1
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
2
|
Recillas-Román S, Montaño M, Ruiz V, Pérez-Ramos J, Becerril C, Herrera I, Amador-Muñoz O, Martínez-Domínguez YM, Ramos C. Wood Smoke Extract Promotes Extracellular Matrix Remodeling in Normal Human Lung Fibroblasts. Int J Toxicol 2021; 40:506-516. [PMID: 34530646 DOI: 10.1177/10915818211044809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wood smoke (WS) contains many harmful compounds, including polycyclic aromatic hydrocarbons (PAHs). WS induces inflammation in the airways and lungs and can lead to the development of various acute and chronic respiratory diseases. Pulmonary fibroblasts are the main cells involved in the remodeling of the extracellular matrix (ECM) during the WS-induced inflammatory response. Although fibroblasts remain in a low proliferation state under physiological conditions, they actively participate in ECM remodeling during the inflammatory response in pathophysiological states. Consequently, we used normal human lung fibroblasts (NHLFs) to assess the potential effects of the PAHs-containing wood smoke extract (WSE) on the growth rate, total collagen synthesis, and the expression levels of collagen I and III, matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, and the transforming growth factor (TGF)-β1. We also assessed MMPs activity. The results showed that WSE induced a trimodal behavior in the growth rate curves in NHLFs; the growth rate increased with 0.5-1 % WSE and decreased with 2.5% WSE, without causing cell damage; 5-20% WSE inhibited the growth and induced cell damage. After 3 hours of exposure, 2.5% WSE induced an increase in total collagen synthesis and upregulation of TGF-β1, collagen I and III, MMP-1, TIMP-1, and TIMP-2 expression. However, MMP-2 expression was downregulated and MMP-9 was not expressed. The gelatinase activity of MMP-2 was also increased. These results suggest that WSE affects the ECM remodeling in NHLFs and indicate the potential involvement of PAHs in this process.
Collapse
Affiliation(s)
- Stephanie Recillas-Román
- Doctorate in Biological and Health Sciences, 27789Metropolitan Autonomous University-Xochimilco (UAM-X), Mexico City, Mexico
| | - Martha Montaño
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, 42635National Institute of Respiratory Diseases Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Víctor Ruiz
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Julia Pérez-Ramos
- Department of Biological Systems, 27789Metropolitan Autonomous University-Xochimilco (UAM-X), Mexico City, Mexico
| | - Carina Becerril
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, 42635National Institute of Respiratory Diseases Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Iliana Herrera
- Laboratory of Pulmonary Biopathology INER- Faculty of Sciences, National Autonomous University of Mexico (UNAM), Mexico; Pulmonary Fibrosis Research Department, Ismael Cosío Villegas National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Omar Amador-Muñoz
- Group of Chemical Speciation of Atmospheric Organic Aerosols, Center for Atmospheric Sciences, 7180National Autonomous University of Mexico Mexico
| | - Y Margarita Martínez-Domínguez
- Group of Chemical Speciation of Atmospheric Organic Aerosols, Center for Atmospheric Sciences, 7180National Autonomous University of Mexico Mexico
| | - Carlos Ramos
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, 42635National Institute of Respiratory Diseases Ismael Cosío Villegas (INER), Mexico City, Mexico
| |
Collapse
|
3
|
Pardo M, Li C, Fang Z, Levin-Zaidman S, Dezorella N, Czech H, Martens P, Käfer U, Gröger T, Rüger CP, Friederici L, Zimmermann R, Rudich Y. Toxicity of Water- and Organic-Soluble Wood Tar Fractions from Biomass Burning in Lung Epithelial Cells. Chem Res Toxicol 2021; 34:1588-1603. [PMID: 34033466 PMCID: PMC8277191 DOI: 10.1021/acs.chemrestox.1c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/28/2022]
Abstract
Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.
Collapse
Affiliation(s)
- Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | | | - Nili Dezorella
- Electron
Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hendryk Czech
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Patrick Martens
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Uwe Käfer
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Thomas Gröger
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
| | - Christopher P. Rüger
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Lukas Friederici
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Ghio AJ, Soukup JM, Dailey LA, Madden MC. Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury. Free Radic Biol Med 2020; 151:38-55. [PMID: 32092410 PMCID: PMC8274387 DOI: 10.1016/j.freeradbiomed.2020.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Air pollutants cause changes in iron homeostasis through: 1) a capacity of the pollutant, or a metabolite(s), to complex/chelate iron from pivotal sites in the cell or 2) an ability of the pollutant to displace iron from pivotal sites in the cell. Through either pathway of disruption in iron homeostasis, metal previously employed in essential cell processes is sequestered after air pollutant exposure. An absolute or functional cell iron deficiency results. If enough iron is lost or is otherwise not available within the cell, cell death ensues. However, prior to death, exposed cells will attempt to reverse the loss of requisite metal. This response of the cell includes increased expression of metal importers (e.g. divalent metal transporter 1). Oxidant generation after exposure to air pollutants includes superoxide production which functions in ferrireduction necessary for cell iron import. Activation of kinases and phosphatases and transcription factors and increased release of pro-inflammatory mediators also result from a cell iron deficiency, absolute or functional, after exposure to air pollutants. Finally, air pollutant exposure culminates in the development of inflammation and fibrosis which is a tissue response to the iron deficiency challenging cell survival. Following the response of increased expression of importers and ferrireduction, activation of kinases and phosphatases and transcription factors, release of pro-inflammatory mediators, and inflammation and fibrosis, cell iron is altered, and a new metal homeostasis is established. This new metal homeostasis includes increased total iron concentrations in cells with metal now at levels sufficient to meet requirements for continued function.
