1
|
Bindal P, Kumar V, Kapil L, Singh C, Singh A. Therapeutic management of ischemic stroke. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2651-2679. [PMID: 37966570 DOI: 10.1007/s00210-023-02804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Stroke is the third leading cause of years lost due to disability and the second-largest cause of mortality worldwide. Most occurrences of stroke are brought on by the sudden occlusion of an artery (ischemic stroke), but sometimes they are brought on by bleeding into brain tissue after a blood vessel has ruptured (hemorrhagic stroke). Alteplase is the only therapy the American Food and Drug Administration has approved for ischemic stroke under the thrombolysis category. Current views as well as relevant clinical research on the diagnosis, assessment, and management of stroke are reviewed to suggest appropriate treatment strategies. We searched PubMed and Google Scholar for the available therapeutic regimes in the past, present, and future. With the advent of endovascular therapy in 2015 and intravenous thrombolysis in 1995, the therapeutic options for ischemic stroke have expanded significantly. A novel approach such as vagus nerve stimulation could be life-changing for many stroke patients. Therapeutic hypothermia, the process of cooling the body or brain to preserve organ integrity, is one of the most potent neuroprotectants in both clinical and preclinical contexts. The rapid intervention has been linked to more favorable clinical results. This study focuses on the pathogenesis of stroke, as well as its recent advancements, future prospects, and potential therapeutic targets in stroke therapy.
Collapse
Affiliation(s)
- Priya Bindal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
2
|
Malliou A, Mitsiou C, Kyritsis AP, Alexiou GA. Therapeutic Hypothermia in Treating Glioblastoma: A Review. Ther Hypothermia Temp Manag 2024; 14:2-9. [PMID: 37184912 DOI: 10.1089/ther.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly occurring of all malignant central nervous system (CNS) tumors in adults. Considering the low median survival of only ∼15 months and poor prognosis in GBM patients, despite surgical resection with adjuvant radiation and chemotherapy, it is vital to seek brand new and innovative treatment in combination with already existing methods. Hypothermia participates in many metabolic pathways, inflammatory responses, and apoptotic processes, while also promoting the integrity of neurons. Following the successful application of therapeutic hypothermia across a spectrum of disorders such as traumatic CNS injury, cardiac arrest, and epilepsy, several clinical trials have set to evaluate the potency of hypothermia in treating a variety of cancers, including breast and ovaries cancer. In regard to primary neoplasms and more specifically, GBM, hypothermia has recently shown promising results as an auxiliary treatment, reinforcing chemotherapy's efficacy. In this review, we discuss the recent advances in utilizing hypothermia as treatment for GBM and other cancers.
Collapse
Affiliation(s)
- Athina Malliou
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| | | | | | - George A Alexiou
- Neurosurgical Institute, University of Ioannina, Ioannina, Greece
| |
Collapse
|
3
|
Pamecha V, Patil NS, Falari S, Mohapatra N, Kumar AH, Sindwani G, Garg N, Alam S, Khanna R, Sood V, Lal BB. Live donor liver transplantation for pediatric acute liver failure: challenges and outcomes. Hepatol Int 2023; 17:1570-1586. [PMID: 37587287 DOI: 10.1007/s12072-023-10571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE This study aimed at studying the challenges and outcomes of live-donor liver transplantation (LDLT) for pediatric acute liver failure (PALF). STUDY DESIGN A total of 315 patients with PALF were treated over a period of 11 years. 42 underwent LT (41 LDLT and one DDLT), constituting 38% (41/110) of all pediatric transplants during this duration. The outcomes of LDLT for PALF were analyzed. RESULTS All the 41 children who underwent LT met the Kings College criteria (KCC). The etiology was indeterminate in 46.3% (n = 19) children. 75.6% (n = 31) were on mechanical ventilation for grade 3/4 hepatic encephalopathy. There was presence of cerebral edema on a computed tomography scan of the brain in 50% of the children. One-third of our children required hemodynamic support with vasopressors. Systemic inflammatory response syndrome and sepsis were observed in 46.3% and 41.4% of patients, respectively. Post-LDLT 1- and 5-yr patient and graft survival were 75.6% and 70.9%, respectively. The survival in children satisfying KCC but did not undergo LT was 24% (38/161). Vascular and biliary complication rates were 2.4% and 4.8%, respectively. No graft loss occurred because of acute rejection. In multivariate analysis, pre-LT culture positivity and cerebral edema, persistence of brain edema after transplantation, and resultant pulmonary complications were significantly associated with post-LT death. Thirteen (32%) children who underwent plasmapheresis prior to LT had better post-LT neurological recovery, as evidenced by early extubation. CONCLUSION LDLT for PALF is lifesaving and provides a unique opportunity to time transplantation. Good long-term survival can be achieved, despite the majority of patients presenting late for transplantation. Early referral and better selection can save more lives through timely transplantation.
Collapse
Affiliation(s)
- Viniyendra Pamecha
- Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver and Biliary Sciences, D-1, Acharya Shree Tulsi Marg, Vasant Kunj, New Delhi, 110070, India.
| | - Nilesh Sadashiv Patil
- Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver and Biliary Sciences, D-1, Acharya Shree Tulsi Marg, Vasant Kunj, New Delhi, 110070, India
| | - Sanyam Falari
- Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver and Biliary Sciences, D-1, Acharya Shree Tulsi Marg, Vasant Kunj, New Delhi, 110070, India
| | - Nihar Mohapatra
- Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver and Biliary Sciences, D-1, Acharya Shree Tulsi Marg, Vasant Kunj, New Delhi, 110070, India
| | - Anubhav Harshit Kumar
- Department of Liver Transplant and Hepato-Pancreato-Biliary Surgery, Institute of Liver and Biliary Sciences, D-1, Acharya Shree Tulsi Marg, Vasant Kunj, New Delhi, 110070, India
| | - Gaurav Sindwani
- Department of Anesthesiology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Neha Garg
- Department of Anesthesiology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| |
Collapse
|
4
|
Grazioso TP, Djouder N. The forgotten art of cold therapeutic properties in cancer: A comprehensive historical guide. iScience 2023; 26:107010. [PMID: 37332670 PMCID: PMC10275721 DOI: 10.1016/j.isci.2023.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Cold therapy has been used for centuries, from Julius Caesar to Mohandas Gandhi, as a potent therapeutic approach. However, it has been largely forgotten in modern medicine. This review explores the history of cold therapy and its potential application as a therapeutic strategy against various diseases, including cancer. We examine the different techniques of cold exposure and the use of other therapeutical approaches, such as cryoablation, cryotherapy, cryoimmunotherapy, cryothalectomy, and delivery of cryogen agents. While clinical trials using cold therapy for cancer treatment are still limited, recent research shows promising results in experimental animal cancer models. This area of research is becoming increasingly significant and warrants further investigation.
Collapse
Affiliation(s)
- Tatiana P. Grazioso
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, ES-28029 Madrid, Spain
- Gynecological, Genitourinary and Skin Cancer Unit HM, Clara Campal Comprehensive Cancer Center, CIOCC, Department of Basic Medical Sciences, Hospital Universitario HM Sanchinarro, ES-28050 Madrid, Spain
- Institute of Applied Molecular Medicine, IMMA, Facultad de Medicina, Universidad San Pablo CEU, ES-28668 Madrid, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, ES-28029 Madrid, Spain
| |
Collapse
|
5
|
Chalkias A, Adamos G, Mentzelopoulos SD. General Critical Care, Temperature Control, and End-of-Life Decision Making in Patients Resuscitated from Cardiac Arrest. J Clin Med 2023; 12:4118. [PMID: 37373812 DOI: 10.3390/jcm12124118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac arrest affects millions of people per year worldwide. Although advances in cardiopulmonary resuscitation and intensive care have improved outcomes over time, neurologic impairment and multiple organ dysfunction continue to be associated with a high mortality rate. The pathophysiologic mechanisms underlying the post-resuscitation disease are complex, and a coordinated, evidence-based approach to post-resuscitation care has significant potential to improve survival. Critical care management of patients resuscitated from cardiac arrest focuses on the identification and treatment of the underlying cause(s), hemodynamic and respiratory support, organ protection, and active temperature control. This review provides a state-of-the-art appraisal of critical care management of the post-cardiac arrest patient.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| | - Georgios Adamos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, 10675 Athens, Greece
| | - Spyros D Mentzelopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, 10675 Athens, Greece
| |
Collapse
|
6
|
Grazioso TP, Djouder N. A mechanistic view of the use of cold temperature in the treatment of cancer. iScience 2023; 26:106511. [PMID: 37091251 PMCID: PMC10119757 DOI: 10.1016/j.isci.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In their latest article, Seki and colleagues investigate the potential role of cold as a therapeutical option to treat various cancer types, including even clinically untreatable cancers such as pancreatic cancers. The authors suggest that cold exposure may have a tumor-suppressive effect mediated by the activation of brown adipose tissue (BAT), in charge of dissipating heat through non-shivering thermogenesis. In this regard, circulating blood glucose is decreased, restricting the tumor glucose uptake, which is redistributed, favoring BAT uptake to fuel thermogenesis.1.
Collapse
Affiliation(s)
- Tatiana P. Grazioso
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, 28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, 28029, Spain
- Corresponding author
| |
Collapse
|
7
|
Agumava LU, Gulyaev VA, Lutsyk KN, Olisov OD, Akhmetshin RB, Magomedov KM, Kazymov BI, Akhmedov AR, Alekberov KF, Yaremin BI, Novruzbekov MS. Issues of intensive care and liver transplantation tactics in fulminant liver failure. BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2023. [DOI: 10.20340/vmi-rvz.2023.1.tx.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Fulminant liver failure is usually characterized as severe acute liver injury with encephalopathy and synthetic dysfunction (international normalized ratio [INR] ≥1.5) in a patient without cirrhosis or previous liver disease. Management of patients with acute liver failure includes ensuring that the patient is cared for appropriately, monitoring for worsening liver failure, managing complications, and providing nutritional support. Patients with acute liver failure should be treated at a liver transplant center whenever possible. Serial laboratory tests are used to monitor the course of a patient's liver failure and to monitor for complications. It is necessary to monitor the level of aminotransferases and bilirubin in serum daily. More frequent monitoring (three to four times a day) of blood coagulation parameters, complete blood count, metabolic panels, and arterial blood gases should be performed. For some causes of acute liver failure, such as acetaminophen intoxication, treatment directed at the underlying cause may prevent the need for liver transplantation and reduce mortality. Lactulose has not been shown to improve overall outcomes, and it can lead to intestinal distention, which can lead to technical difficulties during liver transplantation. Early in acute liver failure, signs and symptoms of cerebral edema may be absent or difficult to detect. Complications of cerebral edema include increased intracranial pressure and herniation of the brain stem. General measures to prevent increased intracranial pressure include minimizing stimulation, maintaining an appropriate fluid balance, and elevating the head of the patient's bed. For patients at high risk of developing cerebral edema, we also offer hypertonic saline prophylaxis (3%) with a target serum sodium level of 145 to 155 mEq/L (level 2C). High-risk patients include patients with grade IV encephalopathy, high ammonia levels (>150 µmol/L), or acute renal failure, and patients requiring vasopressor support. Approximately 40 % of patients with acute liver failure recover spontaneously with supportive care. Predictive models have been developed to help identify patients who are unlikely to recover spontaneously, as the decision to undergo liver transplant depends in part on the likelihood of spontaneous recovery of the liver. However, among those who receive a transplant, the one-year survival rate exceeds 80 %, making this treatment the treatment of choice in this difficult patient population.
