospital length of stay, ICU mortality, hospital mortality, MV duration, duration of antibiotic use, and diarrhea. The obtained results of the current umbrella meta-analysis indicate that probiotic administration could be considered an adjunct therapy for critically ill patients; however, no specific probiotic treatment regimen can be recommended due to the diverse probiotics used in the included meta-analyses. The following microorganisms were used at various doses and combinations throughout the studies: Lacticaseibacillus casei, Lactiplantibacillus plantarum, L. acidophilus, L. delbrueckii, L. bulgaricus, Bifidobacterium longum, B. breve, B. salivarius, Pediococcus pentosaceus, Lactococcus raffinolactis, B. infantis, B. bifidum, Streptococcus thermophilus, Ligilactobacillus salivarius, L. lactis, B. lactis, Saccharomyces boulardii, L. rhamnosus GG, L. johnsonii, L. casei, S. faecalis, Clostridium butyricum, Bacillus mesentericus, L. sporogenes, S. boulardii, L. paracasei, B. subtilis, and Enterococcus faecium.
Collapse
Affiliation(s)
- Paniz Anvarifard
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Anbari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Faezeh Ghalichi
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zohreh Ghoreishi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Dai N, Gu J, Luo Y, Tao Y, Chou Y, He Y, Qin H, Chen T, Fu X, Chen M, Xing Z. Impact of hyperoxia on the gut during critical illnesses. Crit Care 2024; 28:66. [PMID: 38429791 PMCID: PMC10905909 DOI: 10.1186/s13054-024-04848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Molecular oxygen is typically delivered to patients via oxygen inhalation or extracorporeal membrane oxygenation (ECMO), potentially resulting in systemic hyperoxia from liberal oxygen inhalation or localized hyperoxia in the lower body from peripheral venoarterial (VA) ECMO. Consequently, this exposes the gastrointestinal tract to excessive oxygen levels. Hyperoxia can trigger organ damage due to the overproduction of reactive oxygen species and is associated with increased mortality. The gut and gut microbiome play pivotal roles in critical illnesses and even small variations in oxygen levels can have a dramatic influence on the physiology and ecology of gut microbes. Here, we reviewed the emerging preclinical evidence which highlights how excessive inhaled oxygen can provoke diffuse villous damage, barrier dysfunction in the gut, and gut dysbiosis. The hallmark of this dysbiosis includes the expansion of oxygen-tolerant pathogens (e.g., Enterobacteriaceae) and the depletion of beneficial oxygen-intolerant microbes (e.g., Muribaculaceae). Furthermore, we discussed potential impact of oxygen on the gut in various underlying critical illnesses involving inspiratory oxygen and peripheral VA-ECMO. Currently, the available findings in this area are somewhat controversial, and a consensus has not yet to be reached. It appears that targeting near-physiological oxygenation levels may offer a means to avoid hyperoxia-induced gut injury and hypoxia-induced mesenteric ischemia. However, the optimal oxygenation target may vary depending on special clinical conditions, including acute hypoxia in adults and neonates, as well as particular patients undergoing gastrointestinal surgery or VA-ECMO support. Last, we outlined the current challenges and the need for future studies in this area. Insights into this vital ongoing research can assist clinicians in optimizing oxygenation for critically ill patients.
