1
|
Nemeth JM, Decker C, Ramirez R, Montgomery L, Hinton A, Duhaney S, Smith R, Glasser A, Bowman A(A, Kulow E, Wermert A. Partner-Inflicted Brain Injury: Intentional, Concurrent, and Repeated Traumatic and Hypoxic Neurologic Insults. Brain Sci 2025; 15:524. [PMID: 40426695 PMCID: PMC12110188 DOI: 10.3390/brainsci15050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
(1) Background: Traumatic brain injury (TBI) is caused from rapid head acceleration/deceleration, focal blows, blasts, penetrating forces, and/or shearing forces, whereas hypoxic-anoxic injury (HAI) is caused through oxygen deprivation events, including strangulation. Most service-seeking domestic violence (DV) survivors have prior mechanistic exposures that can lead to both injuries. At the time of our study, some evidence existed about the exposure to both injuries over the course of a survivor's lifetime from abuse sources, yet little was known about their co-occurrence to the same survivor within the same episode of physical intimate partner violence (IPV). To better understand the lived experience of service-seeking DV survivors and the context in which partner-inflicted brain injury (PIBI) is sustained, we sought to understand intentional brain injury (BI) exposures that may need to be addressed and accommodated in services. Our aims were to 1. characterize the lifetime co-occurrence of strangulation and intentional head trauma exposures from all abuse sources to the same survivor and within select physical episodes of IPV and 2. establish the lifetime prevalence of PIBI. (2) Methods: Survivors seeking DV services in the state of Ohio in the United States of America (U.S.) completed interview-administered surveys in 2019 (n = 47). Community-based participatory action approaches guided all aspects of the study development, implementation, and interpretation. (3) Results: The sample was primarily women. Over 40% reported having Medicaid, the government-provided health insurance for the poor. Half had less than a postsecondary education. Over 80% of participants presented to DV services with both intentional head trauma and strangulation exposures across their lifetime from intimate partners and other abuse sources (i.e., child abuse, family violence, peer violence, sexual assault, etc.), though not always experienced at the same time. Nearly 50% reported an experience of concurrent head trauma and strangulation in either the first or last physical IPV episode. Following a partner's attack, just over 60% reported ever having blacked out or lost consciousness-44% experienced a loss of consciousness (LOC) more than once-indicating a conservative estimate of a probable brain injury by an intimate partner. Over 80% of service-seeking DV survivors reported either a LOC or two or more alterations in consciousness (AICs) following an IPV attack and were classified as ever having a partner-inflicted brain injury. (4) Conclusions: Most service-seeking IPV survivors experience repetitive and concurrent exposures to abusive strangulation and head trauma through the life course and by intimate partners within the same violent event resulting in brain injury. We propose the use of the term partner-inflicted brain injury (PIBI) to describe the physiological disruption of normal brain functions caused by intentional, often concurrent and repeated, traumatic and hypoxic neurologic insults by an intimate partner within the context of ongoing psychological trauma, coercive control, and often past abuse exposures that could also result in chronic brain injury. We discuss CARE (Connect, Acknowledge, Respond, Evaluate), a brain-injury-aware enhancement to service delivery. CARE improved trauma-informed practices at organizations serving DV survivors because staff felt knowledgeable to address and accommodate brain injuries. Survivor behavior was then interpreted by staff as a "can't" not a "won't", and social and functional supports were offered.
Collapse
Affiliation(s)
- Julianna M. Nemeth
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| | - Clarice Decker
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| | - Rachel Ramirez
- Ohio Domestic Violence Network, Columbus, OH 43215, USA; (R.R.); (E.K.)
| | - Luke Montgomery
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| | - Alice Hinton
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| | - Sharefa Duhaney
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| | - Raya Smith
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| | - Allison Glasser
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| | - Abigail (Abby) Bowman
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| | - Emily Kulow
- Ohio Domestic Violence Network, Columbus, OH 43215, USA; (R.R.); (E.K.)
| | - Amy Wermert
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (C.D.); (L.M.); (S.D.); (R.S.); (A.G.); (A.B.); (A.W.)
| |
Collapse
|
2
|
Magnussen AS, Olsen MH, Korshøj AR, Mathiesen T, Forsse A, Bjarkam CR, Danish Neurointensive Care Monitoring Consortium. Multimodal neuromonitoring in the nordic countries: experiences and attitudes - a multi-institutional survey. Acta Neurochir (Wien) 2025; 167:70. [PMID: 40072683 PMCID: PMC11903619 DOI: 10.1007/s00701-025-06479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Multimodal neuromonitoring (MMM) aids early detection of secondary brain injury in neurointensive care and facilitates research in pathophysiologic mechanisms of the injured brain. Invasive ICP monitoring has been the gold standard for decades, however additional methods exist (aMMM). It was hypothesized that local practices regarding aMMM vary considerably and that inter-and intracenter consensus is low. The survey aimed to investigate this hypothesis including the knowledge, attitudes towards, and use of aMMM in the neurointensive care setting in the Nordic countries. METHOD The survey was distributed amongst 54 neurosurgical trainees at a Nordic neurosurgery training course and supplemented with 16 center-appointed neuromonitoring experts representing 16 of the 19 neurosurgical centers in the Nordic countries (Norway, Sweden, Denmark, and Finland). RESULTS The response rate was 100% amongst the training course attendents, as well as the center-appointed experts with a total of 70 respondents. The experts covered 16/19 Nordic centers. In-center disagreement was high concerning the use of aMMM methods. In patients with traumatic brain injury, subarachnoid hemorrhage, or other acute brain injuries 50% of the appointed experts stated transcranial Doppler ultrasound (TCD) to be used in most cases in their ICU, and an additional 25% for selected cases. Most appointed experts agreed on electroencephalography (EEG) for selected cases 63%, but only 19% for most cases. Routine use of Invasive brain tissue oxygenation (PbtO2) was stated by 25-63% and cerebral microdialysis (CMD) by 19-38%. The main perceived concerns with aMMM methods were the usefulness for outcome-changing interventions (43%) and financial issues (19%). Most respondents (67%) believed automated combined analysis of aMMM to be a likely future scenario. CONCLUSION There was a remarkable variation in the reported use of aMMM among Nordic neurosurgical centers, indicating an extensive lack of consensus on need and utility. Surprisingly routine use of TCD was stated by 75%, presumably for routine monitoring of SAH patients, whereas CMD was mostly considered a research tool. Interestingly, junior staff and appointed experts disagreed on intended local routines, indicating that application of aMMM was more governed organically and by case than on explicit guidelines or that uniform management was not prioritized.
Collapse
Affiliation(s)
- Anna Søgaard Magnussen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, Copenhagen, 2100, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Rosendal Korshøj
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Axel Forsse
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, Copenhagen, 2100, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
3
|
Jayakanthan M, Manochkumar J, Efferth T, Ramamoorthy S. Lutein, a versatile carotenoid: Insight on neuroprotective potential and recent advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156185. [PMID: 39531935 DOI: 10.1016/j.phymed.2024.156185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are a diverse group of neurological disorders with progressive neuronal loss at specific brain regions, leading to impaired cognitive functioning, loss of neuroplasticity, severe neurological impairment, and dementia. The incidence of neurodegenerative diseases is increasing at an alarming rate with current treatments struggling to barely prolong the inevitable. The desperation to discover a therapeutic agent to treat neurodegenerative diseases and to aid in the process of healthy recovery has opened a gateway into natural pigments. HYPOTHESIS The xanthophyll pigment lutein may bear the potential as a therapeutic agent against NDDs. RESULTS Lutein plays an important role in brain development, cognitive functioning, and improving neuroplasticity. In vitro and in vivo studies revealed the neuroprotective properties of lutein against NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and cerebral ischemia. The neuroprotective effect of lutein is evidenced by the reduction of free radicals and the simultaneous strengthening of the endogenous antioxidant systems by activating the NRF-2/ERK/AKT pathway. Further, it effectively suppressed mitochondrial aberrations, excitotoxicity, overaccumulation of metals, and its resultant complications. The immunomodulatory activity of lutein prevents neuroinflammation by hindering NF-κB nuclear translocation, regulation of NIK/IKK, PI3K/AKT, MAPK/ERK, JNK pathways, and ICAM-1 downregulation. Lutein also rescued the dysregulated cholinergic system and resolved memory defects. Along with its neuroprotective properties, lutein also improved neuroplasticity by enabling neurogenesis through increased GAP-43, NCAM, and BDNF levels. CONCLUSION Lutein exhibits strong neuroprotective activities against various NDDs. Though the investigations are in the exploratory phase, this review presents the consolidation of scattered evidence of the neuroprotective properties of lutein and urges its further exploration in clinical studies.
Collapse
Affiliation(s)
- Megha Jayakanthan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
4
|
Mokoala KMG, Sathekge MM. Non-FDG hypoxia tracers. Semin Nucl Med 2024; 54:827-844. [PMID: 39510855 DOI: 10.1053/j.semnuclmed.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Hypoxia plays a critical role in tumor biology, influencing cancer progression, treatment resistance, and patient prognosis. While 18-Fluorine fluoredeoxyglucose ([18F]F-FDG) PET imaging has been the standard for metabolic assessment, its limitations in accurately depicting hypoxic tumor regions necessitate the exploration of non-FDG hypoxia tracers. This review aims to evaluate emerging non-FDG radiotracers, such as nitroimidazole derivatives, copper-based agents, gallium-based agents and other innovative compounds, highlighting their mechanisms of action, biodistribution, and clinical applications. We will discuss the advantages and challenges associated with hypoxia imaging, as well as recent advancements in imaging techniques that enhance the assessment of tumor hypoxia. By synthesizing current research, this review seeks to provide insights into the potential of non-FDG hypoxia tracers for improving cancer diagnosis, treatment planning, and monitoring, ultimately contributing to more personalized and effective cancer care.
Collapse
Affiliation(s)
- Kgomotso M G Mokoala
- University of Pretoria, Pretoria, ZA-GP, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, ZA-GP, South Africa.
| | - Mike M Sathekge
- University of Pretoria, Pretoria, ZA-GP, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, ZA-GP, South Africa
| |
Collapse
|
5
|
Wang Z, Zhang R, Han Z, Wang J, Wu R, Zhao W, Zhang X, Bao J, Yang W, Zhang Z. Assessment of traumatic brain injury treatment guided by continuous monitoring of intracranial pressure and brain tissue oxygen partial pressure: A single-center pilot study. J Clin Neurosci 2024; 130:110884. [PMID: 39447393 DOI: 10.1016/j.jocn.2024.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Severe traumatic brain injury (TBI) is a leading cause of death and disability. Monitoring intracranial pressure (ICP) is recommended, but the data on the outcomes are conflicting. Adding continuous brain tissue oxygen partial pressure (PbtO2) monitoring may have some benefit but the OXY-TC suggested it did not improve 6-month neurological outcomes. This single-center pilot randomized controlled study aimed to evaluate whether adding PbtO2 monitoring was feasible and could improve the prognosis of severe TBI. The participants were randomized into either an ICP alone or an ICP + PbtO2 group for 7 days, with treatment protocols based on existing guidelines. Clinical parameters were collected hourly. The primary outcome was the feasibility of using PbtO2 monitoring. The secondary outcomes were 6-month survival, analyzed by the log-rank test, the 3- and 6-month Glasgow Outcome Scale (GOS) scores, compared between groups by chi-squared test. Seventy patients were included (36 ICP, 34 ICP + PbtO2). The ICP + PbtO2 group had lower mean daily ICP (13.4 vs. 18.2 mmHg, P = 0.0024) and higher mean daily cerebral perfusion pressure (82.1 vs. 74.5 mmHg, P = 0.0055). The ICP + PbtO2 group had higher 6-month survival (79.4 % vs. 55.6 %, P = 0.0337) and more favorable outcomes at 3 months (67.6 % vs. 38.9 %, P = 0.0160) and 6 months (70.6 % vs. 41.7 %, P = 0.0149). Adding PbtO2 monitoring to ICP monitoring is feasible in patients with severe TBI and could maybe improve the intermediate-term outcomes. The results will serve to design larger trials.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China.
| | - Ruijian Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhitong Han
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Junqing Wang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Weiping Zhao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Xiaojun Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Weiran Yang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhilong Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
6
|
Lund A, Madsen AF, Capion T, Jensen HR, Forsse A, Hauerberg J, Sigurðsson SÞ, Mathiesen TI, Møller K, Olsen MH. Brain hypoxia and metabolic crisis are common in patients with acute brain injury despite a normal intracranial pressure. Sci Rep 2024; 14:23828. [PMID: 39394442 PMCID: PMC11470048 DOI: 10.1038/s41598-024-75129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Patients with acute brain injury are vulnerable to secondary deterioration, which may go undetected by traditional monitoring. However, multimodal neuromonitoring of brain tissue oxygen tension (PbtO2) and energy metabolism may be able to detect such episodes. We report a retrospective, observational study of 94 patients with aneurysmal subarachnoid haemorrhage (SAH) or traumatic brain injury (TBI) who underwent multimodal neuromonitoring during admission. We examined the co-occurrence of pathological neuromonitoring values: elevated intracranial pressure (ICP, > 20 mmHg), inadequate cerebral perfusion pressure (CPP, < 60 mmHg), brain hypoxia (PbtO2 < 20 mmHg), and metabolic crisis (lactate/pyruvate ratio > 40 and a glucose level < 0.2 mmol/L in cerebral microdialysate). Mixed effects linear regression demonstrated significant associations between abnormal ICP/CPP, cerebral hypoxia and metabolic crisis. However, brain hypoxia occurred in 40% and 31% of observations in patients with SAH and TBI, respectively, despite normal concurrent values of ICP. Similarly, metabolic crisis was observed in 8% and 16% of measurements for SAH and TBI, respectively, despite a normal ICP. The pattern was identical for CPP. In conclusion, although all neuromonitoring variables are interrelated, brain hypoxia and metabolic crisis are common despite an absence of abnormalities in conventional monitoring. Multimodal neuromonitoring may help identify such episodes and guide individualised treatment.
