1
|
Lassola S, Battaglini D, De Rosa S. Advancing extracorporeal carbon dioxide removal technology: bridging basic science and clinical practice. Med Gas Res 2025; 15:288-298. [PMID: 39511753 PMCID: PMC11918458 DOI: 10.4103/mgr.medgasres-d-24-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 11/15/2024] Open
Abstract
Recently, advancements in extracorporeal carbon dioxide removal (ECCO 2 R) technology have markedly enhanced its clinical applicability and efficacy for managing severe respiratory conditions. This review highlights critical innovations in ECCO 2 R, such as advanced catheter technologies, active mixing methods, and biochemical enhancements, which have substantially improved gas exchange efficiency and broadened the scope of ECCO 2 R applications. Integrating ECCO 2 R into acute and chronic respiratory care has led to a shift toward more mobile and less invasive modalities, promising for extending ECCO 2 R usage from intensive care units to home settings. By examining these technological advancements and their clinical impacts, this paper outlines the potential future directions of ECCO 2 R technology, emphasizing its role in transforming respiratory care practices and enhancing patient outcomes.
Collapse
Affiliation(s)
- Sergio Lassola
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS, Trento, Italy
| | - Denise Battaglini
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia De Rosa
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS, Trento, Italy
- Center for Medical Sciences - CISMed, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Batchinsky AI, Roberts TR, Jordan BS, Beely BM, Wendorff DS, Necsoiu C, Cannon JW, Chung KK, Cancio LC. Immediate postinjury extracorporeal carbon dioxide removal reduces ventilator requirements and mitigates acute respiratory distress syndrome in swine. J Trauma Acute Care Surg 2025; 98:500-509. [PMID: 39630509 DOI: 10.1097/ta.0000000000004486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
BACKGROUND Awareness of ventilator-induced lung injury contributed to increased use of extracorporeal interventions, but not immediately after injury,before acute respiratory distress syndrome (ARDS) ensues. Our objective was to evaluate the role of venovenous extracorporeal carbon dioxide removal (ECCO 2 R) in management of mechanically ventilated swine with smoke inhalation injury and 40% body surface area burns. METHODS Yorkshire swine (n = 29, 43.2 ± 0.5 kg) underwent anesthesia, instrumentation, severe smoke inhalation, and 40% body surface area burns, followed by 72 hours of round-the-clock intensive care unit care with mechanical ventilation, fluids, pressors, bronchoscopic cast removal, computer tomography scans, and arterial blood assays. Within 1 hour after injury, animals received ECCO 2 R with either MiniLung (Xenios AG, Heilbronn, Germany; n = 10) or Hemolung (ALung Technologies, Pittsburgh, PA; n = 10), or no ECCO 2 R in injured controls (INJC, n = 12). RESULTS Immediate postinjury ECCO 2 R reduced minute ventilation ( p < 0.001) and prevented ARDS in 37.5% of MiniLung and 11.1% of Hemolung animals. Time to ARDS (partial pressure of arterial oxygen to fraction of inspired oxygen ratio below 300) was shortest (14 ± 2.2 hours) in INJC, intermediate (21.6 ± 3.5 hours) in Hemolung (HEMO), and most delayed in MiniLung (31.1 ± 7.2 hours, p = 0.0121, log-rank test vs. INJC). Driving pressure was lower in MiniLung versus INJC ( p < 0.0001) and HEMO versus INJC ( p = 0.0005) at 48 hours. Extracorporeal CO 2 removal reduced systemic levels of tumor necrosis factor α versus INJC. CONCLUSION In swine with severe smoke inhalation and burns, immediate postinjury ECCO 2 R reduced ventilator settings, delayed or prevented ARDS, and reduced its severity. Proactive early percutaneous ECCO 2 R initiation via simplified, purpose-built devices should be considered as a low-maintenance lung injury management approach with significant disease modifying clinical benefit potential.
Collapse
Affiliation(s)
- Andriy I Batchinsky
- From the Autonomous Reanimation and Evacuation Research Program (A.I.B., T.R.R., B.M.B., D.S.W.), The Geneva Foundation, San Antonio; US Army Institute of Surgical Research (B.S.J., C.N., L.C.C.), Joint Base San Antonio-Fort Sam Houston, Texas; Division of Traumatology, Surgical Critical Care and Emergency Surgery (J.W.C.), Penn Presbyterian Medical Center, Philadelphia, Pennsylvania; Seastar Medical (K.K.C.), Denver, Colorado; and Division of Trauma and Emergency Surgery (L.C.C.), University of Texas San Antonio, San Antonio, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lamas T, Fernandes SM, Vasques F, Karagiannidis C, Camporota L, Barrett N. Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal. J Clin Med 2024; 14:12. [PMID: 39797096 PMCID: PMC11722077 DOI: 10.3390/jcm14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is an emerging technique designed to reduce carbon dioxide (CO2) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCO2R operates at lower blood flows (0.4-1.5 L/min), making it less invasive, with smaller cannulas and simpler devices. Despite encouraging results in controlling respiratory acidosis, its broader adoption is hindered by complications, including haemolysis, thrombosis, and bleeding. Technological advances, including enhanced membrane design, gas exchange efficiency, and anticoagulation strategies, are essential to improving safety and efficacy. Innovations such as wearable prototypes that adapt CO2 removal to patient activity and catheter-based systems for lower blood flow are expanding the potential applications of ECCO2R, including as a bridge-to-lung transplantation and in outpatient settings. Promising experimental approaches include respiratory dialysis, carbonic anhydrase-coated membranes, and electrodialysis to maximise CO2 removal. Further research is needed to optimise device performance, develop cost-effective systems, and establish standardised protocols for safe clinical implementation. As the technology matures, integration with artificial intelligence (AI) and machine learning may personalise therapy, improving outcomes. Ongoing clinical trials will be pivotal in addressing these challenges, ultimately enhancing the role of ECCO2R in critical care and its accessibility across healthcare settings.
Collapse
Affiliation(s)
- Tomás Lamas
- ICU Department at Hospital Egas Moniz, ULSLO, 1349-019 Lisbon, Portugal
- ICU Department at CUF Tejo, 1350-352 Lisbon, Portugal
| | - Susana M. Fernandes
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Serviço de Medicina Intensiva, ULS Santa Maria, 1649-035 Lisbon, Portugal
| | - Francesco Vasques
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
- Division of Centre of Human Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, ARDS and ECMO Centre, Cologne-Merheim Hospital, 51109 Cologne, Germany;
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
- Division of Centre of Human Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Nicholas Barrett
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
| |
Collapse
|
4
|
Roberts TR, Persello A, Harea GT, Vedula EM, Isenberg BC, Zang Y, Santos J, Borenstein JT, Batchinsky AI. First 24-Hour-Long Intensive Care Unit Testing of a Clinical-Scale Microfluidic Oxygenator in Swine: A Safety and Feasibility Study. ASAIO J 2024; 70:535-544. [PMID: 38165978 DOI: 10.1097/mat.0000000000002127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Microfluidic membrane oxygenators are designed to mimic branching vasculature of the native lung during extracorporeal lung support. To date, scaling of such devices to achieve clinically relevant blood flow and lung support has been a limitation. We evaluated a novel multilayer microfluidic blood oxygenator (BLOx) capable of supporting 750-800 ml/min blood flow versus a standard hollow fiber membrane oxygenator (HFMO) in vivo during veno-venous extracorporeal life support for 24 hours in anesthetized, mechanically ventilated uninjured swine (n = 3/group). The objective was to assess feasibility, safety, and biocompatibility. Circuits remained patent and operated with stable pressures throughout 24 hours. No group differences in vital signs or evidence of end-organ damage occurred. No change in plasma free hemoglobin and von Willebrand factor multimer size distribution were observed. Platelet count decreased in BLOx at 6 hours (37% dec, P = 0.03), but not in HFMO; however, thrombin generation potential was elevated in HFMO (596 ± 81 nM·min) versus BLOx (323 ± 39 nM·min) at 24 hours ( P = 0.04). Other coagulation and inflammatory mediator results were unremarkable. BLOx required higher mechanical ventilator settings and showed lower gas transfer efficiency versus HFMO, but the stable device performance indicates that this technology is ready for further performance scaling and testing in lung injury models and during longer use conditions.
Collapse
Affiliation(s)
- Teryn R Roberts
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Antoine Persello
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - George T Harea
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Else M Vedula
- Bioengineering Division, Draper, Cambridge, Massachusetts
| | | | - Yanyi Zang
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Jose Santos
- Bioengineering Division, Draper, Cambridge, Massachusetts
| | | | - Andriy I Batchinsky
- From the Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| |
Collapse
|
5
|
Isenberg BC, Vedula EM, Santos J, Lewis DJ, Roberts TR, Harea G, Sutherland D, Landis B, Blumenstiel S, Urban J, Lang D, Teece B, Lai W, Keating R, Chiang D, Batchinsky AI, Borenstein JT. A Clinical-Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207455. [PMID: 37092588 PMCID: PMC10288269 DOI: 10.1002/advs.202207455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Recent global events such as COVID-19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL min⁻1 , the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24-hour pilot large animal experiments are demonstrated - a key step toward translation of this technology to the clinic for treatment of a range of lung diseases.
Collapse
Affiliation(s)
| | | | - Jose Santos
- Bioengineering DivisionDraperCambridgeMA02139USA
| | | | - Teryn R. Roberts
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | - George Harea
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | | | - Beau Landis
- Bioengineering DivisionDraperCambridgeMA02139USA
| | | | - Joseph Urban
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Daniel Lang
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Bryan Teece
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - WeiXuan Lai
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Rose Keating
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Diana Chiang
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Andriy I. Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | | |
Collapse
|
6
|
[Focus ventilation, oxygen therapy and weaning 2021/2022 : Summary of selected intensive medical care studies]. DIE ANAESTHESIOLOGIE 2023; 72:199-208. [PMID: 36695839 PMCID: PMC9876412 DOI: 10.1007/s00101-023-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/26/2023]
|
7
|
Sharma AK, Conover SP, Sirkar KK. Plasma Polymerized Coatings on Hollow Fiber Membranes-Applications and Their Aging Characteristics in Different Media. MEMBRANES 2022; 12:membranes12070656. [PMID: 35877859 PMCID: PMC9320213 DOI: 10.3390/membranes12070656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
In the past 30 years, plasma polymerization has emerged as a versatile technique for depositing ultrathin nanocoating on a variety of substrates for applications that range from providing lubricity to the substrate, protection from harsh environments, promoting adhesion, surface modification to applications of coating in ultrafiltration and gas separation membranes. Applications in the field of volatile organic compound (VOC) recovery and membrane distillation have also gained importance in recent years. Most of these applications use silicone and fluorosilicone-based plasma polymers that provide versatility, good separation characteristics, and long-term stability to the membrane. However, plasma polymers are known to age with time. The current study focuses on the aging behavior of silicone and fluorosilicone plasma polymers in different environments that include air, ionized air, heat, aqueous solutions of inorganic chemicals, as well as harsh solvents such as hexane, dichloromethane (DCM), and toluene. Membrane gas permeance and gas selectivity were used to quantitatively measure the aging behavior of the coatings on gas separation membranes, while water and VOC flux were used to measure the effect of aging for membranes designed for membrane distillation and VOC separation. It was found that while all plasma polymers of this study showed changes in membrane gas permeance on exposure to air, they fundamentally retained their membrane separation characteristics in all the studied environments. Significant changes in gas permeability characteristics were observed on exposure of the membranes to organic solvents like dichloromethane, 2-propanol, hexane, and toluene, which are attributed to dimensional changes in the hollow fiber substrate rather than changes in plasma polymer characteristics. Ionized air was also found to have a significant effect on the gas permeability characteristic of the membranes, reducing the gas permeance by as much as 50% in some cases. This is attributed to accelerated oxidation and crosslinking of the polymer in ionized air. XPS studies showed an increase in the oxygen content of the polymer on aging. Differences were found in the aging behavior of polymer coatings made from different monomers with long-chain monomers such as hexamethyltrisiloxane offering more stable coatings. The cross-link density of the polymer also influenced the aging behavior, with the more cross-linked polymer showing a lesser influence on aging in a chemical environment. No significant effect of aging was found on applications of these polymer coatings in the field of membrane distillation, pervaporation, and VOC removal, and a stable performance was observed over a long period of time. It was also noted that the selection of co-monomers played a significant role in membrane distillation, with polymers forming fluoro co-monomers giving better results. The current study also demonstrated the usefulness of plasma polymers in controlling the pore size of microporous membranes that can find useful applications in bio-filtration and VOC recovery.
