1
|
ALL AH, Wong KL, Al-Nashash HA. Characterization of Contusive Spinal Cord Injury by Monitoring Motor-Evoked Potential. Biomedicines 2024; 12:2548. [PMID: 39595114 PMCID: PMC11592270 DOI: 10.3390/biomedicines12112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
This study involves longitudinal neuro-electrophysiological analysis using motor-evoked potentials (MEP) and the Basso, Beattie, and Bresnahan behavioral examinations (BBB) to evaluate moderate mid-thoracic contusive spinal cord injury (SCI) in a rat model. OBJECTIVES/BACKGROUND The objective of the study is to characterize the onset and progression of contusive SCI over an eight-week period using a clinically applicable tool in an in vivo model. The background highlights the importance of a reliable and reproducible injury model and assessment tools for SCI. METHODS The methods section describes the experimental setup, including randomly assigned rats in three groups: Sham, Control, and Injury (undergoing a moderate contusive SCI using the NYU-Impactor). MEP monitoring and BBB examinations are conducted at baseline and weekly for eight weeks post-injury. RESULTS The results indicate that the relative MEP power spectral decreased to 11% and 22% in the left and right hindlimbs, respectively, during the first week post-SCI. In the second week, a slight spontaneous recovery was observed, reaching 17% in the left and 31% in the right hindlimbs. Over the following four weeks post-SCI, continuing deterioration of MEP signal power was observed with no detectable recovery. CONCLUSIONS SCI attenuates hindlimb MEP power spectral and reduces locomotion, though the changes in MEP and locomotion exhibit distinct temporal patterns. The MEP monitoring provides valuable insights into the functional integrity of motor pathways following SCI and offer a sensitive and reliable assessment. By implementing MEP monitoring, researchers can track the progression of SCI and evaluate the efficacy of therapeutic interventions quantitatively.
Collapse
Affiliation(s)
- Angelo H. ALL
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Hasan A. Al-Nashash
- Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
2
|
Choi A, Woo JS, Park YS, Kim JH, Chung YE, Lee S, Beom JH, You JS. TARGETED TEMPERATURE MANAGEMENT AT 36°C IMPROVES SURVIVAL AND PROTECTS TISSUES BY MITIGATING THE DELETERIOUS INFLAMMATORY RESPONSE FOLLOWING HEMORRHAGIC SHOCK. Shock 2024; 62:716-727. [PMID: 39186053 DOI: 10.1097/shk.0000000000002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
ABSTRACT Hemorrhagic shock (HS) is a life-threatening condition with high mortality rates despite current treatments. This study investigated whether targeted temperature management (TTM) could improve outcomes by modulating inflammation and protecting organs following HS. Using a rat model of HS, TTM was applied at 33°C and 36°C after fluid resuscitation. Surprisingly, TTM at 33°C increased mortality, while TTM at 36°C significantly improved survival rates. It also reduced histological damage in lung and kidney tissues, lowered serum lactate levels, and protected against apoptosis and excessive reactive oxygen species production. TTM at 36°C inhibited the release of high mobility group box 1 protein (HMGB1), a key mediator of inflammation, and decreased proinflammatory cytokine levels in the kidneys and lungs. Moreover, it influenced macrophage behavior, suppressing the harmful M1 phenotype while promoting the beneficial M2 polarization. Cytokine array analysis confirmed reduced levels of proinflammatory cytokines with TTM at 36°C. These results collectively highlight the potential of TTM at 36°C as a therapeutic approach to improve outcomes in HS. By addressing multiple aspects of injury and inflammation, including modulation of macrophage responses and cytokine profiles, TTM at 36°C offers promising implications for critical care management after HS, potentially reducing mortality and improving patient recovery.