Collapse
Affiliation(s)
- Anton Lund
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Anna Forsberg Madsen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helene Ravnholt Jensen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Axel Forsse
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - John Hauerberg
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sigurður Þor Sigurðsson
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tiit Illimar Mathiesen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kirsten Møller
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Zhang C, Zhou L, Zhang K, Huang J, Cao L, Lou Y, Fan Y, Zhang X, Wang Y, Cui W, Hu L, Zhang G. Brain tissue oxygen pressure combined with intracranial pressure monitoring may improve clinical outcomes for patients with severe traumatic brain injury: a systemic review and meta-analysis. PeerJ 2024; 12:e18086. [PMID: 39399425 PMCID: PMC11468803 DOI: 10.7717/peerj.18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/21/2024] [Indexed: 10/15/2024] Open
Abstract
Background Although the optimization of brain oxygenation is thought to improve the prognosis, the effect of brain tissue oxygen pressure (PbtO2) for patients with severe traumatic brain injury (STBI) remains controversial. Therefore, the present study aimed to determine whether adding PbtO2 to intracranial pressure (ICP) monitoring improves clinical outcomes for patients with STBI. Methods PubMed, Embase, Scopus and Cochrane Library were searched for eligible trials from their respective inception through April 10th, 2024. We included clinical trials contrasting the combined monitoring of PbtO2 and ICP versus isolated ICP monitoring among patients with STBI. The primary outcome was favorable neurological outcome at 6 months, and secondary outcomes including the in-hospital mortality, long-term mortality, length of stay in intensive care unit (ICU) and hospital. Results A total of 16 studies (four randomized studies and 12 cohort studies) were included in the meta-analysis. Compared with isolated ICP monitoring, the combined monitoring was associated with a higher favorable neurological outcome rate at 6 months (RR 1.33, 95% CI [1.17-1.51], P < 0.0001, I2 = 0%), reduced long-term mortality (RR 0.72, 95% CI [0.59-0.87], P = 0.0008, I2 = 2%). No significant difference was identified in the in-hospital mortality (RR 0.81, 95% CI 0.66 to 1.01, P = 0.06, I2 = 32%), length of stay in ICU (MD 2.10, 95% CI [-0.37-4.56], P = 0.10, I2 = 78%) and hospital (MD 1.07, 95% CI [-2.54-4.67], P = 0.56, I2 = 49%) between two groups. However, the pooled results of randomized studies did not show beneficial effect of combined monitoring in favorable neurological outcome and long-term mortality. Conclusions Currently, there is limited evidence to prove that the combined PbtO2 and ICP monitoring may contribute to improved neurological outcome and long-term mortality for patients with STBI. However, the benefit of combined monitoring should be further validated in more randomized studies.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Emergency Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lingmin Zhou
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, First People’s Hospital of Taizhou, Taizhou, China
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Critical Care Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Lanxin Cao
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhang Lou
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushi Fan
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyun Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yesong Wang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Hu
- Department of Critical Care Medicine, Hospital of Zhejiang People’s Armed Police, Hangzhou, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
8
|
Utsumi S, Okajima K, Amagasa S. Impact of Intracranial Pressure and Invasive Cerebral Oxygenation Monitoring in Patients with Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. World Neurosurg 2024; 190:481-486.e2. [PMID: 39147023 DOI: 10.1016/j.wneu.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Intracranial pressure (ICP) monitoring and monitoring of brain tissue oxygen (Pbto2) in addition to ICP have been used in the management of traumatic brain injury (TBI). However, the optimal monitoring method is inconclusive. We searched 4 databases with no language restrictions through January 2024 for peer-reviewed randomized controlled trials (RCTs) comparing ICP monitoring with combined Pbto2 and ICP monitoring in patients with traumatic brain injury. A favorable neurologic outcome was the primary outcome, and the secondary outcome was survival. Two reviewers screened manuscripts, extracted data, and assessed the risk of bias. We then performed a meta-analysis to assess efficacy using the Grading of Recommendations, Assessment, Development, and Evaluation working group approach. We included 5 trials comprising 512 patients. There was no difference in favorable neurologic outcome (risk ratio: 1.21; 95% confidence interval: 0.93, 1.58; I2: 45%; 5 RCTs: 512 patients; moderate certainty) and survival (risk ratio: 1.10; 95% confidence interval: 0.99, 1.21; I2: 13%; 5 RCTs: 512 patients; moderate certainty). We found no evidence that the combination of Pbto2 and ICP is more useful than ICP. The included RCTs are few and small, and further study is needed to draw conclusions.
Collapse
Affiliation(s)
- Shu Utsumi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Emergency and Transport Medicine, National Center for Child Health and Development, Tokyo, Japan.
| | - Kie Okajima
- Department of Emergency and Transport Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shunsuke Amagasa
- Department of Emergency and Transport Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
9
|
Tamura I, Sakamoto DM, Yi B, Saito Y, Yamada N, Morimoto J, Takakusagi Y, Kuroda M, Kubota SI, Yatabe H, Kobayashi M, Harada H, Tainaka K, Sando S. Click3D: Click reaction across deep tissues for whole-organ 3D fluorescence imaging. SCIENCE ADVANCES 2024; 10:eado8471. [PMID: 39018410 PMCID: PMC466963 DOI: 10.1126/sciadv.ado8471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Click chemistry offers various applications through efficient bioorthogonal reactions. In bioimaging, pretargeting strategies have often been used, using click reactions between molecular probes with a click handle and reporter molecules that make them observable. Recent efforts have integrated tissue-clearing techniques with fluorescent labeling through click chemistry, allowing high-resolution three-dimensional fluorescence imaging. Nevertheless, these techniques have faced a challenge in limited staining depth, confining their use to imaging tissue sections or partial organs. In this study, we introduce Click3D, a method for thoroughly staining whole organs using click chemistry. We identified click reaction conditions that improve staining depth with our custom-developed assay. The Click3D protocol exhibits a greater staining depth compared to conventional methods. Using Click3D, we have successfully achieved whole-kidney imaging of nascent RNA and whole-tumor imaging of hypoxia. We have also accomplished whole-brain imaging of hypoxia by using the clickable hypoxia probe, which has a small size and, therefore, has high permeability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daichi M. Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masafumi Kuroda
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shimpei I. Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Hiroyuki Yatabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Casetta I, Crepaldi A, Laudisi M, Baroni A, Gemignani J, Straudi S, Manfredini F, Lamberti N. Variations in Cortical Oxygenation by Near-Infrared Spectroscopy According to Head Position after Acute Stroke: The Preliminary Findings of an Observational Study. J Clin Med 2024; 13:3914. [PMID: 38999480 PMCID: PMC11242420 DOI: 10.3390/jcm13133914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: After ischemic stroke, there is no general consensus on the optimal position for the head of patients in the acute phase. This observational study aimed to measure the variations in cortical oxygenation using noninvasive functional near-infrared spectroscopy (fNIRS) at different degrees of head positioning on a bed. Methods: Consecutive ischemic stroke patients aged 18 years or older with anterior circulation ischemic stroke within 48 h of symptom onset who could safely assume different positions on a bed were included. A 48-channel fNIRS system was placed in the bilateral sensorimotor cortex. Then, the bed of each patient was moved into four consecutive positions: (1) seated (90° angle between the head and bed surface); (2) lying at 30°; (3) seated again (90°); and (4) lying flat (0°). Each position was maintained for 90 s; the test was conducted 48 h after stroke onset and after 5 ± 1 days. The variations in oxygenated hemoglobin in the global brain surface and for each hemisphere were recorded and compared. Results: Twenty-one patients were included (males, n = 11; age, 79 ± 9 years; ASPECTS, 8 ± 2). When evaluating the affected side, the median oxygenation was significantly greater in the lying-flat (0°) and 30° positions than in the 90° position (p < 0.001 for both comparisons). No significant differences between the supine position and the 30° position were found, although oxygenation was slightly lower in the 30° position than in the supine position (p = 0.063). No differences were observed when comparing recanalized and nonrecanalized patients separately or according to stroke severity. The evaluation conducted 5 days after the stroke confirmed the previous data, with a significant difference in oxygenation at 0° and 30° compared to 90°. Conclusions: This preliminary study suggested that there are no substantial differences in brain oxygenation between the lying-flat head position and the 30° laying position.
Collapse
Affiliation(s)
| | - Anna Crepaldi
- Unit of Nephrology, University Hospital of Ferrara, 44124 Ferrara, Italy;
| | - Michele Laudisi
- Unit of Neurology, University Hospital of Ferrara, 44124 Ferrara, Italy;
| | - Andrea Baroni
- Unit of Rehabilitation Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (A.B.); (S.S.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy;
| | - Jessica Gemignani
- Department of Developmental Psychology and Socialization, University of Padova, 35131 Padova, Italy;
| | - Sofia Straudi
- Unit of Rehabilitation Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (A.B.); (S.S.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy;
| | - Fabio Manfredini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy;
- Program of Vascular Rehabilitation and Exercise Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Nicola Lamberti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy;
| |
Collapse
|
11
|
Santana LS, Diniz JBC, Solla DJF, Neville IS, Figueiredo EG, Mota Telles JP. Brain tissue oxygen combined with intracranial pressure monitoring versus isolated intracranial pressure monitoring in patients with traumatic brain injury: an updated systematic review and meta-analysis. Neurol Sci 2024; 45:3051-3059. [PMID: 38353849 DOI: 10.1007/s10072-024-07392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 06/15/2024]
Abstract
Monitoring intracranial pressure (ICP) is pivotal in the management of severe traumatic brain injury (TBI), but secondary brain injuries can arise despite normal ICP levels. Cerebral tissue oxygenation monitoring (PbtO2) may detect neuronal tissue infarction thresholds, enhancing neuroprotection. We performed a systematic review and meta-analysis to evaluate the effects of combined cerebral tissue oxygenation (PbtO2) and ICP compared to isolated ICP monitoring in patients with TBI. PubMed, Embase, Cochrane, and Web of Sciences databases were searched for trials published up to June 2023. A total of 16 studies comprising 37,820 patients were included. ICP monitoring was universal, with additional placement of PbtO2 in 2222 individuals (5.8%). The meta-analysis revealed a reduction in mortality (OR 0.57, 95% CI 0.37-0.89, p = 0.01), a greater likelihood of favorable outcomes (OR 2.28, 95% CI 1.66-3.14, p < 0.01), and a lower chance of poor outcomes (OR 0.51, 95% CI 0.34-0.79, p < 0.01) at 6 months for the PbtO2 plus ICP group. However, these patients experienced a longer length of hospital stay (MD 2.35, 95% CI 0.50-4.20, p = 0.01). No significant difference was found in hospital mortality rates (OR 0.81, 95% CI 0.61-1.08, p = 0.16) or intensive care unit length of stay (MD 2.46, 95% CI - 0.11-5.04, p = 0.06). The integration of PbtO2 to ICP monitoring improved mortality outcomes and functional recovery at 6 months in patients with TBI. PROSPERO (International Prospective Register of Systematic Reviews) CRD42022383937; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=383937.
Collapse
Affiliation(s)
| | | | - Davi Jorge Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Iuri Santana Neville
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Eberval Gadelha Figueiredo
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - João Paulo Mota Telles
- Department of Neurology, University of São Paulo, Av Dr Arnaldo, 455 - Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
12
|
Abstract
Acute respiratory failure is commonly encountered in severe acute brain injury due to a multitude of factors related to the sequelae of the primary injury. The interaction between pulmonary and neurologic systems in this population is complex, often with competing priorities. Many treatment modalities for acute respiratory failure can result in deleterious effects on cerebral physiology, and secondary brain injury due to elevations in intracranial pressure or impaired cerebral perfusion. High-quality literature is lacking to guide clinical decision-making in this population, and deliberate considerations of individual patient factors must be considered to optimize each patient's care.
Collapse
Affiliation(s)
- Zachary Robateau
- Department of Neurology, University of Washington, Seattle, USA.
| | - Victor Lin
- Department of Neurology, University of Washington, Seattle, USA
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, USA; Department of Neurological Surgery, University of Washington, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| |
Collapse
|
13
|
Anderloni M, Schuind S, Salvagno M, Donadello K, Peluso L, Annoni F, Taccone FS, Gouvea Bogossian E. Brain Oxygenation Response to Hypercapnia in Patients with Acute Brain Injury. Neurocrit Care 2024; 40:750-758. [PMID: 37697127 DOI: 10.1007/s12028-023-01833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Cerebral hypoxia is a frequent cause of secondary brain damage in patients with acute brain injury. Although hypercapnia can increase intracranial pressure, it may have beneficial effects on tissue oxygenation. We aimed to assess the effects of hypercapnia on brain tissue oxygenation (PbtO2). METHODS This single-center retrospective study (November 2014 to June 2022) included all patients admitted to the intensive care unit after acute brain injury who required multimodal monitoring, including PbtO2 monitoring, and who underwent induced moderate hypoventilation and hypercapnia according to the decision of the treating physician. Patients with imminent brain death were excluded. Responders to hypercapnia were defined as those with an increase of at least 20% in PbtO2 values when compared to their baseline levels. RESULTS On a total of 163 eligible patients, we identified 23 (14%) patients who underwent moderate hypoventilation (arterial partial pressure of carbon dioxide [PaCO2] from 44 [42-45] to 50 [49-53] mm Hg; p < 0.001) during the study period at a median of 6 (4-10) days following intensive care unit admission; six patients had traumatic brain injury, and 17 had subarachnoid hemorrhage. A significant overall increase in median PbtO2 values from baseline (21 [19-26] to 24 [22-26] mm Hg; p = 0.02) was observed. Eight (35%) patients were considered as responders, with a median increase of 7 (from 4 to 11) mm Hg of PbtO2, whereas nonresponders showed no changes (from - 1 to 2 mm Hg of PbtO2). Because of the small sample size, no variable independently associated with PbtO2 response was identified. No correlation between changes in PaCO2 and in PbtO2 was observed. CONCLUSIONS In this study, a heterogeneous response of PbtO2 to induced hypercapnia was observed but without any deleterious elevations of intracranial pressure.