Collapse
Affiliation(s)
- Ashok K. Sharma
- Applied Membrane Technology, 11558 Encore Circle, Minnetonka, MN 55343, USA;
- Correspondence:
| | - Stephen P. Conover
- Applied Membrane Technology, 11558 Encore Circle, Minnetonka, MN 55343, USA;
| | - Kamalesh K. Sirkar
- Otto York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA;
| |
Collapse
|
8
|
Barrett NA, Hart N, Daly KJR, Marotti M, Kostakou E, Carlin C, Lua S, Singh S, Bentley A, Douiri A, Camporota L. A randomised controlled trial of non-invasive ventilation compared with extracorporeal carbon dioxide removal for acute hypercapnic exacerbations of chronic obstructive pulmonary disease. Ann Intensive Care 2022; 12:36. [PMID: 35445986 PMCID: PMC9021560 DOI: 10.1186/s13613-022-01006-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Patients presenting with acute hypercapnic respiratory failure due to exacerbations of chronic obstructive pulmonary disease (AECOPD) are typically managed with non-invasive ventilation (NIV). The impact of low-flow extracorporeal carbon dioxide removal (ECCO2R) on outcome in these patients has not been explored in randomised trials. Methods Open-label randomised trial comparing NIV (NIV arm) with ECCO2R (ECCO2R arm) in patients with AECOPD at high risk of NIV failure (pH < 7.30 after ≥ 1 h of NIV). The primary endpoint was time to cessation of NIV. Secondary outcomes included device tolerance and complications, changes in arterial blood gases, hospital survival. Results Eighteen patients (median age 67.5, IQR (61.5–71) years; median GOLD stage 3 were enrolled (nine in each arm). Time to NIV discontinuation was shorter with ECCO2R (7:00 (6:18–8:30) vs 24:30 (18:15–49:45) h, p = 0.004). Arterial pH was higher with ECCO2R at 4 h post-randomisation (7.35 (7.31–7.37) vs 7.25 (7.21–7.26), p < 0.001). Partial pressure of arterial CO2 (PaCO2) was significantly lower with ECCO2R at 4 h (6.8 (6.2–7.15) vs 8.3 (7.74–9.3) kPa; p = 0.024). Dyspnoea and comfort both rapidly improved with commencement of ECCO2R. There were no severe or life-threatening complications in the study population. There were no episodes of major bleeding or red blood cell transfusion in either group. ICU and hospital length of stay were longer with ECCO2R, and there was no difference in 90-day mortality or functional outcomes at follow-up. Interpretation There is evidence of benefit associated with ECCO2R with time to improvement in respiratory acidosis, in respiratory physiology and an immediate improvement in patient comfort and dyspnoea with commencement of ECCO2R. In addition, there was minimal clinically significant adverse events associated with ECCO2R use in patients with AECOPD at risk of failing or not tolerating NIV. However, the ICU and hospital lengths of stay were longer in the ECCO2R for similar outcomes. Trial registration The trial is prospectively registered on ClinicalTrials.gov: NCT02086084. Registered on 13th March 2014, https://clinicaltrials.gov/ct2/show/NCT02086084?cond=ecco2r&draw=2&rank=8 Supplementary Information The online version contains supplementary material available at 10.1186/s13613-022-01006-8.
Collapse
Affiliation(s)
- Nicholas A Barrett
- Department of Critical Care, NHS Foundation Trust, Guy's and St ThomasWestminster Bridge Rd, London, SE1 7EH, UK. .,Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, WC2R 2LS, UK.
| | - Nicholas Hart
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, WC2R 2LS, UK.,Lane Fox Respiratory Unit, Guy's and St. Thomas' NHS Foundation Trust, Westminster Bridge Rd, London, SE1 7EH, UK
| | - Kathleen J R Daly
- Department of Critical Care, NHS Foundation Trust, Guy's and St ThomasWestminster Bridge Rd, London, SE1 7EH, UK
| | - Martina Marotti
- Department of Critical Care, NHS Foundation Trust, Guy's and St ThomasWestminster Bridge Rd, London, SE1 7EH, UK
| | - Eirini Kostakou
- Department of Critical Care, NHS Foundation Trust, Guy's and St ThomasWestminster Bridge Rd, London, SE1 7EH, UK
| | - Chris Carlin
- Dept. of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Stephanie Lua
- Dept. of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Suveer Singh
- Department of Respiratory and Critical Care Medicine, Chelsea & Westminster Hospital, London, SW10 9NH, UK
| | - Andrew Bentley
- Department of Intensive Care & Respiratory Medicine, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, King's College London, London, WC2R 2LS, UK.,National Institute for Health Research Biomedical Research Centre, Guy's and St. Thomas' NHS Trust and King's College London, London, WC2R 2LS, UK
| | - Luigi Camporota
- Department of Critical Care, NHS Foundation Trust, Guy's and St ThomasWestminster Bridge Rd, London, SE1 7EH, UK.,Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
9
|
Prat NJ, Meyer AD, Scaravilli V, Cannon J, Cancio LC, Cap AP, Batchinsky AI. Regional blood acidification inhibits coagulation during extracorporeal carbon dioxide removal (ECCO 2 R). Artif Organs 2022; 46:1181-1191. [PMID: 35289412 DOI: 10.1111/aor.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Consumption of platelets and coagulation factors during extracorporeal carbon dioxide removal (ECCO2 R) increases bleeding complications and associated mortality. Regional infusion of lactic acid enhances ECCO2 R by shifting the chemical equilibrium from bicarbonate to carbon dioxide. Our goal was to test if regional blood acidification during ECCO2 R inhibits platelet function and coagulation. METHODS An ECCO2 R system containing a hemofilter circulated blood at 0.25 L/min in 8 healthy ewes (Ovis aries) for 36 hours. Three of the sheep received ECCO2 R with no recirculation compared to 5 sheep that received ECCO2 R plus 12 hours of regional blood acidification via the hemofilter, placed upstream from the oxygenator, into which 4.4 M lactic acid was infused. Blood gases, platelet count and function, thromboelastography, coagulation-factor activity, and von Willebrand factor activity (vWF:Ag) were measured at baseline, at start of lactic acid infusion, and after 36 hours of extracorporeal circulation. RESULTS Twelve hours of regional acid infusion significantly inhibited platelet aggregation response to adenosine diphosphate; vWF; and platelet expression of P-selectin compared to control. It also significantly reduced consumption of fibrinogen and of coagulation factors V, VII, IX, compared to control. CONCLUSIONS Regional acidification reduces platelet activation and vitamin-K-dependent coagulation-factor consumption during ECCO2 R. This is the first report of a simple method that may enhance effective anticoagulation for ECCO2 R.
Collapse
Affiliation(s)
- Nicolas J Prat
- French Armed Forces Biomedical Research Institute (IRBA), Paris, France.,U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Andrew D Meyer
- Division of Critical Care Medicine, Department of Pediatrics, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA.,U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Vittorio Scaravilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Jeremy Cannon
- Division of Traumatology, Surgical Critical Care & Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leopoldo C Cancio
- U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Andrew P Cap
- U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | | |
Collapse
|
10
|
Batchinsky A, Roberts T, Cancio L. Extracorporeal Carbon Dioxide Removal vs Standard Care Ventilation Effect on 90-Day Mortality in Patients With Acute Hypoxemic Respiratory Failure. JAMA 2022; 327:82-83. [PMID: 34982125 DOI: 10.1001/jama.2021.20999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Andriy Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, San Antonio, Texas
| | - Teryn Roberts
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, San Antonio, Texas
| | - Leopoldo Cancio
- US Army Burn Unit, Institute of Surgical Research, Ft Sam Houston, Texas
| |
Collapse
|
11
|
Tethered Liquid Perfluorocarbon Coating for 72 Hour Heparin-Free Extracorporeal Life Support. ASAIO J 2021; 67:798-808. [PMID: 33534236 DOI: 10.1097/mat.0000000000001292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coagulopathic complications during extracorporeal life support (ECLS) result from two parallel processes: 1) foreign surface contact and shear stress during blood circulation and 2) administration of anticoagulant drugs to prevent circuit thrombosis. To address these problems, biocompatible surfaces are developed to prevent foreign surface-induced coagulopathy, reducing or eliminating the need for anticoagulants. Tethered liquid perfluorocarbon (TLP) is a nonadhesive coating that prevents adsorption of plasma proteins and thrombus deposition. We examined application of TLP to complete ECLS circuits (membranes, tubing, pumps, and catheters) during 72 hours of ECLS in healthy swine (n = 5/group). We compared TLP-coated circuits used without systemic anticoagulation to standard of care: heparin-coated circuits with continuous heparin infusion. Coagulopathic complications, device performance, and systemic effects were assessed. We hypothesized that TLP reduces circuit thrombosis and iatrogenic bleeding, without impeding gas exchange performance or causing untoward effects. No difference in bleeding or thrombotic complication rate was observed; however, circuit occlusion occurred in both groups (TLP = 2/5; CTRL = 1/5). TLP required elevated sweep gas rate to maintain normocapnia during ECLS versus CTRL (10-20 vs. 5 L/min; p = 0.047), suggesting impaired gas exchange. Thrombus deposition and protein adhesion on explanted membranes were comparable, and TLP did not preserve platelet or blood cell counts relative to controls. We conclude that neither TLP nor standard of care is an efficacious solution to prevent coagulation disturbances during ECLS. Further testing of promising biomaterials for ECLS utilizing the model outlined here is warranted.
