1
|
Richardson L, Bagunu K, Doughty K, Concilio L, Jaime S, Westcott A, Graham JK. Exploring Alternate Targets for Respiratory Resuscitation in Patients With Sepsis and Septic Shock. Crit Care Nurs Q 2025; 48:93-99. [PMID: 40009856 DOI: 10.1097/cnq.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Despite limited evidence to support it, resuscitation in sepsis has primarily targeted aggressive fluid administration and liberal administration of oxygen. In 2024, new thought paradigms emerged to suggest that dysregulation of aerobic metabolism are essential underpinnings of sepsis, and that in fact, aggressive resuscitation with fluids liberal oxygen could potentially aggravate oxidative stress and organ failure in sepsis. As sepsis continues to be shaped and molded by the latest research; therapies targeting sepsis and septic shock management warrant similar scrutiny. METHODS We searched literature pertaining to what is known about metabolic dysregulation in sepsis, to consider approaches to identifying new targets for resuscitation and management in sepsis. RESULTS Therapeutic hypoxemic targets of 88-92% have been shown to have some benefit in sepsis resuscitation in a limited number of studies. The benefit is believed to result from protection from excessive accumulation of harmful reactive oxygen species. CONCLUSION Limited supporting evidence exists in the literature to recommend targeted hypoxemia or hypercapnia in patients with sepsis. Mixed results have been observed in the literature, including minimal benefit to mortality. New research designs with consideration to the dysregulated metabolic sequelae in sepsis could improve the meaningfulness of these therapies in sepsis.
Collapse
Affiliation(s)
- Lindsay Richardson
- Author Affiliations: School of Nursing, San Diego State University, San Diego, California(Capt Richardson, Mr Bagunu, Ms Doughty,Dr Consilio, Ms Westcott, and Dr Graham); and Sharp Healthcare, San Diego, California (Dr Jaime)
| | | | | | | | | | | | | |
Collapse
|
2
|
Campaña-Duel E, Ceccato A, Morales-Quinteros L, Camprubí-Rimblas M, Artigas A. Hypercapnia and its relationship with respiratory infections. Expert Rev Respir Med 2024; 18:41-47. [PMID: 38489161 DOI: 10.1080/17476348.2024.2331767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
INTRODUCTION Hypercapnia is developed in patients with acute and/or chronic respiratory conditions. Clinical data concerning hypercapnia and respiratory infections interaction is limited. AREAS COVERED Currently, the relationship between hypercapnia and respiratory infections remains unclear. In this review, we summarize studies on the effects of hypercapnia on models of pulmonary infections to clarify the role of elevated CO2 in these pulmonary pathologies. Hypercapnia affects different cell types in the alveoli, leading to changes in the immune response. In vitro studies show that hypercapnia downregulates the NF-κβ pathway, reduces inflammation and impairs epithelial wound healing. While in vivo models show a dual role between short- and long-term effects of hypercapnia on lung infection. However, it is still controversial whether the effects observed under hypercapnia are pH dependent or not. EXPERT OPINION The role of hypercapnia is still a controversial debate. Hypercapnia could play a beneficial role in mechanically ventilated models, by lowering the inflammation produced by the stretch condition. But it could be detrimental in infectious scenarios, causing phagocyte dysfunction and lack of infection control. Further data concerning hypercapnia on respiratory infections is needed to elucidate this interaction.
Collapse
Affiliation(s)
- Elena Campaña-Duel
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Adrian Ceccato
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Intensive care unit, Hospital Universitari Sagrat Cor, Grupo Quironsalud, Barcelona, Spain
| | - Luis Morales-Quinteros
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Medicina Intensiva, Hospital de la Santa Creu y Sant Pau, Barcelona, Spain
| | - Marta Camprubí-Rimblas
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Antonio Artigas
- Critical care center, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Justus A, Burrell A, Anstey C, Cornmell G, Brodie D, Shekar K. The Association of Oxygenation, Carbon Dioxide Removal, and Mechanical Ventilation Practices on Survival During Venoarterial Extracorporeal Membrane Oxygenation. Front Med (Lausanne) 2021; 8:756280. [PMID: 34869455 PMCID: PMC8636903 DOI: 10.3389/fmed.2021.756280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction: Oxygenation and carbon dioxide removal during venoarterial extracorporeal membrane oxygenation (VA ECMO) depend on a complex interplay of ECMO blood and gas flows, native lung and cardiac function as well as the mechanical ventilation strategy applied. Objective: To determine the association of oxygenation, carbon dioxide removal, and mechanical ventilation practices with in-hospital mortality in patients who received VA ECMO. Methods: Single center, retrospective cohort study. All consecutive patients who received VA ECMO in a tertiary ECMO referral center over a 5-year period were included. Data on demographics, ECMO and ventilator support details, and blood gas parameters for the duration of ECMO were collected. A multivariable logistic time-series regression model with in-hospital mortality as the primary outcome variable was used to analyse the data with significant factors at the univariate level entered into the multivariable regression model. Results: Overall, 52 patients underwent VA ECMO: 26/52 (50%) survived to hospital discharge. The median PaO2 for the duration of ECMO support was 146 mmHg [IQR 131-188] and PaCO2 was 37.2 mmHg [IQR 35.3, 39.9]. Patients who survived to hospital discharge had a significantly lower median PaO2 (117 [98, 140] vs. 154 [105, 212] mmHg, P = 0.04) and higher median PaCO2 (38.3 [36.1, 41.1] vs. 36.3 [34.5, 37.8] mmHg, p = 0.03). Survivors also had significantly lower median VA ECMO blood flow rate (EBFR, 3.6 [3.3, 4.2] vs. 4.3 [3.8, 5.2] L/min, p = < 0.001) and greater measured minute ventilation (7.04 [5.63, 8.35] vs. 5.32 [4.43, 6.83] L/min, p = 0.01). EBFR, PaO2, PaCO2, and minute ventilation, however, were not independently associated with death in a multivariable analysis. Conclusion: This exploratory analysis in a small group of VA ECMO supported patients demonstrated that hyperoxemia was common during VA ECMO but was not independently associated with increased mortality. Survivors also received lower EBFR and had greater minute ventilation, but this was also not independently associated with survival. These findings highlight that interactions between EBFR, PaO2, and native lung ventilation may be more relevant than their individual association with survival. Further research is indicated to determine the optimal ECMO and ventilator settings on outcomes in VA ECMO.
Collapse
Affiliation(s)
- Angelo Justus
- Adult Intensive Care, Sunshine Coast University Hospital, Sunshine Coast, QLD, Australia
| | - Aidan Burrell
- Australian and New Zealand Intensive Care-Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care, The Alfred Hospital, Melbourne, VIC, Australia
| | - Chris Anstey
- School of Medicine, Griffith University, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - George Cornmell
- Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Daniel Brodie
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, United States
- Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, United States
| | - Kiran Shekar
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Masterson C, Horie S, McCarthy SD, Gonzalez H, Byrnes D, Brady J, Fandiño J, Laffey JG, O'Toole D. Hypercapnia in the critically ill: insights from the bench to the bedside. Interface Focus 2021; 11:20200032. [PMID: 33628425 PMCID: PMC7898152 DOI: 10.1098/rsfs.2020.0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Carbon dioxide (CO2) has long been considered, at best, a waste by-product of metabolism, and at worst, a toxic molecule with serious health consequences if physiological concentration is dysregulated. However, clinical observations have revealed that 'permissive' hypercapnia, the deliberate allowance of respiratory produced CO2 to remain in the patient, can have anti-inflammatory effects that may be beneficial in certain circumstances. In parallel, studies at the cell level have demonstrated the profound effect of CO2 on multiple diverse signalling pathways, be it the effect from CO2 itself specifically or from the associated acidosis it generates. At the whole organism level, it now appears likely that there are many biological sensing systems designed to respond to CO2 concentration and tailor respiratory and other responses to atmospheric or local levels. Animal models have been widely employed to study the changes in CO2 levels in various disease states and also to what extent permissive or even directly delivered CO2 can affect patient outcome. These findings have been advanced to the bedside at the same time that further clinical observations have been elucidated at the cell and animal level. Here we present a synopsis of the current understanding of how CO2 affects mammalian biological systems, with a particular emphasis on inflammatory pathways and diseases such as lung specific or systemic sepsis. We also explore some future directions and possibilities, such as direct control of blood CO2 levels, that could lead to improved clinical care in the future.
Collapse
|
5
|
Jerkic M, Litvack ML, Gagnon S, Otulakowski G, Zhang H, Rotstein O, Kavanagh BP, Post M, Laffey JG. Embryonic-Derived Myb- Macrophages Enhance Bacterial Clearance and Improve Survival in Rat Sepsis. Int J Mol Sci 2021; 22:ijms22063190. [PMID: 33804806 PMCID: PMC8004006 DOI: 10.3390/ijms22063190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Peritoneal resident macrophages play a key role in combating sepsis in the peritoneal cavity. We sought to determine if peritoneal transplantation of embryonic Myb- "peritoneal-like" macrophages attenuate abdominal fecal sepsis. Directed differentiation of rodent pluripotent stem cells (PSCs) was used in factor-defined media to produce embryonic-derived large "peritoneal-like" macrophages (Ed-LPM) that expressed peritoneal macrophage markers and demonstrated phagocytic capacity. Preclinical in vivo studies determined Ed-LPM efficacy in rodent abdominal fecal sepsis with or without Meropenem. Ex vivo studies explored the mechanism and effects of Ed-LPM on host immune cell number and function, including phagocytosis, reactive oxygen species (ROS) production, efferocytosis and apoptosis. Ed-LPM reduced sepsis severity by decreasing bacterial load in the liver, spleen and lungs. Ed-LPM therapy significantly improved animal survival by ~30% and reduced systemic bacterial burden to levels comparable to Meropenem therapy. Ed-LPM therapy decreased peritoneal TNFα while increasing IL-10 concentrations. Ed-LPMs enhanced peritoneal macrophage phagocytosis of bacteria, increased macrophage production of ROS and restored homeostasis via apoptosis and efferocytosis-induced clearance of neutrophils. In conclusion, Ed-LPM reduced systemic sepsis severity, improved survival and reduced bacterial load by enhancing peritoneal macrophage bacterial phagocytosis and killing and clearance of intra-peritoneal neutrophils. Macrophage therapy may be a potential strategy to address sepsis.
Collapse
Affiliation(s)
- Mirjana Jerkic
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
| | - Michael L. Litvack
- Translational Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (M.L.L.); (G.O.); (B.P.K.); (M.P.)
| | - Stéphane Gagnon
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
| | - Gail Otulakowski
- Translational Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (M.L.L.); (G.O.); (B.P.K.); (M.P.)
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
| | - Brian P. Kavanagh
- Translational Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (M.L.L.); (G.O.); (B.P.K.); (M.P.)
- Department of Critical Care Medicine, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (M.L.L.); (G.O.); (B.P.K.); (M.P.)
- Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - John G. Laffey
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
- Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Anesthesia and Critical Care Medicine, Unity Health Toronto St. Michael’s, Toronto, ON M5B 1W8, Canada
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
- Correspondence: ; Tel.: +1-353-91-495662
| |
Collapse
|
6
|
Effect of Pravastatin Pretreatment and Hypercapnia on Intestinal Microvascular Oxygenation and Blood Flow During Sepsis. Shock 2021; 53:88-94. [PMID: 30724816 DOI: 10.1097/shk.0000000000001323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In septic patients, adequate microvascular oxygenation (μHBO2) of the intestine is vital for their outcome. Recent studies suggest that statins can ameliorate septic microcirculation in a variety of tissues. However, the effect on intestinal microvascular oxygenation and blood flow is largely unknown. Furthermore, there are indications that statin therapy might not be beneficial in the presence of hypercapnia, as observed in septic acute respiratory distress syndrome (ARDS) patients. Therefore, the present study explores the effect of pravastatin with and without additional moderate acute hypercapnia on intestinal microvascular oxygenation and blood flow in experimental sepsis. METHODS Forty male Wistar rats were randomized into four groups. Half of the animals received 0.2 mg • kg pravastatin s.c., the other half received the same volume as vehicle (NaCl 0.9%). After 18 h, colon ascendens stent peritonitis surgery was conducted in all animals to induce sepsis. Twenty-four hours after surgery, baseline was established and the animals were subjected to either 120 min of normocapnic (pCO2 40 ± 6 mm Hg) or moderate hypercapnic (pCO2 72 ± 10 mm Hg) ventilation. Microcirculatory oxygenation (μHBO2) and perfusion (μflow) of the colon were continuously recorded using tissue reflectance spectrophotometry and laser Doppler, respectively. RESULTS In normocapnic septic animals μHBO2 decreased over time (-8.4 ± 8.7%; P < 0.05 vs. baseline), whereas after pravastatin pretreatment μHBO2 remained constant (-1.9 ± 5.7% vs. baseline). However, in hypercapnic septic animals pretreated with pravastatin μHBO2 declined significantly over time (-8.9 ± 11.8%; P < 0.05 vs. baseline) and was significantly lower compared with normocapnic pravastatin-pretreated animals. μflow did not change over time in any group. CONCLUSION Pravastatin pretreatment ameliorates the intestinal microvascular oxygenation in sepsis and thus seems to prevent intestinal hypoxia. Furthermore, we demonstrated that additional hypercapnia abolishes this effect, indicating why septic ARDS patients might not benefit from pravastatin therapy.
Collapse
|
7
|
Sayama K, Yuki K, Sugata K, Fukagawa S, Yamamoto T, Ikeda S, Murase T. Carbon dioxide inhibits UVB-induced inflammatory response by activating the proton-sensing receptor, GPR65, in human keratinocytes. Sci Rep 2021; 11:379. [PMID: 33431967 PMCID: PMC7801444 DOI: 10.1038/s41598-020-79519-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Carbon dioxide (CO2) is the predominant gas molecule emitted during aerobic respiration. Although CO2 can improve blood circulation in the skin via its vasodilatory effects, its effects on skin inflammation remain unclear. The present study aimed to examine the anti-inflammatory effects of CO2 in human keratinocytes and skin. Keratinocytes were cultured under 15% CO2, irradiated with ultraviolet B (UVB), and their inflammatory cytokine production was analyzed. Using multiphoton laser microscopy, the effect of CO2 on pH was observed by loading a three-dimensional (3D)-cultured epidermis with a high-CO2 concentration formulation. Finally, the effect of CO2 on UVB-induced erythema was confirmed. CO2 suppressed the UVB-induced production of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in keratinocytes and the 3D epidermis. Correcting medium acidification with NaOH inhibited the CO2-induced suppression of TNFα and IL-6 expression in keratinocytes. Moreover, the knockdown of H+-sensing G protein-coupled receptor 65 inhibited the CO2-induced suppression of inflammatory cytokine expression and NF-κB activation and reduced CO2-induced cyclic adenosine monophosphate production. Furthermore, the high-CO2 concentration formulation suppressed UVB-induced erythema in human skin. Hence, CO2 suppresses skin inflammation and can be employed as a potential therapeutic agent in restoring skin immune homeostasis.
Collapse
Affiliation(s)
- Keimon Sayama
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Katsuyuki Yuki
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Keiichi Sugata
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Satoko Fukagawa
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Tetsuji Yamamoto
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takatoshi Murase
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| |
Collapse
|
8
|
Madotto F, Rezoagli E, McNicholas BA, Pham T, Slutsky AS, Bellani G, Laffey JG. Patterns and Impact of Arterial CO 2 Management in Patients With Acute Respiratory Distress Syndrome: Insights From the LUNG SAFE Study. Chest 2020; 158:1967-1982. [PMID: 32589951 DOI: 10.1016/j.chest.2020.05.605] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/08/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Considerable variability exists regarding CO2 management in early ARDS, with the impact of arterial CO2 tension on management and outcomes poorly understood. RESEARCH QUESTION To determine the prevalence and impact of hypocapnia and hypercapnia on the management and outcomes of patients with early ARDS enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study, an international multicenter observational study. STUDY DESIGN AND METHODS Our primary objective was to examine the prevalence of day 1 and sustained (day 1 and 2) hypocapnia (Paco2 < 35 mm Hg), normocapnia (Paco2 35-45 mm Hg), and hypercapnia (Paco2 > 45 mm Hg) in patients with ARDS. Secondary objectives included elucidating the effect of CO2 tension on ventilatory management and examining the relationship with ARDS outcome. RESULTS Of 2,813 patients analyzed, 551 (19.6%; 95%CI, 18.1-21.1) were hypocapnic, 1,018 (36.2%; 95% CI, 34.4-38.0) were normocapnic, and 1,214 (43.2%; 95% CI, 41.3-45.0) were hypercapnic, on day 1. Sustained hypocapnia was seen in 252 (9.3%; 95% CI, 8.2-10.4), sustained normocapnia in 544 (19.3%; 95% CI, 17.9-20.8), and sustained hypercapnia in 654 (24.1%; 95% CI, 22.5-25.7) patients. Hypocapnia was more frequent and severe in patients receiving noninvasive ventilation but also was observed in patients on controlled mechanical ventilation. Sustained hypocapnia was more frequent in middle-income countries, whereas sustained hypercapnia was more frequent in Europe. ARDS severity profile was highest in sustained hypercapnia, and these patients received more protective ventilation. No independent association was seen between arterial CO2 and outcome. In propensity-matched analyses, the hospital mortality rate was 36% in both sustained normocapnic and hypercapnic patients (P = 1.0). ICU mortality was higher in patients with mild to moderate ARDS receiving sustained hypocapnia (38.1%) compared with normocapnia (27.1%). INTERPRETATION No evidence was found for benefit or harm with hypercapnia. Of concern, ICU mortality was higher with sustained hypocapnia in mild to moderate ARDS.
Collapse
Affiliation(s)
- Fabiana Madotto
- IRCCS MultiMedica, Value-based healthcare unit, Sesto San Giovanni (Milan), Italy
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Bairbre A McNicholas
- School of Medicine, National University of Ireland Galway, Galway, Ireland; Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
| | - Tài Pham
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Service de médecine intensive-réanimation, AP-HP, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France; Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Arthur S Slutsky
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, and the Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - John G Laffey
- School of Medicine, National University of Ireland Galway, Galway, Ireland; Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland; Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.
| | | |
Collapse
|
9
|
Lee JH, Kim Y, Mun J, Lee J, Ko S. Effects of hypercarbia on arterial oxygenation during one-lung ventilation: prospective randomized crossover study. Korean J Anesthesiol 2020; 73:534-541. [PMID: 32460465 PMCID: PMC7714622 DOI: 10.4097/kja.19445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/27/2020] [Indexed: 11/12/2022] Open
Abstract
Background This study aimed to evaluate the effects of hypercarbia on arterial oxygenation during one-lung ventilation (OLV). Methods Fifty adult patients undergoing elective video-assisted thoracoscopic lobectomy or pneumonectomy were enrolled. Group I patients (n = 25) were first maintained at normocarbia (PaCO2: 38–42 mmHg) for 30 min and then at hypercarbia (45–50 mmHg). In Group II patients (n = 25), PaCO2 was maintained in the reverse order. Arterial oxygen partial pressure (PaO2), respiratory variables, hemodynamic variables, and hemoglobin concentration were compared during normocarbia and hypercarbia. Arterial O2 content and O2 delivery were calculated. Results PaO2 values during normocarbia and hypercarbia were 66.5 ± 10.6 and 79.7 ± 17.3 mmHg, respectively (mean difference: 13.2 mmHg, 95% CI for difference of means: 17.0 to 9.3, P < 0.001). SaO2 values during normocarbia and hypercarbia were 92.5 ± 4.8% and 94.3 ± 3.1% (P = 0.009), respectively. Static compliance of the lung (33.0 ± 5.4 vs. 30.4 ± 5.3 ml/cmH2O, P < 0.001), arterial O2 content (15.4 ± 1.4 vs. 14.9 ± 1.5 ml/dl, P < 0.001) and O2 delivery (69.9 ± 18.4 vs. 65.1 ± 18.1 ml/min, P < 0.001) were significantly higher during hypercarbia than during normocarbia. Conclusions Hypercarbia increases PaO2 and O2 carrying capacity and improves pulmonary mechanics during OLV, suggesting that it may help manage oxygenation during OLV. Therefore, permissive hypercarbia may be a simple and valuable modality to manage arterial oxygenation during OLV.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Yesull Kim
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Juhan Mun
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Joseph Lee
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Seonghoon Ko
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| |
Collapse
|
10
|
Human Umbilical Cord Mesenchymal Stromal Cells Attenuate Systemic Sepsis in Part by Enhancing Peritoneal Macrophage Bacterial Killing via Heme Oxygenase-1 Induction in Rats. Anesthesiology 2020; 132:140-154. [PMID: 31764154 DOI: 10.1097/aln.0000000000003018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mesenchymal stromal cells have therapeutic potential in sepsis, but the mechanism of action is unclear. We tested the effects, dose-response, and mechanisms of action of cryopreserved, xenogeneic-free human umbilical cord mesenchymal stromal cells in a rat model of fecal peritonitis, and examined the role of heme oxygenase-1 in protection. METHODS Separate in vivo experiments evaluated mesenchymal stromal cells in fecal sepsis, established dose response (2, 5, and 10 million cells/kg), and the role of heme oxygenase-1 in mediating human umbilical cord-derived mesenchymal stromal/stem cell effects. Ex vivo studies utilized pharmacologic blockers and small inhibitory RNAs to evaluate mechanisms of mesenchymal stromal cell enhanced function in (rodent, healthy and septic human) macrophages. RESULTS Human umbilical cord mesenchymal stromal cells reduced injury and increased survival (from 48%, 12 of 25 to 88%, 14 of 16, P = 0.0033) in fecal sepsis, with dose response studies demonstrating that 10 million cells/kg was the most effective dose. Mesenchymal stromal cells reduced bacterial load and peritoneal leukocyte infiltration (from 9.9 ± 3.1 × 10/ml to 6.2 ± 1.8 × 10/ml, N = 8 to 10 per group, P < 0.0001), and increased heme oxygenase-1 expression in peritoneal macrophages, liver, and spleen. Heme oxygenase-1 blockade abolished the effects of mesenchymal stromal cells (N = 7 or 8 per group). Mesenchymal stromal cells also increased heme oxygenase-1 expression in macrophages from healthy donors and septic patients. Direct ex vivo upregulation of macrophage heme oxygenase-1 enhanced macrophage function (phagocytosis, reactive oxygen species production, bacterial killing). Blockade of lipoxin A4 production in mesenchymal stromal cells, and of prostaglandin E2 synthesis in mesenchymal stromal cell/macrophage cocultures, prevented upregulation of heme oxygenase-1 in macrophages (from 9.6 ± 5.5-fold to 2.3 ± 1.3 and 2.4 ± 2.3 respectively, P = 0.004). Knockdown of heme oxygenase-1 production in macrophages ablated mesenchymal stromal cell enhancement of macrophage phagocytosis. CONCLUSIONS Human umbilical cord mesenchymal stromal cells attenuate systemic sepsis by enhancing peritoneal macrophage bacterial killing, mediated partly via upregulation of peritoneal macrophage heme oxygenase-1. Lipoxin A4 and prostaglandin E2 play key roles in the mesenchymal stromal cell and macrophage interaction.