Collapse
Affiliation(s)
- Marco Anderloni
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Route de Lennik, 808, Brussels, Belgium
- Department of Intensive Care, Azienda Ospedaliera Univesitaria Integrata Di Verona, Verona, Italy
| | - Sophie Schuind
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Route de Lennik, 808, Brussels, Belgium
| | - Katia Donadello
- Department of Intensive Care, Azienda Ospedaliera Univesitaria Integrata Di Verona, Verona, Italy
| | - Lorenzo Peluso
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Route de Lennik, 808, Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Route de Lennik, 808, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Route de Lennik, 808, Brussels, Belgium
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Route de Lennik, 808, Brussels, Belgium.
| |
Collapse
|
14
|
Battaglini D, Bogossian EG, Anania P, Premraj L, Cho SM, Taccone FS, Sekhon M, Robba C. Monitoring of Brain Tissue Oxygen Tension in Cardiac Arrest: a Translational Systematic Review from Experimental to Clinical Evidence. Neurocrit Care 2024; 40:349-363. [PMID: 37081276 DOI: 10.1007/s12028-023-01721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Cardiac arrest (CA) is a sudden event that is often characterized by hypoxic-ischemic brain injury (HIBI), leading to significant mortality and long-term disability. Brain tissue oxygenation (PbtO2) is an invasive tool for monitoring brain oxygen tension, but it is not routinely used in patients with CA because of the invasiveness and the absence of high-quality data on its effect on outcome. We conducted a systematic review of experimental and clinical evidence to understand the role of PbtO2 in monitoring brain oxygenation in HIBI after CA and the effect of targeted PbtO2 therapy on outcomes. METHODS The search was conducted using four search engines (PubMed, Scopus, Embase, and Cochrane), using the Boolean operator to combine mesh terms such as PbtO2, CA, and HIBI. RESULTS Among 1,077 records, 22 studies were included (16 experimental studies and six clinical studies). In experimental studies, PbtO2 was mainly adopted to assess the impact of gas exchanges, drugs, or systemic maneuvers on brain oxygenation. In human studies, PbtO2 was rarely used to monitor the brain oxygen tension in patients with CA and HIBI. PbtO2 values had no clear association with patients' outcomes, but in the experimental studies, brain tissue hypoxia was associated with increased inflammation and neuronal damage. CONCLUSIONS Further studies are needed to validate the effect and the threshold of PbtO2 associated with outcome in patients with CA, as well as to understand the physiological mechanisms influencing PbtO2 induced by gas exchanges, drug administration, and changes in body positioning after CA.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Pasquale Anania
- Department of Neurosurgery, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
| | - Lavienraj Premraj
- Griffith University School of Medicine, Gold Coast, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Sung-Min Cho
- Departments of Neurology, Surgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chiara Robba
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
15
|
Salvagno M, Geraldini F, Coppalini G, Robba C, Gouvea Bogossian E, Annoni F, Vitali E, Sterchele ED, Balestra C, Taccone FS. The Impact of Inotropes and Vasopressors on Cerebral Oxygenation in Patients with Traumatic Brain Injury and Subarachnoid Hemorrhage: A Narrative Review. Brain Sci 2024; 14:117. [PMID: 38391692 PMCID: PMC10886736 DOI: 10.3390/brainsci14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are critical neurological conditions that necessitate specialized care in the Intensive Care Unit (ICU). Managing cerebral perfusion pressure (CPP) and mean arterial pressure (MAP) is of primary importance in these patients. To maintain targeted MAP and CPP, vasopressors and/or inotropes are commonly used. However, their effects on cerebral oxygenation are not fully understood. The aim of this review is to provide an up-to date review regarding the current uses and pathophysiological issues related to the use of vasopressors and inotropes in TBI and SAH patients. According to our findings, despite achieving similar hemodynamic parameters and CPP, the effects of various vasopressors and inotropes on cerebral oxygenation, local CBF and metabolism are heterogeneous. Therefore, a more accurate understanding of the cerebral activity of these medications is crucial for optimizing patient management in the ICU setting.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Federico Geraldini
- Department of Anesthesia and Intensive Care, Ospedale Università di Padova, 35128 Padova, Italy
| | - Giacomo Coppalini
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, 20089 Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milano, Italy
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCCS Policlinico San Martino, 16132 Genova, Italy
- Dipartimento di Scienze Chirurgiche Diagnostiche e Integrate, Università di Genova, 16132 Genova, Italy
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Eva Vitali
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Costantino Balestra
- Department Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| |
Collapse
|
16
|
Payen JF, Launey Y, Chabanne R, Gay S, Francony G, Gergele L, Vega E, Montcriol A, Couret D, Cottenceau V, Pili-Floury S, Gakuba C, Hammad E, Audibert G, Pottecher J, Dahyot-Fizelier C, Abdennour L, Gauss T, Richard M, Vilotitch A, Bosson JL, Bouzat P. Intracranial pressure monitoring with and without brain tissue oxygen pressure monitoring for severe traumatic brain injury in France (OXY-TC): an open-label, randomised controlled superiority trial. Lancet Neurol 2023; 22:1005-1014. [PMID: 37863590 DOI: 10.1016/s1474-4422(23)00290-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Optimisation of brain oxygenation might improve neurological outcome after traumatic brain injury. The OXY-TC trial explored the superiority of a strategy combining intracranial pressure and brain tissue oxygen pressure (PbtO2) monitoring over a strategy of intracranial pressure monitoring only to reduce the proportion of patients with poor neurological outcome at 6 months. METHODS We did an open-label, randomised controlled superiority trial at 25 French tertiary referral centres. Within 16 h of brain injury, patients with severe traumatic brain injury (aged 18-75 years) were randomly assigned via a website to be managed during the first 5 days of admission to the intensive care unit either by intracranial pressure monitoring only or by both intracranial pressure and PbtO2 monitoring. Randomisation was stratified by age and centre. The study was open label due to the visibility of the intervention, but the statisticians and outcome assessors were masked to group allocation. The therapeutic objectives were to maintain intracranial pressure of 20 mm Hg or lower, and to keep PbtO2 (for those in the dual-monitoring group) above 20 mm Hg, at all times. The primary outcome was the proportion of patients with an extended Glasgow Outcome Scale (GOSE) score of 1-4 (death to upper severe disability) at 6 months after injury. The primary analysis was reported in the modified intention-to-treat population, which comprised all randomly assigned patients except those who withdrew consent or had protocol violations. This trial is registered with ClinicalTrials.gov, NCT02754063, and is completed. FINDINGS Between June 15, 2016, and April 17, 2021, 318 patients were randomly assigned to receive either intracranial pressure monitoring only (n=160) or both intracranial pressure and PbtO2 monitoring (n=158). 27 individuals with protocol violations were not included in the modified intention-to-treat analysis. Thus, the primary outcome was analysed for 144 patients in the intracranial pressure only group and 147 patients in the intracranial pressure and PbtO2 group. Compared with intracranial pressure monitoring only, intracranial pressure and PbtO2 monitoring did not reduce the proportion of patients with GOSE score 1-4 (51% [95% CI 43-60] in the intracranial pressure monitoring only group vs 52% [43-60] in the intracranial pressure and PbtO2 monitoring group; odds ratio 1·0 [95% CI 0·6-1·7]; p=0·95). Two (1%) of 144 participants in the intracranial pressure only group and 12 (8%) of 147 participants in the intracranial pressure and PbtO2 group had catheter dysfunction (p=0.011). Six patients (4%) in the intracranial pressure and PbtO2 group had an intracrebral haematoma related to the catheter, compared with none in the intracranial pressure only group (p=0.030). No significant difference in deaths was found between the two groups at 12 months after injury. At 12 months, 33 deaths had occurred in the intracranial pressure group: 25 (76%) were attributable to the brain trauma, six (18%) were end-of-life decisions, and two (6%) due to sepsis. 34 deaths had occured in the intracranial pressure and PbtO2 group at 12 months: 25 (74%) were attributable to the brain trauma, six (18%) were end-of-life decisions, one (3%) due to pulmonary embolism, one (3%) due to haemorrhagic shock, and one (3%) due to cardiac arrest. INTERPRETATION After severe non-penetrating traumatic brain injury, intracranial pressure and PbtO2 monitoring did not reduce the proportion of patients with poor neurological outcome at 6 months. Technical failures related to intracerebral catheter and intracerebral haematoma were more frequent in the intracranial pressure and PbtO2 group. Further research is needed to assess whether a targeted approach to multimodal brain monitoring could be useful in subgroups of patients with severe traumatic brain injury-eg, those with high intracranial pressure on admission. FUNDING The French National Program for Clinical Research, La Fondation des Gueules Cassées, and Integra Lifesciences.
Collapse
Affiliation(s)
- Jean-François Payen
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble, Universitaire Grenoble Alpes, Grenoble, France; INSERM U1216, Grenoble Institut Neurosciences, Grenoble, France.
| | - Yoann Launey
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Russell Chabanne
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France
| | - Samuel Gay
- Department of Intensive Care, Centre Hospitalier Annecy Genevois, Annecy, France
| | - Gilles Francony
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble, Universitaire Grenoble Alpes, Grenoble, France; INSERM U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Laurent Gergele
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Saint-Etienne, Saint-Etienne, France
| | - Emmanuel Vega
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Lille, Lille, France
| | - Ambroise Montcriol
- Department of Intensive Care, Hopital Instruction des Armées Saint-Anne, Toulon, France
| | - David Couret
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Sud, Reunion, France
| | - Vincent Cottenceau
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Sebastien Pili-Floury
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Besançon, Besançon, France
| | - Clement Gakuba
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Caen Normandie, Caen, France
| | - Emmanuelle Hammad
- Department of Anaesthesia and Intensive Care, Hôpital Nord, Assistance Publique des Hopitaux de Marseille, Marseille, France
| | - Gerard Audibert
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Nancy, Nancy, France
| | - Julien Pottecher
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Strasbourg, Strasbourg, France
| | - Claire Dahyot-Fizelier
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Poitiers, Poitiers, France
| | - Lamine Abdennour
- Department of Anaesthesia and Intensive Care, Hôpital Pitie-Salpetriere, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Tobias Gauss
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble, Universitaire Grenoble Alpes, Grenoble, France; INSERM U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Marion Richard
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble, Universitaire Grenoble Alpes, Grenoble, France; INSERM U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Antoine Vilotitch
- Department of Public Health, Centre Hospitalier Universitaire Grenoble, Universitaire Grenoble Alpes, Grenoble, France
| | - Jean-Luc Bosson
- Department of Public Health, Centre Hospitalier Universitaire Grenoble, Universitaire Grenoble Alpes, Grenoble, France
| | - Pierre Bouzat
- Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble, Universitaire Grenoble Alpes, Grenoble, France; INSERM U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
17
|
Gouvea Bogossian E, Cantos J, Farinella A, Nobile L, Njimi H, Coppalini G, Diosdado A, Salvagno M, Oliveira Gomes F, Schuind S, Anderloni M, Robba C, Taccone FS. The effect of increased positive end expiratory pressure on brain tissue oxygenation and intracranial pressure in acute brain injury patients. Sci Rep 2023; 13:16657. [PMID: 37789100 PMCID: PMC10547811 DOI: 10.1038/s41598-023-43703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Cerebral hypoxia is an important cause of secondary brain injury. Improving systemic oxygenation may increase brain tissue oxygenation (PbtO2). The effects of increased positive end-expiratory pressure (PEEP) on PbtO2 and intracranial pressure (ICP) needs to be further elucidated. This is a single center retrospective cohort study (2016-2021) conducted in a 34-bed Department of Intensive Care unit. All patients with acute brain injury under mechanical ventilation who were monitored with intracranial pressure and brain tissue oxygenation (PbtO2) catheters and underwent at least one PEEP increment were included in the study. Primary outcome was the rate of PbtO2 responders (increase in PbtO2 > 20% of baseline) after PEEP increase. ΔPEEP was defined as the difference between PEEP at 1 h and PEEP at baseline; similarly ΔPbtO2 was defined as the difference between PbtO2 at 1 h after PEEP incrementation and PbtO2 at baseline. We included 112 patients who underwent 295 episodes of PEEP increase. Overall, the median PEEP increased form 6 (IQR 5-8) to 10 (IQR 8-12) cmH2O (p = 0.001), the median PbtO2 increased from 21 (IQR 16-29) mmHg to 23 (IQR 18-30) mmHg (p = 0.001), while ICP remained unchanged [from 12 (7-18) mmHg to 12 (7-17) mmHg; p = 0.42]. Of 163 episode of PEEP increments with concomitant PbtO2 monitoring, 34 (21%) were PbtO2 responders. A lower baseline PbtO2 (OR 0.83 [0.73-0.96)]) was associated with the probability of being responder. ICP increased in 142/295 episodes of PEEP increments (58%); no baseline variable was able to identify this response. In PbtO2 responders there was a moderate positive correlation between ΔPbtO2 and ΔPEEP (r = 0.459 [95% CI 0.133-0.696]. The response in PbtO2 and ICP to PEEP elevations in brain injury patients is highly variable. Lower PbtO2 values at baseline could predict a significant increase in brain oxygenation after PEEP increase.