Collapse
|
12
|
Read MD, Nam JJ, Biscotti M, Piper LC, Thomas SB, Sams VG, Elliott BS, Negaard KA, Lantry JH, DellaVolpe JD, Batchinsky A, Cannon JW, Mason PE. Evolution of the United States Military Extracorporeal Membrane Oxygenation Transport Team. Mil Med 2021; 185:e2055-e2060. [PMID: 32885813 DOI: 10.1093/milmed/usaa215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/01/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The use of extracorporeal membrane oxygenation (ECMO) for the care of critically ill adult patients has increased over the past decade. It has been utilized in more austere locations, to include combat wounded. The U.S. military established the Acute Lung Rescue Team in 2005 to transport and care for patients unable to be managed by standard medical evacuation resources. In 2012, the U.S. military expanded upon this capacity, establishing an ECMO program at Brooke Army Medical Center. To maintain currency, the program treats both military and civilian patients. MATERIALS AND METHODS We conducted a single-center retrospective review of all patients transported by the sole U.S. military ECMO program from September 2012 to December 2019. We analyzed basic demographic data, ECMO indication, transport distance range, survival to decannulation and discharge, and programmatic growth. RESULTS The U.S. military ECMO team conducted 110 ECMO transports. Of these, 88 patients (80%) were transported to our facility and 81 (73.6%) were cannulated for ECMO by our team prior to transport. The primary indication for ECMO was respiratory failure (76%). The range of transport distance was 6.5 to 8,451 miles (median air transport distance = 1,328 miles, median ground transport distance = 16 miles). In patients who were cannulated remotely, survival to decannulation was 76% and survival to discharge was 73.3%. CONCLUSIONS Utilization of the U.S. military ECMO team has increased exponentially since January 2017. With an increased tempo of transport operations and distance of critical care transport, survival to decannulation and discharge rates exceed national benchmarks as described in ELSO published data. The ability to cannulate patients in remote locations and provide critical care transport to a military medical treatment facility has allowed the U.S. military to maintain readiness of a critical medical asset.
Collapse
Affiliation(s)
- Matthew D Read
- Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| | - Jason J Nam
- US Army Special Operations Command, Bldg X4047 New Dawn Drive, Fort Bragg, NC 78234
| | - Mauer Biscotti
- Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| | - Lydia C Piper
- Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| | - Sarah B Thomas
- Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| | - Valerie G Sams
- Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| | | | - Kathryn A Negaard
- Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| | - James H Lantry
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201
| | - Jeffry D DellaVolpe
- Methodist Healthcare System, 8109 Fredericksburg Rd, San Antonio, TX 78229.,Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402
| | - Andriy Batchinsky
- Autonomous Reanimation and Evacuation Program, The Geneva Foundation, 917 Pacific Ave, Tacoma, WA 98402
| | - Jeremy W Cannon
- University of Pennsylvania and the Presbyterian Medical Center, 3801 Filbert St #212, Philadelphia, PA 19104
| | - Phillip E Mason
- Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| |
Collapse
|
13
|
Manickavel S. Pathophysiology of respiratory failure and physiology of gas exchange during ECMO. Indian J Thorac Cardiovasc Surg 2020; 37:203-209. [PMID: 33967443 DOI: 10.1007/s12055-020-01042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023] Open
Abstract
Lungs play a key role in sustaining cellular respiration by regulating the levels of oxygen and carbon dioxide in the blood. This is achieved by exchanging these gases between blood and ambient air across the alveolar capillary membrane by the process of diffusion. In the microstructure of the lung, gas exchange is compartmentalized and happens in millions of microscopic alveolar units. In situations of lung injury, this structural complexity is disrupted resulting in impaired gas exchange. Depending on the severity and the type of lung injury, different aspects of pulmonary physiology are affected. If the respiratory failure is refractory to ventilator support, extracorporeal membrane oxygenation (ECMO) can be utilized to support the gas exchange needs of the body. In ECMO, thin hollow fiber membranes made up of polymethylpentene act as blood-gas interface for diffusion. Decades of innovative engineering with membranes and their alignment with blood and gas flows has enabled modern oxygenators to achieve clinically and physiologically significant amount of gas exchange.
Collapse
Affiliation(s)
- Suresh Manickavel
- Miami Transplant Institute, University of Miami, 1801 NW 9th Ave, Miami, FL 33136 USA
| |
Collapse
|
14
|
Dynamics of acute respiratory distress syndrome development due to smoke inhalation injury: Implications for prolonged field care. J Trauma Acute Care Surg 2020; 87:S91-S100. [PMID: 31246912 DOI: 10.1097/ta.0000000000002227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Smoke inhalation injury (SII) causes 30% to 40% mortality and will increase as a cause of death during prolonged field care. We used a combat relevant model of acute respiratory distress syndrome due to SII to study temporal changes in ventilation-perfusion (V/Q) matching, computed tomography (CT) scan data, and histopathology and hypothesized that SII leads to increase in shunt (Qshunt), V/Q mismatch, lung consolidation, and diffuse alveolar damage. METHODS Swine received severe SII and airway pressure release ventilation (APRV, n = 6), or conventional ARDSNet mechanical ventilation (MV) (CMV, n = 8). A control group without injury received volume controlled MV (CTRL, n = 6), The multiple inert gas elimination technique and CT were performed at baseline (BL), 0.5 hours, 1 hours, 2 hours, 24 hours, and 48 hours after injury. Diffuse alveolar damage scoring was performed post mortem. Significance at p less than 0.05: APRV versus CTRL; CMV versus CTRL; APRV versus CMV*; denotes changes versus BL. RESULTS (1) SII caused increases in Qshunt more so in APRV than CMV group. Qshunt did not change in CTRL. (2) PaO2-to-FIO2 ratio (PFR) was lower in APRV versus CTRL at 2 hours (375 ± 62‡ vs. 549 ± 40) and 24 hours (126 ± 34‡* vs. 445 ± 5) and 48 hours (120 ± 41‡& vs. 430 ± 13). In CMV animals, PFR was lower versus CTRL and BL at 24 hours (238 ± 33) and 48 hours (98 ± 27). Qshunt correlated with PFR (r = 0.75, p < 0.0001, APRV and (r = 0.65, p < 0.0001, CMV). CT showed decrease in normally aerated lung, while poorly and nonaerated lung increased. CONCLUSION Smoke inhalation injury leads to early development of shunt, V/Q mismatch, lung consolidation, and diffuse alveolar damage. These data substantiate the need for new point of injury interventions in the prolonged field care setting. LEVEL OF EVIDENCE Animal research.
Collapse
|
15
|
Staudinger T. Update on extracorporeal carbon dioxide removal: a comprehensive review on principles, indications, efficiency, and complications. Perfusion 2020; 35:492-508. [PMID: 32156179 DOI: 10.1177/0267659120906048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TECHNOLOGY Extracorporeal carbon dioxide removal means the removal of carbon dioxide from the blood across a gas exchange membrane without substantially improving oxygenation. Carbon dioxide removal is possible with substantially less extracorporeal blood flow than needed for oxygenation. Techniques for extracorporeal carbon dioxide removal include (1) pumpless arterio-venous circuits, (2) low-flow venovenous circuits based on the technology of continuous renal replacement therapy, and (3) venovenous circuits based on extracorporeal membrane oxygenation technology. INDICATIONS Extracorporeal carbon dioxide removal has been shown to enable more protective ventilation in acute respiratory distress syndrome patients, even beyond the so-called "protective" level. Although experimental data suggest a benefit on ventilator induced lung injury, no hard clinical evidence with respect to improved outcome exists. In addition, extracorporeal carbon dioxide removal is a tool to avoid intubation and mechanical ventilation in patients with acute exacerbated chronic obstructive pulmonary disease failing non-invasive ventilation. This concept has been shown to be effective in 56-90% of patients. Extracorporeal carbon dioxide removal has also been used in ventilated patients with hypercapnic respiratory failure to correct acidosis, unload respiratory muscle burden, and facilitate weaning. In patients suffering from terminal fibrosis awaiting lung transplantation, extracorporeal carbon dioxide removal is able to correct acidosis and enable spontaneous breathing during bridging. Keeping these patients awake, ambulatory, and breathing spontaneously is associated with favorable outcome. COMPLICATIONS Complications of extracorporeal carbon dioxide removal are mostly associated with vascular access and deranged hemostasis leading to bleeding. Although the spectrum of complications may differ, no technology offers advantages with respect to rate and severity of complications. So called "high-extraction systems" working with higher blood flows and larger membranes may be more effective with respect to clinical goals.
Collapse
Affiliation(s)
- Thomas Staudinger
- Department of Medicine I, Intensive Care Unit, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| |
Collapse
|
16
|
Dual Carbon Dioxide Capture to Achieve Highly Efficient Ultra-Low Blood Flow Extracorporeal Carbon Dioxide Removal. Ann Biomed Eng 2020; 48:1562-1572. [PMID: 32072384 DOI: 10.1007/s10439-020-02477-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
Extracorporeal CO2 removal is a highly promising support therapy for patients with hypercapnic respiratory failure but whose clinical implementation and patient benefit is hampered by high cost and highly specialized expertise required for safe use. Current approaches target removal of the gaseous CO2 dissolved in blood which limits their ease of clinical use as high blood flow rates are required to achieve physiologically significant CO2 clearance. Here, a novel hybrid approach in which a zero-bicarbonate dialysis is used to target removal of bicarbonate ion coupled to a gas exchange device to clear dissolved CO2, achieves highly efficiently total CO2 capture while maintaining systemic acid-base balance. In a porcine model of acute hypercapnic respiratory failure, a CO2-reduction of 61.4 ± 14.4 mL/min was achieved at a blood flow rate of 248 mL/min using pediatric-scale priming volumes. The dialyzer accounted for 81% of total CO2 capture with an efficiency of 33% with a minimal pH change across the entire circuit. This study demonstrates the feasibility of a novel hybrid CO2 capture approach capable of achieving physiologically significant CO2 removal at ultralow blood flow rates with low priming volumes while leveraging widely available dialysis platforms to enable clinical adoption.
Collapse
|
17
|
Barrett NA, Hart N, Camporota L. In vivo carbon dioxide clearance of a low-flow extracorporeal carbon dioxide removal circuit in patients with acute exacerbations of chronic obstructive pulmonary disease. Perfusion 2020; 35:436-441. [PMID: 31928313 DOI: 10.1177/0267659119896531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Veno-venous extracorporeal carbon dioxide removal allows clearance of CO2 from the blood and is becoming popular to enhance protective mechanical ventilation and assist in the management of acute exacerbations of chronic obstructive pulmonary disease, including the prevention of intubation. The main factor determining CO2 transfer across a membrane lung for any given blood flow rate and venous CO2 content is the sweep gas flow rate. The in vivo characteristics of CO2 clearance using ultra-low blood flow devices in patients with acute exacerbations of chronic obstructive pulmonary disease has not been previously described. METHODS Patients commenced on extracorporeal carbon dioxide removal for acute exacerbations of chronic obstructive pulmonary disease recruited to a randomized controlled trial of non-invasive ventilation versus extracorporeal carbon dioxide removal had pre- and post-membrane circuit gases measured after each increment of sweep gas flow to allow calculation of the transmembrane CO2 clearance. This was compared with the clearance reported by the device and also corrected to inlet PCO2 to allow characterization of the CO2 clearance of the device at different sweep gas flow rates. RESULTS CO2 clearance was calculated using both the transmembrane CO2 whole-blood content difference and CO2 clearance reported by the device. The two methods demonstrated a linear relationship and agreement with a bias of 14 mL/minute (SD = ±10) and an R2 of 0.92. The membrane CO2 clearance was non-linear with nearly two thirds of total clearance achieved with sweep gas flow below 2 L/minute (VCO2 of 40 ± 16.7 mL/minute) and a plateau above 5 L/minute sweep gas flow (VCO2 64 ± 1 2.4 mL/minute). CONCLUSION The extracorporeal carbon dioxide removal device used in the study provides efficient clearance of CO2 at low sweep flow rates which then plateaus. This has implications for how the device may be used in clinical practice, particularly during the weaning phase where the final discontinuation of the device may take longer than anticipated. (ClinicalTrials.gov: NCT02086084, registered 13 March 2014, https://clinicaltrials.gov/ct2/show/NCT02086084 ).