Collapse
Affiliation(s)
- L. U. Agumava
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - V. A. Gulyaev
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - K. N. Lutsyk
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - O. D. Olisov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center; Pirogov Russian National Research Medical University, Department of Transplantology and Artificial Organs
| | - R. B. Akhmetshin
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - K. M. Magomedov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - B. I. Kazymov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - A. R. Akhmedov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - K. F. Alekberov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - B. I. Yaremin
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center; Pirogov Russian National Research Medical University, Department of Transplantology and Artificial Organs
| | - M. S. Novruzbekov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center; Pirogov Russian National Research Medical University, Department of Transplantology and Artificial Organs
| |
Collapse
|
8
|
Baker TS, Kellner CP, Colbourne F, Rincon F, Kollmar R, Badjatia N, Dangayach N, Mocco J, Selim MH, Lyden P, Polderman K, Mayer S. Consensus recommendations on therapeutic hypothermia after minimally invasive intracerebral hemorrhage evacuation from the hypothermia for intracerebral hemorrhage (HICH) working group. Front Neurol 2022; 13:859894. [PMID: 36062017 PMCID: PMC9428129 DOI: 10.3389/fneur.2022.859894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background and purpose Therapeutic hypothermia (TH), or targeted temperature management (TTM), is a classic treatment option for reducing inflammation and potentially other destructive processes across a wide range of pathologies, and has been successfully used in numerous disease states. The ability for TH to improve neurological outcomes seems promising for inflammatory injuries but has yet to demonstrate clinical benefit in the intracerebral hemorrhage (ICH) patient population. Minimally invasive ICH evacuation also presents a promising option for ICH treatment with strong preclinical data but has yet to demonstrate functional improvement in large randomized trials. The biochemical mechanisms of action of ICH evacuation and TH appear to be synergistic, and thus combining hematoma evacuation with cooling therapy could provide synergistic benefits. The purpose of this working group was to develop consensus recommendations on optimal clinical trial design and outcomes for the use of therapeutic hypothermia in ICH in conjunction with minimally invasive ICH evacuation. Methods An international panel of experts on the intersection of critical-care TH and ICH was convened to analyze available evidence and form a consensus on critical elements of a focal cooling protocol and clinical trial design. Three focused sessions and three full-group meetings were held virtually from December 2020 to February 2021. Each meeting focused on a specific subtopic, allowing for guided, open discussion. Results These recommendations detail key elements of a clinical cooling protocol and an outline for the roll-out of clinical trials to test and validate the use of TH in conjunction with hematoma evacuation as well as late-stage protocols to improve the cooling approach. The combined use of systemic normothermia and localized moderate (33.5°C) hypothermia was identified as the most promising treatment strategy. Conclusions These recommendations provide a general outline for the use of TH after minimally invasive ICH evacuation. More research is needed to further refine the use and combination of these promising treatment paradigms for this patient population.
Collapse
Affiliation(s)
- Turner S. Baker
- Icahn School of Medicine at Mount Sinai, Sinai BioDesign, New York, NY, United States
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Turner S. Baker
| | - Christopher P. Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Fred Rincon
- Department of Neurology, Thomas Jefferson University Hospital, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rainer Kollmar
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurology and Neurological Intensive Care, Darmstadt Academic Teaching Hospital, Darmstadt, Germany
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neha Dangayach
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - J. Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Magdy H. Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, United States
| | - Patrick Lyden
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, CA, United States
| | - Kees Polderman
- United Memorial Medical Center, Houston, TX, United States
| | - Stephan Mayer
- Westchester Medical Center Health Network, Valhalla, NY, United States
- Department of Neurology, New York Medical College, Valhalla, NY, United States
- Department of Neurosurgery, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
9
|
Abstract
Abbreviated pathogenesis and clinical course of the acute liver failure syndrome. The pathogenesis and clinical course of the syndrome of acute liver failure (ALF) differs depending upon the etiology of the primary liver injury. In turn, the severity of the liver injury and resulting synthetic failure is often the primary determinant of whether a patient is referred for emergency liver transplantation. Injuries by viral etiologies trigger the innate immune system via pathogen-associated molecular patterns (PAMPs), while toxin-induced (and presumably ischemia-induced) injuries do so via damage-associated molecular patterns (DAMPs). The course of the clinical syndrome further depends upon the relative intensity and composition of cytokine release, resulting in an early proinflammatory phenotype (SIRS) and later compensatory anti-inflammatory response phenotype (CARS). The outcomes of overwhelming immune activation are the systemic (extrahepatic) features of ALF (cardiovascular collapse, cerebral edema, acute kidney injury, respiratory failure, sepsis) which ultimately determine the likelihood of death.Acute liver failure (ALF) continues to carry a high risk of mortality or the need for transplantation despite recent improvements in overall outcomes over the past two decades. Optimal management begins with identifying that liver failure is indeed present and its etiology, since outcomes and the need for transplantation vary widely across the different etiologies. Most causes of ALF can be divided into hyperacute (ischemia and acetaminophen) and subacute types (other etiologies), based on time of evolution of signs and symptoms of liver failure; the former evolve in 3 to 4 days and the latter typically in 2 to 4 weeks. Both involve intense release of cytokines and hepatocellular contents into the circulation with multiorgan effects/consequences.Management involves optimizing fluid balance and cardiovascular support, including the use of continuous renal replacement therapy, vasopressors, and pulmonary ventilation. Early evaluation for liver transplantation is advised particularly for acetaminophen toxicity, which evolves so rapidly that delay is likely to lead to death.Vasopressor support, high-grade hepatic encephalopathy, and unfavorable (subacute) etiologies heighten the need for urgent listing for liver transplantation. Prognostic scores such as Kings Criteria, Model for End-Stage Liver Disease, and the Acute Liver Failure Group prognostic index take these features into account and provide reasonable but imperfect predictive accuracy. Future treatments may include liver support devices and/or agents that improve hepatocyte regeneration.
Collapse
Affiliation(s)
- Shannan Tujios
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas
| | - R. Todd Stravitz
- Section of Hepatology, Department of Internal Medicine, Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, Virginia
| | - William M. Lee
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
11
|
Navarro JC, Kofke WA. Perioperative Management of Acute Central Nervous System Injury. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Dos Reis Ururahy R, Park M. Cheap and simple, could it get even cooler? Mild hypothermia and COVID-19. J Crit Care 2021; 63:264-268. [PMID: 33622611 PMCID: PMC7847287 DOI: 10.1016/j.jcrc.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 01/20/2023]
Abstract
Purpose The pathophysiology theories of COVID-19 attach the injury of target organs to faulty immune responses and occasionally hyper-inflammation. The damage frequently extends beyond the respiratory system, accompanying cardiovascular, renal, central nervous system, and/or coagulation derangements. Tumor necrosis factor-α (TNF-α) and interleukins (IL)-1 and − 6 suppression may improve outcomes, as experimentally shown. Targeted therapies have been proposed, but mild therapeutic hypothermia—a more multifaceted approach—could be suitable. Findings According to evidence derived from previous applications, therapeutic hypothermia diminishes the release of IL-1, IL-6, and TNF-α in serum and at the tissue level. PaCO2 is reduced and the PaO2/FiO2 ratio is increased, possibly lasting after rewarming. Cooling might mitigate both ventilator and infectious-induced lung injury, and suppress microthrombi development, enhancing V/Q mismatch. Improvements in microhemodynamics and tissue O2 diffusion, along with the ischemia-tolerance heightening of tissues, could be reached. Arrhythmia incidence diminishes. Moreover, hypothermia may address the coagulopathy, promoting normalization of both hypo- and hyper-coagulability patterns, which are apparently sustained after a return to normothermia. Conclusions As per prior therapeutic hypothermia literature, the benefits regarding inflammatory response and organic damage might be seen. Following the safety-cornerstones of the technique, the overall infection rate and infection-related mortality are not expected to rise, and increased viral replication does not seem to be a concern. Therefore, the possibility of a low cost and widely available therapy being capable of improving COVID-19 outcomes deserves further study.