Collapse
Affiliation(s)
- Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium.
| | - Joaquin Cantos
- Critical Care Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Anita Farinella
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Leda Nobile
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Giacomo Coppalini
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Alberto Diosdado
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Fernando Oliveira Gomes
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Sophie Schuind
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Anderloni
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Chiara Robba
- Dipartimento di Scienze Chirurgiche e Diagnostiche, IRCCS Policlinico San Martino, Università di Genova, Genova, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| |
Collapse
|
18
|
Villa BR, Bhatt D, Wolff MD, Addo-Osafo K, Epp JR, Teskey GC. Repeated episodes of postictal hypoxia are a mechanism for interictal cognitive impairments. Sci Rep 2023; 13:15474. [PMID: 37726428 PMCID: PMC10509159 DOI: 10.1038/s41598-023-42741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Comorbidities during the period between seizures present a significant challenge for individuals with epilepsy. Despite their clinical relevance, the pathophysiology of the interictal symptomatology is largely unknown. Postictal severe hypoxia (PIH) in those brain regions participating in the seizure has been indicated as a mechanism underlying several negative postictal manifestations. It is unknown how repeated episodes of PIH affect interictal symptoms in epilepsy. Using a rat model, we observed that repeated seizures consistently induced episodes of PIH that become increasingly severe with each seizure occurrence. Additionally, recurrent seizure activity led to decreased levels of oxygen in the hippocampus during the interictal period. However, these reductions were prevented when we repeatedly blocked PIH using either the COX-inhibitor acetaminophen or the L-type calcium channel antagonist nifedipine. Moreover, we found that interictal cognitive deficits caused by seizures were completely alleviated by repeated attenuation of PIH events. Lastly, mitochondrial dysfunction may contribute to the observed pathological outcomes during the interictal period. These findings provide evidence that seizure-induced hypoxia may play a crucial role in several aspects of epilepsy. Consequently, developing and implementing treatments that specifically target and prevent PIH could potentially offer significant benefits for individuals with refractory epilepsy.
Collapse
Affiliation(s)
- Bianca R Villa
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Dhyey Bhatt
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Marshal D Wolff
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kwaku Addo-Osafo
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jonathan R Epp
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
19
|
Agrawal RR, Larrea D, Xu Y, Shi L, Zirpoli H, Cummins LG, Emmanuele V, Song D, Yun TD, Macaluso FP, Min W, Kernie SG, Deckelbaum RJ, Area-Gomez E. Alzheimer's-Associated Upregulation of Mitochondria-Associated ER Membranes After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:2219-2241. [PMID: 36571634 PMCID: PMC10287820 DOI: 10.1007/s10571-022-01299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Delfina Larrea
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
| | - Leslie G Cummins
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Valentina Emmanuele
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Donghui Song
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
| | - Taekyung D Yun
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Wei Min
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Steven G Kernie
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
20
|
Ziesel D, Nowakowska M, Scheruebel S, Kornmueller K, Schäfer U, Schindl R, Baumgartner C, Üçal M, Rienmüller T. Electrical stimulation methods and protocols for the treatment of traumatic brain injury: a critical review of preclinical research. J Neuroeng Rehabil 2023; 20:51. [PMID: 37098582 PMCID: PMC10131365 DOI: 10.1186/s12984-023-01159-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of disabilities resulting from cognitive and neurological deficits, as well as psychological disorders. Only recently, preclinical research on electrical stimulation methods as a potential treatment of TBI sequelae has gained more traction. However, the underlying mechanisms of the anticipated improvements induced by these methods are still not fully understood. It remains unclear in which stage after TBI they are best applied to optimize the therapeutic outcome, preferably with persisting effects. Studies with animal models address these questions and investigate beneficial long- and short-term changes mediated by these novel modalities. METHODS In this review, we present the state-of-the-art in preclinical research on electrical stimulation methods used to treat TBI sequelae. We analyze publications on the most commonly used electrical stimulation methods, namely transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), deep brain stimulation (DBS) and vagus nerve stimulation (VNS), that aim to treat disabilities caused by TBI. We discuss applied stimulation parameters, such as the amplitude, frequency, and length of stimulation, as well as stimulation time frames, specifically the onset of stimulation, how often stimulation sessions were repeated and the total length of the treatment. These parameters are then analyzed in the context of injury severity, the disability under investigation and the stimulated location, and the resulting therapeutic effects are compared. We provide a comprehensive and critical review and discuss directions for future research. RESULTS AND CONCLUSION: We find that the parameters used in studies on each of these stimulation methods vary widely, making it difficult to draw direct comparisons between stimulation protocols and therapeutic outcome. Persisting beneficial effects and adverse consequences of electrical simulation are rarely investigated, leaving many questions about their suitability for clinical applications. Nevertheless, we conclude that the stimulation methods discussed here show promising results that could be further supported by additional research in this field.
Collapse
Affiliation(s)
- D Ziesel
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
| | - M Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - S Scheruebel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
| | - K Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
| | - U Schäfer
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - R Schindl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics Division, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - C Baumgartner
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - M Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - T Rienmüller
- Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
21
|
Rakkar J, Azar J, Pelletier JH, Au AK, Bell MJ, Simon DW, Kochanek PM, Clark RSB, Horvat CM. Temporal Patterns in Brain Tissue and Systemic Oxygenation Associated with Mortality After Severe Traumatic Brain Injury in Children. Neurocrit Care 2023; 38:71-84. [PMID: 36171518 PMCID: PMC9957965 DOI: 10.1007/s12028-022-01602-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Brain tissue hypoxia is an independent risk factor for unfavorable outcomes in traumatic brain injury (TBI); however, systemic hyperoxemia encountered in the prevention and/or response to brain tissue hypoxia may also impact risk of mortality. We aimed to identify temporal patterns of partial pressure of oxygen in brain tissue (PbtO2), partial pressure of arterial oxygen (PaO2), and PbtO2/PaO2 ratio associated with mortality in children with severe TBI. METHODS Data were extracted from the electronic medical record of a quaternary care children's hospital with a level I trauma center for patients ≤ 18 years old with severe TBI and the presence of PbtO2 and/or intracranial pressure monitors. Temporal analyses were performed for the first 5 days of hospitalization by using locally estimated scatterplot smoothing for less than 1,000 observations and generalized additive models with integrated smoothness estimation for more than 1,000 observations. RESULTS A total of 138 intracranial pressure-monitored patients with TBI (median 5.0 [1.9-12.8] years; 65% boys; admission Glasgow Coma Scale score 4 [3-7]; mortality 18%), 71 with PbtO2 monitors and 67 without PbtO2 monitors were included. Distinct patterns in PbtO2, PaO2, and PbtO2/PaO2 were evident between survivors and nonsurvivors over the first 5 days of hospitalization. Time-series analyses showed lower PbtO2 values on day 1 and days 3-5 and lower PbtO2/PaO2 ratios on days 1, 2, and 5 among patients who died. Analysis of receiver operating characteristics curves using Youden's index identified a PbtO2 of 30 mm Hg and a PbtO2/PaO2 ratio of 0.12 as the cut points for discriminating between survivors and nonsurvivors. Univariate logistic regression identified PbtO2 < 30 mm Hg, hyperoxemia (PaO2 ≥ 300 mm Hg), and PbtO2/PaO2 ratio < 0.12 to be independently associated with mortality. CONCLUSIONS Lower PbtO2, higher PaO2, and lower PbtO2/PaO2 ratio, consistent with impaired oxygen diffusion into brain tissue, were associated with mortality in this cohort of children with severe TBI. These results corroborate our prior work that suggests targeting a higher PbtO2 threshold than recommended in current guidelines and highlight the potential use of the PbtO2/PaO2 ratio in the management of severe pediatric TBI.
Collapse
Affiliation(s)
- Jaskaran Rakkar
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Justin Azar
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pediatric Critical Care, Geisinger Medical Center, Danville, PA, USA
| | - Jonathan H Pelletier
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alicia K Au
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Brain Care Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Bell
- Division of Critical Care Medicine, Children's National Hospital, Washington, DC, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Brain Care Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Brain Care Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher M Horvat
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Brain Care Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Health Informatics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Dixon B, Sharkey JM, Teo EJ, Grace SA, Savage JS, Udy A, Smith P, Hellerstedt J, Santamaria JD. Assessment of a Non-Invasive Brain Pulse Monitor to Measure Intra-Cranial Pressure Following Acute Brain Injury. MEDICAL DEVICES (AUCKLAND, N.Z.) 2023; 16:15-26. [PMID: 36718229 PMCID: PMC9883992 DOI: 10.2147/mder.s398193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Background Intracranial pressure (ICP) monitoring requires placing a hole in the skull through which an invasive pressure monitor is inserted into the brain. This approach has risks for the patient and is expensive. We have developed a non-invasive brain pulse monitor that uses red light to detect a photoplethysmographic (PPG) signal arising from the blood vessels on the brain's cortical surface. The brain PPG and the invasive ICP waveform share morphological features which may allow measurement of the intracranial pressure. Methods We enrolled critically ill patients with an acute brain injury with invasive ICP monitoring to assess the new monitor. A total of 24 simultaneous invasive ICP and brain pulse monitor PPG measurements were undertaken in 12 patients over a range of ICP levels. Results The waveform morphologies were similar for the invasive ICP and brain pulse monitor PPG approach. Both methods demonstrated a progressive increase in the amplitude of P2 relative to P1 with increasing ICP levels. An automated algorithm was developed to assess the PPG morphological features in relation to the ICP level. A correlation was demonstrated between the brain pulse waveform morphology and ICP levels, R2=0.66, P < 0.001. Conclusion The brain pulse monitor's PPG waveform demonstrated morphological features were similar to the invasive ICP waveform over a range of ICP levels, these features may provide a method to measure ICP levels. Trial Registration ACTRN12620000828921.
Collapse
Affiliation(s)
- Barry Dixon
- Cyban Pty Ltd, Melbourne, VIC, Australia,Department of Critical Care Medicine, St Vincent’s Hospital, Melbourne, Australia,Department of Medicine, University of Melbourne, Melbourne, Vic, Australia,Correspondence: Barry Dixon, Department of Critical Care Medicine, St Vincent’s Hospital (Melbourne), 41 Victoria Parade, Fitzroy, VIC, 3065, Australia, Tel +61 3 9231 4425, Email
| | | | - Elliot J Teo
- Cyban Pty Ltd, Melbourne, VIC, Australia,Department of Critical Care Medicine, St Vincent’s Hospital, Melbourne, Australia
| | | | | | - Andrew Udy
- Department of Critical Care Medicine, The Alfred Hospital, Melbourne, Australia
| | - Paul Smith
- Department of Neurosurgery, St Vincent’s Hospital, Melbourne, Australia,University of Melbourne Medical School, Melbourne, Vic, Australia
| | | | - John D Santamaria
- Department of Critical Care Medicine, St Vincent’s Hospital, Melbourne, Australia
| |
Collapse
|
23
|
Warner L, Bach-Hagemann A, Schmidt TP, Pinkernell S, Schubert GA, Clusmann H, Albanna W, Lindauer U, Conzen-Dilger C. Opening a window to the acutely injured brain: Simultaneous retinal and cerebral vascular monitoring in rats. Front Mol Neurosci 2023; 16:1116841. [PMID: 37033376 PMCID: PMC10079937 DOI: 10.3389/fnmol.2023.1116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Many recent research projects have described typical chronic changes in the retinal vasculature for diverse neurovascular and neurodegenerative disorders such as stroke or Alzheimer's disease. Unlike cerebral vasculature, retinal blood vessels can be assessed non-invasively by retinal vessel analysis. To date, there is only a little information about potential simultaneous reactions of retinal and cerebral vessels in acute neurovascular diseases. The field of applications of retinal assessment could significantly be widened if more information about potential correlations between those two vascular beds and the feasibility of non-invasive retinal vessel analysis in acute neurovascular disease were available. Here, we present our protocol for the simultaneous assessment of retinal and cerebral vessels in an acute setting in anesthetized rats using a non-invasive retinal vessel analyzer and a superficial tissue imaging system for laser speckle contrast analysis via a closed bone window. We describe the experimental set-up in detail, outline the pitfalls of repeated retinal vessel analyses in an experimental set-up of several hours, and address issues that arise from the simultaneous use of two different assessment tools. Finally, we demonstrate the robustness and variability of the reactivity of retinal vessels to hypercapnia at baseline as well as their reproducibility over time using two anesthetic protocols common for neurovascular research. In summary, the procedures described in this protocol allow us to directly compare retinal and cerebral vascular beds and help to substantiate the role of the retina as a "window to the brain."