Collapse
Affiliation(s)
- Nicholas A Barrett
- Centre for Human & Applied Physiological Sciences (CHAPS) and School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Nicholas Hart
- Centre for Human & Applied Physiological Sciences (CHAPS) and School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Lane Fox Respiratory Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Luigi Camporota
- Centre for Human & Applied Physiological Sciences (CHAPS) and School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Gross-Hardt S, Hesselmann F, Arens J, Steinseifer U, Vercaemst L, Windisch W, Brodie D, Karagiannidis C. Low-flow assessment of current ECMO/ECCO 2R rotary blood pumps and the potential effect on hemocompatibility. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:348. [PMID: 31694688 PMCID: PMC6836552 DOI: 10.1186/s13054-019-2622-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023]
Abstract
Background Extracorporeal carbon dioxide removal (ECCO2R) uses an extracorporeal circuit to directly remove carbon dioxide from the blood either in lieu of mechanical ventilation or in combination with it. While the potential benefits of the technology are leading to increasing use, there are very real risks associated with it. Several studies demonstrated major bleeding and clotting complications, often associated with hemolysis and poorer outcomes in patients receiving ECCO2R. A better understanding of the risks originating specifically from the rotary blood pump component of the circuit is urgently needed. Methods High-resolution computational fluid dynamics was used to calculate the hemodynamics and hemocompatibility of three current rotary blood pumps for various pump flow rates. Results The hydraulic efficiency dramatically decreases to 5–10% if operating at blood flow rates below 1 L/min, the pump internal flow recirculation rate increases 6–12-fold in these flow ranges, and adverse effects are increased due to multiple exposures to high shear stress. The deleterious consequences include a steep increase in hemolysis and destruction of platelets. Conclusions The role of blood pumps in contributing to adverse effects at the lower blood flow rates used during ECCO2R is shown here to be significant. Current rotary blood pumps should be used with caution if operated at blood flow rates below 2 L/min, because of significant and high recirculation, shear stress, and hemolysis. There is a clear and urgent need to design dedicated blood pumps which are optimized for blood flow rates in the range of 0.5–1.5 L/min.
Collapse
Affiliation(s)
- Sascha Gross-Hardt
- Department of Cardiovascular Engineering, Medical Faculty, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Felix Hesselmann
- Department of Cardiovascular Engineering, Medical Faculty, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Medical Faculty, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Medical Faculty, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Leen Vercaemst
- Department of Perfusion, University Hospital Gasthuisberg, Leuven, Belgium
| | - Wolfram Windisch
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Center, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, 51109, Cologne, Germany
| | - Daniel Brodie
- Center for Acute Respiratory Failure, Columbia University College of Physicians and Surgeons/New York-Presbyterian Hospital, New York, NY, USA
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Center, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, 51109, Cologne, Germany.
| |
Collapse
|
19
|
Takahashi N, Nakada TA, Sakai T, Kato Y, Moriyama K, Nishida O, Oda S. A CO 2 removal system using extracorporeal lung and renal assist device with an acid and alkaline infusion. J Artif Organs 2019; 23:54-61. [PMID: 31584110 DOI: 10.1007/s10047-019-01136-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/22/2019] [Indexed: 01/04/2023]
Abstract
The patients with respiratory failure need high tidal volume by mechanical ventilation, which lead to the ventilator-induced lung injury. We developed an extracorporeal lung and renal assist device (ELRAD), comprising acid infusion, membrane lung, continuous hemodiafiltration and alkaline infusion. To evaluate this system, we conducted in vivo studies using experimental swine which were connected to the new system. In vivo experiments consist of four protocols; baseline = hemodiafiltration only (no O2 gas flow to membrane lung); membrane lung = "Baseline" plus O2 gas flow to membrane lung; "Acid infusion" = "Membrane lung" plus continuous acid infusion; ELRAD = "Acid infusion" plus continuous alkaline infusion. We changed the ventilatory rate of the mechanical ventilation to maintain PCO2 at 50-55 mmHg during the four protocols. The results showed that there was statistically no significant difference in the levels of pH, HCO3-, and base excess when each study protocol was initiated. The amount of CO2 eliminated by the membrane lung significantly increased by 1.6 times in the acid infusion protocol and the ELRAD protocol compared to the conventional membrane lung protocol. Minute ventilation in the ELRAD protocol significantly decreased by 0.5 times compared with the hemodiafiltration only protocol (P < 0.0001), the membrane lung (P = 0.0006) and acid infusion protocol (P = 0.0017), respectively. In conclusion, a developed CO2 removal system efficiently removed CO2 at low blood flow and reduced minute ventilation, while maintaining acid-base balance within the normal range.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan.
| | - Toshikazu Sakai
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Yu Kato
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhiro Moriyama
- Laboratory for Immune Response and Regulatory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Shigeto Oda
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| |
Collapse
|
20
|
Heparin-Free Extracorporeal Life Support Using Tethered Liquid Perfluorocarbon: A Feasibility and Efficacy Study. ASAIO J 2019; 66:809-817. [PMID: 31453831 DOI: 10.1097/mat.0000000000001055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coagulation management is the leading challenge during extracorporeal life support (ECLS) due to shear stress and foreign-surface-induced coagulation disturbance during circulation. A nonadhesive, liquid-infused coating called tethered liquid perfluorocarbon (TLP) was developed to prevent adhesion of blood on medical materials. We investigated the novel application of TLP to commercial ECLS circuits compared with standard heparin-coated circuits in vivo in anesthetized swine for 6 hours veno-venous ECLS (1 L/min blood flow) without systemic anticoagulation (n = 3/group). We hypothesized that TLP coating permits heparin-free circulation without untoward effects while reducing thrombus deposition compared with controls. Vital signs, respiration, gas transfer, coagulation, and histology were assessed. Scanning electron microscopy (SEM), elemental mapping, and digital imaging were used to assess thrombus deposition after circulation. There were no group differences in vitals, gas exchange, coagulation, and histology. In both groups, ECLS enabled a decrease in minute volume and end-tidal CO2, with concomitant increase in pH (p < 0.05). Scanning electron microscopy and digital imaging revealed significant thrombus on heparin-coated membranes, which was reduced or absent on TLP-coated materials. Tethered liquid perfluorocarbon permitted heparin-free ECLS without altering device performance and prevented thrombus deposition versus immobilized heparin. Pending multiday in vivo testing, TLP is a promising biomaterial solution to eliminate anticoagulation requirements during ECLS.
Collapse
|
21
|
Choi JH, Necsoiu C, Wendorff D, Jordan B, Dixon A, Roberts TR, Beely BM, Cancio LC, Batchinsky AI. Effects of adjunct treatments on end-organ damage and histological injury severity in acute respiratory distress syndrome and multiorgan failure caused by smoke inhalation injury and burns. Burns 2019; 45:1765-1774. [PMID: 31378621 DOI: 10.1016/j.burns.2019.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND We investigated effects of mesenchymal stem cells (MSC) or low-flow extracorporeal life support (ECLS) as adjunctive treatments for acute respiratory distress syndrome (ARDS) due to inhalation injury and burns. We hypothesized that these interventions decrease histological end-organ damage. METHODS Anesthetized female swine underwent smoke inhalation injury and 40% TBSA burns, then critical care for 72h. The following groups were studied: CTR (no injury, n = 4), ICTR (injured untreated, n = 10), Allo (injured treated with allogenic MSC, n = 10), Auto (injured treated with autologous MSC, n = 10), Hemo (injured and treated with the Hemolung low flow ECLS system, n = 9), and Nova (injured and treated with the NovaLung low flow ECLS system, n = 8). Histology scores from lung, kidneys, liver, and jejunum were calculated. Data are presented as means±SEM. RESULTS Survival at 72h was 100% in CTR; 40% in ICTR; 50% in Allo; 90% in Auto; 33% in Hemo; 63% in Nova. ARDS developed in 0/10 CTR; 10/10 ICTR; 8/9 Hemo; 5/8 Nova; 9/10 Allo; 6/10 Auto. Diffuse alveolar damage (DAD) was present in all injured groups. MSC groups had significantly lower DAD scores than ICTR animals (Allo 26.6 ± 3.4 and Auto 18.9 ± 1.5 vs. ICTR 46.8 ± 2.1, p < 0.001). MSC groups also had lower DAD scores than ECLS animals (Allo vs. Nova, p < 0.05, Allo vs. Hemo p < 0.001, Auto vs. Nova p < 0.001, Auto vs. Hemo, p < 0.001). Kidney injury ICTR (p < 0.05) and Hemo (p < 0.01) were higher than in CTR. By logistic regression, a PaO2-to-FiO2 ratio (PFR) < 300 was a function of the DAD score: logit (PFR < 300) = 0.84 + 0.072*DAD Score, odds ratio 1.074 (1.007, 1.147, p < 0.05) with a ROC AUC of 0.76, p < 0.001. CONCLUSION Treatment with Auto MSC followed by Allo and then Nova were most effective in mitigating ARDS and MOF severity in this model. Further studies will elucidate the role of combination therapies of MSC and ECLS as comprehensive treatments for ARDS and MOF.