Collapse
Affiliation(s)
- Raul Dos Reis Ururahy
- Universidade de São Paulo (USP) Medical School, Internal Medicine Department, Dr. Enéas Carvalho de Aguiar Ave. 255, CEP 05403-000 São Paulo, SP, Brazil.
| | - Marcelo Park
- Universidade de São Paulo (USP) Medical School, Emergency Department, Intensive Care Unit, Dr. Enéas Carvalho de Aguiar Ave. 255, CEP 05403-000 São Paulo, SP, Brazil
| |
Collapse
|
13
|
Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, Chawla YK, Chowdhury A, Chaoudhuri A, Eapen EC, Devarbhavi H, Dhiman RK, Datta Gupta S, Duseja A, Jothimani D, Kapoor D, Kar P, Khuroo MS, Kumar A, Madan K, Mallick B, Maiwall R, Mohan N, Nagral A, Nath P, Panigrahi SC, Pawar A, Philips CA, Prahraj D, Puri P, Rastogi A, Saraswat VA, Saigal S, Shalimar, Shukla A, Singh SP, Verghese T, Wadhawan M, The INASL Task-Force on Acute Liver Failure. Indian National Association for the Study of Liver Consensus Statement on Acute Liver Failure (Part-2): Management of Acute Liver Failure. J Clin Exp Hepatol 2020; 10:477-517. [PMID: 33029057 PMCID: PMC7527855 DOI: 10.1016/j.jceh.2020.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is not an uncommon complication of a common disease such as acute hepatitis. Viral hepatitis followed by antituberculosis drug-induced hepatotoxicity are the commonest causes of ALF in India. Clinically, such patients present with appearance of jaundice, encephalopathy, and coagulopathy. Hepatic encephalopathy (HE) and cerebral edema are central and most important clinical event in the course of ALF, followed by superadded infections, and determine the outcome in these patients. The pathogenesis of encephalopathy and cerebral edema in ALF is unique and multifactorial. Ammonia plays a crucial role in the pathogenesis, and several therapies aim to correct this abnormality. The role of newer ammonia-lowering agents is still evolving. These patients are best managed at a tertiary care hospital with facility for liver transplantation (LT). Aggressive intensive medical management has been documented to salvage a substantial proportion of patients. In those with poor prognostic factors, LT is the only effective therapy that has been shown to improve survival. However, recognizing suitable patients with poor prognosis has remained a challenge. Close monitoring, early identification and treatment of complications, and couseling for transplant form the first-line approach to manage such patients. Recent research shows that use of dynamic prognostic models is better for selecting patients undergoing liver transplantation and timely transplant can save life of patients with ALF with poor prognostic factors.
Collapse
Key Words
- ACLF, Acute on Chronic liver Failure
- AKI, Acute kidney injury
- ALF, Acute Liver Failure
- ALFED score
- ALT, alanine transaminase
- AST, aspartate transaminase
- CNS, central nervous system
- CT, Computerized tomography
- HELLP, Hemolysis, elevated liver enzymes, and low platelets
- ICH, Intracrainial hypertension
- ICP, Intracrainial Pressure
- ICU, Intensive care unit
- INR, International normalised ratio
- LAD, Liver assist device
- LDLT, Living donor liver transplantation
- LT, Liver transplantation
- MAP, Mean arterial pressure
- MELD, model for end-stage liver disease
- MLD, Metabolic liver disease
- NAC, N-acetyl cysteine
- PALF, Pediatric ALF
- WD, Wilson's Disease
- acute liver failure
- artificial liver support
- liver transplantation
- plasmapheresis
Collapse
Affiliation(s)
- Anil C. Anand
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bhaskar Nandi
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Anil Arora
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sethu Babu
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad, 500003, India
| | - Yogesh Batra
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
| | - Ashok Chaoudhuri
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Eapen C. Eapen
- Department of Hepatology, Christian Medical College, Vellore, India
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
| | | | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Mohamad S. Khuroo
- Department of Gastroenterology, Dr Khuroo’ s Medical Clinic, Srinagar, Kashmir, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Kaushal Madan
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
| | - Bipadabhanjan Mallick
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Rakhi Maiwall
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Aabha Nagral
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Preetam Nath
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Sarat C. Panigrahi
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Ankush Pawar
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
| | - Cyriac A. Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi 682028, Kerala, India
| | - Dibyalochan Prahraj
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Pankaj Puri
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
| | - Amit Rastogi
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Sanjiv Saigal
- Department of Hepatology, Department of Liver Transplantation, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Thomas Verghese
- Department of Gastroenterology, Government Medical College, Kozikhode, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| | - The INASL Task-Force on Acute Liver Failure
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad, 500003, India
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Hepatology, Christian Medical College, Vellore, India
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
- Gleneagles Global Hospitals, Hyderabad, Telangana, India
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
- Department of Gastroenterology, Dr Khuroo’ s Medical Clinic, Srinagar, Kashmir, India
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi 682028, Kerala, India
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
- Department of Hepatology, Department of Liver Transplantation, India
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
- Department of Gastroenterology, SCB Medical College, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
- Department of Gastroenterology, Government Medical College, Kozikhode, India
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| |
Collapse
|
14
|
Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, Chawla YK, Chowdhury A, Chaoudhuri A, Eapen EC, Devarbhavi H, Dhiman R, Datta Gupta S, Duseja A, Jothimani D, Kapoor D, Kar P, Khuroo MS, Kumar A, Madan K, Mallick B, Maiwall R, Mohan N, Nagral A, Nath P, Panigrahi SC, Pawar A, Philips CA, Prahraj D, Puri P, Rastogi A, Saraswat VA, Saigal S, Shalimar, Shukla A, Singh SP, Verghese T, Wadhawan M, The INASL Task-Force on Acute Liver Failure. Indian National Association for the Study of the Liver Consensus Statement on Acute Liver Failure (Part 1): Epidemiology, Pathogenesis, Presentation and Prognosis. J Clin Exp Hepatol 2020; 10:339-376. [PMID: 32655238 PMCID: PMC7335721 DOI: 10.1016/j.jceh.2020.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is an infrequent, unpredictable, potentially fatal complication of acute liver injury (ALI) consequent to varied etiologies. Etiologies of ALF as reported in the literature have regional differences, which affects the clinical presentation and natural course. In this part of the consensus article designed to reflect the clinical practices in India, disease burden, epidemiology, clinical presentation, monitoring, and prognostication have been discussed. In India, viral hepatitis is the most frequent cause of ALF, with drug-induced hepatitis due to antituberculosis drugs being the second most frequent cause. The clinical presentation of ALF is characterized by jaundice, coagulopathy, and encephalopathy. It is important to differentiate ALF from other causes of liver failure, including acute on chronic liver failure, subacute liver failure, as well as certain tropical infections which can mimic this presentation. The disease often has a fulminant clinical course with high short-term mortality. Death is usually attributable to cerebral complications, infections, and resultant multiorgan failure. Timely liver transplantation (LT) can change the outcome, and hence, it is vital to provide intensive care to patients until LT can be arranged. It is equally important to assess prognosis to select patients who are suitable for LT. Several prognostic scores have been proposed, and their comparisons show that indigenously developed dynamic scores have an edge over scores described from the Western world. Management of ALF will be described in part 2 of this document.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- AFLP, acute fatty liver of pregnancy
- AKI, Acute kidney injury
- ALF, Acute liver failure
- ALFED, Acute Liver Failure Early Dynamic
- ALT, alanine transaminase
- ANA, antinuclear antibody
- AP, Alkaline phosphatase
- APTT, activated partial thromboplastin time
- ASM, alternative system of medicine
- ASMA, antismooth muscle antibody
- AST, aspartate transaminase
- ATN, Acute tubular necrosis
- ATP, adenosine triphosphate
- ATT, anti-TB therapy
- AUROC, Area under the receiver operating characteristics curve
- BCS, Budd-Chiari syndrome
- BMI, body mass index
- CBF, cerebral blood flow
- CBFV, cerebral blood flow volume
- CE, cerebral edema
- CHBV, chronic HBV
- CLD, chronic liver disease
- CNS, central nervous system
- CPI, clinical prognostic indicator
- CSF, cerebrospinal fluid
- DAMPs, Damage-associated molecular patterns
- DILI, drug-induced liver injury
- EBV, Epstein-Barr virus
- ETCO2, End tidal CO2
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- HAV, hepatitis A virus
- HBV, Hepatitis B virus
- HELLP, hemolysis
- HEV, hepatitis E virus
- HLH, Hemophagocytic lymphohistiocytosis
- HSV, herpes simplex virus
- HV, hepatic vein
- HVOTO, hepatic venous outflow tract obstruction
- IAHG, International Autoimmune Hepatitis Group
- ICH, intracerebral hypertension
- ICP, intracerebral pressure
- ICU, intensive care unit
- IFN, interferon
- IL, interleukin
- IND-ALF, ALF of indeterminate etiology
- INDILI, Indian Network for DILI
- KCC, King's College Criteria
- LC, liver cirrhosis
- LDLT, living donor liver transplantation
- LT, liver transplantation
- MAP, mean arterial pressure
- MHN, massive hepatic necrosis
- MPT, mitochondrial permeability transition
- MUAC, mid-upper arm circumference
- NAPQI, n-acetyl-p-benzo-quinone-imine
- NPV, negative predictive value
- NWI, New Wilson's Index
- ONSD, optic nerve sheath diameter
- PAMPs, pathogen-associated molecular patterns
- PCR, polymerase chain reaction
- PELD, Pediatric End-Stage Liver Disease
- PPV, positive predictive value
- PT, prothrombin time
- RAAS, renin–angiotensin–aldosterone system
- SHF, subacute hepatic failure
- SIRS, systemic inflammatory response syndrome
- SNS, sympathetic nervous system
- TB, tuberculosis
- TCD, transcranial Doppler
- TGF, tumor growth factor
- TJLB, transjugular liver biopsy
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TSFT, triceps skin fold thickness
- US, ultrasound
- USALF, US Acute Liver Failure
- VZV, varicella-zoster virus
- WD, Wilson disease
- Wilson disease (WD)
- YP, yellow phosphorus
- acute liver failure
- autoimmune hepatitis (AIH)
- drug-induced liver injury
- elevated liver enzymes, low platelets
- sALI, severe acute liver injury
- viral hepatitis
Collapse
Affiliation(s)
- Anil C. Anand
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bhaskar Nandi
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Anil Arora
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sethu Babu
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
| | - Yogesh Batra
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
| | - Ashok Chaoudhuri
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Eapen C. Eapen
- Department of Hepatology, Christian Medical College, Vellore, India
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
| | - RadhaKrishan Dhiman
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ajay Duseja
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
| | | | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Mohamad S. Khuroo
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Kaushal Madan
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
| | - Bipadabhanjan Mallick
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Rakhi Maiwall
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
| | - Aabha Nagral
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Preetam Nath
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Sarat C. Panigrahi
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Ankush Pawar
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
| | - Cyriac A. Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
| | - Dibyalochan Prahraj
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Pankaj Puri
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
| | - Amit Rastogi
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Sanjiv Saigal
- Department of Hepatology, Department of Liver Transplantation, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Thomas Verghese
- Department of Gastroenterology, Government Medical College, Kozikhode, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| | - The INASL Task-Force on Acute Liver Failure
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Hepatology, Christian Medical College, Vellore, India
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
- Gleneagles Global Hospitals, Hyderabad, Telangana, India
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
- Department of Hepatology, Department of Liver Transplantation, India
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
- Department of Gastroenterology, Government Medical College, Kozikhode, India
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| |
Collapse
|
15
|
Sepehrinezhad A, Zarifkar A, Namvar G, Shahbazi A, Williams R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab Brain Dis 2020; 35:559-578. [PMID: 32146658 DOI: 10.1007/s11011-020-00549-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) may occur in patients with liver failure. The most critical pathophysiologic mechanism of HE is cerebral edema following systemic hyperammonemia. The dysfunctional liver cannot eliminate circulatory ammonia, so its plasma and brain levels rise sharply. Astrocytes, the only cells that are responsible for ammonia detoxification in the brain, are dynamic cells with unique phenotypic properties that enable them to respond to small changes in their environment. Any pathological changes in astrocytes may cause neurological disturbances such as HE. Astrocyte swelling is the leading cause of cerebral edema, which may cause brain herniation and death by increasing intracranial pressure. Various factors may have a role in astrocyte swelling. However, the exact molecular mechanism of astrocyte swelling is not fully understood. This article discusses the possible mechanisms of astrocyte swelling which related to hyperammonia, including the possible roles of molecules like glutamine, lactate, aquaporin-4 water channel, 18 KDa translocator protein, glial fibrillary acidic protein, alanine, glutathione, toll-like receptor 4, epidermal growth factor receptor, glutamate, and manganese, as well as inflammation, oxidative stress, mitochondrial permeability transition, ATP depletion, and astrocyte senescence. All these agents and factors may be targeted in therapeutic approaches to HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Gholamreza Namvar
- Department of Neuroscience and Cognition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roger Williams
- The Institute of Hepatology London and Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
16
|
Sonnier M, Rittenberger JC. State-of-the-art considerations in post-arrest care. J Am Coll Emerg Physicians Open 2020; 1:107-116. [PMID: 33000021 PMCID: PMC7493544 DOI: 10.1002/emp2.12022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/10/2022] Open
Abstract
Cardiac arrest has a high rate of morbidity and mortality. Several advances in post-cardiac arrest management can improve outcome, but are time-dependent, placing the emergency physician in a critical role to both recognize the need for and initiate therapy. We present a novel perspective of both the workup and therapeutic interventions geared toward the emergency physician during the first few hours of care. We describe how the immediate care of a post-cardiac arrest patient is resource intensive and requires simultaneous evaluation for the underlying cause and intensive management to prevent further end organ damage, particularly of the central nervous system. The goal of the initial focused assessment is to rapidly determine if any reversible causes of cardiac arrest are present and to intervene when possible. Interventions performed in this acute period are aimed at preventing additional brain injury through optimizing hemodynamics, providing ventilatory support, and by using therapeutic hypothermia when indicated. After the initial phase of care, disposition is guided by available resources and the clinician's judgment. Transfer to a specialized cardiac arrest center is prudent in centers that do not have significant support or experience in the care of these patients.