Collapse
|
11
|
Horie S, Masterson C, Brady J, Loftus P, Horan E, O'Flynn L, Elliman S, Barry F, O'Brien T, Laffey JG, O'Toole D. Umbilical cord-derived CD362 + mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Res Ther 2020; 11:116. [PMID: 32169108 PMCID: PMC7071745 DOI: 10.1186/s13287-020-01624-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 01/31/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) demonstrate considerable promise for acute respiratory distress syndrome (ARDS) and sepsis. However, standard approaches to MSC isolation generate highly heterogeneous cell populations, while bone marrow (BM) constitutes a limited and difficult to access MSC source. Furthermore, a range of cell manufacturing considerations and clinical setting practicalities remain to be explored. Methods Adult male rats were subject to E. coli-induced pneumonia and administered CD362+ umbilical cord (UC)-hMSCs using a variety of cell production and clinical relevance considerations. In series 1, animals were instilled with E. coli and randomized to receive heterogeneous BM or UC-hMSCs or CD362+ UC-hMSCs. Subsequent series examined the impact of concomitant antibiotic therapy, MSC therapeutic cryopreservation (cryopreserved vs fresh CD362+ UC-hMSCs), impact of cell passage on efficacy (passages 3 vs 5 vs 7 vs 10), and delay of administration of cell therapy (0 h vs 6 h post-injury vs 6 h + 12 h) following E. coli installation. Results CD362+ UC-hMSCs were as effective as heterogonous MSCs in reducing E. coli-induced acute lung injury, improving oxygenation, decreasing bacterial load, reducing histologic injury, and ameliorating inflammatory marker levels. Cryopreserved CD362+ UC-hMSCs recapitulated this efficacy, attenuating E. coli-induced injury, but therapeutic relevance did not extend beyond passage 3 for all indices. CD362+ UC-hMSCs maintained efficacy in the presence of antibiotic therapy and rescued the animal from E. coli injury when delivered at 6 h + 12 h, following E. coli instillation. Conclusions These translational studies demonstrated the efficacy of CD362+ UC-hMSCs, where they decreased the severity of E. coli-induced pneumonia, maintained efficacy following cryopreservation, were more effective at early passage, were effective in the presence of antibiotic therapy, and could continue to provide benefit at later time points following E. coli injury.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Claire Masterson
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Jack Brady
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Paul Loftus
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Emma Horan
- Orbsen Therapeutics Ltd., Galway, Ireland
| | | | | | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.,Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.,Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland. .,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| |
Collapse
|
12
|
Horie S, Gaynard S, Murphy M, Barry F, Scully M, O'Toole D, Laffey JG. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Med Exp 2020; 8:8. [PMID: 32025852 PMCID: PMC7002627 DOI: 10.1186/s40635-020-0295-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (hMSCs) represent a promising therapeutic strategy for ventilator-induced lung injury (VILI) and acute respiratory distress syndrome. Translational challenges include restoring hMSC efficacy following cryopreservation, developing effective xenogeneic-free (XF) hMSCs and establishing true therapeutic potential at a clinically relevant time point of administration. We wished to determine whether cytokine pre-activation of cryopreserved, bone marrow-derived XF-hMSCs would enhance their capacity to facilitate injury resolution following VILI and elucidate mechanisms of action. METHODS Initially, in vitro studies examined the potential for the secretome from cytokine pre-activated XF-hMSCs to attenuate pulmonary epithelial injury induced by cyclic mechanical stretch. Later, anaesthetised rats underwent VILI and, 6 h following injury, were randomized to receive 1 × 107 XF-hMSC/kg that were (i) naive fresh, (ii) naive cryopreserved, (iii) cytokine pre-activated fresh or (iv) cytokine pre-activated cryopreserved, while control animals received (v) vehicle. The extent of injury resolution was measured at 24 h after injury. Finally, the role of keratinocyte growth factor (KGF) in mediating the effect of pre-activated XF-hMSCs was determined in a pulmonary epithelial wound repair model. RESULTS Pre-activation enhanced the capacity of the XF-hMSC secretome to decrease stretch-induced pulmonary epithelial inflammation and injury. Both pre-activated fresh and cryopreserved XF-hMSCs enhanced resolution of injury following VILI, restoring oxygenation, improving lung compliance, reducing lung leak and improving resolution of lung structural injury. Finally, the secretome of pre-activated XF-hMSCs enhanced epithelial wound repair, in part via a KGF-dependent mechanism. CONCLUSIONS Cytokine pre-activation enhanced the capacity of cryopreserved, XF-hMSCs to promote injury resolution following VILI, potentially via a KGF-dependent mechanism.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Sean Gaynard
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - Michael Scully
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
- Department of Anaesthesia, Galway University Hospitals, Saolta University Health Group, Galway, Ireland.
| |
Collapse
|
13
|
Pre-Treatment with Ten-Minute Carbon Dioxide Inhalation Prevents Lipopolysaccharide-Induced Lung Injury in Mice via Down-Regulation of Toll-Like Receptor 4 Expression. Int J Mol Sci 2019; 20:ijms20246293. [PMID: 31847115 PMCID: PMC6940754 DOI: 10.3390/ijms20246293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022] Open
Abstract
Various animal studies have shown beneficial effects of hypercapnia in lung injury. However, in patients with acute respiratory distress syndrome (ARDS), there is controversial information regarding the effect of hypercapnia on outcomes. The duration of carbon dioxide inhalation may be the key to the protective effect of hypercapnia. We investigated the effect of pre-treatment with inhaled carbon dioxide on lipopolysaccharide (LPS)-induced lung injury in mice. C57BL/6 mice were randomly divided into a control group or an LPS group. Each LPS group received intratracheal LPS (2 mg/kg); the LPS groups were exposed to hypercapnia (5% carbon dioxide) for 10 min or 60 min before LPS. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected to evaluate the degree of lung injury. LPS significantly increased the ratio of lung weight to body weight; concentrations of BALF protein, tumor necrosis factor-α, and CXCL2; protein carbonyls; neutrophil infiltration; and lung injury score. LPS induced the degradation of the inhibitor of nuclear factor-κB-α (IκB-α) and nuclear translocation of NF-κB. LPS increased the surface protein expression of toll-like receptor 4 (TLR4). Pre-treatment with inhaled carbon dioxide for 10 min, but not for 60 min, inhibited LPS-induced pulmonary edema, inflammation, oxidative stress, lung injury, and TLR4 surface expression, and, accordingly, reduced NF-κB signaling. In summary, our data demonstrated that pre-treatment with 10-min carbon dioxide inhalation can ameliorate LPS-induced lung injury. The protective effect may be associated with down-regulation of the surface expression of TLR4 in the lungs.
Collapse
|
14
|
Xia W, Li G, Pan Z, Zhou Q. Hypercapnia attenuates ventilator-induced lung injury through vagus nerve activation. Acta Cir Bras 2019; 34:e201900902. [PMID: 31778524 PMCID: PMC6887097 DOI: 10.1590/s0102-865020190090000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/10/2019] [Indexed: 11/21/2022] Open
Abstract
Purpose: To investigate the role of vagus nerve activation in the protective effects
of hypercapnia in ventilator-induced lung injury (VILI) rats. Methods: Male Sprague-Dawley rats were randomized to either high-tidal volume or
low-tidal volume ventilation (control) and monitored for 4h. The high-tidal
volume group was further divided into either a vagotomy or sham-operated
group and each surgery group was further divided into two subgroups:
normocapnia and hypercapnia. Injuries were assessed hourly through
hemodynamics, respiratory mechanics and gas exchange. Protein concentration,
cell count and cytokines (TNF-α and IL-8) in bronchoalveolar lavage fluid
(BALF), lung wet-to-dry weight and pathological changes were examined. Vagus
nerve activity was recorded for 1h. Results: Compared to the control group, injurious ventilation resulted in a decrease
in PaO2/FiO2 and greater lung static compliance, MPO
activity, enhanced BALF cytokines, protein concentration, cell count, and
histology injury score. Conversely, hypercapnia significantly improved VILI
by decreasing the above injury parameters. However, vagotomy abolished the
protective effect of hypercapnia on VILI. In addition, hypercapnia enhanced
efferent vagus nerve activity compared to normocapnia. Conclusion: These results indicate that the vagus nerve plays an important role in
mediating the anti-inflammatory effect of hypercapnia on VILI.
Collapse
Affiliation(s)
- Wenfang Xia
- MD, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Conception of the study, analysis of data, manuscript writing, critical revision
| | - Guang Li
- MD, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Conception of the study, analysis of data, manuscript writing, critical revision
| | - Zhou Pan
- MD, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Technical procedures, critical revision
| | - Qingshan Zhou
- MD, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Conception of the study, analysis of data, critical revision
| |
Collapse
|
15
|
Wang L, Zhang Y, Zhang N, Xia J, Zhan Q, Wang C. Potential role of M2 macrophage polarization in ventilator-induced lung fibrosis. Int Immunopharmacol 2019; 75:105795. [PMID: 31421547 DOI: 10.1016/j.intimp.2019.105795] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
Mechanical ventilation (MV) is an essential life-support technique, but it can induce ventilator-induced lung injury (VILI) and subsequent pulmonary fibrosis. The mechanisms underlying this fibrosis are largely unknown. Because excessive polarization of M2 macrophages has increasingly been cited as possible inciting factor for tissue remodeling and organ fibrosis, we here hypothesize it might be involved in the development of pulmonary fibrosis after high tidal volume (VT) MV. In our prospective, randomized, controlled animal study, C57BL/6 mice were randomly placed in either a VILI group or sham group. After ventilation, surviving mice were allowed to recover for 0, 1, 3, 5, 7, or 14 days. 200 mice were involved in our in vivo experiment, and the results calculated here refer only to the surviving mice. The results clearly showed that high-VT MV caused early inflammation and a subsequent fibroproliferative response in mice without pre-existing lung disease. High-VT MV was also found to lead to a dramatic increase in the number of M2 macrophages in mouse bronchoalveolar lavage fluid (BALF) cell and lung tissues. Consistent with the progression of fibrosis, there were far more M2 macrophages at the 5th day after ventilation and remained dominant for 2 weeks. High-VT MV induced epithelial-mesenchymal transition (EMT) on day 7, accompanied by the increased expression of TGF-β1 and p-Smad2/3. In vitro experiments, the co-culture of M2 macrophage and MLE-12 cells resulted in a significant EMT and upregulation of TGF-β1 and p-Smad2/3 in MLE-12 cells. To summarize, our findings suggested the persistent tilt polarization toward M2 macrophages was associated with EMT during the course of ventilator-induced pulmonary fibrosis, which may play its roles through activation of epithelial TGF-β1/Smad2/3 signaling.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China
| | - Nannan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China; Chinese Academy of Medical Science, Peking Union Medical College, China.