Collapse
Affiliation(s)
- Andrew J Ghio
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Joleen M Soukup
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lisa A Dailey
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Michael C Madden
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
5
|
George S, Chua ML, ZheWei DZ, Das R, Bijin VA, Connolly JE, Lee KP, Yung CF, Teoh OH, Thomas B. Personal level exposure and hazard potential of particulate matter during haze and non-haze periods in Singapore. CHEMOSPHERE 2020; 243:125401. [PMID: 31995870 DOI: 10.1016/j.chemosphere.2019.125401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Severe haze episodes originating from biomass burning are common in Southeast Asia. However, there is a paucity of data on the personal exposure and characteristics of Particulate Matter (PM) present in ambient air during haze and non-haze periods. Aims of this study were to monitor 24 h ambulatory exposure to PM among school children in Singapore; characterize haze and non-haze PM for their physicochemical properties, cytotoxicity and inflammatory potential, using bronchial epithelial cell culture model (BEAS-2B). Forty-six children had ambulatory PM exposure monitored using portable Aethalometer and their hourly activity recorded. The mean (±SE) PM exposure on a typical school day was 3343 (±174.4) ng/m3/min. Higher PM exposure was observed during haze periods and during commuting to and from the school. Characterization of PM collected showed a drastic increase in the proportion of ultrafine particle (UFP) in haze PM. These PM fraction showed higher level of sulphur, potassium and trace metals in comparison to those collected during non-haze periods. Dose dependent increases in abiotic reactive oxygen species generation, activation of NF-κB and cytotoxicity were observed for both haze and non-haze PM. Generally, haze PM induced significantly higher release of IL-6, IL-8 and TNFα by BEAS-2B cells in comparison to non-haze PM. In summary, this study provides experimental evidence for higher PM exposure during haze period which has the potential to elicit oxidative stress and pro-inflammatory cytokine release from airway epithelial cells.
Collapse
Affiliation(s)
- Saji George
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, 569830, Singapore; Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X3V9, Canada.
| | - Mei Ling Chua
- Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, 569830, Singapore
| | | | - Reshmi Das
- Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore; School of Environmental Studies, Jadavpur University 700032, India
| | | | | | - Khai Pin Lee
- KK Women's and Children's Hospital, 229899, Singapore
| | - Chee Fu Yung
- KK Women's and Children's Hospital, 229899, Singapore
| | - Oon Hoe Teoh
- KK Women's and Children's Hospital, 229899, Singapore; Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Biju Thomas
- KK Women's and Children's Hospital, 229899, Singapore; Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
6
|
Zeglinski MR, Turner CT, Zeng R, Schwartz C, Santacruz S, Pawluk MA, Zhao H, Chan AWH, Carlsten C, Granville DJ. Soluble Wood Smoke Extract Promotes Barrier Dysfunction in Alveolar Epithelial Cells through a MAPK Signaling Pathway. Sci Rep 2019; 9:10027. [PMID: 31296909 PMCID: PMC6624307 DOI: 10.1038/s41598-019-46400-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Wildfire smoke induces acute pulmonary distress and is of particular concern to risk groups such as the sick and elderly. Wood smoke (WS) contains many of the same toxic compounds as those found in cigarette smoke (CS) including polycyclic aromatic hydrocarbons, carbon monoxide, and free radicals. CS is a well-established risk factor for respiratory diseases such as asthma and COPD. Limited studies investigating the biological effects of WS on the airway epithelium have been performed. Using a cell culture-based model, we assessed the effects of a WS-infused solution on alveolar epithelial barrier function, cell migration, and survival. The average geometric mean of particles in the WS was 178 nm. GC/MS analysis of the WS solution identified phenolic and cellulosic compounds. WS exposure resulted in a significant reduction in barrier function, which peaked after 24 hours of continuous exposure. The junctional protein E-cadherin showed a prominent reduction in response to increasing concentrations of WS. Furthermore, WS significantly repressed cell migration following injury to the cell monolayer. There was no difference in cell viability following WS exposure. Mechanistically, WS exposure induced activation of the p44/42, but not p38, MAPK signaling pathway, and inhibition of p44/42 phosphorylation prevented the disruption of barrier function and loss of E-cadherin staining. Thus, WS may contribute to the breakdown of alveolar structure and function through a p44/42 MAPK-dependent pathway and may lead to the development and/or exacerbation of respiratory pathologies with chronic exposure.
Collapse
Affiliation(s)
- Matthew R Zeglinski
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Christopher T Turner
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Rui Zeng
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Carley Schwartz
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Stephanie Santacruz
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Megan A Pawluk
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Hongyan Zhao
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Arthur W H Chan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Christopher Carlsten
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada.,Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada. .,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada. .,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, UBC, Vancouver, BC, Canada. .,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Sood A, Assad NA, Barnes PJ, Churg A, Gordon SB, Harrod KS, Irshad H, Kurmi OP, Martin WJ, Meek P, Mortimer K, Noonan CW, Perez-Padilla R, Smith KR, Tesfaigzi Y, Ward T, Balmes J. ERS/ATS workshop report on respiratory health effects of household air pollution. Eur Respir J 2018; 51:51/1/1700698. [PMID: 29301918 DOI: 10.1183/13993003.00698-2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022]
Abstract
Exposure to household air pollution (HAP) from solid fuel combustion affects almost half of the world population. Adverse respiratory outcomes such as respiratory infections, impaired lung growth and chronic obstructive pulmonary disease have been linked to HAP exposure. Solid fuel smoke is a heterogeneous mixture of various gases and particulates. Cell culture and animal studies with controlled exposure conditions and genetic homogeneity provide important insights into HAP mechanisms. Impaired bacterial phagocytosis in exposed human alveolar macrophages possibly mediates several HAP-related health effects. Lung pathological findings in HAP-exposed individuals demonstrate greater small airways fibrosis and less emphysema compared with cigarette smokers. Field studies using questionnaires, air pollution monitoring and/or biomarkers are needed to better establish human risks. Some, but not all, studies suggest that improving cookstove efficiency or venting emissions may be associated with reduced respiratory symptoms, lung function decline in women and severe pneumonia in children. Current studies focus on fuel switching, stove technology replacements or upgrades and air filter devices. Several governments have initiated major programmes to accelerate the upgrade from solid fuels to clean fuels, particularly liquid petroleum gas, which provides research opportunities for the respiratory health community.