Collapse
Affiliation(s)
- Ninan Dai
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Gu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28, Malmö, Sweden
| | - Yanhong Luo
- First Clinical College, Zunyi Medical University, Zunyi, China
| | - Yuanfa Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuehting Chou
- Department of Cardiopulmonary Bypass, Wuhan Asian Heart Hospital, Wuhan, China
| | - Ying He
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Han Qin
- Department of Respiratory and Critical Care Medicine, Kweichow Moutai Hospital, Guizhou Province, Zunyi, China
| | - Tao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Zhouxiong Xing
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
11
|
Zhu D, Zhao Q, Guo S, Bai L, Yang S, Zhao Y, Xu Y, Zhou X. Efficacy of preventive interventions against ventilator-associated pneumonia in critically ill patients: an umbrella review of meta-analyses. J Hosp Infect 2024; 145:174-186. [PMID: 38295905 DOI: 10.1016/j.jhin.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024]
Abstract
Many meta-analyses have assessed the efficacy of preventive interventions against ventilator-associated pneumonia (VAP) in critically ill patients. However, there has been no comprehensive analysis of the strength and quality of evidence to date. Systematic reviews of randomized and quasi-randomized controlled trials, which evaluated the effect of preventive strategies on the incidence of VAP in critically ill patients receiving mechanical ventilation for at least 48 h, were included in this article. We identified a total of 34 interventions derived from 31 studies. Among these interventions, 19 resulted in a significantly reduced incidence of VAP. Among numerous strategies, only selective decontamination of the digestive tract (SDD) was supported by highly suggestive (Class II) evidence (risk ratio (RR)=0.439, 95% CI: 0.362-0.532). Based on data from the sensitivity analysis, the evidence for the efficacy of non-invasive ventilation in weaning from mechanical ventilation (NIV) was upgraded from weak (Class IV) to highly suggestive (Class II) (RR=0.32, 95% CI: 0.22-0.46). All preventive interventions were not supported by robust evidence for reducing mortality. Early mobilization exhibited suggestive (Class III) evidence in shortening both intensive length of stay (LOS) in the intensive care unit (ICU) (mean difference (MD)=-0.85, 95% CI: -1.21 to -0.49) and duration of mechanical ventilation (MD=-1.02, 95% CI: -1.41 to -0.63). In conclusion, SDD and NIV are supported by robust evidence for prevention against VAP, while early mobilization has been shown to significantly shorten the LOS in the ICU and the duration of mechanical ventilation. These three strategies are recommendable for inclusion in the ventilator bundle to lower the risk of VAP and improve the prognosis of critically ill patients.
Collapse
Affiliation(s)
- D Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Q Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - S Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - L Bai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - S Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Y Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Y Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - X Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| |
Collapse
|
12
|
Lou J, Cui S, Huang N, Jin G, Chen C, Fan Y, Zhang C, Li J. Efficacy of probiotics or synbiotics in critically ill patients: A systematic review and meta-analysis. Clin Nutr ESPEN 2024; 59:48-62. [PMID: 38220407 DOI: 10.1016/j.clnesp.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND This latest systematic review and meta-analysis aim to examine the effects of probiotic and synbiotic supplementation in critically ill patients. METHODS Relevant articles were retrieved from PubMed, Embase, the Cochrane Database, and the Web of Science. The primary output measure was the incident of ventilator-associated pneumonia, and the secondary outputs were diarrhea, Clostridium diffusion infection (CDI), incident of sepsis, incident of hospital acquired pneumonia, duration of mechanical exploitation, ICU mortality rate, length of ICU stay, in hospital mortality, and length of hospital stay. Data were pooled and expressed as Relative Risk(RR) and Standardized Mean Difference (SMD) with a 95 % confidence interval (CI). RESULTS 33 studies were included in this systematic review and meta-analysis, with 4065 patients who received probiotics or synbiotics (treatment group) and 3821 patients who received standard care or placebo (control group). The pooled data from all included studies demonstrated that the treatment group has significantly reduced incidence of ventilation-associated pneumonia (VAP) (RR = 0.80; 95 % CI: 0.67-0.96; p = 0.021, I2 = 52.5 %) and sepsis (RR = 0.97; 95 % CI: 0.66-1.42; p = 0.032, I2 = 54.4 %), As well as significantly increased duration of mechanical exploitation (SMD = -0.47; 95 % CI: -0.74-0.20, p = 0.012, I2 = 63.4 %), ICU mobility (RR = 0.95; 95 % CI: 0.71-1.27; p = 0.004, I2 = 62.8 %), length of ICU stay (SMD = -0.29; 95 % CI: -0.58-0.01; p = 0.000, I2 = 82.3 %) and length of hospital stay (SMD = -0.33; 95 % CI: -0.57-0.08, p = 0.000, I2 = 74.2 %) than the control group. There were no significant differences in diarrhea, CDI, incidence of hospital acquired pneumonia, and in hospital mortality between the two groups. CONCLUSION Our meta-analysis showed that probiotic and synbiotic supplements are beneficial for critically ill patients as they significantly reduce the incidence of ventilator associated pneumonia and sepsis, as well as the duration of mechanical exploitation, length of hospital stay, length of ICU stay, and ICU mortality. However, this intervention has minimal impact on diarrhea, CDI, incidence of hospital acquired pneumonia, and in hospital mortality in critically ill patients.