Collapse
Affiliation(s)
- Arom Choi
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Sun Woo
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sojung Lee
- Class of 2025, Biology B.S., Emory University, Atlanta, Georgia
| | - Jin Ho Beom
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Ye J, Pan X, Wen Z, Wu T, Jin Y, Ji S, Zhang X, Ma Y, Liu W, Teng C, Tang L, Wei W. Injectable conductive hydrogel remodeling microenvironment and mimicking neuroelectric signal transmission after spinal cord injury. J Colloid Interface Sci 2024; 668:646-657. [PMID: 38696992 DOI: 10.1016/j.jcis.2024.04.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Severe spinal cord injury (SCI) leads to dysregulated neuroinflammation and cell apoptosis, resulting in axonal die-back and the loss of neuroelectric signal transmission. While biocompatible hydrogels are commonly used in SCI repair, they lack the capacity to support neuroelectric transmission. To overcome this limitation, we developed an injectable silk fibroin/ionic liquid (SFMA@IL) conductive hydrogel to assist neuroelectric signal transmission after SCI in this study. The hydrogel can form rapidly in situ under ultraviolet (UV) light. The mechanical supporting and neuro-regenerating properties are provided by silk fibroin (SF), while the conductive capability is provided by the designed ionic liquid (IL). SFMA@IL showed attractive features for SCI repair, such as anti-swelling, conductivity, and injectability. In vivo, SFMA@IL hydrogel used in rats with complete transection injuries was found to remodel the microenvironment, reduce inflammation, and facilitate neuro-fiber outgrowth. The hydrogel also led to a notable decrease in cell apoptosis and the achievement of scar-free wound healing, which saved 45.6 ± 10.8 % of spinal cord tissue in SFMA@IL grafting. Electrophysiological studies in rats with complete transection SCI confirmed SFMA@IL's ability to support sensory neuroelectric transmission, providing strong evidence for its signal transmission function. These findings provide new insights for the development of effective SCI treatments.
Collapse
Affiliation(s)
- Jingjia Ye
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Xihao Pan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang, China 310000
| | - Zhengfa Wen
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Tianxin Wu
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Yuting Jin
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Shunxian Ji
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Xianzhu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuanzhu Ma
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Chong Teng
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China.
| | - Longguang Tang
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China.
| | - Wei Wei
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China.
| |
Collapse
|
4
|
Al-Nashash H, Wong KL, ALL AH. Hypothermia effects on neuronal plasticity post spinal cord injury. PLoS One 2024; 19:e0301430. [PMID: 38578715 PMCID: PMC10997101 DOI: 10.1371/journal.pone.0301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND SCI is a time-sensitive debilitating neurological condition without treatment options. Although the central nervous system is not programmed for effective endogenous repairs or regeneration, neuroplasticity partially compensates for the dysfunction consequences of SCI. OBJECTIVE AND HYPOTHESIS The purpose of our study is to investigate whether early induction of hypothermia impacts neuronal tissue compensatory mechanisms. Our hypothesis is that although neuroplasticity happens within the neuropathways, both above (forelimbs) and below (hindlimbs) the site of spinal cord injury (SCI), hypothermia further influences the upper limbs' SSEP signals, even when the SCI is mid-thoracic. STUDY DESIGN A total of 30 male and female adult rats are randomly assigned to four groups (n = 7): sham group, control group undergoing only laminectomy, injury group with normothermia (37°C), and injury group with hypothermia (32°C +/-0.5°C). METHODS The NYU-Impactor is used to induce mid-thoracic (T8) moderate (12.5 mm) midline contusive injury in rats. Somatosensory evoked potential (SSEP) is an objective and non-invasive procedure to assess the functionality of selective neuropathways. SSEP monitoring of baseline, and on days 4 and 7 post-SCI are performed. RESULTS Statistical analysis shows that there are significant differences between the SSEP signal amplitudes recorded when stimulating either forelimb in the group of rats with normothermia compared to the rats treated with 2h of hypothermia on day 4 (left forelimb, p = 0.0417 and right forelimb, p = 0.0012) and on day 7 (left forelimb, p = 0.0332 and right forelimb, p = 0.0133) post-SCI. CONCLUSION Our results show that the forelimbs SSEP signals from the two groups of injuries with and without hypothermia have statistically significant differences on days 4 and 7. This indicates the neuroprotective effect of early hypothermia and its influences on stimulating further the neuroplasticity within the upper limbs neural network post-SCI. Timely detection of neuroplasticity and identifying the endogenous and exogenous factors have clinical applications in planning a more effective rehabilitation and functional electrical stimulation (FES) interventions in SCI patients.