Collapse
Affiliation(s)
- Akshay Sood
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nour A Assad
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Churg
- University of British Columbia, Vancouver, BC, Canada
| | | | - Kevin S Harrod
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hammad Irshad
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | | | - Paula Meek
- University of Colorado at Denver, Denver, CO, USA
| | | | | | | | - Kirk R Smith
- University of California School of Public Health, Berkeley, CA, USA
| | | | - Tony Ward
- University of Montana, Missoula, MT, USA
| | - John Balmes
- University of California School of Public Health, Berkeley, CA, USA.,University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Abreu A, Costa C, Pinho E Silva S, Morais S, do Carmo Pereira M, Fernandes A, Moraes de Andrade V, Teixeira JP, Costa S. Wood smoke exposure of Portuguese wildland firefighters: DNA and oxidative damage evaluation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:596-604. [PMID: 28524757 DOI: 10.1080/15287394.2017.1286896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Portugal is among the European Union countries most devastated by forest fires each year. In the last three decades, more than 3.8 million hectares of forest were burned. Wildland firefighters are exposed to a variety of hazards, including many toxic combustion products that may lead to deleterious health effects. Epidemiological studies showed a positive association between firefighting and several chronic diseases, including cancer. Results from biomonitoring studies in firefighters, particularly concerning genotoxicity evaluation, constitute a valuable tool for investigating important occupational hazards. Thus, the aim of this study was to assess genotoxicity in a group of wildland firefighters using the comet assay for DNA damage and oxidative stress. Both parameters were increased in firefighters compared to controls, but significance was only found for basal DNA damage. No significant influence was found regarding major confounding variables on the genotoxic endpoints studied, with the exception of age. Data obtained provide preliminary information on human health effects of wildland firefighting exposure at genetic and molecular levels. These findings may also provide new important data to serve as public awareness to the potential adverse health risks involving wildland firefighting. Implementation of security and hygiene measures in this sector as well as good practices campaigns may be crucial to decrease risk.
Collapse
Affiliation(s)
- Ana Abreu
- a EPIUnit-Instituto de Saúde Pública, Universidade do Porto , Porto , Portugal
- b Environmental Health Department, National Institute of Health, Environmental Health Department , Porto , Portugal
| | - Carla Costa
- a EPIUnit-Instituto de Saúde Pública, Universidade do Porto , Porto , Portugal
- b Environmental Health Department, National Institute of Health, Environmental Health Department , Porto , Portugal
| | - Susana Pinho E Silva
- b Environmental Health Department, National Institute of Health, Environmental Health Department , Porto , Portugal
| | - Simone Morais
- c REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto Rua Dr. António Bernardino de Almeida , Porto , Portugal
| | - Maria do Carmo Pereira
- d LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto Rua Dr. Roberto Frias , Porto , Portugal
| | - Adília Fernandes
- e Escola Superior de Saúde, Instituto Politécnico de Bragança, Avenida D. Afonso V , Bragança , Portugal
| | - Vanessa Moraes de Andrade
- f Laboatory of Molecular and Cellular Biology Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC , Santa Catarina , Brazil
| | - João Paulo Teixeira
- a EPIUnit-Instituto de Saúde Pública, Universidade do Porto , Porto , Portugal
- b Environmental Health Department, National Institute of Health, Environmental Health Department , Porto , Portugal
| | - Solange Costa
- a EPIUnit-Instituto de Saúde Pública, Universidade do Porto , Porto , Portugal
- b Environmental Health Department, National Institute of Health, Environmental Health Department , Porto , Portugal
| |
Collapse
|
9
|
Adetona O, Reinhardt TE, Domitrovich J, Broyles G, Adetona AM, Kleinman MT, Ottmar RD, Naeher LP. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal Toxicol 2016; 28:95-139. [PMID: 26915822 DOI: 10.3109/08958378.2016.1145771] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Each year, the general public and wildland firefighters in the US are exposed to smoke from wildland fires. As part of an effort to characterize health risks of breathing this smoke, a review of the literature was conducted using five major databases, including PubMed and MEDLINE Web of Knowledge, to identify smoke components that present the highest hazard potential, the mechanisms of toxicity, review epidemiological studies for health effects and identify the current gap in knowledge on the health impacts of wildland fire smoke exposure. Respiratory events measured in time series studies as incidences of disease-caused mortality, hospital admissions, emergency room visits and symptoms in asthma and chronic obstructive pulmonary disease patients are the health effects that are most commonly associated with community level exposure to wildland fire smoke. A few recent studies have also determined associations between acute wildland fire smoke exposure and cardiovascular health end-points. These cardiopulmonary effects were mostly observed in association with ambient air concentrations of fine particulate matter (PM2.5). However, research on the health effects of this mixture is currently limited. The health effects of acute exposures beyond susceptible populations and the effects of chronic exposures experienced by the wildland firefighter are largely unknown. Longitudinal studies of wildland firefighters during and/or after the firefighting career could help elucidate some of the unknown health impacts of cumulative exposure to wildland fire smoke, establish occupational exposure limits and help determine the types of exposure controls that may be applicable to the occupation.