Collapse
Affiliation(s)
- Laura Warner
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Department of Preclinical Pharmacology and Toxicology, Hannover, Germany
| | - Tobias P. Schmidt
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sarah Pinkernell
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Gerrit A. Schubert
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Hans Clusmann
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Walid Albanna
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Catharina Conzen-Dilger
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- *Correspondence: Catharina Conzen-Dilger
| |
Collapse
|
24
|
Neurotrauma and Intracranial Pressure Management. Crit Care Clin 2023; 39:103-121. [DOI: 10.1016/j.ccc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Churiwala J, Garale MN, Kawale J, Dandpat SK, Mahore A. Risk factors of deterioration in patients of head injury with non-operative management on first neurosurgical consultation. J Neurosci Rural Pract 2023; 14:28-34. [PMID: 36891086 PMCID: PMC9945026 DOI: 10.25259/jnrp-2022-1-41-r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives In most of the emergency trauma intensive care units (ICUs) of India, neurosurgical opinion is sought for patients presenting with head trauma after earliest possible resuscitation to determine the further line of management. This study aimed to identify common risk factors, leading to neurological deterioration in conservatively managed patients of traumatic brain injury (TBI). Materials and Methods This retrospective study analyzed patients admitted with acute TBI and traumatic intracranial hematoma under emergency trauma care ICU who did not require neurosurgical operation within 48 h of trauma. The recorded data were analyzed to determine the predictors of neurological deterioration using univariate and binary logistic regression analysis in SPSS-16 software. Results Medical records of consecutive 275 patients of acute TBI presenting to the emergency department were studied. One hundred and ninety-three patients were afflicted with mild TBI (70.18%), 49 patients had moderate TBI (17.81%), and 33 had severe TBI (12%). In the outcome, 74.54% of patients were discharged, and operative decision was made on 6.18% of patients and 19.27% died. Severe TBI is the independent predictor of neurological deterioration during their stay in ICU. Progressive hemorrhagic injury (PHI) showed neurological deterioration in 86.5% of patients. Systemic inflammatory response syndrome (SIRS) was present in 93.5% of patients who had deteriorated neurologically. Dyselectrolytemia was the biochemical derangements seen in 24.36% of cases. Conclusion This study revealed severe TBI, PHI, and SIRS to be strong and independent risk factors of neurological deterioration.
Collapse
Affiliation(s)
- Jayati Churiwala
- Department of General Surgery, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Mahadeo Namdeo Garale
- Department of General Surgery, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Juhi Kawale
- Department of Internal Medicine, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| | - Saswat Kumar Dandpat
- Department of Neurosurgery, All India Institute of Medical Sciences, Kalyani, West Bengal, India
| | - Amit Mahore
- Department of Neurosurgery, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India
| |
Collapse
|
26
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
27
|
The Impact of Invasive Brain Oxygen Pressure Guided Therapy on the Outcome of Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:779-789. [PMID: 36180764 DOI: 10.1007/s12028-022-01613-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a major public health burden, causing death and disability worldwide. Intracranial hypertension and brain hypoxia are the main mechanisms of secondary brain injury. As such, management strategies guided by intracranial pressure (ICP) and brain oxygen (PbtO2) monitoring could improve the prognosis of these patients. Our objective was to summarize the current evidence regarding the impact of PbtO2-guided therapy on the outcome of patients with TBI. We performed a systematic search of PubMed, Scopus, and the Cochrane library databases, following the protocol registered in PROSPERO. Only studies comparing PbtO2/ICP-guided therapy with ICP-guided therapy were selected. Primary outcome was neurological outcome at 3 and 6 months assessed by using the Glasgow Outcome Scale; secondary outcomes included hospital and long-term mortality, burden of intracranial hypertension, and brain tissue hypoxia. Out of 6254 retrieved studies, 15 studies (n = 37,245 patients, of who 2184 received PbtO2-guided therapy) were included in the final analysis. When compared with ICP-guided therapy, the use of combined PbO2/ICP-guided therapy was associated with a higher probability of favorable neurological outcome (odds ratio 2.21 [95% confidence interval 1.72-2.84]) and of hospital survival (odds ratio 1.15 [95% confidence interval 1.04-1.28]). The heterogeneity (I2) of the studies in each analysis was below 40%. However, the quality of evidence was overall low to moderate. In this meta-analysis, PbtO2-guided therapy was associated with reduced mortality and more favorable neurological outcome in patients with TBI. The low-quality evidence underlines the need for the results from ongoing phase III randomized trials.
Collapse
|
28
|
Matin N, Sarhadi K, Crooks CP, Lele AV, Srinivasan V, Johnson NJ, Robba C, Town JA, Wahlster S. Brain-Lung Crosstalk: Management of Concomitant Severe Acute Brain Injury and Acute Respiratory Distress Syndrome. Curr Treat Options Neurol 2022; 24:383-408. [PMID: 35965956 PMCID: PMC9363869 DOI: 10.1007/s11940-022-00726-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Purpose of Review To summarize pathophysiology, key conflicts, and therapeutic approaches in managing concomitant severe acute brain injury (SABI) and acute respiratory distress syndrome (ARDS). Recent Findings ARDS is common in SABI and independently associated with worse outcomes in all SABI subtypes. Most landmark ARDS trials excluded patients with SABI, and evidence to guide decisions is limited in this population. Potential areas of conflict in the management of patients with both SABI and ARDS are (1) risk of intracranial pressure (ICP) elevation with high levels of positive end-expiratory pressure (PEEP), permissive hypercapnia due to lung protective ventilation (LPV), or prone ventilation; (2) balancing a conservative fluid management strategy with ensuring adequate cerebral perfusion, particularly in patients with symptomatic vasospasm or impaired cerebrovascular blood flow; and (3) uncertainty about the benefit and harm of corticosteroids in this population, with a mortality benefit in ARDS, increased mortality shown in TBI, and conflicting data in other SABI subtypes. Also, the widely adapted partial pressure of oxygen (PaO2) target of > 55 mmHg for ARDS may exacerbate secondary brain injury, and recent guidelines recommend higher goals of 80-120 mmHg in SABI. Distinct pathophysiology and trajectories among different SABI subtypes need to be considered. Summary The management of SABI with ARDS is highly complex, and conventional ARDS management strategies may result in increased ICP and decreased cerebral perfusion. A crucial aspect of concurrent management is to recognize the risk of secondary brain injury in the individual patient, monitor with vigilance, and adjust management during critical time windows. The care of these patients requires meticulous attention to oxygenation and ventilation, hemodynamics, temperature management, and the neurological exam. LPV and prone ventilation should be utilized, and supplemented with invasive ICP monitoring if there is concern for cerebral edema and increased ICP. PEEP titration should be deliberate, involving measures of hemodynamic, pulmonary, and brain physiology. Serial volume status assessments should be performed in SABI and ARDS, and fluid management should be individualized based on measures of brain perfusion, the neurological exam, and cardiopulmonary status. More research is needed to define risks and benefits in corticosteroids in this population.
Collapse
Affiliation(s)
- Nassim Matin
- Department of Neurology, University of Washington, Seattle, WA USA
| | - Kasra Sarhadi
- Department of Neurology, University of Washington, Seattle, WA USA
| | | | - Abhijit V. Lele
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| | - Vasisht Srinivasan
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
| | - Nicholas J. Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Chiara Robba
- Departments of Anesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genoa, Italy
| | - James A. Town
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, WA USA
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| |
Collapse
|
29
|
Coppalini G, Duvigneaud E, Diosdado A, Migliorino E, Schuind S, Creteur J, Taccone FS, Gouvêa Bogossian E. Effect of inotropic agents on oxygenation and cerebral perfusion in acute brain injury. Front Neurol 2022; 13:963562. [PMID: 35928138 PMCID: PMC9343780 DOI: 10.3389/fneur.2022.963562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionTissue hypoxia and insufficient energy delivery is one of the mechanisms behind the occurrence of several complications in acute brain injured patients. Several interventions can improve cerebral oxygenation; however, the effects of inotropic agents remain poorly characterized.MethodsRetrospective analysis including patients suffering from acute brain injury and monitored with brain oxygen pressure (PbtO2) catheter, in whom inotropic agents were administered according to the decision of the treating physician's decision; PbtO2 values were collected before, 1 and 2 h after the initiation of therapy from the patient data monitoring system. PbtO2 “responders” were patients with a relative increase in PbtO2 from baseline values of at least 20%.ResultsA total of 35 patients were included in this study. Most of them (31/35, 89%) suffered from non-traumatic subarachnoid hemorrhage (SAH). Compared with baseline values [20 (14–24) mmHg], PbtO2 did not significantly increase over time [19 (15–25) mmHg at 1 h and 19 (17–25) mmHg at 2 h, respectively; p = 0.052]. A total of 12/35 (34%) patients were PbtO2 “responders,” in particular if low PbtO2 was observed at baseline. A PbtO2 of 17 mmHg at baseline had a sensibility of 84% and a specificity of 91% to predict a PbtO2 responder. A significant direct correlation between changes in PbtO2 and cardiac output [r = 0.496 (95% CI 0.122 to 0.746), p = 0.01; n = 25] and a significant negative correlation between changes in PbtO2 and cerebral perfusion pressure [r = −0.389 (95% CI −0.681 to −0.010), p = 0.05] were observed.ConclusionsIn this study, inotropic administration significantly increased brain oxygenation in one third of brain injured patients, especially when tissue hypoxia was present at baseline. Future studies should highlight the role of inotropic agents in the management of tissue hypoxia in this setting.
Collapse
Affiliation(s)
- Giacomo Coppalini
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, Brussels, Belgium
| | - Elie Duvigneaud
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, Brussels, Belgium
| | - Alberto Diosdado
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, Brussels, Belgium
| | - Ernesto Migliorino
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, Brussels, Belgium
| | - Sophie Schuind
- Department of Neurosurgery, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, Brussels, Belgium
| | - Elisa Gouvêa Bogossian
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, Brussels, Belgium
- *Correspondence: Elisa Gouvêa Bogossian
| |
Collapse
|
30
|
Revisiting the Timeline of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: Toward a Temporal Risk Profile. Neurocrit Care 2022; 37:735-743. [PMID: 35790670 DOI: 10.1007/s12028-022-01545-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Delayed cerebral ischemia (DCI) is one of the main determinants of clinical outcome after aneurysmal subarachnoid hemorrhage (SAH). The classical description of risk for DCI over time is currently based on the outdated concept of angiographic vasospasm. The goal of this study was to assess the temporal risk profile of DCI, defined by extended clinical and radiological criteria, as well as the impact the time point of DCI onset has on clinical outcome. METHODS All patients with aneurysmal SAH referred to a single tertiary care center between 2010 and 2018 were considered for inclusion. This study was designed as a retrospective cohort analysis and data were extracted from existing patient files. In conscious patients, DCI was diagnosed clinically, and in unconscious patients, diagnosis was based on perfusion computed tomography imaging and multimodal neuromonitoring. Extended Glasgow Outcome Scale scores were assessed after 12 months and compared between patients with early (< day 7) and late (≥ day 7) DCI onset. RESULTS The median delay from day of the hemorrhage (day 0) until detection of the first DCI event was 7.0 days, with an interquartile range of 5 days. The probability of DCI development over time demonstrated a bimodal distribution with a peak risk on day 5 (0.084; confidence interval 0.05.5-0.122) and a second peak on day 9 (0.077; confidence interval 0.045-0.120). A total of 27 patients (15.6%) suffered dominant hemispheric or severe bilateral DCI-related infarctions, resulting in the withdrawal of technical life support. Of those, the majority (20 patients, 22.2%) presented with early DCI onset (vs. late onset: 7 patients, 8.4%; p = 0.013). CONCLUSIONS The risk profile of DCI over time mirrors the description of angiographic vasospasm; however, it comes with an added timely delay of 1 to 2 days. Early occurrence of DCI (before day 7) is associated with a higher infarct load and DCI-related mortality. Although the exact causal relationship remains to be determined, the time point of DCI onset may serve as an independent prognostic criterion in decision-making.
Collapse
|
31
|
The Impact of Short-Term Hyperoxia on Cerebral Metabolism: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:547-557. [PMID: 35641804 DOI: 10.1007/s12028-022-01529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral ischemia due to hypoxia is a major cause of secondary brain injury and is associated with higher morbidity and mortality in patients with acute brain injury. Hyperoxia could improve energetic dysfunction in the brain in this setting. Our objectives were to perform a systematic review and meta-analysis of the current literature and to assess the impact of normobaric hyperoxia on brain metabolism by using cerebral microdialysis. METHODS We searched Medline and Scopus, following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement; we searched for retrospective and prospective observational studies, interventional studies, and randomized clinical trials that performed a hyperoxia challenge in patients with acute brain injury who were concomitantly monitored with cerebral microdialysis. This study was registered in PROSPERO (CRD420211295223). RESULTS We included a total of 17 studies, with a total of 311 patients. A statistically significant reduction in cerebral lactate values (pooled standardized mean difference [SMD] - 0.38 [- 0.53 to - 0.23]) and lactate to pyruvate ratio values (pooled SMD - 0.20 [- 0.35 to - 0.05]) was observed after hyperoxia. However, glucose levels (pooled SMD - 0.08 [- 0.23 to 0.08]) remained unchanged after hyperoxia. CONCLUSIONS Normobaric hyperoxia may improve cerebral metabolic disturbances in patients with acute brain injury. The clinical impact of such effects needs to be further elucidated.