Collapse
Affiliation(s)
- Hasan Al-Nashash
- Department of Electrical Engineering, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Angelo H. ALL
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
5
|
Hao J, Li Z, Xie L, Yu B, Ma B, Yang Y, Ma X, Wang B, Zhou X. Syringaresinol promotes the recovery of spinal cord injury by inhibiting neuron apoptosis via activating the ubiquitination factor E4B/AKT Serine/Threonine kinase signal pathway. Brain Res 2024; 1824:148684. [PMID: 37992795 DOI: 10.1016/j.brainres.2023.148684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Spinal cord injury (SCI) is a serious traumatic disease with no effective treatment. This study aimed to explore the therapeutic effect of syringaresinol on SCI. First, the potential targets and associated signaling pathways of syringaresinol were predicted by bioinformatics analysis and molecular docking. Second, MTT was employed to evaluate cell proliferation rate, Western blot was performed to detect protein expression, RT-qPCR was conducted to detect mRNA expression levels, flow cytometry and 5-ethynyl-2'-deoxyuridine (EDU) staining were used to determine cell apoptosis, and immunofluorescence and immunohistochemistry were used to estimate the expression of RNA binding fox-1 homolog 3 and clipped caspase 3. Basso-Beattie-Bresnahan scores and inclined plate tests were conducted to analyze hindlimb locomotor function. Results showed that syringaresinol could inhibit the apoptosis of glutamate-treated SHSY5Y cells by upregulating the expression of ubiquitination factor E4B (UBE4B) and activating the AKT serine/threonine kinase (AKT) signaling pathway. This effect can be rescued by UBE4B knockdown or AKT pathway inhibition. Syringaresinol remarkably improved locomotor function and increased neuronal survival in SCI rats. Our results suggested that syringaresinol could promote locomotor functional recovery by reducing neuronal apoptosis by activating the UBE4B/AKT signaling pathway.
Collapse
Affiliation(s)
- Jian Hao
- Orthopedic Department, The 2(nd) Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhenhan Li
- School of Clinical, Wannan Medical College, Wuhu, China
| | - Li Xie
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Bingbing Yu
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boyuan Ma
- Orthopedic Department, The 2(nd) Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yubiao Yang
- Orthopedic Department, The 2(nd) Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuchen Ma
- Orthopedic Department, The 2(nd) Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bitao Wang
- Orthopedic Department, The 2(nd) Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianhu Zhou
- Orthopedic Department, The 2(nd) Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Sarkar A, Kim KT, Tsymbalyuk O, Keledjian K, Wilhelmy BE, Sherani NA, Jia X, Gerzanich V, Simard JM. A Direct Comparison of Physical Versus Dihydrocapsaicin-Induced Hypothermia in a Rat Model of Traumatic Spinal Cord Injury. Ther Hypothermia Temp Manag 2022; 12:90-102. [PMID: 35675523 PMCID: PMC9231662 DOI: 10.1089/ther.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition with no effective treatment. Hypothermia induced by physical means (cold fluid) is established as an effective therapy in animal models of SCI, but its clinical translation to humans is hampered by several constraints. Hypothermia induced pharmacologically may be noninferior or superior to physically induced hypothermia for rapid, convenient systemic temperature reduction, but it has not been investigated previously in animal models of SCI. We used a rat model of SCI to compare outcomes in three groups: (1) normothermic controls; (2) hypothermia induced by conventional physical means; (3) hypothermia induced by intravenous (IV) dihydrocapsaicin (DHC). Male rats underwent unilateral lower cervical SCI and were treated after a 4-hour delay with physical cooling or IV DHC (∼0.60 mg/kg total) cooling (both 33.0 ± 1.0°C) lasting 4 hours; controls were kept normothermic. Telemetry was used to monitor temperature and heart rate during and after treatments. In two separate experiments, one ending at 48 hours, the other at 6 weeks, “blinded” investigators evaluated rats in the three groups for neurological function followed by histopathological evaluation of spinal cord tissues. DHC reliably induced systemic cooling to 32–33°C. At both the time points examined, the two modes of hypothermia yielded similar improvements in neurological function and lesion size compared with normothermic controls. Our results indicate that DHC-induced hypothermia may be comparable with physical hypothermia in efficacy, but more clinically feasible to administer than physical hypothermia.