Collapse
Affiliation(s)
- Olorunfemi Adetona
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA .,b Division of Environmental Health Sciences , College of Public Health, the Ohio State University , Columbus , OH , USA
| | - Timothy E Reinhardt
- c AMEC Foster Wheeler Environment & Infrastructure, Inc , Seattle , WA , USA
| | - Joe Domitrovich
- d USDA Forest Service, Missoula Technology and Development Center , Missoula , MT , USA
| | - George Broyles
- e SDA Forest Service, San Dimas Technology and Development Center , San Dimas , CA , USA
| | - Anna M Adetona
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA
| | - Michael T Kleinman
- f Center for Occupational and Environmental Health, University of California , Irvine , CA , USA , and
| | - Roger D Ottmar
- g USDA Forest Service, Pacific Northwest Research Station , Seattle , WA , USA
| | - Luke P Naeher
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA
| |
Collapse
|
10
|
Air pollution particles and iron homeostasis. Biochim Biophys Acta Gen Subj 2016; 1860:2816-25. [PMID: 27217087 DOI: 10.1016/j.bbagen.2016.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND The mechanism underlying biological effects, including pro-inflammatory outcomes, of particles deposited in the lung has not been defined. MAJOR CONCLUSIONS A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects. GENERAL SIGNIFICANCE Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation following exposure to disparate particles. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
|
11
|
Ghio AJ, Soukup JM, Dailey LA, Tong H, Kesic MJ, Budinger GRS, Mutlu GM. Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect. Chem Res Toxicol 2015; 28:2104-11. [PMID: 26462088 DOI: 10.1021/acs.chemrestox.5b00270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We tested the postulate that (1) wood smoke particle (WSP) sequesters host cell iron resulting in a disruption of metal homeostasis, (2) this loss of essential metal results in both an oxidative stress and biological effect in respiratory epithelial cells, and (3) humic-like substances (HULIS), a component of WSP, have a capacity to appropriate cell iron and initiate a biological effect. BEAS-2B cells exposed to WSP resulted in diminished concentrations of mitochondrial (57)Fe, whereas preincubation with ferric ammonium citrate (FAC) prevented significant mitochondrial iron loss after such exposure. Cellular oxidant generation was increased after WSP exposure, but this signal was diminished by coincubation with FAC. Similarly, exposure of BEAS-2B cells to 100 μg/mL WSP activated mitogen-activated protein (MAP) kinases, elevated NF-E2-related factor 2/antioxidant responsive element (Nrf2 ARE) expression, and provoked interleukin (IL)-6 and IL-8 release, but all these changes were diminished by coincubation with FAC. The biological response to WSP was reproduced by exposure to 100 μg/mL humic acid, a polyphenol comparable to HULIS included in the WSP that complexes iron. We conclude that (1) the biological response following exposure to WSP is associated with sequestration of cell iron by the particle, (2) increasing available iron in the cell diminished the biological effects after particle exposure, and (3) HULIS included in WSP can sequester the metal initiating the cell response.
Collapse
Affiliation(s)
- Andrew J Ghio
- US Environmental Protection Agency , Chapel Hill, North Carolina 27599, United States
| | - Joleen M Soukup
- US Environmental Protection Agency , Chapel Hill, North Carolina 27599, United States
| | - Lisa A Dailey
- US Environmental Protection Agency , Chapel Hill, North Carolina 27599, United States
| | - Haiyan Tong
- US Environmental Protection Agency , Chapel Hill, North Carolina 27599, United States
| | - Matthew J Kesic
- Physician Assistant Program, Methodist University , Fayetteville, North Carolina 28311, United States
| | - G R Scott Budinger
- The Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care and Lung Injury Center , Department of Medicine, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Ko HK, Lee HF, Lin AH, Liu MH, Liu CI, Lee TS, Kou YR. Regulation of Cigarette Smoke Induction of IL-8 in Macrophages by AMP-activated Protein Kinase Signaling. J Cell Physiol 2015; 230:1781-93. [PMID: 25503516 DOI: 10.1002/jcp.24881] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Inhaled cigarette smoke (CS) causes persistent lung inflammation in smokers. Interleukin 8 (IL-8) released from macrophages is a key chemokine during initiation and progression of CS-induced lung inflammation, yet its regulation is largely unknown. AMP-activated protein kinase (AMPK), a crucial energy homeostasis regulator, may modulate inflammation. Here we report that CS extract (CSE) increased the level of intracellular reactive oxygen species (ROS), activating AMPK, mitogen-activated protein kinases (MAPKs), and NF-κB, as well as inducing IL-8, in human macrophages. N-acetyl-cysteine (ROS scavenger) or hexamethonium [nicotinic acetylcholine receptor (nAChR) antagonist] attenuated the CSE-induced increase in intracellular ROS, activation of AMPK and NF-κB, as well as IL-8 induction, which suggests that nAChRs and ROS are important. Prevention of AMPK activation by compound C or AMPK siRNA reduced CSE-induced IL-8 production, confirming the role of AMPK. Compound C or AMPK siRNA also inhibited the activation of MAPKs and NF-κB by CSE, which suggests that these molecules are downstream of AMPK. Additionally, exposure of human macrophages to nicotine activated AMPK and induced IL-8 and that these effects were lessened by hexamethonium or compound C, implying that nicotine in CS may be causative. Furthermore, chronic CS exposure in mice promoted AMPK phosphorylation and expression of MIP-2 (an IL-8 homolog) in infiltrated macrophages and in lung tissues, as well as induced lung inflammation, all of which were reduced by compound C treatment. Thus, we identified a novel nAChRs-dependent, ROS-sensitive, AMPK/MAPKs/NF-κB signaling pathway, which seems to be important to CS-induced macrophage IL-8 production and possibly to lung inflammation.
Collapse
Affiliation(s)
- Hsin-Kuo Ko
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Respiratory Therapy, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Carlos SPD, Dias AS, Forgiarini Júnior LA, Patricio PD, Graciano T, Nesi RT, Valença S, Chiappa AMG, Cipriano G, Souza CTD, Chiappa GRDS. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle. J Bras Pneumol 2015; 40:411-20. [PMID: 25210964 PMCID: PMC4201172 DOI: 10.1590/s1806-37132014000400009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/02/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.