Collapse
Affiliation(s)
- Jiaqi Lou
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Shengyong Cui
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Neng Huang
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Guoying Jin
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Cui Chen
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Youfen Fan
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Chun Zhang
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Jiliang Li
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China.
| |
Collapse
|
13
|
Lee JH, Shin J, Park SH, Cha B, Hong JT, Lee DH, Kwon KS. Role of Probiotics in Preventing Carbapenem-Resistant Enterobacteriaceae Colonization in the Intensive Care Unit: Risk Factors and Microbiome Analysis Study. Microorganisms 2023; 11:2970. [PMID: 38138114 PMCID: PMC10745884 DOI: 10.3390/microorganisms11122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Older patients with multiple comorbidities often necessitate prolonged hospital stays and antibiotic treatment in the intensive care unit (ICU), leading to a rise in multidrug-resistant organisms like carbapenem-resistant Enterobacteriaceae (CRE). This study examined risk factors for carbapenem-resistant Enterobacteriaceae colonization in the ICU and assessed probiotics' preventive role. In this single-center, retrospective study, 9099 ICU patients were tested for stool CRE culture from March 2017 to April 2022. We excluded 136 patients with CRE colonization within one week post-admission and 26 who received probiotics before CRE colonization. Ultimately, 8937 CRE-negative patients were selected. Logistic analysis identified CRE colonization risk factors and evaluated probiotics' influence, including Saccharomyces boulardii or Lactobacillus rhamnosus, used by 474 patients (5.3%) in the ICU. Compared with data on initial admission, 157 patients (1.7%) had newly discovered CRE colonization before discharge. In a multivariate analysis, coronavirus disease 2019, the ICU, tube feeding, antibiotics such as aminoglycoside, extended-spectrum penicillin, stool vancomycin-resistance enterococci colonization, and chronic kidney disease were significantly associated with de novo CRE infection. However, probiotic use was negatively correlated with CRE infection. Managing risk factors and administering probiotics in the ICU may help prevent CRE colonization; large randomized prospective studies are needed.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea (J.S.); (J.-T.H.)
- Department of Hospital Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Jongbeom Shin
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea (J.S.); (J.-T.H.)
| | - Soo-Hyun Park
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea;
| | - Boram Cha
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea (J.S.); (J.-T.H.)
| | - Ji-Taek Hong
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea (J.S.); (J.-T.H.)
| | - Don-Haeng Lee
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea (J.S.); (J.-T.H.)
| | - Kye Sook Kwon
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea (J.S.); (J.-T.H.)
| |
Collapse
|
14
|
He S, Lin F, Hu X, Pan P. Gut Microbiome-Based Therapeutics in Critically Ill Adult Patients-A Narrative Review. Nutrients 2023; 15:4734. [PMID: 38004128 PMCID: PMC10675331 DOI: 10.3390/nu15224734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiota plays a crucial role in the human microenvironment. Dysbiosis of the gut microbiota is a common pathophysiological phenomenon in critically ill patients. Therefore, utilizing intestinal microbiota to prevent complications and improve the prognosis of critically ill patients is a possible therapeutic direction. The gut microbiome-based therapeutics approach focuses on improving intestinal microbiota homeostasis by modulating its diversity, or treating critical illness by altering the metabolites of intestinal microbiota. There is growing evidence that fecal microbiota transplantation (FMT), selective digestive decontamination (SDD), and microbiota-derived therapies are all effective treatments for critical illness. However, different treatments are appropriate for different conditions, and more evidence is needed to support the selection of optimal gut microbiota-related treatments for different diseases. This narrative review summarizes the curative effects and limitations of microbiome-based therapeutics in different critically ill adult patients, aiming to provide possible directions for gut microbiome-based therapeutics for critically ill patients such as ventilator-associated pneumonia, sepsis, acute respiratory distress syndrome, and COVID-19, etc.