Collapse
Affiliation(s)
- Jae Hyek Choi
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Corina Necsoiu
- United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Daniel Wendorff
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Bryan Jordan
- United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Alexander Dixon
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Teryn R Roberts
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States; Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Brendan M Beely
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Andriy I Batchinsky
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States; Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
22
|
Barrett NA, Kostakou E, Hart N, Douiri A, Camporota L. Extracorporeal carbon dioxide removal for acute hypercapnic exacerbations of chronic obstructive pulmonary disease: study protocol for a randomised controlled trial. Trials 2019; 20:465. [PMID: 31362776 PMCID: PMC6664508 DOI: 10.1186/s13063-019-3548-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/29/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common cause of chronic respiratory failure and its course is punctuated by a series of acute exacerbations which commonly lead to hospital admission. Exacerbations are managed through the application of non-invasive ventilation and, when this fails, tracheal intubation and mechanical ventilation. The need for mechanical ventilation significantly increases the risk of death. An alternative therapy, extracorporeal carbon dioxide removal (ECCO2R), has been shown to be efficacious in removing carbon dioxide from the blood; however, its impact on respiratory physiology and patient outcomes has not been explored. METHODS/DESIGN A randomised controlled open label trial of patients (12 in each arm) with acute exacerbations of COPD at risk of failing conventional therapy (NIV) randomised to either remaining on NIV or having ECCO2R added to NIV with a primary endpoint of time to cessation of NIV. The change in respiratory physiology following the application of ECCO2R and/or NIV will be measured using electrical impedance tomography, oesophageal pressure and parasternal electromyography. Additional outcomes, including patient tolerance, outcomes, need for readmission, changes in blood gases and biochemistry and procedural complications, will be measured. Physiological changes will be compared within one patient over time and between the two groups. Healthcare costs in the UK system will also be compared between the two groups. DISCUSSION COPD is a common disease and exacerbations are a leading cause of hospital admission in the UK and worldwide, with a sizeable mortality. The management of patients with COPD consumes significant hospital and financial resources. This study seeks to understand the feasibility of a novel approach to the management of patients with acute exacerbations of COPD as well as to understand the underlying physiological changes to explain why the approach does or does not assist this patient cohort. Detailed respiratory physiology has not been previously undertaken using this technique and there are no other randomised controlled trials currently in the literature. TRIAL REGISTRATION ClinicalTrials.gov, NCT02086084.
Collapse
Affiliation(s)
- Nicholas A. Barrett
- Department of Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Rd, London, SE1 7EH UK
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Eirini Kostakou
- Department of Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Rd, London, SE1 7EH UK
| | - Nicholas Hart
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
- Lane Fox Respiratory Unit, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Rd, London, SE1 7EH UK
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, King’s College London, London, WC2R 2LS UK
- National Institute for Health Research Biomedical Research Centre, Guy’s and St Thomas’ NHS Trust and King’s College London, London, UK
| | - Luigi Camporota
- Department of Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Rd, London, SE1 7EH UK
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| |
Collapse
|
23
|
[Current techniques for extracorporeal decarboxylation]. Med Klin Intensivmed Notfmed 2019; 114:733-740. [PMID: 31020339 DOI: 10.1007/s00063-019-0567-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
The widespread use of extracorporeal lung assist (ECLA) in recent years has led to the introduction of different decarboxylation systems into clinical practice. Due to the large CO2 transport capacity of the blood such systems require considerably lower extracorporeal blood flows and therefore allow for effective decarboxylation with reduced invasiveness and complexity. While systems derived from classical lung assist are mainly used to control severe acute hypercapnic respiratory failure, recently a growing number of therapies based on renal replacement platforms have become available ("respiratory dialysis"). Such low-flow systems still allow for effective partial CO2 elimination and can control respiratory acidosis as well as facilitate or even enable protective and ultraprotective ventilation strategies in acute lung failure (ARDS). While the use of extracorporeal CO2 elimination (ECCO2R) has been shown to decrease ventilator-induced lung injury (VILI), positive effects on hard clinical endpoints such as mortality or duration of mechanical ventilation are still unproven. In light of limited evidence, ECCO2R must be regarded as an experimental procedure. Its use should therefore at present be restricted to centers with appropriate experience.
Collapse
|
24
|
Past and present role of extracorporeal membrane oxygenation in combat casualty care: How far will we go? J Trauma Acute Care Surg 2019; 84:S63-S68. [PMID: 29443864 DOI: 10.1097/ta.0000000000001846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Advanced extracorporeal therapies have been successfully applied in the austere environment of combat casualty care over the previous decade. In this review, we describe the historic underpinnings of extracorporeal membrane oxygenation, review the recent experience with both partial and full lung support during combat operations, and critically assess both the current status of the Department of Defense extracorporeal membrane oxygenation program and the way forward to establish long-range lung rescue therapy as a routine capability for combat casualty care.
Collapse
|
25
|
Strassmann S, Merten M, Schäfer S, de Moll J, Brodie D, Larsson A, Windisch W, Karagiannidis C. Impact of sweep gas flow on extracorporeal CO 2 removal (ECCO 2R). Intensive Care Med Exp 2019; 7:17. [PMID: 30911910 PMCID: PMC6434004 DOI: 10.1186/s40635-019-0244-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/14/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Veno-venous extracorporeal carbon dioxide (CO2) removal (vv-ECCO2R) is increasingly being used in the setting of acute respiratory failure. Blood flow rates range in clinical practice from 200 mL/min to more than 1500 mL/min, and sweep gas flow rates range from less than 1 to more than 10 L/min. The present porcine model study was aimed at determining the impact of varying sweep gas flow rates on CO2 removal under different blood flow conditions and membrane lung surface areas. METHODS Two different membrane lungs, with surface areas of 0.4 and 0.8m2, were used in nine pigs with experimentally-induced hypercapnia. During each experiment, the blood flow was increased stepwise from 300 to 900 mL/min, with further increases up to 1800 mL/min with the larger membrane lung in steps of 300 mL/min. Sweep gas was titrated under each condition from 2 to 8 L/min in steps of 2 L/min. Extracorporeal CO2 elimination was normalized to a PaCO2 of 45 mmHg before the membrane lung. RESULTS Reversal of hypercapnia was only feasible when blood flow rates above 900 mL/min were used with a membrane lung surface area of at least 0.8m2. The membrane lung with a surface of 0.4m2 allowed a maximum normalized CO2 elimination rate of 41 ± 6 mL/min with 8 L/min sweep gas flow and 900 mL blood flow/min. The increase in sweep gas flow from 2 to 8 L/min increased normalized CO2 elimination from 35 ± 5 to 41 ± 6 with 900 mL blood flow/min, whereas with lower blood flow rates, any increase was less effective, levelling out at 4 L sweep gas flow/min. The membrane lung with a surface area of 0.8m2 allowed a maximum normalized CO2 elimination rate of 101 ± 12 mL/min with increasing influence of sweep gas flow. The delta of normalized CO2 elimination increased from 4 ± 2 to 26 ± 7 mL/min with blood flow rates being increased from 300 to 1800 mL/min, respectively. CONCLUSIONS The influence of sweep gas flow on the CO2 removal capacity of ECCO2R systems depends predominantly on blood flow rate and membrane lung surface area. In this model, considerable CO2 removal occurred only with the larger membrane lung surface of 0.8m2 and when blood flow rates of ≥ 900 mL/min were used.
Collapse
Affiliation(s)
- Stephan Strassmann
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Michaela Merten
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Simone Schäfer
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Jonas de Moll
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons/New York-Presbyterian Hospital, New York, NY, USA
| | - Anders Larsson
- Hedenstierna Laboratory, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Wolfram Windisch
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany.
| |
Collapse
|
26
|
Karagiannidis C, Hesselmann F, Fan E. Physiological and Technical Considerations of Extracorporeal CO 2 Removal. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:75. [PMID: 30849995 PMCID: PMC6408850 DOI: 10.1186/s13054-019-2367-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2019. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2019. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany.
| | - Felix Hesselmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto and the Extracorporeal Life Support Program, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
27
|
Moerer O, Harnisch LO, Barwing J, Heise D, Heuer JF, Quintel M. Minimal-flow ECCO 2R in patients needing CRRT does not facilitate lung-protective ventilation. J Artif Organs 2019; 22:68-76. [PMID: 30284167 DOI: 10.1007/s10047-018-1068-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
Extracorporeal CO2 removal (ECCO2R) is intended to facilitate lung protective ventilation in patients with hypercarbia. The combination of continuous renal replacement therapy (CRRT) and minimal-flow ECCO2R offers a promising concept for patients in need of both. We hypothecated that this system is able to remove enough CO2 to facilitate lung protective ventilation in mechanically ventilated patients. In 11 ventilated patients with acute renal failure who received either pre- or postdilution CRRT, minimal-flow ECCO2R was added to the circuit. During 6 h of combined therapy, CO2 removal and its effect on facilitation of lung-protective mechanical ventilation were assessed. Ventilatory settings were kept in assisted or pressure-controlled mode allowing spontaneous breathing. With minimal-flow ECCO2R significant decreases in minute ventilation, tidal volume and paCO2 were found after one and three but not after 6 h of therapy. Nevertheless, no significant reduction in applied force was found at any time during combined therapy. CO2 removal was 20.73 ml CO2/min and comparable between pre- and postdilution CRRT. Minimal-flow ECCO2R in combination with CRRT is sufficient to reduce surrogates for lung-protective mechanical ventilation but was not sufficient to significantly reduce force applied to the lung. Causative might be the absolute amount of CO2 removal of only about 10% of resting CO2 production in an adult as we found. The benefit of applying minimal flow ECCO2R in an uncontrolled setting of mechanical ventilation might be limited.
Collapse
Affiliation(s)
- Onnen Moerer
- Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany.
| | - Lars-Olav Harnisch
- Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Jürgen Barwing
- Department of Anaesthesia, Intensive Care and Pain Medicine, Florence-Nightingale-Hospital, Düsseldorf Germany, Kreuzbergstr. 79, 40489, Düsseldorf, Germany
| | - Daniel Heise
- Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Jan Florian Heuer
- Department of Anaesthesia, Intensive Care, Pain and Emergency Medicine, Augusta-Hospital Bochum-Center, Bergstr. 26, 44791, Bochum, Germany
| | - Michael Quintel
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Göttingen Medical Center, Göttingen, Germany Robert-Koch-Str. 40, 37099, Göttingen, Germany
| |
Collapse
|
28
|
Nentwich J, Wichmann D, Kluge S, Lindau S, Mutlak H, John S. Low-flow CO 2 removal in combination with renal replacement therapy effectively reduces ventilation requirements in hypercapnic patients: a pilot study. Ann Intensive Care 2019; 9:3. [PMID: 30617611 PMCID: PMC6323065 DOI: 10.1186/s13613-019-0480-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/02/2019] [Indexed: 01/21/2023] Open
Abstract
Background Lung-protective strategies are the cornerstone of mechanical ventilation in critically ill patients with both ARDS and other disorders. Extracorporeal CO2 removal (ECCO2R) may enhance lung protection by allowing even further reductions in tidal volumes and is effective in low-flow settings commonly used for renal replacement therapy. In this study, we describe for the first time the effects of a labeled and certified system combining ECCO2R and renal replacement therapy on pulmonary stress and strain in hypercapnic patients with renal failure. Methods Twenty patients were treated with the combined system which incorporates a membrane lung (0.32 m2) in a conventional renal replacement circuit. After changes in blood gases under ECCO2R were recorded, baseline hypercapnia was reestablished and the impact on ventilation parameters such as tidal volume and driving pressure was recorded. Results The system delivered ECCO2R at rate of 43.4 ± 14.1 ml/min, PaCO2 decreased from 68.3 ± 11.8 to 61.8 ± 11.5 mmHg (p < 0.05) and pH increased from 7.18 ± 0.09 to 7.22 ± 0.08 (p < 0.05). There was a significant reduction in ventilation requirements with a decrease in tidal volume from 6.2 ± 0.9 to 5.4 ± 1.1 ml/kg PBW (p < 0.05) corresponding to a decrease in plateau pressure from 30.6 ± 4.6 to 27.7 ± 4.1 cmH2O (p < 0.05) and a decrease in driving pressure from 18.3 ± 4.3 to 15.6 ± 3.9 cmH2O (p < 0.05), indicating reduced pulmonary stress and strain. No complications related to the procedure were observed. Conclusions The investigated low-flow ECCO2R and renal replacement system can ameliorate respiratory acidosis and decrease ventilation requirements in hypercapnic patients with concomitant renal failure. Trial registration NCT02590575, registered 10/23/2015.