Collapse
Affiliation(s)
| | | | | | | | - Thaise Graciano
- Department of Physical Therapy, University of Southern Santa Catarina, Criciúma, Brazil
| | - Renata Tiscoski Nesi
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel Valença
- Department of Cardiology, Porto Alegre Hospital de Clínicas, Porto Alegre, Brazil
| | | | - Gerson Cipriano
- Department of Physical Therapy, University of Brasília, Brasília, Brazil
| | | | | |
Collapse
|
14
|
Liu C, Shen H, Yi L, Shao P, Soulika AM, Meng X, Xing L, Yan X, Zhang X. Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis. Toxicol Lett 2014; 232:547-56. [PMID: 25445582 DOI: 10.1016/j.toxlet.2014.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/26/2014] [Accepted: 11/02/2014] [Indexed: 01/05/2023]
Abstract
Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis.
Collapse
Affiliation(s)
- Chunping Liu
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Dermatology, The Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Li Yi
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Peilu Shao
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Xinxing Meng
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xia Yan
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
15
|
Xu Z, Zhang C, Cheng L, Hu M, Tao H, Song L. The microRNA miR-17 regulates lung FoxA1 expression during lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun 2014; 445:48-53. [PMID: 24486549 DOI: 10.1016/j.bbrc.2014.01.108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.
Collapse
Affiliation(s)
- Zhaojun Xu
- Cardiothoracic Surgery of the First Affiliated Hospital, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 41007, China
| | - Caiping Zhang
- University of South China, College of Life Science, Department of Biochemistry and Molecular Biology, Hengyang, Hunan 421001, China
| | - Lijuan Cheng
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Mei Hu
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lan Song
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; University of South China, College of Life Science, Department of Biochemistry and Molecular Biology, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Adetona O, Zhang JJ, Hall DB, Wang JS, Vena JE, Naeher LP. Occupational exposure to woodsmoke and oxidative stress in wildland firefighters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 449:269-75. [PMID: 23434577 DOI: 10.1016/j.scitotenv.2013.01.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 05/19/2023]
Abstract
Experimental studies indicate that exposure to woodsmoke could induce oxidative stress. However studies have not been conducted among the general population and specialized occupational groups despite the existence of elevated woodsmoke exposure situations. Therefore, we investigated whether there were across workshift changes in oxidative stress biomarkers among wildland firefighters who are occupationally exposed to elevated levels of woodsmoke. We collected pre- and post-workshift urine samples from 19 wildland firefighters before and after prescribed burns. We measured malondialdehyde (MDA) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in the samples, and analyzed whether there were cross-shift changes in their levels, and the relationships between the changes and the length of firefighting career, age of firefighter, and quantified workshift exposure to particulate matter. Overall no significant cross-shift change was observed for 8-oxodG or MDA in the urine samples of the firefighters. Changes in both biomarkers were also not associated with PM2.5, which was used as a marker of exposure. However, overall unadjusted geometric mean 8-oxo-dG levels in the samples (31 μg/g creatinine) was relatively higher compared to those measured in healthy individuals in many occupational or general population studies. Additionally, cross-shift changes in 8-oxo-dG excretion were dependent on the length of firefighting career (p=0.01) or age of the subject (p=0.01). Significant increases in 8-oxo-dG level from pre-shift to post-shift were observed for those who had been firefighters for 2 years or less. The results indicate that oxidative stress response measured as cross-shift changes in 8-oxo-dG may depend on age or the length of a firefighter's career. These results suggest the need to investigate the longer term health effects of cumulative exposure of woodsmoke exposure among wildland firefighters, because increased body burden of oxidative stress is a risk factor for many diseases and is theorized to be involved in aging.
Collapse
Affiliation(s)
- Olorunfemi Adetona
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
17
|
Inflammatory role of AMP-activated protein kinase signaling in an experimental model of toxic smoke inhalation injury. Crit Care Med 2013; 41:120-32. [PMID: 23222262 DOI: 10.1097/ccm.0b013e318265f653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The molecular mechanisms underlying lung inflammation in toxic smoke inhalation injury are unknown. We investigated the signaling pathway responsible for the induction of interleukin 8 by wood smoke extract in lung epithelial cells and lung inflammation induced by wood smoke exposure in mice. DESIGN A randomized, controlled study. SETTING A research laboratory. INTERVENTIONS AND MAIN RESULTS Exposure of primary human bronchial epithelial cells to wood smoke extract sequentially activated NADPH oxidase and increased intracellular reactive oxygen species level; activated AMP-activated protein kinase, extracellular signal-regulated kinase and Jun N-terminal kinase (two mitogen-activated protein kinases), and nuclear factor-κB and signal transducer and activator of transcription protein 3 (two transcription factors); and induced interleukin-8. Inhibition of NADPH oxidase activation with apocynin or siRNA targeting p47(phox ) (a subunit of NADPH oxidase) attenuated the increased intracellular reactive oxygen species level, AMP-activated protein kinase activation, and interleukin-8 induction. Removal of intracellular reactive oxygen species by N-acetyl-cysteine reduced the activation of AMP-activated protein kinase, extracellular signal-regulated kinase and Jun N-terminal kinase, and interleukin-8 induction. Prevention of AMP-activated protein kinase activation by Compound C or AMP-activated protein kinase siRNA lessened the activation of Jun N-terminal kinase, extracellular signal-regulated kinase, nuclear factor-κB, signal transducer and activator of transcription protein 3 and interleukin-8 induction. Inhibition of Jun N-terminal kinase and extracellular signal-regulated kinase activation by inhibitors reduced the activation of nuclear factor-κB and signal transducer and activator of transcription protein 3 and interleukin-8 induction. Abrogation of nuclear factor-κB and signal transducer and activator of transcription protein 3 activation by inhibitors attenuated the interleukin-8 induction. Additionally, acute exposure of mice to wood smoke promoted AMP-activated protein kinase phosphorylation and expression of macrophage inflammatory protein 2 (an interleukin-8 homolog) in lung epithelial cells and lungs and lung inflammation, all of which were reduced by Compound C treatment. CONCLUSIONS Interleukin-8 induction by wood smoke extract in lung epithelial cells is mediated by novel NADPH oxidase-dependent, reactive oxygen species-sensitive AMP-activated protein kinase signaling with Jun N-terminal kinase and extracellular signal-regulated kinase as the downstream kinases and nuclear factor-κB and signal transducer and activator of transcription protein 3 as the downstream transcription factors. This AMP-activated protein kinase signaling is likely important for inducing lung inflammation with toxic smoke exposure in mice.