Collapse
Affiliation(s)
- Shiyue He
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Xinyue Hu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| |
Collapse
|
15
|
Decker BK. Primum Non Nocere: Time to Rethink Probiotic Therapy. Crit Care Med 2023; 51:1592-1593. [PMID: 37902343 DOI: 10.1097/ccm.0000000000005977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Affiliation(s)
- Brooke K Decker
- Infectious Diseases/Deputy Chief of Staff, Chief of Staff Office, VA Pittsburgh, Pittsburgh, PA
| |
Collapse
|
16
|
Dickerson RN, Bingham AL, Canada TW, Neander Chan L, Petrea Cober M, Cogle SV, Tucker AM, Kumpf VJ. Significant Published Articles in 2022 for Pharmacy Nutrition Support Practice. Hosp Pharm 2023; 58:504-510. [PMID: 37711416 PMCID: PMC10498963 DOI: 10.1177/00185787231161515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Purpose: The purpose of this article is to assist the pharmacist engaged in nutrition support therapy in staying current with pertinent literature. Methods: Several clinical pharmacists engaged in nutrition support therapy compiled a list of articles published in 2022 considered important to their clinical practice. The citation list was compiled into a spreadsheet where the author participants were asked to assess whether the article was considered important to nutrition support pharmacy practice. A culled list of publications was then identified whereby at least 5 out of the 8 author participants considered the article to be important. Guideline and consensus papers, important to practice but not ranked, were also included. Results: A total of 162 articles were identified; 8 from the primary literature were voted by the group to be of high importance. An additional 10 guidelines, position, recommendation, or consensus papers were also identified. The top-ranked articles from the primary literature were summarized and a narrative regarding its implications to pharmacy nutrition support practice were provided. Conclusion: We recommend that pharmacists engaged in nutrition support therapy be familiar with these articles as it pertains to their practice.
Collapse
Affiliation(s)
| | | | - Todd W. Canada
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sarah V. Cogle
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anne M. Tucker
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
17
|
Vitko HA, Troxell JJ, Sherwood PR. Probiotics for Infection Prevention in Critically Ill and Trauma Patients: A Concise Review. J Trauma Nurs 2023; 30:296-304. [PMID: 37702733 DOI: 10.1097/jtn.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Critically ill trauma patients are at an increased risk for infection, which can increase morbidity and mortality. The use of probiotic preparations for infection prevention is promising, yet the results of their effectiveness are mixed. OBJECTIVES To synthesize current research regarding the use of probiotics to prevent and possibly treat infection in the critically ill adult trauma population. METHODS RESULTS CONCLUSION Upon reviewing the current body of evidence, one cannot definitively conclude that probiotic supplementation in the critically-ill trauma population decreases health care-associated infection rates and improves outcomes, but most published evidence supports their use.
Collapse
Affiliation(s)
- Heather A Vitko
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania (Drs Vitko and Sherwood); UPMC Pinnacle, Harrisburg, Pennsylvania (Mr Troxell); and Lung Innovations Network, P.C., State College, Pennsylvania (Mr Troxell)
| | | | | |
Collapse
|
18
|
Hirschberger S, Schmid A, Kreth S. [Immunomodulation by nutritional intervention in critically ill patients]. DIE ANAESTHESIOLOGIE 2023; 72:229-244. [PMID: 36797533 PMCID: PMC9934515 DOI: 10.1007/s00101-023-01258-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 04/12/2023]
Abstract
Critically ill patients often suffer from a complex and severe immunological dysfunction. The differentiation and function of human immune cells are fundamentally controlled through metabolic processes. New concepts of immunonutrition therefore try to use enteral and parenteral nutrition to positively impact on the immune function of intensive care unit patients. This review article concisely presents the currently available evidence on the commonly used isolated supplements (anti-oxidative substances, amino acids, essential fatty acids) and difficulties related to their clinical use. The second part presents new and more comprehensive concepts of immunonutrition to influence the intestinal microbiome and to modulate the macronutrient composition. Immunonutrition of critically ill patients bears enormous potential and could become a valuable clinical tool for modulation of the immunometabolism of intensive care unit patients.