| |
Collapse
|
16
|
Jerkic M, Masterson C, Ormesher L, Gagnon S, Goyal S, Rabani R, Otulakowski G, Zhang H, Kavanagh BP, Laffey JG. Overexpression of IL-10 Enhances the Efficacy of Human Umbilical-Cord-Derived Mesenchymal Stromal Cells in E. coli Pneumosepsis. J Clin Med 2019; 8:jcm8060847. [PMID: 31200579 PMCID: PMC6616885 DOI: 10.3390/jcm8060847] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022] Open
Abstract
Enhancing the immunomodulatory effects of mesenchymal stromal cells (MSCs) may increase their effects in sepsis. We tested the potential for overexpression of Interleukin-10 (IL-10) in human umbilical cord (UC) MSCs to increase MSC efficacy in Escherichia coli (E. coli) pneumosepsis and to enhance human macrophage function. Pneumonia was induced in rats by intratracheal instillation of E. coli ((2.0–3.0) × 109 Colony forming units (CFU)/kg). One hour later, animals were randomized to receive (a) vehicle; (b) naïve UC-MSCs; or (c) IL-10 overexpressing UC-MSCs (1 × 107 cells/kg). Lung injury severity, cellular infiltration, and E. coli colony counts were assessed after 48 h. The effects and mechanisms of action of IL-10 UC-MSCs on macrophage function in septic rodents and in humans were subsequently assessed. Survival increased with IL-10 (9/11 (82%)) and naïve (11/12 (91%)) UC-MSCs compared to vehicle (9/15 (60%, p = 0.03). IL-10 UC-MSCs—but not naïve UC-MSCs—significantly decreased the alveolar arterial gradient (455 ± 93 and 520 ± 81, mmHg, respectively) compared to that of vehicle animals (544 ± 52, p = 0.02). Lung tissue bacterial counts were significantly increased in vehicle- and naïve-UC-MSC-treated animals but were not different from sham animals in those treated with IL-10 overexpressing UC-MSCs. IL-10 (but not naïve) UC-MSCs decreased alveolar neutrophils and increased alveolar macrophage percentages compared to vehicle. IL-10 UC-MSCs decreased structural lung injury compared to naïve UC-MSC or vehicle therapy. Alveolar macrophages from IL-10-UC-MSC-treated rats and from human volunteers demonstrated enhanced phagocytic capacity. This was mediated via increased macrophage hemeoxygenase-1, an effect blocked by prostaglandin E2 and lipoxygenase A4 blockade. IL-10 overexpression in UC-MSCs enhanced their effects in E. coli pneumosepsis and increased macrophage function. IL-10 UC-MSCs similarly enhanced human macrophage function, illustrating their therapeutic potential for infection-induced acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Mirjana Jerkic
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, University of Toronto, Toronto, ON M5B 1T8, Canada.
| | - Claire Masterson
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway H91 TK33, Ireland.
| | - Lindsay Ormesher
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, University of Toronto, Toronto, ON M5B 1T8, Canada.
| | - Stéphane Gagnon
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, University of Toronto, Toronto, ON M5B 1T8, Canada.
| | - Sakshi Goyal
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, University of Toronto, Toronto, ON M5B 1T8, Canada.
| | - Razieh Rabani
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, University of Toronto, Toronto, ON M5B 1T8, Canada.
| | - Gail Otulakowski
- Department of Critical Care Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| | - Haibo Zhang
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, University of Toronto, Toronto, ON M5B 1T8, Canada.
| | - Brian P Kavanagh
- Department of Critical Care Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
- Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, ON M5G 1E2, Canada.
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway H91 TK33, Ireland.
- Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, ON M5G 1E2, Canada.
- Anaesthesia, School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland.
| |
Collapse
|
17
|
Hypercapnia Alters Alveolar Epithelial Repair by a pH-Dependent and Adenylate Cyclase-Mediated Mechanism. Sci Rep 2019; 9:349. [PMID: 30674971 PMCID: PMC6344503 DOI: 10.1038/s41598-018-36951-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Lung cell injury and repair is a hallmark of the acute respiratory distress syndrome (ARDS). Lung protective mechanical ventilation strategies in these patients may lead to hypercapnia (HC). Although HC has been explored in the clinical context of ARDS, its effect upon alveolar epithelial cell (AEC) wounding and repair remains poorly understood. We have previously reported that HC alters the likelihood of AEC repair by a pH-sensitive but otherwise unknown mechanism. Adenylate cyclase (AC) is an attractive candidate as a putative AEC CO2 sensor and effector as it is bicarbonate sensitive and controls key mediators of AEC repair. The effect of HC on AC activity and plasma membrane (PM) wound repair was measured in AEC type 1 exposed to normocapnia (NC, 40 Torr) or HC (80 Torr), ± tromethamine (THAM) or sodium bicarbonate (HCO3) ± AC probes in a micropuncture model of AEC injury relevant to ARDS. Intracellular pH and AC activity were measured and correlated with repair. HC decreased intracellular pH 0.56, cAMP by 37%, and absolute PM repair rate by 26%. Buffering or pharmacologic manipulation of AC reduced or reversed the effects of HC on AC activity (THAM 103%, HCO3 113% of NC cAMP, ns; Forskolin 168%, p < 0.05) and PM repair (THAM 87%, HCO3 108% of NC likelihood to repair, ns; Forskolin 160%, p < 0.01). These findings suggest AC to be a putative AEC CO2 sensor and modulator of AEC repair, and may have implications for future pharmacologic targeting of downstream messengers of the AC-cAMP axis in experimental models of ARDS.
Collapse
|
18
|
Syndecan-2-positive, Bone Marrow-derived Human Mesenchymal Stromal Cells Attenuate Bacterial-induced Acute Lung Injury and Enhance Resolution of Ventilator-induced Lung Injury in Rats. Anesthesiology 2019; 129:502-516. [PMID: 29979191 DOI: 10.1097/aln.0000000000002327] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Human mesenchymal stromal cells demonstrate promise for acute respiratory distress syndrome, but current studies use highly heterogenous cell populations. We hypothesized that a syndecan 2 (CD362)-expressing human mesenchymal stromal cell subpopulation would attenuate Escherichia coli-induced lung injury and enhance resolution after ventilator-induced lung injury. METHODS In vitro studies determined whether CD362 human mesenchymal stromal cells could modulate pulmonary epithelial inflammation, wound healing, and macrophage phagocytosis. Two in vivo rodent studies determined whether CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced lung injury (n = 10/group) and enhanced resolution of ventilation-induced injury (n = 10/group). RESULTS CD362 human mesenchymal stromal cells attenuated cytokine-induced epithelial nuclear factor kappa B activation, increased epithelial wound closure, and increased macrophage phagocytosis in vitro. CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced injury in rodents, improving arterial oxygenation (mean ± SD, 83 ± 9 vs. 60 ± 8 mmHg, P < 0.05), improving lung compliance (mean ± SD: 0.66 ± 0.08 vs. 0.53 ± 0.09 ml · cm H2O, P < 0.05), reducing bacterial load (median [interquartile range], 1,895 [100-3,300] vs. 8,195 [4,260-8,690] colony-forming units, P < 0.05), and decreasing structural injury compared with vehicle. CD362 human mesenchymal stromal cells were more effective than CD362 human mesenchymal stromal cells and comparable to heterogenous human mesenchymal stromal cells. CD362 human mesenchymal stromal cells enhanced resolution after ventilator-induced lung injury in rodents, restoring arterial oxygenation (mean ± SD: 113 ± 11 vs. 89 ± 11 mmHg, P < 0.05) and lung static compliance (mean ± SD: 0.74 ± 0.07 vs. 0.45 ± 0.07 ml · cm H2O, P < 0.05), resolving lung inflammation, and restoring histologic structure compared with vehicle. CD362 human mesenchymal stromal cells efficacy was at least comparable to heterogenous human mesenchymal stromal cells. CONCLUSIONS A CD362 human mesenchymal stromal cell population decreased Escherichia coli-induced pneumonia severity and enhanced recovery after ventilator-induced lung injury.
Collapse
|
19
|
Tiruvoipati R, Gupta S, Pilcher D, Bailey M. Hypercapnia and hypercapnic acidosis in sepsis: harmful, beneficial or unclear? CRIT CARE RESUSC 2018; 20:94-100. [PMID: 29852847 DOI: 10.1016/s1441-2772(23)00763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Mortality related to sepsis among critically ill patients remains high. Recent literature suggests that hypercapnia may affect the pathophysiology of sepsis. The effects of hypercapnia on sepsis are largely related to the direct effect of hypercapnic acidosis on immune function and, as a consequence, of increased cardiac output that subsequently leads to improved tissue oxygenation. Appropriate management of hypercapnia may aid in improving the outcomes of sepsis. Our aim was to review the effects of compensated hypercapnia and hypercapnic acidosis on sepsis, with a specific focus on critically ill patients. Hypercapnic acidosis has been extensively studied in various in vivo animal models of sepsis and ex vivo studies. Published data from animal experimental studies suggest that the effects of hypercapnic acidosis are variable, with benefit shown in some settings of sepsis and harm in others. The effects may also vary at different time points during the course of sepsis. There are very few clinical studies investigating the effects of hypercapnia in prevention of sepsis and in established sepsis. It appears from these very limited clinical data that hypercapnia may be associated with adverse outcomes. There are no clinical studies investigating clinical outcomes of hypercapnic acidosis or compensated hypercapnia in sepsis and septic shock in critical care settings, thus extrapolation of the experimental results to guide critical care practice is difficult. Clinical studies are needed, especially in critically ill patients, to define the effects of compensated hypercapnia and hypercapnic acidosis that may aid clinicians to improve the outcomes in sepsis.
Collapse
Affiliation(s)
| | - Sachin Gupta
- Department of Intensive Care medicine, Frankston Hospital, Frankston, Vic, Australia
| | - David Pilcher
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic, Australia
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
20
|
Umari M, Falini S, Segat M, Zuliani M, Crisman M, Comuzzi L, Pagos F, Lovadina S, Lucangelo U. Anesthesia and fast-track in video-assisted thoracic surgery (VATS): from evidence to practice. J Thorac Dis 2018; 10:S542-S554. [PMID: 29629201 PMCID: PMC5880994 DOI: 10.21037/jtd.2017.12.83] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
In thoracic surgery, the introduction of video-assisted thoracoscopic techniques has allowed the development of fast-track protocols, with shorter hospital lengths of stay and improved outcomes. The perioperative management needs to be optimized accordingly, with the goal of reducing postoperative complications and speeding recovery times. Premedication performed in the operative room should be wisely administered because often linked to late discharge from the post-anesthesia care unit (PACU). Inhalatory anesthesia, when possible, should be preferred based on protective effects on postoperative lung inflammation. Deep neuromuscular blockade should be pursued and carefully monitored, and an appropriate reversal administered before extubation. Management of one-lung ventilation (OLV) needs to be optimized to prevent not only intraoperative hypoxemia but also postoperative acute lung injury (ALI): protective ventilation strategies are therefore to be implemented. Locoregional techniques should be favored over intravenous analgesia: the thoracic epidural, the paravertebral block (PVB), the intercostal nerve block (ICNB), and the serratus anterior plane block (SAPB) are thoroughly reviewed and the most common dosages are reported. Fluid therapy needs to be administered critically, to avoid both overload and cardiovascular compromisation. All these practices are analyzed singularly with the aid of the most recent evidences aimed at the best patient care. Finally, a few notes on some of the latest trends in research are presented, such as non-intubated video-assisted thoracoscopic surgery (VATS) and intravenous lidocaine.