Collapse
Affiliation(s)
- Jens Nentwich
- Medical Intensive Care, Department of Cardiology, Klinikum Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Lindau
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Haitham Mutlak
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan John
- Medical Intensive Care, Department of Cardiology, Klinikum Nuremberg, Paracelsus Medical University, Nuremberg, Germany.
| |
Collapse
|
29
|
A metal organic framework reduces thrombus formation and platelet aggregation ex vivo. J Trauma Acute Care Surg 2018; 85:572-579. [DOI: 10.1097/ta.0000000000001982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Swol J, Strauch JT, Schildhauer TA. Tracheostomy as a bridge to spontaneous breathing and awake-ECMO in non-transplant surgical patients. Eur J Heart Fail 2018; 19 Suppl 2:120-123. [PMID: 28470921 DOI: 10.1002/ejhf.856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/18/2017] [Accepted: 04/01/2017] [Indexed: 11/10/2022] Open
Abstract
AIMS The tracheostomy is a frequently used procedure for the respiratory weaning of ventilated patients allows sedation free ECLS use in awake patient. The aim of this study is to assess the possibility and highlight the benefits of lowering the impact of sedation in surgical non-transplant patients on ECLS. The specific objective was to investigate the use of tracheostomy as a bridge to spontaneous breathing on ECLS. METHODS AND RESULTS Of the 95 patients, 65 patients received a tracheostomy, and 5 patients were admitted with a tracheostoma. One patient was cannulated without intubation, one is extubated during ECLS course after 48 hours. 4 patients were extubated after weaning and the removal of ECLS. 19 patients died before the indication to tracheostomy was given. CONCLUSION Tracheostomy can bridge to spontaneous breathing and awake-ECMO in non-transplant surgical patients. The "awake ECMO" strategy may avoid complications related to mechanical ventilation, sedation, and immobilization and provide comparable outcomes to other approaches for providing respiratory support.
Collapse
Affiliation(s)
- J Swol
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Germany
| | - J T Strauch
- Department of Cardiac and Thoracic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - T A Schildhauer
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
31
|
Building on the legacy of Dr. Basil A. Pruitt, Jr., at the US Army Institute of Surgical Research during the wars in Iraq and Afghanistan. J Trauma Acute Care Surg 2017; 83:755-760. [DOI: 10.1097/ta.0000000000001167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Bhatt N, Osborn E. Extracorporeal Gas Exchange: The Expanding Role of Extracorporeal Support in Respiratory Failure. Clin Chest Med 2017; 37:765-780. [PMID: 27842755 DOI: 10.1016/j.ccm.2016.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of extracorporeal support is expanding quickly in adult respiratory failure. Extracorporeal gas exchange is an accepted rescue therapy for severe acute respiratory distress syndrome (ARDS) in select patients. Extracorporeal carbon dioxide removal is also being investigated as a preventative, preemptive, and management platform in patients with respiratory failure other than severe ARDS. The non-ARDS patient population is much larger, so the potential for rapid growth is high. This article hopes to inform decisions about the use of extracorporeal support by increasing understanding concerning the past and present practice of extracorporeal gas exchange.
Collapse
Affiliation(s)
- Nikunj Bhatt
- Department of Pulmonary Critical Care Medicine, Walter Reed National Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA; Uniformed Services University of Health Sciences, 4103 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Erik Osborn
- Uniformed Services University of Health Sciences, 4103 Jones Bridge Road, Bethesda, MD 20814, USA; Pulmonary Critical Care Sleep Medicine, Ft Belvoir Community Hospital, 9300 Dewitt Loop, Fort Belvoir, VA 22060, USA; Medical Corps, United States Army, Fort Belvoir, VA, USA.
| |
Collapse
|
33
|
Is Extracorporeal CO2 Removal Really “Safe” and “Less” Invasive? Observation of Blood Injury and Coagulation Impairment during ECCO2R. ASAIO J 2017; 63:666-671. [DOI: 10.1097/mat.0000000000000544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
34
|
Morelli A, Del Sorbo L, Pesenti A, Ranieri VM, Fan E. Extracorporeal carbon dioxide removal (ECCO 2R) in patients with acute respiratory failure. Intensive Care Med 2017; 43:519-530. [PMID: 28132075 DOI: 10.1007/s00134-016-4673-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/29/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE To review the available knowledge related to the use of ECCO2R as adjuvant strategy to mechanical ventilation (MV) in various clinical settings of acute respiratory failure (ARF). METHODS Expert opinion and review of the literature. RESULTS ECCO2R may be a promising adjuvant therapeutic strategy for the management of patients with severe exacerbations of COPD and for the achievement of protective or ultra-protective ventilation in patients with ARDS without life-threatening hypoxemia. Given the observational nature of most of the available clinical data and differences in technical features and performances of current devices, the balance of risks and benefits for or against ECCO2R in such patient populations remains unclear CONCLUSIONS: ECCO2R is currently an experimental technique rather than an accepted therapeutic strategy in ARF-its safety and efficacy require confirmation in clinical trials.
Collapse
Affiliation(s)
- Andrea Morelli
- Department of Anesthesiology and Intensive Care, Policlinico Umberto 1, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Extracorporeal Life Support Program, Toronto General Hospital, 585 University Avenue, PMB 11-123, Toronto, ON, M5G 2N2, Canada
| | - Antonio Pesenti
- Fondazione IRCCS Ca' Granda, Ospendale Maggiore Policlinico and Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
| | - V Marco Ranieri
- Department of Anesthesiology and Intensive Care, Policlinico Umberto 1, Sapienza University of Rome, Rome, Italy
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Extracorporeal Life Support Program, Toronto General Hospital, 585 University Avenue, PMB 11-123, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
35
|
Zochios V, Parhar K, Tunnicliffe W, Roscoe A, Gao F. The Right Ventricle in ARDS. Chest 2017; 152:181-193. [PMID: 28267435 DOI: 10.1016/j.chest.2017.02.019] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 02/08/2023] Open
Abstract
ARDS is associated with poor clinical outcomes, with a pooled mortality rate of approximately 40% despite best standards of care. Current therapeutic strategies are based on improving oxygenation and pulmonary compliance while minimizing ventilator-induced lung injury. It has been demonstrated that relative hypoxemia can be well tolerated, and improvements in oxygenation do not necessarily translate into survival benefit. Cardiac failure, in particular right ventricular dysfunction (RVD), is commonly encountered in moderate to severe ARDS and is reported to be one of the major determinants of mortality. The prevalence rate of echocardiographically evident RVD in ARDS varies across studies, ranging from 22% to 50%. Although there is no definitive causal relationship between RVD and mortality, severe RVD is associated with increased mortality. Factors that can adversely affect RV function include hypoxic pulmonary vasoconstriction, hypercapnia, and invasive ventilation with high driving pressure. It might be expected that early diagnosis of RVD would be of benefit; however, echocardiographic markers (qualitative and quantitative) used to prospectively evaluate the right ventricle in ARDS have not been tested in adequately powered studies. In this review, we examine the prognostic implications and pathophysiology of RVD in ARDS and discuss available diagnostic modalities and treatment options. We aim to identify gaps in knowledge and directions for future research that could potentially improve clinical outcomes in this patient population.
Collapse
Affiliation(s)
- Vasileios Zochios
- Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Edgbaston; Institute of Inflammation and Ageing, Centre of Translational Inflammation Research, University of Birmingham, Birmingham.
| | - Ken Parhar
- Department of Critical Care Medicine, the University of Calgary, Calgary, AB, Canada
| | - William Tunnicliffe
- Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Edgbaston
| | - Andrew Roscoe
- Department of Cardiothoracic Anesthesia and Critical Care Medicine, Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridge
| | - Fang Gao
- Institute of Inflammation and Ageing, Centre of Translational Inflammation Research, University of Birmingham, Birmingham; Academic Department of Anesthesia, Critical Care, Pain and Resuscitation, Heart of England NHS Foundation Trust, Birmingham, England, and The 2nd Affiliated Hospital and Yuying Children's Hospital Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Yeager T, Roy S. Evolution of Gas Permeable Membranes for Extracorporeal Membrane Oxygenation. Artif Organs 2017; 41:700-709. [DOI: 10.1111/aor.12835] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Torin Yeager
- Department of Bioengineering and Therapeutic Sciences; University of California; San Francisco CA USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences; University of California; San Francisco CA USA
| |
Collapse
|
37
|
Abstract
We previously described a highly efficient extracorporeal CO2 removal technique called respiratory electrodialysis (R-ED). Respiratory electrodialysis was composed of a hemodiafilter and a membrane lung (ML) positioned along the extracorporeal blood circuit, and an electrodialysis (ED) cell positioned on the hemodiafiltrate. The ED regionally increased blood chloride concentration to convert bicarbonate to CO2 upstream the ML, thus enhancing ML CO2 extraction (VCO2ML). In this in vitro study, with an aqueous polyelectrolytic carbonated solution mimicking blood, we tested a new R-ED setup, featuring an ML positioned on the hemodiafiltrate after the ED, at increasing ED current levels (0, 2, 4, 6, and 8 A). We measured VCO2ML, electrolytes concentrations, and pH of the extracorporeal circuit. Raising levels of ED-current increased chloride concentration from 107.5 ± 1.6 to 114.6 ± 1.3 mEq/L (0 vs. 8 A, p < 0.001) and reduced pH from 7.48 ± 0.01 to 6.51 ± 0.05 (0 vs. 8 A, p < 0.001) of the hemodiafiltrate entering the ML. Subsequently, VCO2ML increased from 27 ± 1.7 to 91.3 ± 1.5 ml/min (0 vs. 8 A, p < 0.001). Respiratory electrodialysis is efficient in increasing VCO2ML of an extracorporeal circuit featuring an ML perfused by hemodiafiltrate. During R-ED, the VCO2ML can be significantly enhanced by increasing the ED current.
Collapse
|
38
|
Rajagopal K, Hoeper MM. State of the Art: Bridging to lung transplantation using artificial organ support technologies. J Heart Lung Transplant 2016; 35:1385-1398. [PMID: 27916175 DOI: 10.1016/j.healun.2016.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022] Open
Abstract
Lung transplantation increasingly is being performed in recipients of higher risk and acuity. A subset of these patients has severely abnormal gas exchange and/or right ventricular dysfunction, such that artificial organ support strategies are required to bridge patients to lung transplantation. We review the rationales and currently used and potential strategies for bridging to lung transplantation and characterize bridging outcomes. Based on physiologic reasoning and a study of the existing literature, we provide a working strategy for bridging to lung transplantation.