Collapse
|
18
|
Koslowski R, Kasper M, Schaal K, Knels L, Lange M, Bernhard W. Surfactant metabolism and anti-oxidative capacity in hyperoxic neonatal rat lungs: effects of keratinocyte growth factor on gene expression in vivo. Histochem Cell Biol 2012; 139:461-72. [DOI: 10.1007/s00418-012-1038-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 01/10/2023]
|
19
|
Impairment of alveolar type-II cells involved in the toxicity of Aflatoxin G1 in rat lung. Food Chem Toxicol 2012; 50:3222-8. [DOI: 10.1016/j.fct.2012.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/18/2022]
|
20
|
Ibrahim B, Sowemimo A, van Rooyen A, Van de Venter M. Antiinflammatory, analgesic and antioxidant activities of Cyathula prostrata (Linn.) Blume (Amaranthaceae). JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:282-289. [PMID: 22387161 DOI: 10.1016/j.jep.2012.02.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyathula prostrata (Linn) Blume (Amaranthaceae) is an annual herb widely used traditionally in the treatment of various inflammatory and pain related health disorders in Nigeria. The aim of this study is to evaluate the anti-inflammatory, analgesic and antioxidant activities of the methanolic extract of Cyathula prostrata (Linn) Blume. MATERIALS AND METHODS The anti-inflammatory (phorbol 12-myristate 13-acetate (PMA)-induced reactive oxygen species (ROS), lipopolysaccharide (LPS) induced nitric oxide production in U937 macrophages, LPS-induced COX-2 expression, carrageenan-induced rat paw oedema, arachidonic acid-induced ear oedema and xylene-induced ear oedema), analgesic (acetic acid-induced writhing and hot plate tests) and antioxidant activities (DPPH [1,1-diphenyl-2-picrylhydrazyl] and lipid peroxidation assays) activities of the plant extract were investigated. RESULTS The methanolic extract of Cyathula prostrata did not show inhibitory activity in the in vitro PMA-induced reactive oxygen species, LPS-induced nitric oxide production and LPS-induced COX-2 expression assays. In the in vivo anti-inflammatory assays, the extract (50, 100 and 200mg/kg) showed a significant (P<0.05) dose-dependent inhibition in the carrageenan, arachidonic acid and xylene-induced tests. Cyathula prostrata produced a significant (P<0.05, 0.001) dose-dependent inhibition in the acetic acid and hot plate analgesic tests respectively. The plant extract did not exhibit any antioxidant activity in the DPPH and lipid peroxidation assays. CONCLUSION The results suggest that the methanolic extract of Cyathula prostrata possesses anti-inflammatory and analgesic activities and this authenticates the use of the plant in the traditional treatment of ailments associated with inflammation and pain.
Collapse
Affiliation(s)
- Bolanle Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine Campus, Idi-Araba, Lagos, Nigeria
| | | | | | | |
Collapse
|
21
|
Hou HH, Hammock BD, Su KH, Morisseau C, Kou YR, Imaoka S, Oguro A, Shyue SK, Zhao JF, Lee TS. N-terminal domain of soluble epoxide hydrolase negatively regulates the VEGF-mediated activation of endothelial nitric oxide synthase. Cardiovasc Res 2011; 93:120-9. [PMID: 22072631 DOI: 10.1093/cvr/cvr267] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS The mammalian soluble epoxide hydrolase (sEH) has both an epoxide hydrolase and a phosphatase domain. The role of sEH hydrolase activity in the metabolism of epoxyeicosatrienoic acids (EETs) and the activation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) has been well defined. However, far less is known about the role of sEH phosphatase activity in eNOS activation. In the present study, we investigated whether the phosphatase domain of sEH was involved in the eNOS activation in ECs. METHODS AND RESULTS The level of eNOS phosphorylation in aortas is higher in the sEH knockout (sEH(-/-)) mice than in wild-type mice. In ECs, pharmacological inhibition of sEH phosphatase or overexpressing sEH with an inactive phosphatase domain enhanced vascular endothelial growth factor (VEGF)-induced NO production and eNOS phosphorylation. In contrast, overexpressing the phosphatase domain of sEH prevented the VEGF-mediated NO production and eNOS phosphorylation at Ser617, Ser635, and Ser1179. Additionally, treatment with VEGF induced a c-Src kinase-dependent increase in transient tyrosine phosphorylation of sEH and the formation of a sEH-eNOS complex, which was abolished by treatment with a c-Src kinase inhibitor, PP1, or the c-Src dominant-negative mutant K298M. We also demonstrated that the phosphatase domain of sEH played a key role in VEGF-induced angiogenesis by detecting the tube formation in ECs and neovascularization in Matrigel plugs in mice. CONCLUSION In addition to epoxide hydrolase activity, phosphatase activity of sEH plays a pivotal role in the regulation of eNOS activity and NO-mediated EC functions.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Crosby LM, Luellen C, Zhang Z, Tague LL, Sinclair SE, Waters CM. Balance of life and death in alveolar epithelial type II cells: proliferation, apoptosis, and the effects of cyclic stretch on wound healing. Am J Physiol Lung Cell Mol Physiol 2011; 301:L536-46. [PMID: 21724858 DOI: 10.1152/ajplung.00371.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveolar type II (ATII) cells and found that CS altered the balance between proliferation and cell death. We measured cell migration, size, and density; intercellular gap formation; cell number, proliferation, and apoptosis; cytoskeletal organization; and focal adhesions in response to scratch wounding followed by CS for up to 24 h. Under static conditions, wounds were closed by 24 h, but repair was inhibited by CS. Wounding stimulated cell motility and proliferation, actin and vinculin redistribution, and focal adhesion formation at the wound edge, while CS impeded cell spreading, initiated apoptosis, stimulated cytoskeletal reorganization, and attenuated focal adhesion formation. CS also caused significant intercellular gap formation compared with static cells. Our results suggest that CS alters several mechanisms of epithelial repair and that an imbalance occurs between cell death and proliferation that must be overcome to restore the epithelial barrier.