Collapse
Affiliation(s)
- Marzia Umari
- Department of Perioperative Medicine, Intensive Care, and Emergency, Cattinara University Hospital, Trieste, Italy
| | - Stefano Falini
- Department of Perioperative Medicine, Intensive Care, and Emergency, Cattinara University Hospital, Trieste, Italy
| | - Matteo Segat
- Department of Perioperative Medicine, Intensive Care, and Emergency, Cattinara University Hospital, Trieste, Italy
| | - Michele Zuliani
- Department of Perioperative Medicine, Intensive Care, and Emergency, Cattinara University Hospital, Trieste, Italy
| | - Marco Crisman
- Department of Perioperative Medicine, Intensive Care, and Emergency, Cattinara University Hospital, Trieste, Italy
| | - Lucia Comuzzi
- Department of Perioperative Medicine, Intensive Care, and Emergency, Cattinara University Hospital, Trieste, Italy
| | - Francesco Pagos
- Department of Perioperative Medicine, Intensive Care, and Emergency, Cattinara University Hospital, Trieste, Italy
| | - Stefano Lovadina
- Department of General and Thoracic Surgery, Cattinara University Hospital, Trieste, Italy
| | - Umberto Lucangelo
- Department of Perioperative Medicine, Intensive Care, and Emergency, Cattinara University Hospital, Trieste, Italy
| |
Collapse
|
21
|
Liu J, Wang W, Liu F, Li Z. Pediatric acute respiratory distress syndrome - current views. Exp Ther Med 2018; 15:1775-1780. [PMID: 29434764 PMCID: PMC5776650 DOI: 10.3892/etm.2017.5628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) mainly involves acute respiratory failure. In addition to this affected patients feel progressive arterial hypoxemia, dyspnea, and a marked increase in the work of breathing. The only clinical solution for the above pathological state is ventilation. Mechanical ventilation is necessary to support life in ARDs but it itself worsen lung injury and the term is known clinically as ‘ventilation induced lung injury’ (VILI). At the cellular level, respiratory epithelial cells are subjected to cyclic stretch, i.e. repeated cycles of positive and negative strain, during normal tidal ventilation. In aerated areas of diseased lungs, or even normal lungs subjected to injurious positive pressure mechanical ventilation, the cells are at risk of being over distended, and worsening injury by disrupting the alveolar epithelial barrier. Further, hypercapnic acidosis (HCA) in itself confers protection from stretch injury, potentially via a mechanisms involving inhibition of nuclear factor κB (NF-κB), a transcription factor central to inflammation, injury and repair. Mesenchymal stem cells are the latest in the field and are being investigated as a possible therapy for ARDS.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Wang
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Fengli Liu
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenguang Li
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
22
|
Barnes T, Zochios V, Parhar K. Re-examining Permissive Hypercapnia in ARDS: A Narrative Review. Chest 2017; 154:185-195. [PMID: 29175086 DOI: 10.1016/j.chest.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Lung-protective ventilation (LPV) has become the cornerstone of management in patients with ARDS. A subset of patients is unable to tolerate LPV without significant CO2 elevation. In these patients, permissive hypercapnia is used. Although thought to be benign, it is becoming increasingly evident that elevated CO2 levels have significant physiological effects. In this narrative review, we highlight clinically relevant end-organ effects in both animal models and clinical studies. We also explore the association between elevated CO2, acute cor pulmonale, and ICU mortality. We conclude with a brief review of alternative therapies for CO2 management currently under investigation in patients with moderate to severe ARDS.
Collapse
Affiliation(s)
- Tavish Barnes
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Vasileios Zochios
- Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England
| | - Ken Parhar
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
23
|
Tiruvoipati R, Pilcher D, Buscher H, Botha J, Bailey M. Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients. Crit Care Med 2017; 45:e649-e656. [PMID: 28406813 DOI: 10.1097/ccm.0000000000002332] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Lung-protective ventilation is used to prevent further lung injury in patients on invasive mechanical ventilation. However, lung-protective ventilation can cause hypercapnia and hypercapnic acidosis. There are no large clinical studies evaluating the effects of hypercapnia and hypercapnic acidosis in patients requiring mechanical ventilation. DESIGN Multicenter, binational, retrospective study aimed to assess the impact of compensated hypercapnia and hypercapnic acidosis in patients receiving mechanical ventilation. SETTINGS Data were extracted from the Australian and New Zealand Intensive Care Society Centre for Outcome and Resource Evaluation Adult Patient Database over a 14-year period where 171 ICUs contributed deidentified data. PATIENTS Patients were classified into three groups based on a combination of pH and carbon dioxide levels (normocapnia and normal pH, compensated hypercapnia [normal pH with elevated carbon dioxide], and hypercapnic acidosis) during the first 24 hours of ICU stay. Logistic regression analysis was used to identify the independent association of hypercapnia and hypercapnic acidosis with hospital mortality. INTERVENTIONS Nil. MEASUREMENTS AND MAIN RESULTS A total of 252,812 patients (normocapnia and normal pH, 110,104; compensated hypercapnia, 20,463; and hypercapnic acidosis, 122,245) were included in analysis. Patients with compensated hypercapnia and hypercapnic acidosis had higher Acute Physiology and Chronic Health Evaluation III scores (49.2 vs 53.2 vs 68.6; p < 0.01). The mortality was higher in hypercapnic acidosis patients when compared with other groups, with the lowest mortality in patients with normocapnia and normal pH. After adjusting for severity of illness, the adjusted odds ratio for hospital mortality was higher in hypercapnic acidosis patients (odds ratio, 1.74; 95% CI, 1.62-1.88) and compensated hypercapnia (odds ratio, 1.18; 95% CI, 1.10-1.26) when compared with patients with normocapnia and normal pH (p < 0.001). In patients with hypercapnic acidosis, the mortality increased with increasing PCO2 until 65 mm Hg after which the mortality plateaued. CONCLUSIONS Hypercapnic acidosis during the first 24 hours of intensive care admission is more strongly associated with increased hospital mortality than compensated hypercapnia or normocapnia.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- 1Department of Intensive Care Medicine, Frankston Hospital, Frankston, VIC, Australia.2Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.3ANZIC-RC, Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, The Alfred Centre, Melbourne, VIC, Australia.4Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, NSW, Australia.5University of New South Wales, Kensington, NSW, Australia
| | | | | | | | | |
Collapse
|
24
|
Fuchs H, Rossmann N, Schmid MB, Hoenig M, Thome U, Mayer B, Klotz D, Hummler HD. Permissive hypercapnia for severe acute respiratory distress syndrome in immunocompromised children: A single center experience. PLoS One 2017. [PMID: 28632754 PMCID: PMC5478142 DOI: 10.1371/journal.pone.0179974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Controlled hypoventilation while accepting hypercapnia has been advocated to reduce ventilator-induced lung injury. The aim of the study was to analyze outcomes of a cohort of immunocompromised children with acute respiratory distress syndrome (ARDS) ventilated with a strategy of stepwise increasing PCO2 targets up to 140 mm Hg. METHODS Retrospective analysis of outcomes of a cohort of children with oncologic disease or after stem cell transplantation and severe respiratory failure in comparison with a historical control cohort. RESULTS Out of 150 episodes of admission to the PICU 88 children underwent invasive mechanical ventilation for >24h (overall survival 75%). In a subgroup of 38 children with high ventilator requirements the PCO2 target ranges were increased stepwise. Fifteen children survived and were discharged from the PICU. Severe pulmonary hypertension was seen in two patients and no case of cerebral edema was observed. Long term outcome was available in 15 patients and 10 of these patients survived without adverse neurological sequelae. With introduction of this strategy survival of immunocompromised children undergoing mechanical ventilation for >24h increased to 48% compared to 32% prior to introduction (historical cohort). CONCLUSIONS A ventilation strategy incorporating very high carbon dioxide levels to allow for low tidal volumes and limited inspiratory pressures is feasible in children. Even severe hypercapnia may be well tolerated. No severe side effects associated with hypercapnia were observed. This strategy could potentially increase survival in immunocompromised children with severe ARDS.
Collapse
Affiliation(s)
- Hans Fuchs
- Center for Pediatrics, Department of Neonatology and Pediatric Intensive Care, Medical Center – Albert Ludwig University of Freiburg, Faculty of Medicine, Freiburg, Germany
- * E-mail:
| | - Nicola Rossmann
- Division of Neonatology and Pediatric Critical Care, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Manuel B. Schmid
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manfred Hoenig
- Oncology and stem cell transplantation, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Ulrich Thome
- Division of Neonatology, University Hospital of Leipzig, Leipzig, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Daniel Klotz
- Center for Pediatrics, Department of Neonatology and Pediatric Intensive Care, Medical Center – Albert Ludwig University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Helmut D. Hummler
- Division of Neonatology and Pediatric Critical Care, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
25
|
Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome. Crit Care Med 2017; 45:e202-e212. [PMID: 27861182 DOI: 10.1097/ccm.0000000000002073] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. DESIGN Randomized animal study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. MEASUREMENTS AND MAIN RESULTS In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory cytokine concentrations, whereas increasing interleukin-10 concentrations. Umbilical cord-mesenchymal stem/stromal cell therapy decreased nicotinamide adenine dinucleotide phosphate-oxidase 2 and inducible nitric oxide synthase and enhanced lung concentrations of superoxide dismutase-2, thereby reducing lung tissue reactive oxidative species concentrations. CONCLUSIONS Our results demonstrate that freshly thawed cryopreserved xeno-free human umbilical cord-mesenchymal stem/stromal cells reduce the severity of rodent E. coli-induced acute respiratory distress syndrome. Umbilical cord-mesenchymal stem/stromal cells, therefore, represent an attractive option for future clinical trials in acute respiratory distress syndrome.