Collapse
|
32
|
Lee HY, Jung YH, Mamadjonov N, Jeung KW, Kim MC, Lim KS, Jeon CY, Lee Y, Kim HJ. Effects of Sodium Nitroprusside Administered Via a Subdural Intracranial Catheter on the Microcirculation, Oxygenation, and Electrocortical Activity of the Cerebral Cortex in a Pig Cardiac Arrest Model. J Am Heart Assoc 2022; 11:e025400. [PMID: 35624079 PMCID: PMC9238727 DOI: 10.1161/jaha.122.025400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Postischemic cerebral hypoperfusion has been indicated as an important contributing factor to secondary cerebral injury after cardiac arrest. We evaluated the effects of sodium nitroprusside administered via a subdural intracranial catheter on the microcirculation, oxygenation, and electrocortical activity of the cerebral cortex in the early postresuscitation period using a pig model of cardiac arrest. Methods and Results Twenty‐nine pigs were resuscitated with closed cardiopulmonary resuscitation after 14 minutes of untreated ventricular fibrillation. Thirty minutes after restoration of spontaneous circulation, 24 pigs randomly received either 4 mg of sodium nitroprusside (IT‐SNP group) or saline placebo (IT‐saline group) via subdural intracranial catheters and were observed for 5 hours. The same dose of sodium nitroprusside was administered intravenously in another 5 pigs. Compared with the IT‐saline group, the IT‐SNP group had larger areas under the curve for tissue oxygen tension and percent changes of arteriole diameter and number of perfused microvessels from baseline (all P<0.05) monitored on the cerebral cortex during the 5‐hour period, without severe hemodynamic instability. This group also showed faster recovery of electrocortical activity measured using amplitude‐integrated electroencephalography. Repeated‐measures analysis of variance revealed significant group–time interactions for these parameters. Intravenously administered sodium nitroprusside caused profound hypotension but did not appear to increase the cerebral parameters. Conclusions Sodium nitroprusside administered via a subdural intracranial catheter increased post–restoration of spontaneous circulation cerebral cortical microcirculation and oxygenation and hastened electrocortical activity recovery in a pig model of cardiac arrest. Further studies are required to determine its impact on the long‐term neurologic outcomes.
Collapse
Affiliation(s)
- Hyoung Youn Lee
- Trauma Center Chonnam National University Hospital Gwangju Republic of Korea
| | - Yong Hun Jung
- Department of Emergency Medicine Chonnam National University Hospital Gwangju Republic of Korea.,Department of Emergency Medicine Chonnam National University Medical School Gwangju Republic of Korea
| | - Najmiddin Mamadjonov
- Department of Medical Science Chonnam National University Graduate School Gwangju Republic of Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine Chonnam National University Hospital Gwangju Republic of Korea.,Department of Emergency Medicine Chonnam National University Medical School Gwangju Republic of Korea
| | - Min Chul Kim
- Division of Cardiology Department of Internal Medicine Chonnam National University Hospital Gwangju Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center Korea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research CenterKorea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Youngjeon Lee
- National Primate Research CenterKorea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Hyung Joong Kim
- Medical Science Research InstituteKyung Hee University Hospital Seoul Republic of Korea
| |
Collapse
|
33
|
Komisarow JM, Toro C, Curley J, Mills B, Cho C, Simo GM, Vavilala MS, Laskowitz DT, James ML, Mathew JP, Hernandez A, Sampson J, Ohnuma T, Krishnamoorthy V. Utilization of Brain Tissue Oxygenation Monitoring and Association with Mortality Following Severe Traumatic Brain Injury. Neurocrit Care 2022; 36:350-356. [PMID: 34845596 PMCID: PMC9941980 DOI: 10.1007/s12028-021-01394-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of this study was to describe the utilization patterns of brain tissue oxygen (PbtO2) monitoring following severe traumatic brain injury (TBI) and determine associations with mortality, health care use, and pulmonary toxicity. METHODS We conducted a retrospective cohort study of patients from United States trauma centers participating in the American College of Surgeons National Trauma Databank between 2008 and 2016. We examined patients with severe TBI (defined by admission Glasgow Coma Scale score ≤ 8) over the age of 18 years who survived more than 24 h from admission and required intracranial pressure (ICP) monitoring. The primary exposure was PbtO2 monitor placement. The primary outcome was hospital mortality, defined as death during the hospitalization or discharge to hospice. Secondary outcomes were examined to determine the association of PbtO2 monitoring with health care use and pulmonary toxicity and included the following: (1) intensive care unit length of stay, (2) hospital length of stay, and (3) development of acute respiratory distress syndrome (ARDS). Regression analysis was used to assess differences in outcomes between patients exposed to PbtO2 monitor placement and those without exposure by using propensity weighting to address selection bias due to the nonrandom allocation of treatment groups and patient dropout. RESULTS A total of 35,501 patients underwent placement of an ICP monitor. There were 1,346 (3.8%) patients who also underwent PbtO2 monitor placement, with significant variation regarding calendar year and hospital. Patients who underwent placement of a PbtO2 monitor had a crude in-hospital mortality of 31.1%, compared with 33.5% in patients who only underwent placement of an ICP monitor (adjusted risk ratio 0.84, 95% confidence interval 0.76-0.93). The development of the ARDS was comparable between patients who underwent placement of a PbtO2 monitor and patients who only underwent placement of an ICP monitor (9.2% vs. 9.8%, adjusted risk ratio 0.89, 95% confidence interval 0.73-1.09). CONCLUSIONS PbtO2 monitor utilization varied widely throughout the study period by calendar year and hospital. PbtO2 monitoring in addition to ICP monitoring, compared with ICP monitoring alone, was associated with a decreased in-hospital mortality, a longer length of stay, and a similar risk of ARDS. These findings provide further guidance for clinicians caring for patients with severe TBI while awaiting completion of further randomized controlled trials.
Collapse
Affiliation(s)
- Jordan M. Komisarow
- Departments of Neurosurgery, Duke University. Durham, NC.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
| | - Camilo Toro
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC.,Duke University School of Medicine. Durham, NC
| | | | - Brianna Mills
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington
| | - Christopher Cho
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington
| | - Georges Motchoffo Simo
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington
| | - Monica S. Vavilala
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington,Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Daniel T. Laskowitz
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC.,Anesthesiology, Duke University. Durham, NC.,Neurology, Duke University. Durham, NC
| | - Michael L. James
- Departments of Neurosurgery, Duke University. Durham, NC.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC.,Neurology, Duke University. Durham, NC
| | | | | | - John Sampson
- Departments of Neurosurgery, Duke University. Durham, NC
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC.,Anesthesiology, Duke University. Durham, NC
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC.,Anesthesiology, Duke University. Durham, NC.,Population Health Sciences, Duke University. Durham, NC
| |
Collapse
|
34
|
Bernard F, Barsan W, Diaz-Arrastia R, Merck LH, Yeatts S, Shutter LA. Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone. BMJ Open 2022; 12:e060188. [PMID: 35273066 PMCID: PMC8915289 DOI: 10.1136/bmjopen-2021-060188] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Management of traumatic brain injury (TBI) includes invasive monitoring to prevent secondary brain injuries. Intracranial pressure (ICP) monitor is the main measurement used to that intent but cerebral hypoxia can occur despite normal ICP. This study will assess whether the addition of a brain tissue oxygenation (PbtO2) monitor prevents more secondary injuries that will translate into improved functional outcome. METHODS AND ANALYSIS Multicentre, randomised, blinded-endpoint comparative effectiveness study enrolling 1094 patients with severe TBI monitored with both ICP and PbtO2. Patients will be randomised to medical management guided by ICP alone (treating team blinded to PbtO2 values) or both ICP and PbtO2. Management is protocolised according to international guidelines in a tiered approach fashion to maintain ICP <22 mm Hg and PbtO2 >20 mm Hg. ICP and PbtO2 will be continuously recorded for a minimum of 5 days. The primary outcome measure is the Glasgow Outcome Scale-Extended performed at 180 (±30) days by a blinded central examiner. Favourable outcome is defined according to a sliding dichotomy where the definition of favourable outcome varies according to baseline severity. Severity will be defined according to the probability of poor outcome predicted by the IMPACT core model. A large battery of secondary outcomes including granular neuropsychological and quality of life measures will be performed. ETHICS AND DISSEMINATION This has been approved by Advarra Ethics Committee (Pro00030585). Results will be presented at scientific meetings and published in peer-reviewed publications. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT03754114).
Collapse
Affiliation(s)
- Francis Bernard
- Critical Care, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montreal, Montreal, Québec, Canada
| | - William Barsan
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ramon Diaz-Arrastia
- Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisa H Merck
- Emergency Medicine and Neurology, Neurocritical Care, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sharon Yeatts
- Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lori A Shutter
- Critical Care Medicine, Neurology, & Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Robba C. Cerebral Oxygenation: An Additional Target for the Management of Patients with Traumatic Brain Injury. Neurocrit Care 2021; 36:339-340. [PMID: 34820779 DOI: 10.1007/s12028-021-01396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
- Istituto di ricovero e cura a carattere scientifico (IRCCS) for Oncology and Neuroscience, Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
36
|
Acevedo-Aguilar L, Gaitán-Herrera G, Reina-Rivero R, Lozada-Martínez ID, Bohorquez-Caballero A, Paéz-Escallón N, Del Pilar Zambrano-Arenas MD, Ortega-Sierra MG, Moscote-Salazar LR, Janjua T. Pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury: from physiology to physiopathology. J Neurosurg Sci 2021; 66:251-257. [PMID: 34763389 DOI: 10.23736/s0390-5616.21.05468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury is caused by mechanical forces impacting the skull and its internal structures and constitutes one of the main causes of morbidity and mortality in the world. Clinically, severe traumatic brain injury is associated with the development of acute lung injury and so far, few studies have evaluated the cellular, molecular and immunological mechanisms involved in this pathophysiological process. Knowing and investigating these mechanisms allows us to correlate pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury and to use this finding in decision making during clinical practice. This review aims to provide evidence on the importance of the pathophysiology of traumatic brain injury-acute lung injury, and thus confirm its role as a predictor of cerebral hypoxia, helping to establish an appropriate therapeutic strategy to improve functional outcomes and reduce mortality.
Collapse
Affiliation(s)
- Laura Acevedo-Aguilar
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Gustavo Gaitán-Herrera
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Randy Reina-Rivero
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Ivan D Lozada-Martínez
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia - .,Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia.,Latin American Council of Neurocritical Care, Cartagena, Colombia.,Future Surgeons Chapter, Colombian Surgery Association, Bogotá, Colombia
| | | | | | | | - Michael G Ortega-Sierra
- Medical and Surgical Research Center, School of Medicine, Corporación Universitaria Rafael Nuñez, Cartagena, Colombia
| | - Luis R Moscote-Salazar
- Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia.,Colombian Clinical Research Group in Neurocritical Care, School of Medicine, University of Cartagena, Cartagena, Colombia.,Latin American Council of Neurocritical Care, Cartagena, Colombia
| | - Tariq Janjua
- Intensive Care, Regions Hospital, Saint Paul, MN, USA
| |
Collapse
|
37
|
Gouvea Bogossian E, Diaferia D, Ndieugnou Djangang N, Menozzi M, Vincent JL, Talamonti M, Dewitte O, Peluso L, Barrit S, Al Barajraji M, Andre J, Schuind S, Creteur J, Taccone FS. Brain tissue oxygenation guided therapy and outcome in non-traumatic subarachnoid hemorrhage. Sci Rep 2021; 11:16235. [PMID: 34376735 PMCID: PMC8355344 DOI: 10.1038/s41598-021-95602-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Brain hypoxia can occur after non-traumatic subarachnoid hemorrhage (SAH), even when levels of intracranial pressure (ICP) remain normal. Brain tissue oxygenation (PbtO2) can be measured as a part of a neurological multimodal neuromonitoring. Low PbtO2 has been associated with poor neurologic recovery. There is scarce data on the impact of PbtO2 guided-therapy on patients’ outcome. This single-center cohort study (June 2014–March 2020) included all patients admitted to the ICU after SAH who required multimodal monitoring. Patients with imminent brain death were excluded. Our primary goal was to assess the impact of PbtO2-guided therapy on neurological outcome. Secondary outcome included the association of brain hypoxia with outcome. Of the 163 patients that underwent ICP monitoring, 62 were monitored with PbtO2 and 54 (87%) had at least one episode of brain hypoxia. In patients that required treatment based on neuromonitoring strategies, PbtO2-guided therapy (OR 0.33 [CI 95% 0.12–0.89]) compared to ICP-guided therapy had a protective effect on neurological outcome at 6 months. In this cohort of SAH patients, PbtO2-guided therapy might be associated with improved long-term neurological outcome, only when compared to ICP-guided therapy.
Collapse
Affiliation(s)
- Elisa Gouvea Bogossian
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium.
| | - Daniela Diaferia
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Narcisse Ndieugnou Djangang
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Marco Menozzi
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Marta Talamonti
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Olivier Dewitte
- Department of Neurosurgery, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Sami Barrit
- Department of Neurosurgery, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Mejdeddine Al Barajraji
- Department of Neurosurgery, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Joachim Andre
- Department of Radiology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Sophie Schuind
- Department of Neurosurgery, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| |
Collapse
|
38
|
Impact of Head-of-Bed Posture on Brain Oxygenation in Patients with Acute Brain Injury: A Prospective Cohort Study. Neurocrit Care 2021; 35:662-668. [PMID: 34312789 PMCID: PMC8312355 DOI: 10.1007/s12028-021-01240-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/20/2021] [Indexed: 12/31/2022]
Abstract
Background Therapeutic head positioning plays a role in the management of patients with acute brain injury. Although intracranial pressure (ICP) is typically lower in an upright posture than in a flat position, limited data exist concerning the effect of upright positioning on brain oxygenation and circulation. We sought to determine the impact of supine (0°) and semirecumbent (15° and 30°) postures on ICP, brain oxygenation, and brain circulation. Methods An observational cohort study was conducted between February 2012 and September 2015. Twenty-three patients with severe acute brain injury were successively observed at head elevations of 30°, 15°, and 0°. Postural-induced changes in ICP, cerebral perfusion pressure, brain tissue oxygenation pressure, and transcranial Doppler findings were simultaneously measured during three repeated experiments: 24 h after admission to the intensive care unit (exp1), 24 h later (exp2), and 96 h later (exp3). Cerebral perfusion pressure, arterial blood gases, hemoglobin content, and body temperature remained unchanged during the three experiments. Results Using linear random-slope mixed models, we found that during the early phase of acute brain injury (exp1), lowering the head posture from 30° to 15°, and then to 0°, was associated with a gradual mean ICP increase of 2.6 mm Hg (1.4–3.7 mm Hg; P < 0.001); and from 30° to 0°, an increase of 7.4 mm Hg (6.3–8.6 mm Hg; P < 0.001). Furthermore, brain tissue oxygenation pressure and mean blood flow velocity improved when the head posture was lowered from 30° to 0° by 1.2 mm Hg (0.2–2.3 mm Hg) and 4.1 cm/s (0.0–8.2 cm/s), respectively (both P < 0.05). Conclusions Changing the positioning of stable patients with acute brain injury resulted in opposite changes of ICP versus brain oxygenation and circulation. This information supports the concept of an individualized approach to head positioning that is based on the multimodal monitoring of brain parameters.