Collapse
Affiliation(s)
| | - Jon C. Rittenberger
- Guthrie Robert Packer HospitalSayrePennsylvania
- Geisinger Commonwealth Medical CollegeScrantonPennsylvania
| |
Collapse
|
17
|
Guazzelli PA, Cittolin-Santos GF, Meira-Martins LA, Grings M, Nonose Y, Lazzarotto GS, Nogara D, da Silva JS, Fontella FU, Wajner M, Leipnitz G, Souza DO, de Assis AM. Acute Liver Failure Induces Glial Reactivity, Oxidative Stress and Impairs Brain Energy Metabolism in Rats. Front Mol Neurosci 2020; 12:327. [PMID: 31998076 PMCID: PMC6968792 DOI: 10.3389/fnmol.2019.00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Acute liver failure (ALF) implies a severe and rapid liver dysfunction that leads to impaired liver metabolism and hepatic encephalopathy (HE). Recent studies have suggested that several brain alterations such as astrocytic dysfunction and energy metabolism impairment may synergistically interact, playing a role in the development of HE. The purpose of the present study is to investigate early alterations in redox status, energy metabolism and astrocytic reactivity of rats submitted to ALF. Adult male Wistar rats were submitted either to subtotal hepatectomy (92% of liver mass) or sham operation to induce ALF. Twenty-four hours after the surgery, animals with ALF presented higher plasmatic levels of ammonia, lactate, ALT and AST and lower levels of glucose than the animals in the sham group. Animals with ALF presented several astrocytic morphological alterations indicating astrocytic reactivity. The ALF group also presented higher mitochondrial oxygen consumption, higher enzymatic activity and higher ATP levels in the brain (frontoparietal cortex). Moreover, ALF induced an increase in glutamate oxidation concomitant with a decrease in glucose and lactate oxidation. The increase in brain energy metabolism caused by astrocytic reactivity resulted in augmented levels of reactive oxygen species (ROS) and Poly [ADP-ribose] polymerase 1 (PARP1) and a decreased activity of the enzymes superoxide dismutase and glutathione peroxidase (GSH-Px). These findings suggest that in the early stages of ALF the brain presents a hypermetabolic state, oxidative stress and astrocytic reactivity, which could be in part sustained by an increase in mitochondrial oxidation of glutamate.
Collapse
Affiliation(s)
- Pedro Arend Guazzelli
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Giordano Fabricio Cittolin-Santos
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Leo Anderson Meira-Martins
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Mateus Grings
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yasmine Nonose
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Gabriel S Lazzarotto
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Daniela Nogara
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Jussemara S da Silva
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Fernanda U Fontella
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Moacir Wajner
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Diogo O Souza
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Adriano Martimbianco de Assis
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas-UCPel, Pelotas, Brazil
| |
Collapse
|
18
|
Katica-Mulalic A, Suljic E, Begic E, Mukanovic-Alihodzic A, Straus S, Feto A, Dedovic Z, Gojak R. Effect of Therapeutic Hypothermia on Liver Enzymes in Patients With Stroke. Med Arch 2020; 74:470-473. [PMID: 33603273 PMCID: PMC7879342 DOI: 10.5455/medarh.2020.74.470-473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction: A promising strategy that can lead to longer brain cell survival after an acute stroke is therapeutic hypothermia. It represents a controlled decrease in body temperature for therapeutic reasons. It is increasingly represented as a therapeutic option and is one of the most challenging treatments that improves neurological recovery and treatment outcome in patients with acute stroke. Aim: To examine the effect of therapeutic hypothermia on liver enzymes in patients with diagnosis of stroke. Methods: A total of 101 patients diagnosed with acute stroke were treated. The first group (n=40) were treated with conventional treatment and therapeutic hypothermia, while the second group (n=61) only with conventional treatment. Cooling of the body to a target body temperature of 34°C to 35°C was performed for up to 24 hours. Outcome (survival or death) of treatment was monitored, degree of disability was determined by National Institutes of Health Stroke Scale (NIHSS) and assessment of consciousness using the Glasgow Coma Scale (GCS). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) values were taken at admission, after 24 hours, and were monitored upon discharge. Results: There was a significant difference in AST values at admission relative to disease outcome (p = 0.002), as well as for ALT (p = 0.008). In patients treated with therapeutic hypothermia, mean AST values decreased after 24 hours (32.50 to 31.00 IU/mL) as well as ALT values (27.50 to 26.50 IU/mL), without statistical significance. In the group of subjects who survived with sequela, AST values correlated with GCS (rho = -0.489; p = 0.002) and NIHSS (rho = 0.492; p = 0.003), ALT values correlated with GCS (rho = -0.356; p = 0.03) but not with NIHSS. Conclusion: AST and ALT values at admission correlate with the severity of the clinical picture. Therapeutic hypothermia is hepatoprotective and lowers AST and ALT values.
Collapse
Affiliation(s)
- Amela Katica-Mulalic
- Clinic Anesthesiology and Resuscitation, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Enra Suljic
- Department for Science, Teaching and Clinical Trials, Clinical Centre University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Edin Begic
- Department of Cardiology, General Hospital «Prim. dr. Abdulah Nakas», Sarajevo, Bosnia and Herzegovina
| | - Azra Mukanovic-Alihodzic
- Clinic Anesthesiology and Resuscitation, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Slavenka Straus
- Clinic for Cardiovascular Surgery, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Amila Feto
- Clinic Anesthesiology and Resuscitation, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Zenaida Dedovic
- Clinic Anesthesiology and Resuscitation, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Refet Gojak
- Clinic for Infectious Diseases, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
19
|
Assis FR, Narasimhan B, Ziai W, Tandri H. From systemic to selective brain cooling - Methods in review. Brain Circ 2019; 5:179-186. [PMID: 31950093 PMCID: PMC6950511 DOI: 10.4103/bc.bc_23_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
Therapeutic hypothermia (TH) remains one of the few proven neuroprotective modalities available in clinical practice today. Although targeting lower temperatures during TH seems to benefit ischemic brain cells, systemic side effects associated with global hypothermia limit its clinical applicability. Therefore, the ability to selectively reduce the temperature of the brain while minimally impacting core temperature allows for maximizing neurological benefit over systemic complications. In that scenario, selective brain cooling (SBC) has emerged as a promising modality of TH. In this report, we reviewed the general concepts of TH, from systemic to selective brain hypothermia, and explored the different cooling strategies and respective evidence, including preclinical and clinical data. SBC has been investigated in different animal models with promising results, wherein organ-specific, rapid, and deep target brain temperature managements stand out as major advantages over systemic TH. Nevertheless, procedure-related complications and adverse events still remain a concern, limiting clinical translation. Different invasive and noninvasive methods for SBC have been clinically investigated with variable results, and although adverse effects were still reported in some studies, therapies rendered overall safe profiles. Further study is needed to define the optimal technique, timing of initiation, rate and length of cooling as well as target temperature and rewarming protocols for different indications.
Collapse
Affiliation(s)
- Fabrizio R Assis
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bharat Narasimhan
- Department of Internal Medicine, Mount Sinai St. Lukes-Roosevelt, New York, NY, USA
| | - Wendy Ziai
- Division of Anesthesia and Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harikrishna Tandri
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Abstract
Acute liver failure is a rare and severe consequence of abrupt hepatocyte injury, and can evolve over days or weeks to a lethal outcome. A variety of insults to liver cells result in a consistent pattern of rapid-onset elevation of aminotransferases, altered mentation, and disturbed coagulation. The absence of existing liver disease distinguishes acute liver failure from decompensated cirrhosis or acute-on-chronic liver failure. Causes of acute liver failure include paracetamol toxicity, hepatic ischaemia, viral and autoimmune hepatitis, and drug-induced liver injury from prescription drugs, and herbal and dietary supplements. Diagnosis requires careful review of medications taken, and serological testing for possible viral exposure. Because of its rarity, acute liver failure has not been studied in large, randomised trials, and most treatment recommendations represent expert opinion. Improvements in management have resulted in lower mortality, although liver transplantation, used in nearly 30% of patients with acute liver failure, still provides a life-saving alternative to medical management.