Collapse
|
26
|
Keogh CE, Scholz CC, Rodriguez J, Selfridge AC, von Kriegsheim A, Cummins EP. Carbon dioxide-dependent regulation of NF-κB family members RelB and p100 gives molecular insight into CO 2-dependent immune regulation. J Biol Chem 2017; 292:11561-11571. [PMID: 28507099 DOI: 10.1074/jbc.m116.755090] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
CO2 is a physiological gas normally produced in the body during aerobic respiration. Hypercapnia (elevated blood pCO2 >≈50 mm Hg) is a feature of several lung pathologies, e.g. chronic obstructive pulmonary disease. Hypercapnia is associated with increased susceptibility to bacterial infections and suppression of inflammatory signaling. The NF-κB pathway has been implicated in these effects; however, the molecular mechanisms underpinning cellular sensitivity of the NF-κB pathway to CO2 are not fully elucidated. Here, we identify several novel CO2-dependent changes in the NF-κB pathway. NF-κB family members p100 and RelB translocate to the nucleus in response to CO2 A cohort of RelB protein-protein interactions (e.g. with Raf-1 and IκBα) are altered by CO2 exposure, although others are maintained (e.g. with p100). RelB is processed by CO2 in a manner dependent on a key C-terminal domain located in its transactivation domain. Loss of the RelB transactivation domain alters NF-κB-dependent transcriptional activity, and loss of p100 alters sensitivity of RelB to CO2 Thus, we provide molecular insight into the CO2 sensitivity of the NF-κB pathway and implicate altered RelB/p100-dependent signaling in the CO2-dependent regulation of inflammatory signaling.
Collapse
Affiliation(s)
- Ciara E Keogh
- From the School of Medicine and Conway Institute and
| | - Carsten C Scholz
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,the Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
| | - Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,the Edinburgh Cancer Research Centre, Edinburgh EH4 2XR, Scotland, United Kingdom, and
| | | | - Alexander von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,the Edinburgh Cancer Research Centre, Edinburgh EH4 2XR, Scotland, United Kingdom, and
| | | |
Collapse
|
27
|
Kuzkov VV, Rodionova LN, Ilyina YY, Ushakov AA, Sokolova MM, Fot EV, Duberman BL, Kirov MY. Protective Ventilation Improves Gas Exchange, Reduces Incidence of Atelectases, and Affects Metabolic Response in Major Pancreatoduodenal Surgery. Front Med (Lausanne) 2016; 3:66. [PMID: 27999775 PMCID: PMC5138232 DOI: 10.3389/fmed.2016.00066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/21/2016] [Indexed: 11/16/2022] Open
Abstract
Background Protective perioperative ventilation has been shown to improve outcomes and reduce the incidence of postoperative pulmonary complications. The goal of this study was to assess the effects of ventilation with low tidal volume (VT) either alone or in a combination with moderate permissive hypercapnia in major pancreatoduodenal interventions. Materials and methods Sixty adult patients scheduled for elective pancreatoduodenal surgery with duration >2 h were enrolled into a prospective single-center study. All patients were randomized to three groups receiving high VT [10 mL/kg of predicted body weight (PBW), the HVT group, n = 20], low VT (6 mL/kg PBW, the LVT group, n = 20), and low VT combined with a moderate hypercapnia and hypercapnic acidosis (6 mL/kg PBW, PaCO2 45–60 mm Hg, the LVT + HC group, n = 20). Cardiopulmonary parameters and the incidence of complications were registered during surgery and postoperatively. Results and discussion The values of VT were 610 (563–712), 370 (321–400), and 340 (312–430) mL/kg for the HVT, the LVT, and the LVT + HC groups, respectively (p < 0.001). Compared to the HVT group, PaO2/FiO2 ratio was increased in the LVT group by 15%: 333 (301–381) vs. 382 (349–423) mm Hg at 24 h postoperatively (p < 0.05). The HVT group had significantly higher incidence of atelectases (n = 6), despite lower incidence of smoking compared with the LVT (n = 1) group (p = 0.017) and demonstrated longer length of hospital stay. The patients of the LVT + HC group had lower arterial lactate and bicarbonate excess values by the end of surgery. Conclusion In major pancreatoduodenal interventions, preventively protective VT improves postoperative oxygenation, reduces the incidence of atelectases, and shortens length of hospital stay. The combination of low VT and permissive hypercapnia results in hypercapnic acidosis decreasing the lactate concentration but adding no additional benefits and warrants further investigations.
Collapse
Affiliation(s)
- Vsevolod V Kuzkov
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russian Federation; Department of Anesthesiology, City Hospital # 1, Arkhangelsk, Russian Federation
| | - Ludmila N Rodionova
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russian Federation; Department of Anesthesiology, City Hospital # 1, Arkhangelsk, Russian Federation
| | - Yana Y Ilyina
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russian Federation; Department of Anesthesiology, City Hospital # 1, Arkhangelsk, Russian Federation
| | - Aleksey A Ushakov
- Department of Anesthesiology and Intensive Care, Northern State Medical University , Arkhangelsk , Russian Federation
| | - Maria M Sokolova
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russian Federation; Department of Anesthesiology, City Hospital # 1, Arkhangelsk, Russian Federation
| | - Eugenia V Fot
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russian Federation; Department of Anesthesiology, City Hospital # 1, Arkhangelsk, Russian Federation
| | - Boris L Duberman
- Department of Surgery, Northern State Medical University , Arkhangelsk , Russian Federation
| | - Mikhail Y Kirov
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russian Federation; Department of Anesthesiology, City Hospital # 1, Arkhangelsk, Russian Federation
| |
Collapse
|
28
|
Abstract
Prevention of ventilator-induced lung injury (VILI) can attenuate multiorgan failure and improve survival in at-risk patients. Clinically significant VILI occurs from volutrauma, barotrauma, atelectrauma, biotrauma, and shear strain. Differences in regional mechanics are important in VILI pathogenesis. Several interventions are available to protect against VILI. However, most patients at risk of lung injury do not develop VILI. VILI occurs most readily in patients with concomitant physiologic insults. VILI prevention strategies must balance risk of lung injury with untoward side effects from the preventive effort, and may be most effective when targeted to subsets of patients at increased risk.
Collapse
|
29
|
Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats. Microvasc Res 2016; 106:24-30. [DOI: 10.1016/j.mvr.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 02/28/2016] [Accepted: 03/05/2016] [Indexed: 12/27/2022]
|
30
|
Horie S, Ansari B, Masterson C, Devaney J, Scully M, O'Toole D, Laffey JG. Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-κB pathway. Intensive Care Med Exp 2016; 4:8. [PMID: 27001525 PMCID: PMC4801837 DOI: 10.1186/s40635-016-0081-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypercapnia, with its associated acidosis (HCA), is a consequence of respiratory failure and is also seen in critically ill patients managed with conventional "protective" ventilation strategies. Nuclear factor kappa-B (NF-κB), a pivotal transcription factor, is activated in the setting of injury and repair and is central to innate immunity. We have previously established that HCA protects against ventilation-induced lung injury in vivo, potentially via a mechanism involving inhibition of NF-κB signaling. We wished to further elucidate the role and mechanism of HCA-mediated inhibition of the NF-κB pathway in attenuating stretch-induced injury in vitro. METHODS Initial experiments examined the effect of HCA on cyclic stretch-induced inflammation and injury in human bronchial and alveolar epithelial cells. Subsequent experiments examined the role of the canonical NF-κB pathway in mediating stretch-induced injury and the mechanism of action of HCA. The contribution of pH versus CO2 in mediating this effect of HCA was also examined. RESULTS Pulmonary epithelial high cyclic stretch (22 % equibiaxial strain) activated NF-κB, enhanced interleukin-8 (IL-8) production, caused cell injury, and reduced cell survival. In contrast, physiologic stretch (10 % strain) did not activate inflammation or cause cell injury. HCA reduced cyclic mechanical stretch-induced NF-κB activation, attenuated IL-8 production, reduced injury, and enhanced survival, in bronchial and alveolar epithelial cells, following shorter (24 h) and longer (120 h) cyclic mechanical stretch. Pre-conditioning with HCA was less effective than when HCA was applied after commencement of cell stretch. HCA prevented the stretch-induced breakdown of the NF-κB cytosolic inhibitor IκBα, while IκBα overexpression "occluded" the effect of HCA. These effects were mediated by a pH-dependent mechanism rather than via CO2 per se. CONCLUSIONS HCA attenuates adverse mechanical stretch-induced epithelial injury and death, via a pH-dependent mechanism that inhibits the canonical NF-κB activation by preventing IκBα breakdown.
Collapse
Affiliation(s)
- Shahd Horie
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Bilal Ansari
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Claire Masterson
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.,Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - James Devaney
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Michael Scully
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Daniel O'Toole
- Discipline of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - John G Laffey
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
31
|
Hayes M, Curley GF, Masterson C, Devaney J, O'Toole D, Laffey JG. Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Med Exp 2015; 3:29. [PMID: 26472334 PMCID: PMC4607685 DOI: 10.1186/s40635-015-0065-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022] Open
Abstract
Background The potential for mesenchymal stem cells (MSCs) to reduce the severity of experimental lung injury has been established in several pre-clinical studies. We have recently demonstrated that MSCs, and MSC-secreted factors (secretome), enhance lung repair and regeneration at 48 h following ventilation-induced lung injury (VILI). We wished to determine the potential for MSC therapy to exert beneficial effects in the early recovery phase following VILI when ongoing injury coexists with processes of repair, and to compare the efficacy of MSC therapy to the use of the secretome alone. Methods Male Sprague–Dawley rats were anesthetized, oro-tracheally intubated, and subjected to high stretch mechanical ventilation until lung compliance had declined by 50 % of baseline. Animals were then weaned from mechanical ventilation, and anesthesia discontinued. Once awake and spontaneously ventilating, animals received an intravenous injection of either rodent MSCs (10 million/kg), MSC-conditioned medium, fibroblasts (10 million/kg), or vehicle. Thereafter, the animals were allowed to recover and the extent of lung injury/repair was determined after 4 h. Results Treatment with MSCs diminished injury and enhanced recovery following VILI to a greater extent compared to MSC-conditioned medium, with fibroblasts proving ineffective. MSCs, but not their conditioned medium, attenuated indices of lung injury including oxygenation, respiratory compliance, and lung edema. Total lung water as assessed by wet:dry ratio, bronchoalveolar lavage total inflammatory cell, neutrophil counts, and alveolar IL-6 concentrations were reduced in the animals that received MSC therapy. Conclusions The immunomodulating and/or reparative effect of MSCs is evident early after VILI in this model. MSC-conditioned medium was not as effective as the cells themselves in diminishing injury and restoring lung structure and function.