Collapse
Affiliation(s)
- Lynn M Crosby
- Department of Physiology, University of Tennessee Health Science Center, Memphis, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tang GJ, Wang HY, Wang JY, Lee CC, Tseng HW, Wu YL, Shyue SK, Lee TS, Kou YR. Novel role of AMP-activated protein kinase signaling in cigarette smoke induction of IL-8 in human lung epithelial cells and lung inflammation in mice. Free Radic Biol Med 2011; 50:1492-502. [PMID: 21376115 DOI: 10.1016/j.freeradbiomed.2011.02.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/12/2011] [Accepted: 02/24/2011] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS) increases chemokine production in lung epithelial cells (LECs), but the pathways involved are not completely understood. AMP-activated protein kinase (AMPK), a crucial regulator of energy homeostasis, may modulate inflammation. Here, we show that cigarette smoke extract sequentially activated NADPH oxidase; increased intracellular reactive oxygen species (ROS) level; activated AMPK, NF-κB, and STAT3; and induced interleukin 8 (IL-8) in human LECs. Inhibition of NADPH oxidase activation by apocynin or siRNA targeting p47(phox) (a subunit of NADPH oxidase) attenuated the increased intracellular ROS level, AMPK activation, and IL-8 induction. Removal of intracellular ROS by N-acetylcysteine reduced the AMPK activation and IL-8 induction. Prevention of AMPK activation by Compound C or AMPK siRNA lessened the activation of both NF-κB and STAT3 and the induction of IL-8. Abrogation of the activation of NF-κB and STAT3 by BAY11-7085 and AG490, respectively, attenuated the IL-8 induction. We additionally show that chronic CS exposure in mice promoted AMPK phosphorylation and expression of MIP-2α (an IL-8 homolog) in LECs and lungs, as well as lung inflammation, all of which were reduced by Compound C treatment. Thus, a novel NADPH oxidase-dependent, ROS-sensitive AMPK signaling is important for CS-induced IL-8 production in LECs and possibly lung inflammation.
Collapse
Affiliation(s)
- Gau-Jun Tang
- National Yang-Ming University Hospital, I-Lan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sangani RG, Ghio AJ. Lung injury after cigarette smoking is particle related. Int J Chron Obstruct Pulmon Dis 2011; 6:191-8. [PMID: 21660296 PMCID: PMC3107695 DOI: 10.2147/copd.s14911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Indexed: 12/18/2022] Open
Abstract
The specific component responsible and the mechanistic pathway for increased human morbidity and mortality after cigarette smoking are yet to be delineated. We propose that 1) injury and disease following cigarette smoking are associated with exposure to and retention of particles produced during smoking and 2) the biological effects of particles associated with cigarette smoking share a single mechanism of injury with all particles. Smoking one cigarette exposes the human respiratory tract to between 15,000 and 40,000 μg particulate matter; this is a carbonaceous product of an incomplete combustion. There are numerous human exposures to other particles, and these vary widely in composition, absolute magnitude, and size of the particle. Individuals exposed to all these particles share a common clinical presentation with a loss of pulmonary function, increased bronchial hyperresponsiveness, pathologic changes of emphysema and fibrosis, and comorbidities, including cardiovascular disease, cerebrovascular disease, peripheral vascular disease, and cancers. Mechanistically, all particle exposures produce an oxidative stress, which is associated with a series of reactions, including an activation of kinase cascades and transcription factors, release of inflammatory mediators, and apoptosis. If disease associated with cigarette smoking is recognized to be particle related, then certain aspects of the clinical presentation can be predicted; this would include worsening of pulmonary function and progression of pathological changes and comorbidity (eg, emphysema and carcinogenesis) after smoking cessation since the particle is retained in the lung and the exposure continues.
Collapse
Affiliation(s)
- Rahul G Sangani
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC 27599-7315, USA
| | | |
Collapse
|
25
|
Intratracheal siRNA for the in vivo silencing of caspase-3: A novel therapy for acute lung injury?*. Crit Care Med 2010; 38:1223-4. [DOI: 10.1097/ccm.0b013e3181cfb46a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Sandikci M, Seyrek K, Aksit H, Kose H. Inhalation of formaldehyde and xylene induces apoptotic cell death in the lung tissue. Toxicol Ind Health 2009; 25:455-61. [DOI: 10.1177/0748233709106824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to determine the localization and number of apoptotic cells in lung tissue and bronchus-associated lymphoid tissue (BALT) of newborns, young, and adult rats exposed to formaldehyde (6 ppm) or technical xylene (300 ppm) for 6 weeks (8 h/day). A total of 27 female Sprague-Dawley rats were used. Apoptotic cells were mainly localized around the bronchus and bronchioles and relatively less frequently on the walls of alveoli and interalveolar septa both in control and experimental groups. In the BALT, reactive cells were localized in the area under the epithelium and distributed homogenously within the lymphoid follicles. The numbers of apoptotic cells in the lung tissue including the BALT were significantly higher in young and adult rats exposed to formaldehyde and xylene than those detected in control groups.