Collapse
|
39
|
Asgari S, Robba C, Beqiri E, Donnelly J, Gupta A, Badenes R, Sekhon M, Hutchinson PJ, Pelosi P, Gupta A. Analysis of the Association Between Lung Function and Brain Tissue Oxygen Tension in Severe Traumatic Brain Injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 131:27-30. [PMID: 33839812 DOI: 10.1007/978-3-030-59436-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Low brain tissue oxygen tension (PbtO2) has been shown to be an independent factor associated with unfavourable outcomes in traumatic brain injury (TBI). Although PbtO2 provides clinicians with an understanding of ischaemic and non-ischaemic derangements of brain physiology, the value alone can be the result of several factors, including partial arterial oxygenation pressure (PaO2), haemoglobin levels (Hb) and cerebral perfusion pressure (CPP). METHODS This chapter presents a single-centre, retrospective cohort study of 70 adult patients with severe TBI who were admitted to the Neurocritical Care Unit (NCCU) at Addenbrooke's Hospital (Cambridge, UK) between October 2014 and December 2017. A total of 303 simultaneous measurements of different variables that included (but were not limited to) intracranial pressure (ICP), PaO2, PbtO2, CPP and the fraction of inspired oxygen (FiO2) were considered in this work. We conducted a correlation analysis between all of the variables. We also implemented a longitudinal data analysis of the PbtO2 and PaO2/FiO2 ratio (PF ratio). RESULTS There were strong and independent correlations between PbtO2 and the PF ratio, and between PbtO2 and PaO2, with adjusted p values of <0.001 for both correlations. After adjustment for ICP, age, sex and the Glasgow Coma Scale (GCS) score, a PF ≤ 330 was shown to be an independent risk factor for a compromised PbtO2 value of <20, with an adjusted odds ratio of 1.94 (95% confidence interval 1.12-3.34) and a p value of 0.02. CONCLUSION Brain and lung interactions in patients with TBI patients have complex interrelationships. Our results confirm the importance of employing lung-protective strategies to prevent brain hypoxia in patients with TBI.
Collapse
Affiliation(s)
- Shadnaz Asgari
- Biomedical Engineering Department, California State University, Long Beach, CA, USA.
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Scientific Institutes of Hospitalization and Care (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Erta Beqiri
- Brain Physics Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Physiology and Transplantation, Milan University, Milan, Italy
| | - Joseph Donnelly
- Brain Physics Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Amit Gupta
- Neurosciences Critical Care, University of Cambridge, Cambridge, UK
| | - Rafael Badenes
- Department of Anesthesiology, Hospital Clìnico Universitario, Valencia, Spain
| | - Mypinder Sekhon
- Division of Critical Care Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Arun Gupta
- Neurosciences Critical Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Lee HY, Shamsiev K, Mamadjonov N, Jung YH, Jeung KW, Kim JW, Heo T, Min YI. Effect of Epinephrine Administered during Cardiopulmonary Resuscitation on Cerebral Oxygenation after Restoration of Spontaneous Circulation in a Swine Model with a Clinically Relevant Duration of Untreated Cardiac Arrest. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5896. [PMID: 34072754 PMCID: PMC8198967 DOI: 10.3390/ijerph18115896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/13/2023]
Abstract
Severe neurological impairment was more prevalent in cardiac arrest survivors who were administered epinephrine than in those administered placebo in a randomized clinical trial; short-term reduction of brain tissue O2 tension (PbtO2) after epinephrine administration in swine following a short duration of untreated cardiac arrest has also been reported. We investigated the effects of epinephrine administered during cardiopulmonary resuscitation (CPR) on cerebral oxygenation after restoration of spontaneous circulation (ROSC) in a swine model with a clinically relevant duration of untreated cardiac arrest. After 7 min of ventricular fibrillation, 24 pigs randomly received either epinephrine or saline placebo during CPR. Parietal cortex measurements during 60-min post-resuscitation period showed that the area under the curve (AUC) for PbtO2 was smaller in the epinephrine group than in the placebo group during the initial 10-min period and subsequent 50-min period (both p < 0.05). The AUC for number of perfused cerebral capillaries was smaller in the epinephrine group during the initial 10-min period (p = 0.005), but not during the subsequent 50-min period. In conclusion, epinephrine administered during CPR reduced PbtO2 for longer than 10 min following ROSC in a swine model with a clinically relevant duration of untreated cardiac arrest.
Collapse
Affiliation(s)
- Hyoung Youn Lee
- Trauma Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea;
| | - Kamoljon Shamsiev
- Department of Medical Science, Chonnam National University Graduate School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea; (K.S.); (N.M.)
| | - Najmiddin Mamadjonov
- Department of Medical Science, Chonnam National University Graduate School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea; (K.S.); (N.M.)
| | - Yong Hun Jung
- Department of Emergency Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea; (Y.H.J.); (T.H.); (Y.I.M.)
- Department of Emergency Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea; (Y.H.J.); (T.H.); (Y.I.M.)
- Department of Emergency Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea
| | - Jin Woong Kim
- Department of Radiology, Chosun University Hospital, 365 Pilmun-daero, Dong-gu, Gwangju 61453, Korea;
| | - Tag Heo
- Department of Emergency Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea; (Y.H.J.); (T.H.); (Y.I.M.)
- Department of Emergency Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea
| | - Yong Il Min
- Department of Emergency Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea; (Y.H.J.); (T.H.); (Y.I.M.)
- Department of Emergency Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea
| |
Collapse
|
41
|
Bailey ZS, Leung LY, Yang X, Cardiff K, Gilsdorf J, Shear D, Kochanek PM. Prehospital Whole Blood Resuscitation Reduces Fluid Requirement While Maintaining Critical Physiology in a Model of Penetrating Traumatic Brain Injury and Hemorrhage: Implications on Resource-Limited Combat Casualty Care. Shock 2021; 55:545-553. [PMID: 32925600 DOI: 10.1097/shk.0000000000001662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ABSTRACT Prehospital resuscitation using whole blood (WB) is the standard of care for hemorrhagic shock (HS) but there is no consensus recommendation for resuscitation in the presence of traumatic brain injury (TBI) due to a lack of sufficient evidence. In order to evaluate the optimal resuscitation strategies for TBI+HS, Sprague-Dawley rats were randomized into four groups based on resuscitation fluid and prehospital mean arterial pressure (MAP) threshold (n = 9-10/group): Lactated Ringer's (LR)-60 mm Hg (LR60), LR-70 mm Hg (LR70), WB-60 mm Hg (WB60), WB-70 mm Hg (WB70). All groups received a frontal penetrating ballistic-like brain injury followed by a 35-min period of HS. During the prehospital phase, rats received an initial bolus of resuscitation fluid (WB or LR) followed by LR as needed to maintain MAP above the designated threshold for 90 min. During the in-hospital phase, rats received definitive resuscitation with shed WB. Physiological parameters were recorded continuously and cerebral edema was measured at 3 and 24 h postinjury. The WB60 group demonstrated a significantly lower prehospital fluid requirement compared WB70, LR60, and LR70 (P < 0.05). Compared to the respective LR groups, both the WB60 and WB70 groups also demonstrated improved MAP, cerebral perfusion pressure, brain tissue oxygen tension, and cerebral edema. The edema benefits were observed at 3 h, but not 24 h postinjury, and were localized to the injury site. Together, these results provide evidence that prehospital WB resuscitation and lower MAP resuscitation thresholds can reduce the prehospital fluid requirement while still maintaining critical cerebral physiology in a model of HS and concomitant TBI.
Collapse
Affiliation(s)
- Zachary S Bailey
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Army Institute of Research, Silver Spring, Maryland
| | - Lai Yee Leung
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Army Institute of Research, Silver Spring, Maryland
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Xiaofang Yang
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Army Institute of Research, Silver Spring, Maryland
| | - Katherine Cardiff
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Army Institute of Research, Silver Spring, Maryland
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Army Institute of Research, Silver Spring, Maryland
| | - Deborah Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Army Institute of Research, Silver Spring, Maryland
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Takahashi CE, Virmani D, Chung DY, Ong C, Cervantes-Arslanian AM. Blunt and Penetrating Severe Traumatic Brain Injury. Neurol Clin 2021; 39:443-469. [PMID: 33896528 DOI: 10.1016/j.ncl.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Severe traumatic brain injury is a common problem. Current practices focus on the importance of early resuscitation, transfer to high-volume centers, and provider expertise across multiple specialties. In the emergency department, patients should receive urgent intracranial imaging and consideration for tranexamic acid. Close observation in the intensive care unit environment helps identify problems, such as seizure, intracranial pressure crisis, and injury progression. In addition to traditional neurologic examination, patients benefit from use of intracranial monitors. Monitors gather physiologic data on intracranial and cerebral perfusion pressures to help guide therapy. Brain tissue oxygenation monitoring and cerebromicrodialysis show promise in studies.
Collapse
Affiliation(s)
- Courtney E Takahashi
- Department of Neurology, Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA.
| | - Deepti Virmani
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - David Y Chung
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA; Division of Neurocritical Care, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Neurovascular Research Unit, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Charlene Ong
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - Anna M Cervantes-Arslanian
- Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| |
Collapse
|
43
|
Musick S, Alberico A. Neurologic Assessment of the Neurocritical Care Patient. Front Neurol 2021; 12:588989. [PMID: 33828517 PMCID: PMC8019734 DOI: 10.3389/fneur.2021.588989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
Sedation is a ubiquitous practice in ICUs and NCCUs. It has the benefit of reducing cerebral energy demands, but also precludes an accurate neurologic assessment. Because of this, sedation is intermittently stopped for the purposes of a neurologic assessment, which is termed a neurologic wake-up test (NWT). NWTs are considered to be the gold-standard in continued assessment of brain-injured patients under sedation. NWTs also produce an acute stress response that is accompanied by elevations in blood pressure, respiratory rate, heart rate, and ICP. Utilization of cerebral microdialysis and brain tissue oxygen monitoring in small cohorts of brain-injured patients suggests that this is not mirrored by alterations in cerebral metabolism, and seldom affects oxygenation. The hard contraindications for the NWT are preexisting intracranial hypertension, barbiturate treatment, status epilepticus, and hyperthermia. However, hemodynamic instability, sedative use for primary ICP control, and sedative use for severe agitation or respiratory distress are considered significant safety concerns. Despite ubiquitous recommendation, it is not clear if additional clinically relevant information is gleaned through its use, especially with the contemporaneous utilization of multimodality monitoring. Various monitoring modalities provide unique and pertinent information about neurologic function, however, their role in improving patient outcomes and guiding treatment plans has not been fully elucidated. There is a paucity of information pertaining to the optimal frequency of NWTs, and if it differs based on type of injury. Only one concrete recommendation was found in the literature, exemplifying the uncertainty surrounding its utility. The most common sedative used and recommended is propofol because of its rapid onset, short duration, and reduction of cerebral energy requirements. Dexmedetomidine may be employed to facilitate serial NWTs, and should always be used in the non-intubated patient or if propofol infusion syndrome (PRIS) develops. Midazolam is not recommended due to tissue accumulation and residual sedation confounding a reliable NWT. Thus, NWTs are well-tolerated in selected patients and remain recommended as the gold-standard for continued neuromonitoring. Predicated upon one expert panel, they should be performed at least one time per day. Propofol or dexmedetomidine are the main sedative choices, both enabling a rapid awakening and consistent NWT.
Collapse
Affiliation(s)
- Shane Musick
- Department of Neurosurgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Anthony Alberico
- Department of Neurosurgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
44
|
Gom RC, Bhatt D, Villa BR, George AG, Lohman AW, Mychasiuk R, Rho JM, Teskey GC. The ketogenic diet raises brain oxygen levels, attenuates postictal hypoxia, and protects against learning impairments. Neurobiol Dis 2021; 154:105335. [PMID: 33741453 DOI: 10.1016/j.nbd.2021.105335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES A prolonged vasoconstriction/hypoperfusion/hypoxic event follows self-terminating focal seizures. The ketogenic diet (KD) has demonstrated efficacy as a metabolic treatment for intractable epilepsy and other disorders but its effect on local brain oxygen levels is completely unknown. This study investigated the effects of the KD on tissue oxygenation in the hippocampus before and after electrically elicited (kindled) seizures and whether it could protect against a seizure-induced learning impairment. We also examined the effects of the ketone β-hydroxybutyrate (BHB) as a potential underlying mechanism. METHODS Male and female rats were given access to one of three diet protocols 2 weeks prior to the initiation of seizures: KD, caloric restricted standard chow, and ad libitum standard chow. Dorsal hippocampal oxygen levels were measured prior to initiation of diets as well as before and after a 10-day kindling paradigm. Male rats were then tested on a novel object recognition task to assess postictal learning impairments. In a separate cohort, BHB was administered 30 min prior to seizure elicitation to determine whether it influenced oxygen dynamics. RESULTS The KD increased dorsal hippocampal oxygen levels, ameliorated postictal hypoxia, and prevented postictal learning impairments. Acute BHB administration did not alter oxygen levels before or after seizures. INTERPRETATION The ketogenic diet raised brain oxygen levels and attenuated severe postictal hypoxia likely through a mechanism independent of ketosis and shows promise as a non-pharmacological treatment to prevent the postictal state.