Collapse
Affiliation(s)
- Mairead Hayes
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.
| | - Gerard F Curley
- Department of Anesthesia, Keenan Research Centre for Biomedical Science of St Michael's Hospital, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada. .,Department of Anesthesia, University of Toronto, Toronto, Canada.
| | - Claire Masterson
- Department of Anesthesia, Keenan Research Centre for Biomedical Science of St Michael's Hospital, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada. .,Department of Anesthesia, University of Toronto, Toronto, Canada.
| | - James Devaney
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.
| | - Daniel O'Toole
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.
| | - John G Laffey
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Department of Anesthesia, Keenan Research Centre for Biomedical Science of St Michael's Hospital, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada. .,Department of Anesthesia, University of Toronto, Toronto, Canada.
| |
Collapse
|
32
|
MacLoughlin RJ, Higgins BD, Devaney J, O'Toole D, Laffey JG, O'Brien T. Aerosol-mediated delivery of AAV2/6-IκBα attenuates lipopolysaccharide-induced acute lung injury in rats. Hum Gene Ther 2015; 26:36-46. [PMID: 25382145 DOI: 10.1089/hum.2014.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibition of the proinflammatory transcription factor NF-κB has previously been shown to attenuate the inflammatory response in tissue after injury. However, the feasibility and efficacy of aerosolized adeno-associated viral (AAV) vector-delivered transgenes to inhibit the NF-κB pathway are less clear. Initial studies optimized the AAV vector for delivery of transgenes to the pulmonary epithelium. The effect of repeated nebulization on the integrity and transduction efficacy of the AAV vector was then examined. Subsequent in vivo studies examined the efficacy of aerosolized rAAV2/6 overexpressing the NF-κB inhibitor IκBα in a rodent endotoxin-induced lung injury model. Initial in vitro investigations indicated that rAAV2/6 was the most effective vector to transduce the lung epithelium, and maintained its integrity and transduction efficacy after repeated nebulization. In our in vivo studies, animals that received aerosolized rAAV2/6-IκBα demonstrated a significant increase in total IκBα levels in lung tissue relative to null vector-treated animals. Aerosolized rAAV2/6-IκBα attenuated endotoxin-induced bronchoalveolar lavage-detected neutrophilia, interleukin-6 and cytokine-induced neutrophil chemoattractant-1 levels, as well as total protein content, and decreased histologic indices of injury. These results demonstrate that aerosolized AAV vectors encoding human IκBα significantly attenuate endotoxin-mediated lung injury and may be a potential therapeutic candidate in the treatment of acute lung injury.
Collapse
Affiliation(s)
- Ronan J MacLoughlin
- 1 Regenerative Medicine Institute (REMEDI), National University of Ireland , Galway, Ireland
| | | | | | | | | | | |
Collapse
|
33
|
Devaney J, Horie S, Masterson C, Elliman S, Barry F, O'Brien T, Curley GF, O'Toole D, Laffey JG. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 2015; 70:625-35. [PMID: 25986435 DOI: 10.1136/thoraxjnl-2015-206813] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/06/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) demonstrate considerable promise in preclinical acute respiratory distress syndrome models. We wished to determine the efficacy and mechanisms of action of human MSCs (hMSCs) in the setting of acute lung injury induced by prolonged Escherichia coli pneumonia in the rat. METHODS Adult male Sprague Dawley rats underwent intratracheal instillation of E. coli bacteria in all experiments. In Series 1, animals were randomised to intravenous administration of: (1) vehicle (phosphate buffered saline (PBS), 300 μL); (2) 1×10(7) fibroblasts/kg; (3) 1×10(7) hMSCs/kg or (4) 2×10(7) hMSCs/kg. Series 2 determined the lowest effective hMSC dose. Series 3 compared the efficacy of intratracheal versus intravenous hMSC administration, while Series 4 examined the efficacy of cryopreserved hMSC. Series 5 examined the efficacy of the hMSC secretome. Parallel in vitro experiments further assessed the potential for hMSCs to secrete LL-37 and modulate macrophage phagocytosis. RESULTS hMSC therapy reduced the severity of rodent E. coli pneumonia, improving survival, decreasing lung injury, reducing lung bacterial load and suppressing inflammation. Doses as low as 5×10(6) hMSCs/kg were effective. Intratracheal hMSC therapy was as effective as intravenous hMSC. Cryopreserved hMSCs were also effective, while the hMSC secretome was less effective in this model. hMSC therapy enhanced macrophage phagocytic capacity and increased lung and systemic concentrations of the antimicrobial peptide LL37. CONCLUSIONS hMSC therapy decreased E. coli induced pneumonia injury and reduced lung bacterial burden, potentially via enhanced macrophage phagocytosis and increased alveolar LL-37 concentrations.
Collapse
Affiliation(s)
- James Devaney
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Shahd Horie
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Claire Masterson
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Steve Elliman
- Orbsen Therapeutics Ltd, National University of Ireland, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Gerard F Curley
- Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel O'Toole
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - John G Laffey
- Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Yang W, Yue Z, Cui X, Guo Y, Zhang L, Zhou H, Li W. Comparison of the effects of moderate and severe hypercapnic acidosis on ventilation-induced lung injury. BMC Anesthesiol 2015; 15:67. [PMID: 25924944 PMCID: PMC4443663 DOI: 10.1186/s12871-015-0050-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/22/2015] [Indexed: 01/12/2023] Open
Abstract
Background We have proved that hypercapnic acidosis (a PaCO2 of 80-100 mmHg) protects against ventilator-induced lung injury in rats. However, there remains uncertainty regarding the appropriate target PaCO2 or if greater CO2 “doses” (PaCO2 > 100 mmHg) demonstrate this effect. We wished to determine whether severe acute hypercapnic acidosis can reduce stretch-induced injury, as well as the role of nuclear factor-κB (NF-κB) in the effects of acute hypercapnic acidosis. Methods Fifty-four rats were ventilated for 4 hours with a pressure-controlled ventilation mode set at a peak inspiratory pressure (PIP) of 30 cmH2O. A gas mixture of carbon dioxide with oxygen (FiCO2 = 4-5%, FiCO2 = 11-12% or FiCO2 = 16-17%; FiO2 = 0.7; balance N2) was immediately administered to maintain the target PaCO2 in the NC (a PaCO2 of 35-45 mmHg), MHA (a PaCO2 of 80-100 mmHg) and SHA (a PaCO2 of 130-150 mmHg) groups. Nine normal or non-ventilated rats served as controls. The hemodynamics, gas exchange and inflammatory parameters were measured. The role of NF-κB pathway in hypercapnic acidosis-mediated protection from high-pressure stretch injury was then determined. Results In the NC group, high-pressure ventilation resulted in a decrease in PaO2/FiO2 from 415.6 (37.1) mmHg to 179.1 (23.5) mmHg (p < 0.001), but improved by MHA (379.9 ± 34.5 mmHg) and SHA (298.6 ± 35.3 mmHg). The lung injury score in the SHA group (7.8 ± 1.6) was lower than the NC group (11.8 ± 2.3, P < 0.05) but was higher than the MHA group (4.4 ± 1.3, P < 0.05). Compared with the NC group, after 4 h of high pressure ventilation, the MHA and SHA groups had decreases in MPO activity of 67% and 33%, respectively, and also declined the levels of TNF-α (58% versus 72%) and MIP-2 (76% versus 60%) in the BALF. Additionally, both hypercapnic acidosis groups reduced stretch–induced NF-κB activation (p < 0.05) and significantly decreased lung ICAM-1 expression (p < 0.05). Conclusions Moderate hypercapnic acidosis (PaCO2 maintained at 80-100 mmHg) has a greater protective effect on high-pressure ventilation-induced inflammatory injury. The potential mechanisms may involve alterations in NF-κB activity.
Collapse
Affiliation(s)
- Wanchao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Ziyong Yue
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Xiaoguang Cui
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Yueping Guo
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Lili Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Huacheng Zhou
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
35
|
Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology 2015; 122:363-73. [PMID: 25490744 DOI: 10.1097/aln.0000000000000545] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rodent mesenchymal stem/stromal cells (MSCs) enhance repair after ventilator-induced lung injury (VILI). We wished to determine the therapeutic potential of human MSCs (hMSCs) in repairing the rodent lung. METHODS In series 1, anesthetized rats underwent VILI (series 1A, n = 8 to 9 per group) or protective ventilation (series 1B, n = 4 per group). After VILI, they were randomized to intravenous administration of (1) vehicle (phosphate-buffered saline); (2) fibroblasts (1 × 10 cells/kg); or (3) human MSCs (1 × 10 cells/kg) and the effect on restoration of lung function and structure assessed. In series 2, the efficacy of hMSC doses of 1, 2, 5, and 10 million/kg was examined (n = 8 per group). Series 3 compared the efficacy of both intratracheal and intraperitoneal hMSC administration to intravascular delivery (n = 5-10 per group). Series 4 examined the efficacy of delayed hMSC administration (n = 8 per group). RESULTS Human MSC's enhanced lung repair, restoring oxygenation (131 ± 19 vs. 103 ± 11 vs. 95 ± 11 mmHg, P = 0.004) compared to vehicle or fibroblast therapy, respectively. hMSCs improved lung compliance, reducing alveolar edema, and restoring lung architecture. hMSCs attenuated lung inflammation, decreasing alveolar cellular infiltration, and decreasing cytokine-induced neutrophil chemoattractant-1 and interleukin-6 while increasing keratinocyte growth factor concentrations. The lowest effective hMSC dose was 2 × 10 hMSC/kg. Intraperitoneal hMSC delivery was less effective than intratracheal or intravenous hMSC. hMSCs enhanced lung repair when administered at later time points after VILI. CONCLUSIONS hMSC therapy demonstrates therapeutic potential in enhancing recovery after VILI.
Collapse
|
36
|
|
37
|
Nardelli L, Rzezinski A, Silva J, Maron-Gutierrez T, Ornellas D, Henriques I, Capelozzi V, Teodoro W, Morales M, Silva P, Pelosi P, Garcia C, Rocco P. Effects of acute hypercapnia with and without acidosis on lung inflammation and apoptosis in experimental acute lung injury. Respir Physiol Neurobiol 2015; 205:1-6. [DOI: 10.1016/j.resp.2014.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/04/2014] [Accepted: 09/14/2014] [Indexed: 12/24/2022]
|
38
|
|
39
|
Mena HA, Lokajczyk A, Dizier B, Strier SE, Voto LS, Boisson-Vidal C, Schattner M, Negrotto S. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis 2014; 17:867-79. [PMID: 24854678 DOI: 10.1007/s10456-014-9434-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/13/2014] [Indexed: 01/08/2023]
|
40
|
Curley GF, Laffey JG, Kavanagh BP. CrossTalk proposal: there is added benefit to providing permissive hypercapnia in the treatment of ARDS. J Physiol 2013; 591:2763-5. [PMID: 23729790 DOI: 10.1113/jphysiol.2013.252601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Gerard F Curley
- Department of Anesthesia, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
41
|
Bautista AF, Akca O. Hypercapnia: is it protective in lung injury? Med Gas Res 2013; 3:23. [PMID: 24209944 PMCID: PMC3833649 DOI: 10.1186/2045-9912-3-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/05/2013] [Indexed: 11/10/2022] Open
Abstract
Hypercapnic acidosis has been regarded as a tolerated side effect of protective lung ventilation strategies. Various in vivo and ex vivo animal studies have shown beneficial effects in acute lung injury setting, but some recent work raised concerns about its anti-inflammatory properties. This mini-review article aims to expand the potential clinical spectrum of hypercapnic acidosis in critically ill patients with lung injury. Despite the proven benefits of hypercapnic acidosis, further safety studies including dose-effect, level-and-onset of anti-inflammatory effect, and safe applicability period need to be performed in various models of lung injury in animals and humans to further elucidate its protective role.