Collapse
Affiliation(s)
- R Todd Stravitz
- Hume-Lee Transplant Center of Virginia Commonwealth University, Richmond, VA, USA
| | - William M Lee
- Digestive and Liver Diseases Division, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
21
|
Alfaqaan S, Yoshida T, Imamura H, Tsukano C, Takemoto Y, Kakizuka A. PPARα-Mediated Positive-Feedback Loop Contributes to Cold Exposure Memory. Sci Rep 2019; 9:4538. [PMID: 30872768 PMCID: PMC6418111 DOI: 10.1038/s41598-019-40633-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fluctuations in food availability and shifts in temperature are typical environmental changes experienced by animals. These environmental shifts sometimes portend more severe changes; e.g., chilly north winds precede the onset of winter. Such telltale signs may be indicators for animals to prepare for such a shift. Here we show that HEK293A cells, cultured under starvation conditions, can “memorize” a short exposure to cold temperature (15 °C), which was evidenced by their higher survival rate compared to cells continuously grown at 37 °C. We refer to this phenomenon as “cold adaptation”. The cold-exposed cells retained high ATP levels, and addition of etomoxir, a fatty acid oxidation inhibitor, abrogated the enhanced cell survival. In our standard protocol, cold adaptation required linoleic acid (LA) supplementation along with the activity of Δ-6-desaturase (D6D), a key enzyme in LA metabolism. Moreover, supplementation with the LA metabolite arachidonic acid (AA), which is a high-affinity agonist of peroxisome proliferator-activated receptor-alpha (PPARα), was able to underpin the cold adaptation, even in the presence of a D6D inhibitor. Cold exposure with added LA or AA prompted a surge in PPARα levels, followed by the induction of D6D expression; addition of a PPARα antagonist or a D6D inhibitor abrogated both their expression, and reduced cell survival to control levels. We also found that the brief cold exposure transiently prevents PPARα degradation by inhibiting the ubiquitin proteasome system, and starvation contributes to the enhancement of PPARα activity by inhibiting mTORC1. Our results reveal an innate adaptive positive-feedback mechanism with a PPARα-D6D-AA axis that is triggered by a brief cold exposure in cells. “Cold adaptation” could have evolved to increase strength and resilience against imminent extreme cold temperatures.
Collapse
Affiliation(s)
- Soaad Alfaqaan
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Tomoki Yoshida
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiromi Imamura
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Chihiro Tsukano
- Department of Organic Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, Japan
| | - Yoshiji Takemoto
- Department of Organic Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
22
|
Cittolin-Santos G, Guazzelli P, Nonose Y, Almeida R, Fontella F, Pasquetti M, Ferreira-Lima F, Lazzaroto G, Berlezi R, Osvaldt A, Calcagnotto M, de Assis A, Souza D. Behavioral, Neurochemical and Brain Oscillation Abnormalities in an Experimental Model of Acute Liver Failure. Neuroscience 2019; 401:117-129. [DOI: 10.1016/j.neuroscience.2018.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
|
23
|
Fukushima R, Kamata K, Ariyoshi F, Yanaki M, Nomura M, Ozaki M. A case of chronic hepatitis B merged with acute fatty liver of pregnancy with severe coagulopathy. JA Clin Rep 2019; 5:1. [PMID: 32025900 PMCID: PMC6967006 DOI: 10.1186/s40981-018-0219-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Acute fatty liver of pregnancy (AFLP) is a life-threatening disorder, and its relevance to viral hepatitis B (HB) remains unknown. This case presents an initial experience of treating a patient with HB progressing to AFLP throughout pregnancy; anesthesiologists should also recognize its clinical feature for perioperative management. Case presentation A 28-year-old parturient was diagnosed as chronic HB (CHB) at 21 weeks gestation. Liver and kidney dysfunction appeared rapidly at 34 weeks gestation, suspected as acute exacerbation of either CHB or AFLP. Emergency cesarean section was carried out, after which maternal disseminated intravascular coagulation and hypothermia persisted. With multidisciplinary management, the patient and infant were discharged on postpartum days 64 and 12, respectively. Conclusions Active CHB develops into AFLP. Antiviral therapy should be considered for parturient patients with CHB, particularly for those with high viral load. The most favorable outcome is prompt and accurate diagnosis to establish suitable termination method.
Collapse
Affiliation(s)
- Risa Fukushima
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kotoe Kamata
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Fumiko Ariyoshi
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masashi Yanaki
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Minoru Nomura
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Makoto Ozaki
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
24
|
Griebsch C, Whitney J, Angles J, Bennett P. Acute liver failure in two dogs following ingestion of cheese tree (Glochidion ferdinandi) roots. J Vet Emerg Crit Care (San Antonio) 2018; 29:190-200. [PMID: 30507024 DOI: 10.1111/vec.12790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 10/15/2017] [Accepted: 11/07/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To describe the management and resolution of acute liver failure (ALF) in two dogs following ingestion of cheese tree (Glochidion ferdinandi) roots. CASE SUMMARIES A 2-year-old male entire Bullmastiff and a 5-year-old female neutered German Shepherd dog were presented for acute-onset lethargy and vomiting after chewing on tree roots of a cheese tree. Both dogs developed clinical abnormalities consistent with ALF, including hepatic encephalopathy, marked increase in alanine aminotransferase activity and bilirubin concentration, and prolonged coagulation times. Treatment included administration of intravenous fluids, hepatoprotectants, vitamin K1 , antibiotics, lactulose, antacids, antiemetics, and multiple fresh frozen plasma transfusions. Follow-up examinations performed 30 days after initial presentation revealed the dogs to be clinically healthy with serum biochemical and coagulation profiles within reference intervals. NEW OR UNIQUE INFORMATION This is the first report describing ALF in two dogs following ingestion of cheese tree (G. ferdinandi) roots. In this clinical setting, despite a poor prognosis, survival and recovery of adequate liver function were possible with medical management.
Collapse
Affiliation(s)
| | - Joanna Whitney
- University Veterinary Teaching Hospital, Sydney, Australia
| | - John Angles
- Animal Referral Hospital, Homebush, Australia
| | - Peter Bennett
- University Veterinary Teaching Hospital, Sydney, Australia
| |
Collapse
|
25
|
Mastropietro CW, Valentine KM. Medical Management of Acute Liver Failure. PEDIATRIC CRITICAL CARE 2018. [PMCID: PMC7121299 DOI: 10.1007/978-3-319-96499-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pediatric acute liver failure is a rapidly progressive, life-threatening, and devastating illness in children without preexisting liver disease. Due to the rarity and heterogeneity of this syndrome, there is a significant lack of data to guide evaluation and management of this disease. Most of our practice is extrapolated from adult literature and guidelines. This leads to significant controversies in medical management of acute liver failure in children. With advances in critical care, there has been a tremendous improvement in outcomes with decreased morbidity and mortality; however, there is a dire need for more research in this field. This chapter discusses challenges as well as controversies in diagnostic evaluation and management of this rare but potentially fatal disease. Latest developments in supportive care of liver failure, including advances in the area of liver support systems, are also discussed.
Collapse
Affiliation(s)
- Christopher W. Mastropietro
- grid.257413.60000 0001 2287 3919Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| | - Kevin M. Valentine
- grid.257413.60000 0001 2287 3919Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
26
|
Kim JY, Ri HS, Yoon JU, Choi EJ, Kim HJ, Park JY. Fatal neurological complication after liver transplantation in acute hepatic failure patient with hepatic encephalopathy. KOSIN MEDICAL JOURNAL 2018. [DOI: 10.7180/kmj.2018.33.1.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Liver transplantation is a current definitive treatment for those with end-stage liver disease. Hepatic encephalopathy is a common complication of hepatic failure, which can be improved and aggravated by various causes. It is important to differentiate hepatic encephalopathy from other diseases causing brain dysfunction such as cerebral hemorrhage, which is also related to high mortality after liver transplant surgery. A 37-year-old patient was presented with acute liver failure and high ammonia levels and seizure-like symptoms. Computed tomography (CT) of his brain showed mild brain atrophy, regarded as a symptom of hepatic encephalopathy, and treated to decrease blood ammonia level. Deceased donor liver transplantation was performed and liver function and ammonia level normalized after surgery, but the patient showed symptoms of involuntary muscle contraction and showed loss of pupil reflex and fixation without recovery of consciousness. Brain CT showed brain edema and bilateral cerebral infarction, and the patient died after a few days. The purpose of this case report is to emphasize the importance of preoperative neurological evaluation, careful transplantation decision, and proper perioperative management of liver transplantation in patients with acute hepatic encephalopathy.
Collapse
|
27
|
Abstract
Purpose of Review Pediatric acute liver failure is a rare, complex, rapidly progressing, and life-threatening illness. Majority of pediatric acute liver failures have unknown etiology. This review intends to discuss the current literature on the challenging aspects of management of acute liver failure. Recent Findings Collaborative multidisciplinary approach for management of patients with pediatric acute liver failure with upfront involvement of transplant hepatologist and critical care specialists can improve outcomes of this fatal disease. Extensive but systematic diagnostic evaluation can help to identify etiology and guide management. Early referral to a transplant center with prompt liver transplant, if indicated, can lead to improved survival in these patients. Summary Prompt identification and aggressive management of pediatric acute liver failure and related comorbidities can lead to increased transplant-free survival and improved post-transplant outcomes, thus decreasing mortality and morbidity associated with this potential fatal condition.