Collapse
Affiliation(s)
- Keshava Rajagopal
- Center for Advanced Heart Failure and Department of Cardiothoracic/Vascular Surgery, University of Texas-Houston and Memorial Hermann-Texas Medical Center, Houston, Texas.
| | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, and German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
39
|
Tiruvoipati R, Haji K, Gupta S, Braun G, Carney I, Botha J. Low-flow veno-venous extracorporeal carbon dioxide removal in the management of severe status asthmatics: a case report. THE CLINICAL RESPIRATORY JOURNAL 2016; 10:653-656. [PMID: 25515844 DOI: 10.1111/crj.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 02/05/2023]
Abstract
Status asthmaticus is a life-threatening condition that requires intensive care management. Most of these patients have severe hypercapnic acidosis that requires lung protective mechanical ventilation. A small proportion of these patients do not respond to conventional lung protective mechanical ventilation or pharmacotherapy. Such patients have an increased mortality and morbidity. Successful use of extracorporeal membrane oxygenation (ECMO) is reported in such patients. However, the use of ECMO is invasive with its associated morbidity and is limited to specialised centres. In this report, we report the use of a novel, minimally invasive, low-flow extracorporeal carbon dioxide removal device in management of severe hypercapnic acidosis in a patient with life threatening status asthmaticus.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Melbourne, Vic., Australia.
- School of Public Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia.
| | - Kavi Haji
- Department of Intensive Care Medicine, Frankston Hospital, Melbourne, Vic., Australia
| | - Sachin Gupta
- Department of Intensive Care Medicine, Frankston Hospital, Melbourne, Vic., Australia
| | - Gary Braun
- Department of Respiratory Medicine, Frankston Hospital, Melbourne, Vic., Australia
| | - Ian Carney
- Department of Intensive Care Medicine, Frankston Hospital, Melbourne, Vic., Australia
- School of Public Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| | - John Botha
- Department of Intensive Care Medicine, Frankston Hospital, Melbourne, Vic., Australia
- School of Public Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
40
|
Enhanced Extracorporeal CO2 Removal by Regional Blood Acidification: Effect of Infusion of Three Metabolizable Acids. ASAIO J 2016; 61:533-9. [PMID: 26273934 DOI: 10.1097/mat.0000000000000238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acidification of blood entering a membrane lung (ML) with lactic acid enhances CO2 removal (VCO2ML). We compared the effects of infusion of acetic, citric, and lactic acids on VCO2ML. Three sheep were connected to a custom-made circuit, consisting of a Hemolung device (Alung Technologies, Pittsburgh, PA), a hemofilter (NxStage, NxStage Medical, Lawrence, MA), and a peristaltic pump recirculating ultrafiltrate before the ML. Blood flow was set at 250 ml/min, gas flow (GF) at 10 L/min, and recirculating ultrafiltrate flow at 100 ml/min. Acetic (4.4 M), citric (0.4 M), or lactic (4.4 M) acids were infused in the ultrafiltrate at 1.5 mEq/min, for 2 hours each, in randomized fashion. VCO2ML was measured by the Hemolung built-in capnometer. Circuit and arterial blood gas samples were collected at baseline and during acid infusion. Hemodynamics and ventilation were monitored. Acetic, citric, or lactic acids similarly enhanced VCO2ML (+35%), from 37.4 ± 3.6 to 50.6 ± 7.4, 49.8 ± 5.6, and 52.0 ± 8.2 ml/min, respectively. Acids similarly decreased pH, increased pCO2, and reduced HCO3 of the post-acid extracorporeal blood sample. No significant effects on arterial gas values, ventilation, or hemodynamics were observed. In conclusion, it is possible to increase VCO2ML by more than one-third using any one of the three metabolizable acids.
Collapse
|
41
|
Kusters RWJ, Simons AP, Lancé MD, Ganushchak YM, Bekers O, Weerwind PW. Blood warming, pump heating and haemolysis in low-flow extracorporeal life support; an in vitro study using freshly donated human blood. Perfusion 2016; 32:27-34. [DOI: 10.1177/0267659116656045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔTmax=0.5°C) had no relationship with pump performance or haemolysis (R2max=0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R2max=0.36). Thermography showed no relevant heat zones in the pump (Tmax=36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.
Collapse
Affiliation(s)
- R W J Kusters
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - A P Simons
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - M D Lancé
- Department of Anesthesiology and Pain Treatment, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Y M Ganushchak
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - O Bekers
- Department of Clinical Chemistry, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - P W Weerwind
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| |
Collapse
|
42
|
Extracorporeal Carbon Dioxide Removal Enhanced by Lactic Acid Infusion in Spontaneously Breathing Conscious Sheep. Anesthesiology 2016; 124:674-82. [PMID: 26756517 DOI: 10.1097/aln.0000000000000995] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The authors studied the effects on membrane lung carbon dioxide extraction (VCO2ML), spontaneous ventilation, and energy expenditure (EE) of an innovative extracorporeal carbon dioxide removal (ECCO2R) technique enhanced by acidification (acid load carbon dioxide removal [ALCO2R]) via lactic acid. METHODS Six spontaneously breathing healthy ewes were connected to an extracorporeal circuit with blood flow 250 ml/min and gas flow 10 l/min. Sheep underwent two randomly ordered experimental sequences, each consisting of two 12-h alternating phases of ALCO2R and ECCO2R. During ALCO2R, lactic acid (1.5 mEq/min) was infused before the membrane lung. Caloric intake was not controlled, and animals were freely fed. VCO2ML, natural lung carbon dioxide extraction, total carbon dioxide production, and minute ventilation were recorded. Oxygen consumption and EE were calculated. RESULTS ALCO2R enhanced VCO2ML by 48% relative to ECCO2R (55.3 ± 3.1 vs. 37.2 ± 3.2 ml/min; P less than 0.001). During ALCO2R, minute ventilation and natural lung carbon dioxide extraction were not affected (7.88 ± 2.00 vs. 7.51 ± 1.89 l/min, P = 0.146; 167.9 ± 41.6 vs. 159.6 ± 51.8 ml/min, P = 0.063), whereas total carbon dioxide production, oxygen consumption, and EE rose by 12% each (223.53 ± 42.68 vs. 196.64 ± 50.92 ml/min, 215.3 ± 96.9 vs. 189.1 ± 89.0 ml/min, 67.5 ± 24.0 vs. 60.3 ± 20.1 kcal/h; P less than 0.001). CONCLUSIONS ALCO2R was effective in enhancing VCO2ML. However, lactic acid caused a rise in EE that made ALCO2R no different from standard ECCO2R with respect to ventilation. The authors suggest coupling lactic acid-enhanced ALCO2R with active measures to control metabolism.
Collapse
|
43
|
Bermudez CA, Zaldonis D, Fan MH, Pilewski JM, Crespo MM. Prolonged Use of the Hemolung Respiratory Assist System as a Bridge to Redo Lung Transplantation. Ann Thorac Surg 2016; 100:2330-3. [PMID: 26652524 DOI: 10.1016/j.athoracsur.2015.02.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 10/22/2022]
Abstract
Although extracorporeal membrane oxygenation (ECMO) has been used frequently as a bridge to primary lung transplantation, active centers are conservative with this approach in patients requiring redo lung transplantation. We report the use of extracorporeal carbon dioxide removal, using the Hemolung respiratory assist system, as a prolonged bridge to lung transplantation, and the first use of the Hemolung as a bridge to redo lung transplantation. Hemolung support improved the patient's clinical status and allowed redo lung transplantation.
Collapse
Affiliation(s)
- Christian A Bermudez
- Division of Cardiothoracic Transplantation, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Diana Zaldonis
- Division of Cardiothoracic Transplantation, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ming-Hui Fan
- Divison of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph M Pilewski
- Divison of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria M Crespo
- Divison of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Safety and Efficacy of Combined Extracorporeal CO2 Removal and Renal Replacement Therapy in Patients With Acute Respiratory Distress Syndrome and Acute Kidney Injury: The Pulmonary and Renal Support in Acute Respiratory Distress Syndrome Study. Crit Care Med 2016; 43:2570-81. [PMID: 26488219 PMCID: PMC4648187 DOI: 10.1097/ccm.0000000000001296] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To assess the safety and efficacy of combining extracorporeal CO2 removal with continuous renal replacement therapy in patients presenting with acute respiratory distress syndrome and acute kidney injury. DESIGN Prospective human observational study. SETTINGS Patients received volume-controlled mechanical ventilation according to the acute respiratory distress syndrome net protocol. Continuous venovenous hemofiltration therapy was titrated to maintain maximum blood flow and an effluent flow of 45 mL/kg/h with 33% predilution. PATIENTS Eleven patients presenting with both acute respiratory distress syndrome and acute kidney injury required renal replacement therapy. INTERVENTIONS A membrane oxygenator (0.65 m) was inserted within the hemofiltration circuit, either upstream (n = 7) or downstream (n = 5) of the hemofilter. Baseline corresponded to tidal volume 6 mL/kg of predicted body weight without extracorporeal CO2 removal. The primary endpoint was 20% reduction in PaCO2 at 20 minutes after extracorporeal CO2 removal initiation. Tidal volume was subsequently reduced to 4 mL/kg for the remaining 72 hours. MEASUREMENTS AND MAIN RESULTS Twelve combined therapies were conducted in the 11 patients. Age was 70 ± 9 years, Simplified Acute Physiology Score II was 69 ± 13, Sequential Organ Failure Assessment score was 14 ± 4, lung injury score was 3 ± 0.5, and PaO2/FIO2 was 135 ± 41. Adding extracorporeal CO2 removal at tidal volume 6 mL/kg decreased PaCO2 by 21% (95% CI, 17-25%), from 47 ± 11 to 37 ± 8 Torr (p < 0.001). Lowering tidal volume to 4 mL/kg reduced minute ventilation from 7.8 ± 1.5 to 5.2 ± 1.1 L/min and plateau pressure from 25 ± 4 to 21 ± 3 cm H2O and raised PaCO2 from 37 ± 8 to 48 ± 10 Torr (all p < 0.001). On an average of both positions, the oxygenator's blood flow was 410 ± 30 mL/min and the CO2 removal rate was 83 ± 20 mL/min. The oxygenator blood flow (p <0.001) and the CO2 removal rate (p = 0.083) were higher when the membrane oxygenator was placed upstream of the hemofilter. There was no safety concern. CONCLUSIONS Combining extracorporeal CO2 removal and continuous venovenous hemofiltration in patients with acute respiratory distress syndrome and acute kidney injury is safe and allows efficient blood purification together with enhanced lung protective ventilation.
Collapse
|
45
|
Current Applications for the Use of Extracorporeal Carbon Dioxide Removal in Critically Ill Patients. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9781695. [PMID: 26966691 PMCID: PMC4757715 DOI: 10.1155/2016/9781695] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/20/2016] [Indexed: 12/11/2022]
Abstract
Mechanical ventilation in patients with respiratory failure has been associated with secondary lung injury, termed ventilator-induced lung injury. Extracorporeal venovenous carbon dioxide removal (ECCO2R) appears to be a feasible means to facilitate more protective mechanical ventilation or potentially avoid mechanical ventilation in select patient groups. With this expanding role of ECCO2R, we aim to describe the technology and the main indications of ECCO2R.