Collapse
Affiliation(s)
- M. Sandikci
- Department of Histology-Embryology, Adnan Menderes University, Faculty of Veterinary Medicine, Aydin, Turkey,
| | - K. Seyrek
- Department of Biochemistry, Adnan Menderes University, Faculty of Veterinary Medicine, Aydin, Turkey
| | - H. Aksit
- Department of Biochemistry, Adnan Menderes University, Faculty of Veterinary Medicine, Aydin, Turkey
| | - H. Kose
- Department of Biophisic, Adnan Menderes University, Faculty of Medicine, Aydin, Turkey
| |
Collapse
|
27
|
Berra L, Alston TA. Worse bleeding but better survival associated with N-acetylcysteine in cardiac surgery. Crit Care Med 2009; 37:2113-4. [PMID: 19448461 DOI: 10.1097/ccm.0b013e3181a5e949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Hsu CL, Wu YL, Tang GJ, Lee TS, Kou YR. Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells: Role of heme oxygenase-1. Pulm Pharmacol Ther 2009; 22:286-96. [PMID: 19254777 DOI: 10.1016/j.pupt.2009.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/23/2008] [Accepted: 02/19/2009] [Indexed: 01/07/2023]
Abstract
Cigarette smoking is the major cause of chronic obstructive pulmonary disease, which is associated with increased oxidative stress and numbers of apoptotic endothelial cells in the lungs. Ginkgo biloba extract (EGb) is a therapeutic agent for disorders such as vascular insufficiency and Alzheimer's disease. Although EGb is known to possess antioxidant functions, its ability to alleviate cigarette smoke-induced pathophysiological consequences has not been elucidated. We investigated the cytoprotective effects and therapeutic mechanisms of EGb against oxidative stress and apoptosis induced by cigarette smoke extract (CSE) in human pulmonary artery endothelial cells (HPAECs). Challenge with CSE (160 microg/ml) caused a reduction in cell viability, an increase in intracellular reactive oxygen species and an acceleration of caspase-dependent apoptosis in HPAECs, all of which were alleviated by pretreatment with EGb (100 microg/ml). N-acetylcysteine (an antioxidant) also reduced both the CSE-induced oxidative stress and apoptosis, indicating that the former response triggered the latter. Additionally, EGb produced activation of ERK, JNK and p38 [three major mitogen-activated protein kinases (MAPKs)], an increase in the nuclear level of nuclear factor erythroid-2-related factor 2 (Nrf2) and upregulation of heme oxygenase-1 (HO-1, a stress-responsive protein with antioxidant function). Pretreatment with inhibitors of MAPKs abolished both EGb-induced Nrf2 nuclear translocation and HO-1 upregulation. Small interfering RNAs targeting HO-1 prevented EGb-induced HO-1 upregulation and also abolished the antioxidant, anti-apoptotic and cytoprotective effects of EGb in HPAECs insulted with CSE. We conclude that EGb confers protection from oxidative stress-related apoptosis induced by CSE in HPAECs and its therapeutic effects depend on transcriptional upregulation of HO-1 by EGb via the MAPKs/Nrf2 pathway.
Collapse
Affiliation(s)
- Chiu-Ling Hsu
- Institute of Physiology, School of Medicine, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Marsh LM, Cakarova L, Kwapiszewska G, von Wulffen W, Herold S, Seeger W, Lohmeyer J. Surface expression of CD74 by type II alveolar epithelial cells: a potential mechanism for macrophage migration inhibitory factor-induced epithelial repair. Am J Physiol Lung Cell Mol Physiol 2009; 296:L442-52. [PMID: 19136583 DOI: 10.1152/ajplung.00525.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine involved in acute lung injury and other processes such as wound repair and tumor growth. MIF exerts pro-proliferative effects on a variety of cell types including monocytes/macrophages, B cells, and gastric epithelial cell lines through binding to the major histocompatibility complex type II-associated invariant chain, CD74. In acute lung injury, inflammatory damage of the alveolar epithelium leads to loss of type I alveolar epithelial cells (AEC-I), which are replaced by proliferation and differentiation of type II alveolar epithelial cells (AEC-II). In this study we have investigated the potential of MIF to contribute to alveolar repair by stimulating alveolar epithelial cell proliferation. We show that murine AEC-II, but not AEC-I, express high surface levels of CD74 in vivo. Culture of AEC-II in vitro resulted in decreased mRNA levels for CD74 and loss of surface CD74 expression, which correlated with a transition of AEC-II to an AEC-I-like phenotype. MIF stimulation of AEC-II induced rapid and prolonged phosphorylation of ERK1/2 and Akt, increased expression of cyclins D1 and E, as well as AEC-II proliferation. Corresponding MIF signaling and enhanced thymidine incorporation was observed after MIF stimulation of MLE-12 cells transfected to overexpress CD74. In contrast, MIF did not induce MAPK activation, gene transcription, or increased proliferation in differentiated AEC-I-like cells that lack CD74. These data suggest a previously unidentified role of MIF-CD74 interaction by inducing proliferation of AEC-II, which may contribute to alveolar repair.
Collapse
Affiliation(s)
- Leigh M Marsh
- Department of Internal Medicine, Giessen and Marburg University, University Giessen Lung Centre, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
A role for heme oxygenase-1 in alveolar repair after wood smoke exposure? Crit Care Med 2008; 36:2697-8. [PMID: 18728489 DOI: 10.1097/ccm.0b013e3181843e4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|