Collapse
Affiliation(s)
- Simon Hirschberger
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland
| | - Annika Schmid
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland
| | - Simone Kreth
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland.
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland.
| |
Collapse
|
19
|
Dionne JC, Mbuagbaw L. Diarrhea in the critically ill: definitions, epidemiology, risk factors and outcomes. Curr Opin Crit Care 2023; 29:138-144. [PMID: 36825593 DOI: 10.1097/mcc.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
PURPOSE OF REVIEW In this paper, we review the current evidence with respect to definitions, risk factors, and outcomes of diarrhea in the critically ill and highlight research gaps in the literature. RECENT FINDINGS Definitions of diarrhea in the intensive care unit (ICU) include the World Health Organization quantified as >3 liquid bowel movements per day and the Bristol Stool Chart score of 7. Diarrhea incidence is 37.7-73.8% and varies based on definition applied. Clostridioides difficile associated diarrhea (CDAD) is uncommon with an incidence of 2.2%. Risk factors for diarrhea include total number of antibiotics, enteral nutrition, and suppository use. The composition of enteral nutrition including high osmolarity and high fiber feeds contributed to diarrhea occurrence. Opiates decrease diarrhea incidence whereas probiotics have no effect on the incidence or duration of diarrhea. Outcomes of diarrhea include increased length of stay in the ICU and hospital, however its impact on mortality is unclear. SUMMARY Diarrhea remains a common problem in clinical practice and attention must be paid to modifiable risk factors. Further research is needed on interventions to decrease its burden.
Collapse
Affiliation(s)
- Joanna C Dionne
- Department of Medicine, Division of Critical Care Medicine, Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence Mbuagbaw
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Abstract
Abstract The gut has been hypothesized to be the "motor" of multiple organ dysfunction in sepsis. Although there are multiple ways in which the gut can drive systemic inflammation, increasing evidence suggests that the intestinal microbiome plays a more substantial role than previously appreciated. An English language literature review was performed to summarize the current knowledge of sepsis-induced gut microbiome dysbiosis. Conversion of a normal microbiome to a pathobiome in the setting of sepsis is associated with worsened mortality. Changes in microbiome composition and diversity signal the intestinal epithelium and immune system resulting in increased intestinal permeability and a dysregulated immune response to sepsis. Clinical approaches to return to microbiome homeostasis may be theoretically possible through a variety of methods including probiotics, prebiotics, fecal microbial transplant, and selective decontamination of the digestive tract. However, more research is required to determine the efficacy (if any) of targeting the microbiome for therapeutic gain. The gut microbiome rapidly loses diversity with emergence of virulent bacteria in sepsis. Restoring normal commensal bacterial diversity through various therapies may be an avenue to improve sepsis mortality.
Collapse
Affiliation(s)
- Nathan J. Klingensmith
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Trone K, Rahman S, Green CH, Venegas C, Martindale R, Stroud A. Synbiotics and Surgery: Can Prebiotics and Probiotics Affect Inflammatory Surgical Outcomes? Curr Nutr Rep 2023:10.1007/s13668-023-00464-1. [PMID: 36991238 PMCID: PMC10060133 DOI: 10.1007/s13668-023-00464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE OF REVIEW Prebiotics, probiotics, and synbiotics have received increasing attention over the years for their beneficial impact on the gut microbiome and for their systemic anti-inflammatory effects. They have also been shown to improve surgical outcomes. Here, we review the inflammatory effects of surgery as well as the data which suggests a benefit of prebiotics, probiotics, and synbiotics taken in the perioperative period. RECENT FINDINGS Synbiotics and fermented foods may have an even greater anti-inflammatory effect than probiotics or prebiotics alone. Recent data suggest that the anti-inflammatory effects and microbiome changes brought on by prebiotics, probiotics, and synbiotics have the potential to improve surgical outcomes. We highlight the potential to alter systemic inflammation, surgical and hospital-acquired infections, colorectal cancer formation, recurrence, and anastomotic leak. Synbiotics could also impact metabolic syndrome. Prebiotics, probiotics, and especially synbiotics may be extremely beneficial when taken in the perioperative period. Even short-term gut microbiome pre-habilitation could alter surgical outcomes significantly.