Collapse
Affiliation(s)
- Heli Bhatt
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, 705 Riley Hospital Drive, ROC 4210, Indianapolis, IN 46202 USA
| | - Girish S. Rao
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, 705 Riley Hospital Drive, ROC 4210, Indianapolis, IN 46202 USA
| |
Collapse
|
28
|
Teh DBL, Chua SM, Prasad A, Kakkos I, Jiang W, Yue M, Liu X, All AH. Neuroprotective assessment of prolonged local hypothermia post contusive spinal cord injury in rodent model. Spine J 2018; 18:507-514. [PMID: 29074466 DOI: 10.1016/j.spinee.2017.10.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although general hypothermia is recognized as a clinically applicable neuroprotective intervention, acute moderate local hypothermia post contusive spinal cord injury (SCI) is being considered a more effective approach. Previously, we have investigated the feasibility and safety of inducing prolonged local hypothermia in the central nervous system of a rodent model. PURPOSE Here, we aimed to verify the efficacy and neuroprotective effects of 5 and 8 hours of local moderate hypothermia (30±0.5°C) induced 2 hours after moderate thoracic contusive SCI in rats. STUDY DESIGN Rats were induced with moderate SCI (12.5 mm) at its T8 section. Local hypothermia (30±0.5°C) was induced 2 hours after injury induction with an M-shaped copper tube with flow of cold water (12°C), from the T6 to the T10 region. Experiment groups were divided into 5-hour and 8-hour hypothermia treatment groups, respectively, whereas the normothermia control group underwent no hypothermia treatment. METHODS The neuroprotective effects were assessed through objective weekly somatosensory evoked potential (SSEP) and motor behavior (basso, beattie and bresnahan Basso, Beattie and Bresnahan (BBB) scoring) monitoring. Histology on spinal cord was performed until at the end of day 56. All authors declared no conflict of interest. This work was supported by the Singapore Institute for Neurotechnology Seed Fund (R-175-000-121-733), National University of Singapore, Ministry of Education, Tier 1 (R-172-000-414-112.). RESULTS Our results show significant SSEP amplitudes recovery in local hypothermia groups starting from day 14 post-injury onward for the 8-hour treatment group, which persisted up to days 28 and 42, whereas the 5-hour group showed significant improvement only at day 42. The functional improvement plateaued after day 42 as compared with control group of SCI with normothermia. This was supported by both 5-hour and 8-hour improvement in locomotion as measured by BBB scores. Local hypothermia also observed insignificant changes in its SSEP latency, as compared with the control. In addition, 5- and 8-hour hypothermia rats' spinal cord showed higher percentage of parenchyma preservation. CONCLUSIONS Early local moderate hypothermia can be induced for extended periods of time post SCI in the rodent model. Such intervention improves functional electrophysiological outcome and motor behavior recovery for a long time, lasting until 8 weeks.
Collapse
Affiliation(s)
- Daniel Boon Loong Teh
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore
| | - Soo Min Chua
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore
| | - Ankshita Prasad
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore; Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Dr 3, Singapore 117583, Singapore
| | - Ioannis Kakkos
- Department of Electrical and Computing Engineering, National Technical University of Athens, Zografos, 15773, Athens, Greece
| | - Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mu Yue
- Department of Statistics and Applied Probability, National University of Singapore, Level 7, Block S16,6 Science Dr 2, Singapore 117546, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Dr 3, Singapore 117543, Singapore
| | - Angelo Homayoun All
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore; Department of Biomedical Engineering and Department of Neurology, John Hopkins School of Medicine, 701C Rutland Ave 720, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Abstract
With the evolution of surgical and anesthetic techniques, liver transplantation has become "routine," allowing for modifications of practice to decrease perioperative complications and costs. There is debate over the necessity for intensive care unit admission for patients with satisfactory preoperative status and a smooth intraoperative course. Postoperative care is made easier when the liver graft performs optimally. Assessment of graft function, vigilance for complications after the major surgical insult, and optimization of multiple systems affected by liver disease are essential aspects of postoperative care. The intensivist plays a vital role in an integrated multidisciplinary transplant team.
Collapse
Affiliation(s)
- Mark T Keegan
- Division of Critical Care, Department of Anesthesiology, Mayo Clinic, Charlton 1145, 200 1st Street Southwest, Rochester, MN 55905, USA.
| | - David J Kramer
- Aurora Critical Care Service, 2901 W Kinnickinnic River Parkway, Milwaukee, WI 53215, USA; University of Wisconsin, School of Medicine and Public Health, 750, Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
30
|
Abstract
Pediatric acute liver failure is rare but life-threatening illness that occurs in children without preexisting liver disease. The rarity of the disease, along with its severity and heterogeneity, presents unique clinical challenges to the physicians providing care for pediatric patients with acute liver failure. In this review, practical clinical approaches to the care of critically ill children with acute liver failure are discussed with an organ system-specific approach. The underlying pathophysiological processes, major areas of uncertainty, and approaches to the critical care management of pediatric acute liver failure are also reviewed.
Collapse
|
31
|
Bernal W, Murphy N, Brown S, Whitehouse T, Bjerring PN, Hauerberg J, Frederiksen HJ, Auzinger G, Wendon J, Larsen FS. A multicentre randomized controlled trial of moderate hypothermia to prevent intracranial hypertension in acute liver failure. J Hepatol 2016; 65:273-9. [PMID: 26980000 DOI: 10.1016/j.jhep.2016.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Animal models and human case series of acute liver failure (ALF) suggest moderate hypothermia (MH) to have protective effects against cerebral oedema (CO) development and intracranial hypertension (ICH). However, the optimum temperature for patient management is unknown. In a prospective randomized controlled trial we investigated if maintenance of MH prevented development of ICH in ALF patients at high risk of the complication. METHODS Patients with ALF, high-grade encephalopathy and intracranial pressure (ICP) monitoring in specialist intensive care units were randomized by sealed envelope to targeted temperature management (TTM) groups of 34°C (MH) or 36°C (control) for a period of 72h. Investigators were not blinded to group assignment. The primary outcome was a sustained elevation in ICP >25mmHg, with secondary outcomes the occurrence of predefined serious adverse effects, magnitude of ICP elevations and cerebral and all-cause hospital mortality (with or without transplantation). RESULTS Forty-six patients were randomized, of whom forty-three were studied. There was no significant difference between the TTM groups in the primary outcome during the study period (35% vs. 27%, p=0.56), for the MH (n=17) or control (n=26) groups respectively, relative risk 1.31 (95% CI 0.53-3.2). Groups had similar incidence of adverse events and overall mortality (41% vs. 46%, p=0.75). CONCLUSIONS In patients with ALF at high risk of ICH, MH at 33-34°C did not confer a benefit above management at 36°C in prevention of ICH or in overall survival. This study did not confirm advantage of its prophylactic use. (ISRCTN registration number 74268282; no funding.) LAY SUMMARY Studies in animals with acute liver failure (ALF) have suggested that cooling (hypothermia) could prevent or limit the development of brain swelling, a dangerous complication of the condition. There is limited data on its effects in humans. In a randomized controlled trial in severely ill patients with ALF we compared the effects of different temperatures and found no benefit on improving survival or preventing brain swelling by controlling temperature at 33-34°C against 36°C.
Collapse
Affiliation(s)
- William Bernal
- Liver Intensive Care Unit, Institute of Liver Studies, Kings College Hospital, Denmark Hill, London SE5 9RS, United Kingdom.
| | - Nicholas Murphy
- Department of Anaesthesia and Critical Care, University Hospital Birmingham, Birmingham B15 2GW, United Kingdom
| | - Sarah Brown
- Liver Intensive Care Unit, Institute of Liver Studies, Kings College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Tony Whitehouse
- Department of Anaesthesia and Critical Care, University Hospital Birmingham, Birmingham B15 2GW, United Kingdom
| | - Peter Nissen Bjerring
- Department of Hepatology, Rigshospitalet, University Hospital Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - John Hauerberg
- Department of Neurosurgery, Rigshospitalet, University Hospital Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Hans J Frederiksen
- Department of Anaesthesia, Rigshospitalet, University Hospital Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Georg Auzinger
- Liver Intensive Care Unit, Institute of Liver Studies, Kings College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Julia Wendon
- Liver Intensive Care Unit, Institute of Liver Studies, Kings College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Fin Stolze Larsen
- Department of Hepatology, Rigshospitalet, University Hospital Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Donnelly MC, Hayes PC, Simpson KJ. Role of inflammation and infection in the pathogenesis of human acute liver failure: Clinical implications for monitoring and therapy. World J Gastroenterol 2016; 22:5958-5970. [PMID: 27468190 PMCID: PMC4948263 DOI: 10.3748/wjg.v22.i26.5958] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure is a rare and devastating clinical condition. At present, emergency liver transplantation is the only life-saving therapy in advanced cases, yet the feasibility of transplantation is affected by the presence of systemic inflammation, infection and resultant multi-organ failure. The importance of immune dysregulation and acquisition of infection in the pathogenesis of acute liver failure and its associated complications is now recognised. In this review we discuss current thinking regarding the role of infection and inflammation in the pathogenesis of and outcome in human acute liver failure, the implications for the management of such patients and suggest directions for future research.
Collapse
|
33
|
Xia J, Li R, Yang R, Zhang L, Sun B, Feng Y, Jin J, Huang L, Zhan Q. Mild hypothermia attenuate kidney injury in canines with oleic acid-induced acute respiratory distress syndrome. Injury 2016; 47:1445-51. [PMID: 27180146 DOI: 10.1016/j.injury.2016.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hypothermia may attenuate ventilator induced-lung injury in acute respiratory distress syndrome (ARDS). However, the impact of hypothermia on extra-pulmonary organ injury in ARDS remains unclear. The purpose of this study was to investigate whether hypothermia affects extra-pulmonary organ injury in a canine ARDS model induced by oleic acid. OBJECTIVES Twelve anesthetized canines with oleic acid-induced ARDS were randomly divided (n=6 per group) into a hypothermia group (core temperature of 33±1°C, HT group) and a normothermia group (core temperature of 38±1°C, NT group) and treated for four hours. The liver, small intestine and kidney were assessed by evaluating biochemical parameters, plasma and tissue cytokine levels, and tissue histopathological injury scores. RESULTS The HT group showed a lower plateau pressure, lung elastance and pulmonary vascular resistance. Hypothermia was associated with lower oxygen consumption (138.4±55.0mlmin(-1)vs. 72.0±11.2mlmin(-1), P<0.05) and higher oxygen saturation of mixed venous blood (62.8%±8.0% vs. 77.5%±10.1%, P<0.05). Both groups had similar levels of tumour necrosis factor-α in the plasma and extra-pulmonary organ, however, plasma interleukin-10 (97.1±25.0pgml(-1)vs. 131.4±27.0pgml(-1), P<0.05) was higher in the HT group. Further, the animals in the HT group had a lower levels of plasma creatinine (54.6±19.1UL(-1)vs. 29.1±8.0UL(-1), P<0.05), and lower renal histopathological injury scores [4.0(3.5;7.0) vs. 1.5(0.8;3.0), P<0.05]. Hypothermia did not affect the histopathological injury of the liver and small intestine. CONCLUSIONS Short-term mild hypothermia can reduce lung elastance and pulmonary vascular resistance, increase the systemic anti-inflammatory response and attenuate kidney histopathological injury in a canine ARDS model induced by oleic acid.