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin T Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bradley E Wilhelmy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nageen A Sherani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Hypothermia Therapy for Traumatic Spinal Cord Injury: An Updated Review. J Clin Med 2022; 11:jcm11061585. [PMID: 35329911 PMCID: PMC8949322 DOI: 10.3390/jcm11061585] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although hypothermia has shown to protect against ischemic and traumatic neuronal death, its potential role in neurologic recovery following traumatic spinal cord injury (TSCI) remains incompletely understood. Herein, we systematically review the safety and efficacy of hypothermia therapy for TSCI. The English medical literature was reviewed using PRISMA guidelines to identify preclinical and clinical studies examining the safety and efficacy of hypothermia following TSCI. Fifty-seven articles met full-text review criteria, of which twenty-eight were included. The main outcomes of interest were neurological recovery and postoperative complications. Among the 24 preclinical studies, both systemic and local hypothermia significantly improved neurologic recovery. In aggregate, the 4 clinical studies enrolled 60 patients for treatment, with 35 receiving systemic hypothermia and 25 local hypothermia. The most frequent complications were respiratory in nature. No patients suffered neurologic deterioration because of hypothermia treatment. Rates of American Spinal Injury Association (AIS) grade conversion after systemic hypothermia (35.5%) were higher when compared to multiple SCI database control studies (26.1%). However, no statistical conclusions could be drawn regarding the efficacy of hypothermia in humans. These limited clinical trials show promise and suggest therapeutic hypothermia to be safe in TSCI patients, though its effect on neurological recovery remains unclear. The preclinical literature supports the efficacy of hypothermia after TSCI. Further clinical trials are warranted to conclusively determine the effects of hypothermia on neurological recovery as well as the ideal means of administration necessary for achieving efficacy in TSCI.
Collapse
|
8
|
Neuroprotective Role of Hypothermia in Acute Spinal Cord Injury. Biomedicines 2022; 10:biomedicines10010104. [PMID: 35052784 PMCID: PMC8773047 DOI: 10.3390/biomedicines10010104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Even nowadays, the question of whether hypothermia can genuinely be considered therapeutic care for patients with traumatic spinal cord injury (SCI) remains unanswered. Although the mechanisms of hypothermia action are yet to be fully explored, early hypothermia for patients suffering from acute SCI has already been implemented in clinical settings. This article discusses measures for inducing various forms of hypothermia and summarizes several hypotheses describing the likelihood of hypothermia mechanisms of action. We present our objective neuro-electrophysiological results and demonstrate that early hypothermia manifests neuroprotective effects mainly during the first- and second-month post-SCI, depending on the severity of the injury, time of intervening, duration, degree, and modality of inducing hypothermia. Nevertheless, eventually, its beneficial effects gradually but consistently diminish. In addition, we report potential complications and side effects for the administration of general hypothermia with a unique referment to the local hypothermia. We also provide evidence that instead of considering early hypothermia post-SCI a therapeutic approach, it is more a neuroprotective strategy in acute and sub-acute phases of SCI that mostly delay, but not entirely avoid, the natural history of the pathophysiological events. Indeed, the most crucial rationale for inducing early hypothermia is to halt these devastating inflammatory and apoptotic events as early and as much as possible. This, in turn, creates a larger time-window of opportunity for physicians to formulate and administer a well-designed personalized treatment for patients suffering from acute traumatic SCI.
Collapse
|
9
|
All AH, Al-Nashash H. Comparative analysis of functional assessment for contusion and transection models of spinal cord injury. Spinal Cord 2021; 59:1206-1209. [PMID: 34493803 DOI: 10.1038/s41393-021-00698-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Descriptive secondary analysis of two spinal cord injury (SCI) animal models. OBJECTIVES To compare the somatosensory evoked potential (SSEP) and motor behavioral (BBB) assessments of the two most used rodent SCI models (contusion and transection), to elucidate their functional similarity and differences over the acute phase of 3 weeks. SETTING Neuro-electrophysiology SSEP and motor behavioral BBB assessments are used to provide a comparative analysis of the functional changes among various severities of contusion and transection SCI. METHODS Adult male and female rats randomly grouped (n = 5) as following: mild (6.25 mm), moderate (12.5 mm), severe (25 mm), and very severe (50 mm) contusion as well as right T10 hemi-transection (RxI), left T8 and right T10 double hemi-transection (DxI), and T8 complete transection (CxI) injuries, plus the control group (laminectomy with no injury). Animal weight, body temperature, anesthesia, surgical procedures, electrophysiological SSEP monitoring, locomotion BBB scoring, and statistical analysis were identical among all animal groups. RESULTS Statistical analysis of the SSEP and BBB data from both contusion and transection injury models indicate significant differences (P < 0.05). The results also show remarkable similarity for the severe and very severe contusion injuries to the complete transection, the moderate contusion injury to the double hemi-transection, and the mild contusion injury to the T10 hemi-transection injury. CONCLUSION Although contusion and transection spinal cord injuries have two completely different pathophysiologies, their injury progress during acute phase follow a similar trend.