Collapse
Affiliation(s)
- Kristin Trone
- OHSU, 3181 S.W. Sam Jackson Park Rd., Mail Code: L223, Portland, OR, 97239, USA.
| | - Shahrose Rahman
- OHSU, 3181 S.W. Sam Jackson Park Rd., Mail Code: L223, Portland, OR, 97239, USA
| | | | | | - Robert Martindale
- OHSU, 3181 S.W. Sam Jackson Park Rd., Mail Code: L223, Portland, OR, 97239, USA
| | - Andrea Stroud
- OHSU, 3181 S.W. Sam Jackson Park Rd., Mail Code: L223, Portland, OR, 97239, USA
| |
Collapse
|
22
|
Ruxton CHS, Kajita C, Rocca P, Pot B. Microbiota and probiotics: chances and challenges - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e6. [PMID: 39295904 PMCID: PMC11406417 DOI: 10.1017/gmb.2023.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 09/21/2024]
Abstract
The 10th International Yakult Symposium was held in Milan, Italy, on 13-14 October 2022. Two keynote lectures covered the crewed journey to space and its implications for the human microbiome, and how current regulatory systems can be adapted and updated to ensure the safety of microorganisms used as probiotics or food processing ingredients. The remaining lectures were split into sections entitled "Chances" and "Challenges." The "Chances" section explored opportunities for the science of probiotics and fermented foods to contribute to diverse areas of health such as irritable bowel syndrome, major depression, Parkinson's disease, immune dysfunction, infant colic, intensive care, respiratory infections, and promoting healthy longevity. The "Challenges" section included selecting appropriate clinical trial participants and methodologies to minimise heterogeneity in responses, how to view probiotics in the context of One Health, adapting regulatory frameworks, and understanding how substances of bacterial origin can cross the blood-brain barrier. The symposium provided evidence from cutting-edge research that gut eubiosis is vital for human health and, like space, the microbiota deserves further exploration of its vast potential.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe BV, Almere, Netherlands
| |
Collapse
|
23
|
Sharif S, Rochwerg B. The authors reply. Crit Care Med 2022; 50:e810-e811. [PMID: 36394407 DOI: 10.1097/ccm.0000000000005665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sameer Sharif
- Department of Medicine, Division of Emergency Medicine, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Bram Rochwerg
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Affiliation(s)
- Charles Chin Han Lew
- Department of Dietetics & Nutrition, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Zheng-Yii Lee
- Department of Anesthesiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Christian Gluud
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Kotzampassi K. What Surgeon Should Know about Probiotics. Nutrients 2022; 14:4374. [PMID: 36297058 PMCID: PMC9609430 DOI: 10.3390/nu14204374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Back in the 1980s, Fuller R, when working on gut flora, concluded that "there is good evidence that the complex microbial flora present in the gastrointestinal tract … is effective in providing resistance to disease; however, the composition of this protective flora can be altered by dietary and environmental influences, making the host susceptible to disease" [...].
Collapse
Affiliation(s)
- Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
26
|
Kotzampassi K. Why Give My Surgical Patients Probiotics. Nutrients 2022; 14:4389. [PMID: 36297073 PMCID: PMC9606978 DOI: 10.3390/nu14204389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Although there are various hypotheses on the health-promoting roles probiotic supplementation play-via targeting the gut microbiota and/or regulating the systemic immune and metabolic responses-the precise nature of this benefit in restitution of health following surgery remains under discussion and in doubt [...].
Collapse
Affiliation(s)
- Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|