Collapse
Affiliation(s)
- Jingen Xia
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, PR China.
| | - Ran Li
- Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China.
| | - Rui Yang
- Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China.
| | - Li Zhang
- Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China.
| | - Bing Sun
- Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China.
| | - Yingying Feng
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, PR China.
| | - Jingjing Jin
- Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China.
| | - Linna Huang
- Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China.
| | - Qingyuan Zhan
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, PR China.
| |
Collapse
|
34
|
Inferior Vena Cava Thrombosis Related to Hypothermia Catheter: Report of 20 Consecutive Cases. Neurocrit Care 2016; 23:72-7. [PMID: 25537699 DOI: 10.1007/s12028-014-0069-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Temperature management using endovascular catheters is an established therapy in neurointensive care. Nonetheless, several case series have reported a high rate of thrombosis related to the use of endovascular hypothermia catheters. METHODS As a result of a pulmonary embolism that developed in a patient after removing an inferior vena cava hypothermia catheter, we designed a clinical protocol for managing and removing these devices. First, an invasive cavography was performed before the removal of the catheter. If there was a thrombus, a cava vein filter was inserted through jugular access. After that, the catheter was removed. RESULTS The venography found inferior vena cava thrombi in 18 of 20 consecutive patients. A concomitant ultrasonography study showed vena cava thrombosis in only three patients. A vena cava filter was inserted in all patients where thrombi were found, without any significant complication. Anticoagulation was started in all patients. No symptomatic pulmonary embolism was diagnosed until the time of discharge. CONCLUSIONS The frequency of thrombosis related to temperature management catheters is extremely high (90 %). Furthermore, ultrasonography has a very low sensibility to detect cava vein thrombosis (16.7 %). The real meaning of our findings is unknown, but other temperature control systems could be a safer option. More studies are needed to confirm our findings.
Collapse
|
35
|
Abstract
Spinal cord injury (SCI) is a major health problem and is associated with a diversity of neurological symptoms. Pathophysiologically, dysfunction after SCI results from the culmination of tissue damage produced both by the primary insult and a range of secondary injury mechanisms. The application of hypothermia has been demonstrated to be neuroprotective after SCI in both experimental and human studies. The myriad of protective mechanisms of hypothermia include the slowing down of metabolism, decreasing free radical generation, inhibiting excitotoxicity and apoptosis, ameliorating inflammation, preserving the blood spinal cord barrier, inhibiting astrogliosis, promoting angiogenesis, as well as decreasing axonal damage and encouraging neurogenesis. Hypothermia has also been combined with other interventions, such as antioxidants, anesthetics, alkalinization and cell transplantation for additional benefit. Although a large body of work has reported on the effectiveness of hypothermia as a neuroprotective approach after SCI and its application has been translated to the clinic, a number of questions still remain regarding its use, including the identification of hypothermia's therapeutic window, optimal duration and the most appropriate rewarming rate. In addition, it is necessary to investigate the neuroprotective effect of combining therapeutic hypothermia with other treatment strategies for putative synergies, particularly those involving neurorepair.
Collapse
Affiliation(s)
- Jiaqiong Wang
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| |
Collapse
|
36
|
Rathi S, Dhiman RK. Hepatobiliary Quiz (Answers)-14 (2015). J Clin Exp Hepatol 2015; 5:175-8. [PMID: 26155047 PMCID: PMC4491639 DOI: 10.1016/j.jceh.2015.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
37
|
Baker LA, Lee KCL, Palacios Jimenez C, Alibhai H, Chang YM, Leckie PJ, Mookerjee RP, Davies NA, Andreola F, Jalan R. Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure. PLoS One 2015; 10:e0128076. [PMID: 26018205 PMCID: PMC4446266 DOI: 10.1371/journal.pone.0128076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/23/2015] [Indexed: 12/19/2022] Open
Abstract
Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002). Conclusions: MicroRNAs were released passively into the circulation in response to acetaminophen-induced cellular damage. A significant increase in global microRNA was detectable prior to significant increases in miR122, miR192 and miR124-1, which were associated with clinical evidence of liver, kidney and brain injury respectively.
Collapse
Affiliation(s)
- Luisa A. Baker
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Karla C. L. Lee
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Carolina Palacios Jimenez
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Hatim Alibhai
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Yu-Mei Chang
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Pamela J. Leckie
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Rajeshwar P. Mookerjee
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Nathan A. Davies
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Fausto Andreola
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, University College London Institute for Liver and Digestive Health, University College London Medical School, Royal Free Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Weingarten MA, Sande AA. Acute liver failure in dogs and cats. J Vet Emerg Crit Care (San Antonio) 2015; 25:455-73. [PMID: 25882813 DOI: 10.1111/vec.12304] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/26/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To define acute liver failure (ALF), review the human and veterinary literature, and discuss the etiologies and current concepts in diagnostic and treatment options for ALF in veterinary and human medicine. ETIOLOGY In veterinary medicine ALF is most commonly caused by hepatotoxin exposure, infectious agents, inflammatory diseases, trauma, and hypoxic injury. DIAGNOSIS A patient may be deemed to be in ALF when there is a progression of acute liver injury with no known previous hepatic disease, the development of hepatic encephalopathy of any grade that occurs within 8 weeks after the onset of hyperbilirubinemia (defined as plasma bilirubin >50 μM/L [>2.9 mg/dL]), and the presence of a coagulopathy. Diagnostic testing to more specifically characterize liver dysfunction or pathology is usually required. THERAPY Supportive care to aid the failing liver and compensate for the lost functions of the liver remains the cornerstone of care of patients with ALF. Advanced therapeutic options such as extracorporeal liver assist devices and transplantation are currently available in human medicine. PROGNOSIS The prognosis for ALF depends upon the etiology, the degree of liver damage, and the response to therapy. In veterinary medicine, the prognosis is generally poor.
Collapse
|
39
|
|
40
|
Shalimar, Acharya SK. Management in acute liver failure. J Clin Exp Hepatol 2015; 5:S104-15. [PMID: 26041950 PMCID: PMC4442864 DOI: 10.1016/j.jceh.2014.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is a rare, potentially fatal complication of severe hepatic illness resulting from various causes. In a clinical setting, severe hepatic injury is usually recognised by the appearance of jaundice, encephalopathy and coagulopathy. The central and most important clinical event in ALF is occurrence of hepatic encephalopathy (HE) and cerebral edema which is responsible for most of the fatalities in this serious clinical syndrome. The pathogenesis of encephalopathy and cerebral edema in ALF is unique and multifactorial. Ammonia plays a central role in the pathogenesis. The role of newer ammonia lowering agents is still evolving. Liver transplant is the only effective therapy that has been identified to be of promise in those with poor prognostic factors, whereas in the others, aggressive intensive medical management has been documented to salvage a substantial proportion of patients. A small fraction of patients undergo liver transplant and the remaining are usually treated with medical therapy. Therefore, identification of the complications and causes of death in such patients, and use of appropriate prognostic models to identify those who need liver transplant and those who can be managed with medical treatment is a vital component of therapeutic strategy. In this review, we discuss the various pathogenetic mechanisms and treatment options available.
Collapse
Key Words
- AASLD, American Association For the Study of Liver
- ALF, Acute Liver Failure
- ALFED, Acute Liver Failure Early Dynamic Model
- BBB, Blood Brain Barrier
- BCAA, Branched Chain Amino acid
- CBF, Cerebral Blood Flow
- CPP, Cerebral Perfusion Pressure
- CVVHD, Continuous Veno-Venous Hemodialysis
- FFP, Fresh Frozen Plasma
- GM-CSF, Granulocyte Macrophage Colony Stimulating Factor
- HE, Hepatic Encephalopathy
- ICU, Intensive Care Unit
- IEI, Icterus Encephalopathy Interval
- IL-1β, Interleukin-1 beta
- IL6, Interlekin 6
- INR, International Normalized Ratio
- LOLA, l-Ornithine L Aspartate
- LOPA
- LOPA, l-Ornithine Phenyl Acetate
- MAP, Mean Arterial Pressure
- NAC, N-Acetyl Cysteine
- NO, Nitric Oxide
- OLT, Orthotopic Liver Transplantation
- PCWP, Pulmonary Capillary Wedge Pressure
- PEEP, Positive End Expiratory Pressure
- PT, Prothrombin Time
- SIMV, Synchronous Intermittent mandatory Ventilation
- SIRS, Systemic Inflammatory Response Syndrome
- SPEAR, Selective Parenteral and Enteral Antibiotic Regimen
- TNF-α, Tumor Necrosis Factor alfa
- UCD, Urea Cycle Disorder
- USALF, United States Acute liver Failure Study Group
- ammonia
- cerebral edema
Collapse
Affiliation(s)
| | - Subrat K. Acharya
- Address for correspondence: Subrat K. Acharya, Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
41
|
Kulstad EB, Naiman M, Shanley P, Garrett F, Haryu T, Waller D, Azarafrooz F, Courtney DM. Temperature modulation with an esophageal heat transfer device - a pediatric swine model study. BMC Anesthesiol 2015; 15:16. [PMID: 25685058 PMCID: PMC4327961 DOI: 10.1186/1471-2253-15-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022] Open
Abstract
Background An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. Methods Three female Yorkshire swine averaging 23 kg were anesthetized with inhalational isoflurane prior to placement of the esophageal device, which was powered by a commercially available heat exchanger. Swine temperature was measured rectally and cooling and warming were performed by selecting the appropriate external heat exchanger mode. Temperature was recorded over time in order to calculate rates of temperature change. Histopathology of esophageal tissue was performed after study completion. Results Average swine baseline temperature was 38.3°C. Swine #1 exhibited a cooling rate of 3.5°C/hr; however, passive cooling may have contributed to this rate. External warming blankets maintained thermal equilibrium in swine #2 and #3, demonstrating maximum temperature decrease of 1.7°C/hr. Warming rates averaged 0.29°C/hr. Histopathologic analysis of esophageal tissue showed no adverse effects. Conclusions An esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).