Collapse
Affiliation(s)
- Angelo H All
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Hasan Al-Nashash
- Department of Electrical Engineering, College of Engineering, American University of Sharjah, University City, Sharjah, UAE.
| |
Collapse
|
10
|
Kim SH, Hwang K, Lee HA, Kim J, Cho M, Kim M, Shin JE, Lee H, Park KI, Jang JH. Pastable, Adhesive, Injectable, Nanofibrous, and Tunable (PAINT) Biphasic Hybrid Matrices as Versatile Therapeutic Carriers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42429-42441. [PMID: 34472351 DOI: 10.1021/acsami.1c10818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A critical challenge in many pharmaceutical fields is developing versatile adjuvant devices that can reduce the off-target delivery of therapeutic materials to target lesions. Herein, a biphasic hybrid fibrous system that can manipulate the spatial and temporal delivery of various therapeutic agents to target lesions by integrating multiple distinct systems and technologies such as fluffy coaxial electrospun polycaprolactone (PCL)/polystyrene (PS) fibers, cyclohexane-mediated leaching to remove PS layers selectively, amine display on PCL fibers, conjugation of naturally occurring adhesive gallol molecules onto hyaluronic acid (HA-g), and electrostatically complexing the aminated PCL fibers with the gallol-conjugated HA. In the context of "paintable" systems on target lesions, the resulting system is called a PAINT matrix (abbreviated according to the initial letter of its features: pastable, adhesive, injectable, nanofibrous, and tunable). Its viscoelastic property, which was attributed by coalescing aminated PCL fibers with viscous HA-g, enabled it to be noninvasively injected and fit into any cavity in the body with various morphologies, manually pasted on tissue surfaces, and adhered onto moisture-rich surfaces to ensure the secure delivery of therapeutics toward the target lesions. The PAINT matrix efficiently supplied immunomodulatory human neural stem cells (hNSCs) at rat hemisectioned spinal cord injury (SCI) sites and promoted both locomotive and sensory recovery in SCI models, presumably by protecting hNSCs against host immunosurveillance. The PAINT matrix will be broadly utilized for efficiently delivering therapeutics to difficult-to-reach target lesions by direct infusion or conventional biomaterial-mediated approaches due to their locations, wet surfaces, or complicated ambient environments.
Collapse
Affiliation(s)
- Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Kyujin Hwang
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Haesung A Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Joowon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Miri Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeong Eun Shin
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kook In Park
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
11
|
Abstract
Neuroprotection after acute spinal cord injury is an important strategy to limit secondary injury. Animal studies have shown that systemic hypothermia is an effective neuroprotective strategy that can be combined with other therapies. Systemic hypothermia affects several processes at the cellular level to reduce metabolic activity, oxidative stress, and apoptotic neuronal cell death. Modest systemic hypothermia has been shown to be safe and feasible in the acute phase after cervical spinal cord injury. These data have provided the impetus for an active multicenter randomized controlled trial for modest systemic hypothermia in acute cervical spinal cord injury.
Collapse
|
12
|
All AH, Luo S, Liu X, Al-Nashash H. Effect of thoracic spinal cord injury on forelimb somatosensory evoked potential. Brain Res Bull 2021; 173:22-27. [PMID: 33991605 DOI: 10.1016/j.brainresbull.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
In this paper, we investigate the forelimbs somatosensory evoked potential (SSEP) signals, which are representative of the integrity of ascending sensory pathways and their stability as well as function, recorded from corresponding cortices, post thoracic spinal cord injury (SCI). We designed a series of distinctive transection SCI to investigate whether forelimbs SSEPs change after right T10 hemi-transection, T8 and T10 double hemi-transection and T8 complete transection in rat model of SCI. We used electrical stimuli to stimulate median nerves and recorded SSEPs from left and right somatosensory areas of both cortices. We monitored pre-injury baseline and verified changes in forelimbs SSEP signals on Days 4, 7, 14, and 21 post-injury. We previously characterized hindlimb SSEP changes for the abovementioned transection injuries. The focus of this article is to investigate the quality and quantity of changes that may occur in the forelimb somatosensory pathways post-thoracic transection SCI. It is important to test the stability of forelimb SSEPs following thoracic SCI because of their potential utility as a proxy baseline for the traumatic SCIs in clinical cases wherein there is no opportunity to gather baseline of the lower extremities. We observed that the forelimb SSEP amplitudes increased following thoracic SCI but gradually returned to the baseline. Despite changes found in the raw signals, statistical analysis found forelimb SSEP signals become stable relatively soon. In summary, though there are changes in value (with p > 0.05), they are not statistically significant. Therefore, the null hypothesis that the mean of the forelimb SSEP signals are the same across multiple days after injury onset cannot be rejected during the acute phase.