Collapse
|
46
|
Sharma AS, Weerwind PW, Bekers O, Wouters EM, Maessen JG. Carbon dioxide dialysis in a swine model utilizing systemic and regional anticoagulation. Intensive Care Med Exp 2016; 4:2. [PMID: 26780677 PMCID: PMC4715831 DOI: 10.1186/s40635-016-0076-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022] Open
Abstract
Background Extracorporeal carbon dioxide removal (ECCO2R) has been gaining interest to potentially facilitate gas transfer and equilibrate mild to moderate hypercapnic acidosis, when standard therapy with non-invasive ventilation is deemed refractory. However, concern regarding the effectiveness of low-flow CO2 removal remains. Additionally, the prospect to steadily reduce hypercapnia via low-flow ECCO2R technique is limited, especially with regional anticoagulation which potentially reduces the risk of bleeding. Therefore, an in vivo study was conducted to determine the efficacy of CO2 removal through a modified renal dialysis unit during the carbon dioxide dialysis study using systemic and regional anticoagulation. Methods The acute study was conducted for 14 h in landrace pigs (51 ± 3 kg). CO2 removal using a diffusion membrane oxygenator substituting the hemoconcentrator was provided for 6 h. Blood and gas (100 % O2) flows were set at 200 and 5 L/min, respectively. Anticoagulation was achieved by systemic heparinization (n = 7) or regional trisodium citrate 4 % (n = 7). Results The CO2 transfer was highest during the initial hour and ranged from 45 to 35 mL/min, achieving near eucapnic values. Regional and systemic anticoagulation were both effective in decreasing arterial pCO2 (from 8.9 ± 1.3 kPa to 5.6 ± 0.8 kPa and from 8.6 ± 1.0 kPa to 6.3 ± 0.7 kPa, p < 0.05 for both groups, respectively). Furthermore, pH improved (from 7.32 ± 0.08 to 7.47 ± 0.07 and from 7.37 ± 0.04 to 7.49 ± 0.01, p < 0.05) for both regional and systemic anticoagulation groups, respectively. Upon ceasing CO2 dialysis, hypercapnia ensued. The liver and kidney function test results were normal, and scanning electron microscopy analysis revealed only some cellular and fibrin adhesion on the oxygenator fibre in the heparin group. Conclusions CO2 dialysis utilizing either regional or systemic anticoagulation showed to be safe and effective in steady transfer of CO2 and consequently optimizing pH.
Collapse
Affiliation(s)
- A S Sharma
- Department of Cardiothoracic Surgery, CARIM, Maastricht University Medical Center, PO box 5800, 6202 AZ, Maastricht, the Netherlands.
| | - P W Weerwind
- Department of Cardiothoracic Surgery, CARIM, Maastricht University Medical Center, PO box 5800, 6202 AZ, Maastricht, the Netherlands
| | - O Bekers
- Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E M Wouters
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J G Maessen
- Department of Cardiothoracic Surgery, CARIM, Maastricht University Medical Center, PO box 5800, 6202 AZ, Maastricht, the Netherlands
| |
Collapse
|
47
|
Schreiter D, Carvalho NC, Katscher S, Mende L, Reske AP, Spieth PM, Carvalho AR, Beda A, Lachmann B, Amato MBP, Wrigge H, Reske AW. Experimental blunt chest trauma--cardiorespiratory effects of different mechanical ventilation strategies with high positive end-expiratory pressure: a randomized controlled study. BMC Anesthesiol 2016; 16:3. [PMID: 26757894 PMCID: PMC4709895 DOI: 10.1186/s12871-015-0166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/09/2015] [Indexed: 02/01/2023] Open
Abstract
Background Uncertainty persists regarding the optimal ventilatory strategy in trauma patients developing acute respiratory distress syndrome (ARDS). This work aims to assess the effects of two mechanical ventilation strategies with high positive end-expiratory pressure (PEEP) in experimental ARDS following blunt chest trauma. Methods Twenty-six juvenile pigs were anesthetized, tracheotomized and mechanically ventilated. A contusion was applied to the right chest using a bolt-shot device. Ninety minutes after contusion, animals were randomized to two different ventilation modes, applied for 24 h: Twelve pigs received conventional pressure-controlled ventilation with moderately low tidal volumes (VT, 8 ml/kg) and empirically chosen high external PEEP (16cmH2O) and are referred to as the HP-CMV-group. The other group (n = 14) underwent high-frequency inverse-ratio pressure-controlled ventilation (HFPPV) involving respiratory rate of 65breaths · min−1, inspiratory-to-expiratory-ratio 2:1, development of intrinsic PEEP and recruitment maneuvers, compatible with the rationale of the Open Lung Concept. Hemodynamics, gas exchange and respiratory mechanics were monitored during 24 h. Computed tomography and histology were analyzed in subgroups. Results Comparing changes which occurred from randomization (90 min after chest trauma) over the 24-h treatment period, groups differed statistically significantly (all P values for group effect <0.001, General Linear Model analysis) for the following parameters (values are mean ± SD for randomization vs. 24-h): PaO2 (100 % O2) (HFPPV 186 ± 82 vs. 450 ± 59 mmHg; HP-CMV 249 ± 73 vs. 243 ± 81 mmHg), venous admixture (HFPPV 34 ± 9.8 vs. 11.2 ± 3.7 %; HP-CMV 33.9 ± 10.5 vs. 21.8 ± 7.2 %), PaCO2 (HFPPV 46.9 ± 6.8 vs. 33.1 ± 2.4 mmHg; HP-CMV 46.3 ± 11.9 vs. 59.7 ± 18.3 mmHg) and normally aerated lung mass (HFPPV 42.8 ± 11.8 vs. 74.6 ± 10.0 %; HP-CMV 40.7 ± 8.6 vs. 53.4 ± 11.6 %). Improvements occurring after recruitment in the HFPPV-group persisted throughout the study. Peak airway pressure and VT did not differ significantly. HFPPV animals had lower atelectasis and inflammation scores in gravity-dependent lung areas. Conclusions In this model of ARDS following unilateral blunt chest trauma, HFPPV ventilation improved respiratory function and fulfilled relevant ventilation endpoints for trauma patients, i.e. restoration of oxygenation and lung aeration while avoiding hypercapnia and respiratory acidosis.
Collapse
Affiliation(s)
- Dierk Schreiter
- Helios Park Clinic, Department of Intensive Care Medicine, Leipzig, Germany.
| | - Nadja C Carvalho
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Liebigstr. 20, D-04103, Leipzig, Germany. .,Department of Electronic Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Sebastian Katscher
- Sana Kliniken Leipziger Land, Department of Orthopedic, Trauma and Hand Surgery, Borna, Germany.
| | - Ludger Mende
- Intensive Care Unit, Sana Kliniken Leipziger Land, Borna, Germany.
| | - Alexander P Reske
- Anesthesiology and Intensive Care Medicine, Fachkrankenhaus Coswig, Coswig, Sachsen, Germany.
| | - Peter M Spieth
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Alysson R Carvalho
- Carlos Chagas Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Alessandro Beda
- Department of Electronic Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Burkhard Lachmann
- Department of Anesthesiology and Intensive Care Medicine, Charité, Berlin Medical University, Berlin, Germany.
| | - Marcelo B P Amato
- Cardio-Pulmonary Department, Pulmonary Division, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil.
| | - Hermann Wrigge
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Liebigstr. 20, D-04103, Leipzig, Germany.
| | - Andreas W Reske
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Liebigstr. 20, D-04103, Leipzig, Germany.
| |
Collapse
|
48
|
Les dispositifs d’épuration extracorporelle du CO2 en réanimation : principes, indications potentielles, résultats actuels. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-015-1145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Pilarczyk K, Heckmann J, Lyskawa K, Strauß A, Haake N, Wiese I, Jakob H, Kamler M, Pizanis N. Comparison of a New Miniaturized Extracorporeal Membrane Oxygenation System With Integrated Rotary Blood Pump to a Standard System in a Porcine Model of Acute Lung Injury. Artif Organs 2015; 40:645-58. [PMID: 26636760 DOI: 10.1111/aor.12611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is used for severe acute respiratory distress syndrome. However, available ECMO systems are large and not well designed for fast delivery, emergency implantation, and interhospital transfer. Therefore, a new miniaturized oxygenator with integrated rotary blood pump (ILIAS) was developed and compared with a standard ECMO system in a large animal model. Acute lung injury was induced with repeated pulmonary saline lavage in 14 pigs until PaO2 /FiO2 -ratio was <100 mm Hg with a positive-end-expiratory-pressure of 5 mbar. Pigs were assigned to the following three groups: group 1 (n = 4): control group with conventional ventilation; group 2 (n = 5): standard vv-ECMO; group 3 (n = 5): vv-ILIAS. Gas exchange, hemodynamics, hemolysis, and coagulation activation were examined over a period of 8 h. No device failed during the observation period. PaCO2 decreased from 59.40 ± 4.14 mm Hg to 48.62 ± 4.50 mm Hg after 1 h in the ILIAS group compared with an improvement of PaCO2 from 48.86 ± 7.45 to 40.10 ± 6.02 in the conventional ECMO group (P = not significant [n.s.]). ARDS-induced respiratory acidosis was controlled promptly with a pH of 7.2 ± 0.1 at baseline increasing to 7.4 ± 0.1 in both study groups after 60 min of ECMO support. Mean carbon dioxide transfer was comparable between the conventional ECMO and ILIAS (211.36 ± 78.39 mL/min vs. 219.99 ± 76.72 mL/min, P = n.s.). PaO2 /FiO2 increased from 118.4 ± 15.5 mm Hg to 179.1 ± 72.4 mm Hg in the ILIAS group compared with an improvement of oxygenation from 107.1 ± 24.9 mm Hg to 179.0 ± 45.7 mm Hg in the standard ECMO group (P = n.s.). Mean oxygen transfer was calculated with 136.09 ± 30.25 mL/min for the ILIAS and 129.05 ± 36.28 mL/min for the standard ECMO. Hemodynamic instability or significant activation of the plasmatic coagulation was not observed. However, hemolysis was significantly higher in the ILIAS group compared with the conventional ECMO. As the ILIAS prototype provided excellent gas exchange with hemodynamic stability comparable with a standard ECMO system, we believe this study serves as a proof of concept. Further development and design modifications (optimized rotation speed and surface coating of rotor) are already done and another experiment is projected to reduce hemolysis and platelet consumption for clinical application.
Collapse
Affiliation(s)
- Kevin Pilarczyk
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Jens Heckmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Kathrin Lyskawa
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Andreas Strauß
- Andreas Strauß Medizintechnik, Technology Center Ruhr, Bochum, Germany
| | - Nils Haake
- Department of Cardiovascular Surgery, University of Schleswig-Holstein, Kiel, Germany
| | - Ingo Wiese
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Nikolaus Pizanis
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
50
|
Noninvasive Ventilation Plus Extracorporeal CO2 Removal in High-Risk Conditions: A Forthcoming Tool? Crit Care Med 2015; 43:e390. [PMID: 26274722 DOI: 10.1097/ccm.0000000000001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|