Collapse
Affiliation(s)
- Erik B Kulstad
- Department of Emergency Medicine, Advocate Christ Medical Center, Oak Lawn, IL 60453 USA ; Department of Emergency Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Melissa Naiman
- Center for Advanced Design, Research, and Exploration (CADRE), University of Illinois at Chicago, 1737 W. Polk Street, Suite B14, Chicago, IL 60612 USA
| | - Patrick Shanley
- Advanced Cooling Therapy, 3440 S. Dearborn Street, #215-S, Chicago, IL 60616 USA
| | - Frank Garrett
- Garrett Technologies, 1955 Techny Road, Suite #1, Northbrook, IL 60062 USA
| | - Todd Haryu
- PreLabs, LLC, 33 Chicago Avenue, Oak Park, IL 60302 USA
| | - Donald Waller
- PreLabs, LLC, 33 Chicago Avenue, Oak Park, IL 60302 USA
| | - Farshid Azarafrooz
- Department of Comparative Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| | - Daniel Mark Courtney
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, 211 E. Ontario suite 200, Chicago, IL 60611 USA
| |
Collapse
|
42
|
Kiberenge RK, Lam H. Fatal hyperammonemia after repeat renal transplantation. J Clin Anesth 2015; 27:164-7. [PMID: 25573265 DOI: 10.1016/j.jclinane.2014.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023]
Abstract
A 35-year-old man had symptomatic hyperammonemia and normal liver function after repeat kidney transplantation. He presented with gastrointestinal symptoms, which quickly progressed to altered mental status. Therapy was instituted to clear the ammonia, but the ammonia level continued to rise. Eventually, the patient became unresponsive, and an emergent computed tomographic scan showed cerebral herniation. Urine acids and serum organic acids were not diagnostic of any urea cycle disorder. Histology did not reveal a clear etiology for the hyperammonemia.
Collapse
Affiliation(s)
- Roy K Kiberenge
- Department of Anesthesiology, University of Iowa, Iowa City, IA, USA
| | - Humphrey Lam
- Pediatric Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
43
|
Beltramini AM, Salata RA, Ray AJ. Thermoregulation and Risk of Surgical Site Infection. Infect Control Hosp Epidemiol 2015; 32:603-10. [DOI: 10.1086/660017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Surgical site infections (SSIs) occur in approximately 2%–5% of patients undergoing surgery in the acute care setting in the United States. These infections result in increased length of stay, higher risk of death, and increased cost of care compared with that in uninfected surgical patients. Given the inclusion of maintenance of perioperative normothermia for all major surgeries as a means of lowering the risk of infection in the Surgical Care Improvement Project 2009, we prepared a summary of the literature to determine the strength and quantity of the evidence underlying the performance measure. Although the data are generally supportive of perioperative normothermia as a means of reducing the risk of SSIs, a more rigorous approach using standard SSI definitions as well as standardized temperature measurements (and timing thereof) will further delineate the role played by temperature regulation in SSI development.
Collapse
|
44
|
Akutes und chronisches Leberversagen. DIE INTENSIVMEDIZIN 2015. [PMCID: PMC7122832 DOI: 10.1007/978-3-642-54953-3_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Goto T, Kubota Y, Toyoda A. Plasma and Liver Metabolic Profiles in Mice Subjected to Subchronic and Mild Social Defeat Stress. J Proteome Res 2014; 14:1025-32. [DOI: 10.1021/pr501044k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tatsuhiko Goto
- College
of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
| | - Yoshifumi Kubota
- College
of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan
| | - Atsushi Toyoda
- College
of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
- United
Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo 183-8509, Japan
| |
Collapse
|
46
|
Abstract
Acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) usually mandate management within an intensive care unit (ICU). Even though the conditions bear some similarities, precipitating causes, and systemic complications management practices differ. Although early identification of ALF and ACLF, improvements in ICU management, and the widespread availability of liver transplantation have improved mortality, optimal management practices have not been defined. This article summarizes current ICU management practices and identifies areas of management that require further study.
Collapse
Affiliation(s)
- M Shadab Siddiqui
- Section of Hepatology, Hume-Lee Transplant Center, Virginia Commonwealth University, 1200 East Broad Street, Richmond, VA 23222, USA
| | - R Todd Stravitz
- Section of Hepatology, Hume-Lee Transplant Center, Virginia Commonwealth University, 1200 East Broad Street, Richmond, VA 23222, USA.
| |
Collapse
|
47
|
Shah TA, Mauriello CT, Hair PS, Sandhu A, Stolz MP, Bass WT, Krishna NK, Cunnion KM. Clinical hypothermia temperatures increase complement activation and cell destruction via the classical pathway. J Transl Med 2014; 12:181. [PMID: 24962100 PMCID: PMC4079622 DOI: 10.1186/1479-5876-12-181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background Therapeutic hypothermia is a treatment modality that is increasingly used to improve clinical neurological outcomes for ischemia-reperfusion injury-mediated diseases. Antibody-initiated classical complement pathway activation has been shown to contribute to ischemia-reperfusion injury in multiple disease processes. However, how therapeutic hypothermia affects complement activation is unknown. Our goal was to measure the independent effect of temperature on complement activation, and more specifically, examine the relationship between clinical hypothermia temperatures (31–33°C), and complement activation. Methods Antibody-sensitized erythrocytes were used to assay complement activation at temperatures ranging from 0-41°C. Individual complement pathway components were assayed by ELISA, Western blot, and quantitative dot blot. Peptide Inhibitor of complement C1 (PIC1) was used to specifically inhibit activation of C1. Results Antibody-initiated complement activation resulting in eukaryotic cell lysis was increased by 2-fold at 31°C compared with 37°C. Antibody-initiated complement activation in human serum increased as temperature decreased from 37°C until dramatically decreasing at 13°C. Quantitation of individual complement components showed significantly increased activation of C4, C3, and C5 at clinical hypothermia temperatures. In contrast, C1s activation by heat-aggregated IgG decreased at therapeutic hypothermia temperatures consistent with decreased enzymatic activity at lower temperatures. However, C1q binding to antibody-coated erythrocytes increased at lower temperatures, suggesting that increased classical complement pathway activation is mediated by increased C1 binding at therapeutic hypothermia temperatures. PIC1 inhibited hypothermia-enhanced complement-mediated cell lysis at 31°C by up to 60% (P = 0.001) in a dose dependent manner. Conclusions In summary, therapeutic hypothermia temperatures increased antibody-initiated complement activation and eukaryotic cell destruction suggesting that the benefits of therapeutic hypothermia may be mediated via other mechanisms. Antibody-initiated complement activation has been shown to contribute to ischemia-reperfusion injury in several animal models, suggesting that for diseases with this mechanism hypothermia-enhanced complement activation may partially attenuate the benefits of therapeutic hypothermia.
Collapse
Affiliation(s)
- Tushar A Shah
- Department of Pediatrics, Eastern Virginia Medical School, 855 West Brambleton Avenue, Norfolk, VA 23510, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
OPINION STATEMENT Hepatic encephalopathy management varies depending on the acuity of liver failure. However, in patients with either acute or chronic liver failure five basic steps in management are critical: stabilization, addressing modifiable precipitating factors, lowering blood ammonia, managing elevated intracranial pressure (ICP) (if present), and managing complications of liver failure that can contribute to encephalopathy, particularly hyponatremia. Because liver failure patients are prone to a variety of other medical problems that can lead to encephalopathy (such as coagulopathy associated intracranial hemorrhage, electrolyte disarray, renal failure, hypotension, hypoglycemia, and infection), a thorough history, physical and neurologic examination is mandated in all encephalopathic liver failure patients. There should be a low threshold for brain imaging in patients with focal neurological deficits given the propensity for spontaneous intracranial hemorrhage. In patients with acute liver failure and high grade encephalopathy, identification of the etiology of acute liver failure is essential to guide treatment and antidote administration, particularly in the case of acetaminophen poisoning. Equally critical is management of elevated ICP in acute liver failure. Intracranial hypertension can be treated with hypertonic saline and/or adjustment of the dialysis bath. Placement of an intracranial monitor to guide ICP therapy is risky because of concomitant coagulopathy and remains controversial. Continuous renal replacement therapy may help lower serum ammonia, treat coexisting uremia, and improve symptoms. Liver transplantation is the definitive treatment for patients with acute liver failure and hepatic encephalopathy. In patients with chronic hepatic encephalopathy, lactulose and rifaxamin remain a mainstay of therapy. In these patients, it is essential to identify reversible causes of hepatic encephalopathy such as increased ammonia production and/or decreased clearance (eg, infection, GI bleed, constipation, hypokalemia, dehydration). Chronic hyponatremia should be managed by gradual sodium correction of no more than 8‒12 meq/L per day to avoid central myelinolysis syndrome. Free water restriction and increased dietary sodium are reasonable, cost effective treatment options. Many emerging therapies, both pharmacologic and interventional, are currently being studied to improve management of hepatic encephalopathy.
Collapse
|
49
|
Affiliation(s)
- HJ Lee
- CT2 Core Medical Trainee, Southend University Hospital NHS Foundation Trust, Essex SS0 0RY
| | - N Halliday
- ST3 in Gastroenterology, Southend University Hospital NHS Foundation Trust, Essex SS0 0RY
| | - GP Bray
- Consultant Gastroenterologist and Hepatologist, Department of Gastroenterology, Southend University Hospital NHS Foundation Trust, Essex SS0 0RY
| |
Collapse
|
50
|
Kiamanesh D, Rumley J, Moitra VK. Monitoring and managing hepatic disease in anaesthesia. Br J Anaesth 2014; 111 Suppl 1:i50-61. [PMID: 24335399 DOI: 10.1093/bja/aet378] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Patients with liver disease have multisystem organ dysfunction that leads to physiological perturbations ranging from hyperbilirubinaemia of no clinical consequence to severe coagulopathy and metabolic disarray. Patient-specific risk factors, clinical scoring systems, and surgical procedures stratify perioperative risk for these patients. The anaesthetic management of patients with hepatic dysfunction involves consideration of impaired drug metabolism, hyperdynamic circulation, perioperative hypoxaemia, bleeding, thrombosis, and hepatic encephalopathy.
Collapse
Affiliation(s)
- D Kiamanesh
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | |
Collapse
|