Collapse
Affiliation(s)
- Renaud C Gom
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, CA, Canada.
| | - Dhyey Bhatt
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, CA, Canada
| | - Bianca R Villa
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, CA, Canada
| | - Antis G George
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, CA, Canada
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, CA, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Jong M Rho
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine University of Calgary, Calgary, CA, Canada; Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, California, USA
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, CA, Canada
| |
Collapse
|
45
|
Jung YH, Shamsiev K, Mamadjonov N, Jeung KW, Lee HY, Lee BK, Kang BS, Heo T, Min YI. Relationship of common hemodynamic and respiratory target parameters with brain tissue oxygen tension in the absence of hypoxemia or hypotension after cardiac arrest: A post-hoc analysis of an experimental study using a pig model. PLoS One 2021; 16:e0245931. [PMID: 33539360 PMCID: PMC7861448 DOI: 10.1371/journal.pone.0245931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 11/18/2022] Open
Abstract
Brain tissue oxygen tension (PbtO2)-guided care, a therapeutic strategy to treat or prevent cerebral hypoxia through modifying determinants of cerebral oxygen delivery, including arterial oxygen tension (PaO2), end-tidal carbon dioxide (ETCO2), and mean arterial pressure (MAP), has recently been introduced. Studies have reported that cerebral hypoxia occurs after cardiac arrest in the absence of hypoxemia or hypotension. To obtain preliminary information on the degree to which PbtO2 is responsive to changes in the common target variables for PbtO2-guided care in conditions without hypoxemia or hypotension, we investigated the relationships between the common target variables for PbtO2-guided care and PbtO2 using data from an experimental study in which the animals did not experience hypoxemia or hypotension after resuscitation. We retrospectively analyzed 170 sets of MAP, ETCO2, PaO2, PbtO2, and cerebral microcirculation parameters obtained during the 60-min post-resuscitation period in 10 pigs resuscitated from ventricular fibrillation cardiac arrest. PbtO2 and cerebral microcirculation parameters were measured on parietal cortices exposed through burr holes. Multiple linear mixed effect models were used to test the independent effects of each variable on PbtO2. Despite the absence of arterial hypoxemia or hypotension, seven (70%) animals experienced cerebral hypoxia (defined as PbtO2 <20 mmHg). Linear mixed effect models revealed that neither MAP nor ETCO2 were related to PbtO2. PaO2 had a significant linear relationship with PbtO2 after adjusting for significant covariates (P = 0.030), but it could explain only 17.5% of the total PbtO2 variance (semi-partial R2 = 0.175; 95% confidence interval, 0.086-0.282). In conclusion, MAP and ETCO2 were not significantly related to PbtO2 in animals without hypoxemia or hypotension during the early post-resuscitation period. PaO2 had a significant linear association with PbtO2, but its ability to explain PbtO2 variance was small.
Collapse
Affiliation(s)
- Yong Hun Jung
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kamoljon Shamsiev
- Department of Medical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Najmiddin Mamadjonov
- Department of Medical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| | - Hyoung Youn Lee
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Byung Kook Lee
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Byung Soo Kang
- Department of Medical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Tag Heo
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong Il Min
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
46
|
Individualized Brain Tissue Oxygen-Monitoring Probe Placement Helps to Guide Therapy and Optimizes Outcome in Neurocritical Care. Neurocrit Care 2020; 35:197-209. [PMID: 33326065 PMCID: PMC8285328 DOI: 10.1007/s12028-020-01171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/01/2020] [Indexed: 12/04/2022]
Abstract
Background/Objective In order to monitor tissue oxygenation in patients with acute neurological disorders, probes for measurement of brain tissue oxygen tension (ptO2) are often placed non-specifically in a right frontal lobe location. To improve the value of ptO2 monitoring, placement of the probe into a specific area of interest is desirable. We present a technique using CT-guidance to place the ptO2 probe in a particular area of interest based on the individual patient’s pathology. Methods In this retrospective cohort study, we analyzed imaging and clinical data from all patients who underwent CT-guided ptO2 probe placement at our institution between October 2017 and April 2019. Primary endpoint was successful placement of the probe in a particular area of interest rated by two independent reviewers. Secondary outcomes were complications from probe insertion, clinical consequences from ptO2 measurements, clinical outcome according to the modified Rankin Scale (mRS) as well as development of ischemia on follow-up imaging. A historical control group was selected from patients who underwent conventional ptO2 probe placement between January 2010 and October 2017. Results Eleven patients had 16 CT-guided probes inserted. In 15 (93.75%) probes, both raters agreed on the correct placement in the area of interest. Each probe triggered on average 0.48 diagnostic or therapeutic adjustments per day. Only one infarction within the vascular territory of a probe was found on follow-up imaging. Eight out of eleven patients (72.73%) reached a good outcome (mRS ≤ 3). In comparison, conventionally placed probes triggered less diagnostic and therapeutic adjustment per day (p = 0.007). Outcome was worse in the control group (p = 0.024). Conclusion CT-guided probe insertion is a reliable and easy technique to place a ptO2 probe in a particular area of interest in patients with potentially reduced cerebral oxygen supply. By adjusting treatment aggressively according to this individualized monitoring data, clinical outcome may improve.
Collapse
|
47
|
Veldeman M, Albanna W, Weiss M, Conzen C, Schmidt TP, Clusmann H, Schulze-Steinen H, Nikoubashman O, Temel Y, Schubert GA. Treatment of Delayed Cerebral Ischemia in Good-Grade Subarachnoid Hemorrhage: Any Role for Invasive Neuromonitoring? Neurocrit Care 2020; 35:172-183. [PMID: 33305337 PMCID: PMC8285339 DOI: 10.1007/s12028-020-01169-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Background Good-grade aneurysmal subarachnoid hemorrhage (Hunt and Hess 1–2) is generally associated with a favorable prognosis. Nonetheless, patients may still experience secondary deterioration due to delayed cerebral ischemia (DCI), contributing to poor outcome. In those patients, neurological assessment is challenging and invasive neuromonitoring (INM) may help guide DCI treatment. Methods An observational analysis of 135 good-grade SAH patients referred to a single tertiary care center between 2010 and 2018 was performed. In total, 54 good-grade SAH patients with secondary deterioration evading further neurological assessment, were prospectively enrolled for this analysis. The cohort was separated into two groups: before and after introduction of INM in 2014 (pre-INMSecD: n = 28; post-INMSecD: n = 26). INM included either parenchymal oxygen saturation measurement (ptiO2), cerebral microdialysis or both. Episodes of DCI (ptiO2 < 10 mmHg or lactate/pyruvate > 40) were treated via induced hypertension or in refractory cases by endovascular means. The primary outcome was defined as the extended Glasgow outcome scale after 12 months. In addition, we recorded the amount of imaging studies performed and the occurrence of silent and overall DCI-related infarction.
Results Secondary deterioration, impeding neurological assessment, occurred in 54 (40.0%) of all good-grade SAH patients. In those patients, a comparable rate of favorable outcome at 12 months was observed before and after the introduction of INM (pre-INMSecD 14 (50.0%) vs. post-INMSecD 16, (61.6%); p = 0.253). A significant increase in good recovery (pre-INMSecD 6 (50.0%) vs. post-INMSecD 14, (61.6%); p = 0.014) was observed alongside a reduction in the incidence of silent infarctions (pre-INMSecD 8 (28.6%) vs. post-INMSecD 2 (7.7%); p = 0.048) and of overall DCI-related infarction (pre-INMSecD 12 (42.8%) vs. post-INMSecD 4 (23.1%); p = 0.027). The number of CT investigations performed during the DCI time frame decreased from 9.8 ± 5.2 scans in the pre-INMSecD group to 6.1 ± 4.0 (p = 0.003) in the post-INMSecD group. Conclusions A considerable number of patients with good-grade SAH experiences secondary deterioration rendering them neurologically not assessable. In our cohort, the introduction of INM to guide DCI treatment in patients with secondary deterioration increased the rate of good recovery after 12 months. Additionally, a significant reduction of CT scans and infarction load was recorded, which may have an underestimated impact on quality of life and more subtle neuropsychological deficits common after SAH. Electronic supplementary material The online version of this article (10.1007/s12028-020-01169-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Catharina Conzen
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Tobias Philip Schmidt
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | | | - Omid Nikoubashman
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
48
|
Marland JR, Gray ME, Dunare C, Blair EO, Tsiamis A, Sullivan P, González-Fernández E, Greenhalgh SN, Gregson R, Clutton RE, Parys MM, Dyson A, Singer M, Kunkler IH, Potter MA, Mitra S, Terry JG, Smith S, Mount AR, Underwood I, Walton AJ, Argyle DJ, Murray AF. Real-time measurement of tumour hypoxia using an implantable microfabricated oxygen sensor. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Tran CHT, George AG, Teskey GC, Gordon GR. Seizures elevate gliovascular unit Ca2+ and cause sustained vasoconstriction. JCI Insight 2020; 5:136469. [PMID: 33004688 PMCID: PMC7566700 DOI: 10.1172/jci.insight.136469] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Seizures can result in a severe hypoperfusion/hypoxic attack that causes postictal memory and behavioral impairments. However, neither postictal changes to microvasculature nor Ca2+ changes in key cell types controlling blood perfusion have been visualized in vivo, leaving essential components of the underlying cellular mechanisms unclear. Here, we use 2-photon microvascular and Ca2+ imaging in awake mice to show that seizures result in a robust vasoconstriction of cortical penetrating arterioles, which temporally mirrors the prolonged postictal hypoxia. The vascular effect was dependent on cyclooxygenase 2, as pretreatment with ibuprofen prevented postictal vasoconstriction. Moreover, seizures caused a rapid elevation in astrocyte endfoot Ca2+ that was confined to the seizure period, and vascular smooth muscle cells displayed a significant increase in Ca2+ both during and following seizures, lasting up to 75 minutes. Our data show enduring postictal vasoconstriction and temporal activities of 2 cell types within the neurovascular unit that are associated with seizure-induced hypoperfusion/hypoxia. These findings support prevention of this event may be a novel and tractable treatment strategy in patients with epilepsy who experience extended postseizure impairments. Seizures cause enduring microvascular constriction via long lasting calcium elevations in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Cam Ha T Tran
- Hotchkiss Brain Institute and.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Antis G George
- Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute and.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
50
|
Lloyd-Donald P, Spencer W, Cheng J, Romero L, Jithoo R, Udy A, Fitzgerald MC. In adult patients with severe traumatic brain injury, does the use of norepinephrine for augmenting cerebral perfusion pressure improve neurological outcome? A systematic review. Injury 2020; 51:2129-2134. [PMID: 32739152 DOI: 10.1016/j.injury.2020.07.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Despite multiple interventions, mortality due to severe traumatic brain injury (sTBI) within mature Trauma Systems has remained unchanged over the last decade. During this time, the use of vasoactive infusions (commonly norepinephrine) to achieve a target blood pressure and cerebral perfusion pressure (CPP) has been a mainstay of sTBI management. However, evidence suggests that norepinephrine, whilst raising blood pressure, may reduce cerebral oxygenation. This study aimed to review the available evidence that links norepinephrine augmented CPP to clinical outcomes for these patients. METHODS A systematic review examining the evidence for norepinephrine augmented CPP in TBI patients was undertaken. Strict inclusion and exclusion criteria were developed for a dedicated literature search of multiple scientific databases. Two dedicated reviewers screened articles, whilst a third dedicated reviewer resolved conflicts. RESULTS The systematic review yielded 4,809 articles, of which 1,197 duplicate articles were removed. After abstract/title screening, 45 articles underwent full text review, resulting in the identification of two articles that investigated the effect of norepinephrine administration on clinical outcomes in patients following TBI when compared to other vasopressors. Neither study found a difference in neurological outcome between the vasopressor groups. No articles measured the effect of norepinephrine compared to no vasopressor use on the clinical outcome of patients with sTBI. CONCLUSIONS Despite being a mainstay of pharmacological management for hypotension in patients following sTBI, there is minimal clinical evidence supporting the use of norepinephrine in targeting a CPP for either improving neurological outcomes or reducing mortality. Outcomes-based clinical trials exploring the role of brain tissue perfusion and oxygenation monitoring are required to validate any benefit.
Collapse
Affiliation(s)
- Patryck Lloyd-Donald
- Trauma Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia
| | - William Spencer
- Trauma Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| | - Jacinta Cheng
- Trauma Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| | - Lorena Romero
- Library Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia.
| | - Ron Jithoo
- National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia; Department of Neurosurgery, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia.
| | - Andrew Udy
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; Australian and New Zealand Intensive Care Research Centre, School of Public and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne VIC, Australia.
| | - Mark C Fitzgerald
- Trauma Services, The Alfred Hospital, 89 Commercial Rd, Melbourne VIC, Australia; National Trauma Research Institute, Level 4, 89 Commercial Rd, Melbourne 3004, VIC, Australia.
| |
Collapse
|