Collapse
Affiliation(s)
| | - Ozan Akca
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
42
|
Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury. Anesthesiology 2013; 118:924-32. [PMID: 23377221 DOI: 10.1097/aln.0b013e318287ba08] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have been demonstrated to attenuate acute lung injury when delivered by intravenous or intratracheal routes. The authors aimed to determine the efficacy of and mechanism of action of intratracheal MSC therapy and to compare their efficacy in enhancing lung repair after ventilation-induced lung injury with intravenous MSC therapy. METHODS : After induction of anesthesia, rats were orotracheally intubated and subjected to ventilation-induced lung injury (respiratory rate 18(-1) min, P insp 35 cm H2O,) to produce severe lung injury. After recovery, animals were randomized to receive: (1) no therapy, n = 4; (2) intratracheal vehicle (phosphate-buffered saline, 300 µl, n = 8); (3) intratracheal fibroblasts (4 × 10 cells, n = 8); (4) intratracheal MSCs (4 × 10(6) cells, n = 8); (5) intratracheal conditioned medium (300 µl, n = 8); or (6) intravenous MSCs (4 × 10(6) cells, n = 4). The extent of recovery after acute lung injury and the inflammatory response was assessed after 48 h. RESULTS Intratracheal MSC therapy enhanced repair after ventilation-induced lung injury, improving arterial oxygenation (mean ± SD, 146 ± 3.9 vs. 110.8 ± 21.5 mmHg), restoring lung compliance (1.04 ± 0.11 vs. 0.83 ± 0.06 ml · cm H2O(-1)), reducing total lung water, and decreasing lung inflammation and histologic injury compared with control. Intratracheal MSC therapy attenuated alveolar tumor necrosis factor-α (130 ± 43 vs. 488 ± 211 pg · ml(-1)) and interleukin-6 concentrations (138 ± 18 vs. 260 ± 82 pg · ml(-1)). The efficacy of intratracheal MSCs was comparable with intravenous MSC therapy. Intratracheal MSCs seemed to act via a paracine mechanism, with conditioned MSC medium also enhancing lung repair after injury. CONCLUSIONS Intratracheal MSC therapy enhanced recovery after ventilation-induced lung injury via a paracrine mechanism, and was as effective as intravenous MSC therapy.
Collapse
|
43
|
Tiruvoipati R, Botha JA, Pilcher D, Bailey M. Carbon dioxide clearance in critical care. Anaesth Intensive Care 2013; 41:157-162. [PMID: 23530782 DOI: 10.1177/0310057x1304100129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lung protective ventilation limiting tidal volumes and airway pressures were proven to reduce mortality in patients with acute severe respiratory failure. Hypercapnia and hypercapnic acidosis is often noted with lung protective ventilation. While the protective effects of lung protective ventilation are well recognised, the role of hypercapnia and hypercapnic acidosis remains debatable. Some clinicians argue that hypercapnia and hypercapnic acidosis protect the lungs and may be associated with improved outcomes. To the contrary, some clinicians do not tolerate hypercapnic acidosis and use various techniques including extracorporeal carbon dioxide elimination to treat hypercapnia and acidosis. This review aims at defining the effects of hypercapnia and hypercapnic acidosis with a focus on the pros and cons of clearing carbon dioxide and the modalities that may enhance carbon dioxide clearance.
Collapse
Affiliation(s)
- R Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Frankston, Victoria, Australia.
| | | | | | | |
Collapse
|
44
|
Hypercapnic acidosis attenuates ventilation-induced lung injury by a nuclear factor-κB–dependent mechanism. Crit Care Med 2012; 40:2622-30. [DOI: 10.1097/ccm.0b013e318258f8b4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Abstract
PURPOSE OF REVIEW Mechanical ventilation is essential for the support of critically ill patients, but may aggravate lung damage, leading to ventilator-associated lung injury (VALI). VALI results from a succession of events beginning with mechanical alteration of lung parenchyma, because of disproportionate stress and strain. The resulting structural tension initiates a biological inflammatory cascade; however, tension can reach the limits of stress, triggering the destruction of structures. This article reviews and discusses the ongoing research into the mechanisms of VALI and their implications for the management of ventilated patients. RECENT FINDINGS Several experimental and clinical studies have been performed to evaluate the contribution of pathogenic mechanical forces to organ and cellular deformation and the implications for guiding ventilator management in patients at risk for VALI. VALI may be attenuated by reducing tidal volume, but the key variable in determining pulmonary overdistension is transpulmonary pressure. Other parameters associated with the induction of VALI include positive end-expiratory pressure, inspiratory airflow and time, and respiratory frequency. SUMMARY How ventilation strategy, specific mechanisms of mechanotransduction, and their individual threshold values impact on VALI remains to be elucidated. In addition, clinical studies are required to evaluate the usefulness of individualized ventilator strategies based on lung mechanics.
Collapse
|
46
|
Cerdá J, Tolwani AJ, Warnock DG. Critical care nephrology: management of acid–base disorders with CRRT. Kidney Int 2012; 82:9-18. [DOI: 10.1038/ki.2011.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res 2012; 94:400-7. [PMID: 22451511 DOI: 10.1093/cvr/cvs132] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review the pivotal role of the stromal derived factor (SDF)-1 chemokine in tissue ischaemia and how it orchestrates the rapid revascularization of injured, ischaemic, and regenerating tissues via the CXC chemokine receptors CXCR4 and CXCR7. Furthermore, we discuss the effects of preconditioning (PC), which is a well-known protective phenomenon for tissue ischaemia. The positive effect of both hypoxic and acidic PC on progenitor cell therapeutic potential is reviewed, while stressing the role of the SDF-1/CXCR4 axis in this process.
Collapse
Affiliation(s)
- Chiara Cencioni
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy
| | | | | |
Collapse
|
48
|
Aslami H, Kuipers MT, Beurskens CJP, Roelofs JJTH, Schultz MJ, Juffermans NP. Mild hypothermia reduces ventilator-induced lung injury, irrespective of reducing respiratory rate. Transl Res 2012; 159:110-7. [PMID: 22243795 DOI: 10.1016/j.trsl.2011.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 10/15/2022]
Abstract
In the era of lung-protective mechanical ventilation using limited tidal volumes, higher respiratory rates are applied to maintain adequate minute volume ventilation. However, higher respiratory rates may contribute to ventilator-induced lung injury (VILI). Induced hypothermia reduces carbon dioxide production and might allow for lower respiratory rates during mechanical ventilation. We hypothesized that hypothermia protects from VILI and investigated whether reducing respiratory rates enhance lung protection in an in vivo model of VILI. During 4 h of mechanical ventilation, VILI was induced by tidal volumes of 18 mL/kg in rats, with respiratory rates set at 15 or 10 breaths/min in combination with hypothermia (32°C) or normothermia (37°C). Hypothermia was induced by external cooling. A physiologic model was established. VILI was characterized by increased pulmonary neutrophil influx, protein leak, wet weights, histopathology score, and cytokine levels compared with lung protective mechanical ventilation. Hypothermia decreased neutrophil influx, pulmonary levels, systemic interleukin-6 levels, and histopathology score, and it tended to decrease the pulmonary protein leak. Reducing the respiratory rate in combination with hypothermia did not reduce the parameters of the lung injury. In conclusion, hypothermia protected from lung injury in a physiologic VILI model by reducing inflammation. Decreasing the respiratory rate mildly did not enhance protection.
Collapse
Affiliation(s)
- Hamid Aslami
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
49
|
Fuchs H, Mendler MR, Scharnbeck D, Ebsen M, Hummler HD. Very low tidal volume ventilation with associated hypercapnia--effects on lung injury in a model for acute respiratory distress syndrome. PLoS One 2011; 6:e23816. [PMID: 21886825 PMCID: PMC3158784 DOI: 10.1371/journal.pone.0023816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ventilation using low tidal volumes with permission of hypercapnia is recommended to protect the lung in acute respiratory distress syndrome. However, the most lung protective tidal volume in association with hypercapnia is unknown. The aim of this study was to assess the effects of different tidal volumes with associated hypercapnia on lung injury and gas exchange in a model for acute respiratory distress syndrome. METHODOLOGY/PRINCIPAL FINDINGS In this randomized controlled experiment sixty-four surfactant-depleted rabbits were exposed to 6 hours of mechanical ventilation with the following targets: Group 1: tidal volume = 8-10 ml/kg/PaCO(2) = 40 mm Hg; Group 2: tidal volume = 4-5 ml/kg/PaCO(2) = 80 mm Hg; Group 3: tidal volume = 3-4 ml/kg/PaCO(2) = 120 mm Hg; Group 4: tidal volume = 2-3 ml/kg/PaCO(2) = 160 mm Hg. Decreased wet-dry weight ratios of the lungs, lower histological lung injury scores and higher PaO(2) were found in all low tidal volume/hypercapnia groups (group 2, 3, 4) as compared to the group with conventional tidal volume/normocapnia (group 1). The reduction of the tidal volume below 4-5 ml/kg did not enhance lung protection. However, oxygenation and lung protection were maintained at extremely low tidal volumes in association with very severe hypercapnia and no adverse hemodynamic effects were observed with this strategy. CONCLUSION Ventilation with low tidal volumes and associated hypercapnia was lung protective. A tidal volume below 4-5 ml/kg/PaCO(2) 80 mm Hg with concomitant more severe hypercapnic acidosis did not increase lung protection in this surfactant deficiency model. However, even at extremely low tidal volumes in association with severe hypercapnia lung protection and oxygenation were maintained.
Collapse
Affiliation(s)
- Hans Fuchs
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany.
| | | | | | | | | |
Collapse
|
50
|
Cencioni C, Melchionna R, Straino S, Romani M, Cappuzzello C, Annese V, Wu JC, Pompilio G, Santoni A, Gaetano C, Napolitano M, Capogrossi MC. Ex vivo acidic preconditioning enhances bone marrow ckit+ cell therapeutic potential via increased CXCR4 expression. Eur Heart J 2011; 34:2007-16. [PMID: 21784762 PMCID: PMC3703307 DOI: 10.1093/eurheartj/ehr219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims The chemokine receptor CXCR4 modulates endothelial progenitor cell migration, homing, and differentiation, and plays a key role in cardiovascular regeneration. Here we examined the effect of ex vivo acidic preconditioning (AP) on CXCR4 expression and on the regenerative potential of mouse bone marrow (BM) ckit+ cells. Methods and results Acidic preconditioning was achieved by exposing BM ckit+ cells to hypercarbic acidosis (pH 7.0) for 24 h; control cells were kept at pH 7.4. Acidic preconditioning enhanced CXCR4 and stromal cell-derived factor 1 (SDF-1) mRNA levels, as well as CXCR4 phosphorylation. Acidic preconditioning ability to modulate CXCR4 expression depended on cytosolic calcium [Ca2+]i mobilization and on nitric oxide (NO), as determined by [Ca2+]i buffering with BAPTA, and by treatment with the NO donor (DETA/NO) and the NO synthase inhibitor (L-NAME). Further, AP increased SDF-1-driven chemotaxis, transendothelial migration, and differentiation toward the endothelial lineage in vitro. In a mouse model of hindlimb ischaemia, control and AP ckit+ cells were transplanted into the ischaemic muscle; AP cells accelerated blood flow recovery, increased capillary, and arteriole number as well as the number of regenerating muscle fibres vs. control. These effects were abolished by treating AP cells with L-NAME. Conclusion Acidic preconditioning represents a novel strategy to enhance BM ckit+ cell therapeutic potential via NO-dependent increase in CXCR4 expression.
Collapse
Affiliation(s)
- Chiara Cencioni
- Laboratorio di Biologia vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|