Collapse
Affiliation(s)
- Angelo H All
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Room RRS844, Sir Run Run Shaw Building, Ho Sin Hang Campus, Hong Kong.
| | - Shiyu Luo
- Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA.
| | - Xiaogang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| | - Hasan Al-Nashash
- Department of Electrical Engineering, College of Engineering, American University of Sharjah, ESB-2018, Engineering Science Building, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates.
| |
Collapse
|
13
|
Yousefifard M, Vazirizadeh-Mahabadi MH, Haghani L, Shokraneh F, Vaccaro AR, Rahimi-Movaghar V, Hosseini M. Early General Hypothermia Improves Motor Function after Spinal Cord Injury in Rats; a Systematic Review and Meta-Analysis. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2020; 8:e80. [PMID: 33251525 PMCID: PMC7682943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION There is still controversy about the effect of early hypothermia on the outcome of spinal cord injury (SCI). The aim of this review article is to investigate the effect of local or general hypothermia on improving the locomotion after traumatic SCI. METHODS Electronic databases (Medline and Embase) were searched from inception until May 7, 2018. Two independent reviewers screened and summarized the relevant experimental studies on hypothermia efficacy in traumatic SCI. The data were analyzed and the findings were presented as pooled standardized mean difference (SMD) and 95% confidence interval (95% CI). RESULTS 20 papers containing 30 separate experiments were included in meta-analysis. The onset of hypothermia varied between 0 and 240 minutes after SCI. Administration of hypothermia has a positive effect on locomotion following SCI (SMD=0.56 95% CI: 0.18-0.95, p=0.004). Subgroup analysis showed that general hypothermia improves locomotion recovery (SMD =0.89, 95% CI: 0.42 to 1.36; p <0.0001), while local hypothermia does not have a significant effect on motor recovery (SMD=0.20, 95 % CI: -0.36-0.76, p=0.478). In addition, general hypothermia was found to affect motor recovery only if its duration was between 2 and 8 hours (SMD=0.89; p<0.0001) and the target temperature for induction of hypothermia was between 32 and 35° C (SMD=0.83; p<0.0001). CONCLUSION We found that general hypothermia improves locomotion after SCI in rats. Duration of induction and the target temperature are two essential considerations for general therapeutic hypothermia.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Haghani
- School of Medicine, International Campus, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Shokraneh
- Cochrane Schizophrenia Group, Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding authors: 1- Mostafa Hosseini ,Department of Epidemiology and Biostatistics School of Public Health, Tehran University of Medical Sciences, Poursina Ave, Tehran, Iran; ; Tel: +982188989125; Fax: +982188989127. 2- Vafa Rahimi-Movaghar, Professor of Neurosurgery, Department of Neurosurgery, Sina Trauma and Surgery Research Center, Sina Hospital, Tel: +98216675002 Fax: +982166757009, E-mail: ;
| | - Mostafa Hosseini
- Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding authors: 1- Mostafa Hosseini ,Department of Epidemiology and Biostatistics School of Public Health, Tehran University of Medical Sciences, Poursina Ave, Tehran, Iran; ; Tel: +982188989125; Fax: +982188989127. 2- Vafa Rahimi-Movaghar, Professor of Neurosurgery, Department of Neurosurgery, Sina Trauma and Surgery Research Center, Sina Hospital, Tel: +98216675002 Fax: +982166757009, E-mail: ;
| |
Collapse
|
14
|
Al-Nashash H, Luo S, Liu X, All AH. Trading baseline with forelimbs somatosensory evoked potential for longitudinal analysis in thoracic transection spinal cord injury. J Neurosci Methods 2020; 343:108858. [DOI: 10.1016/j.jneumeth.2020.108858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022]
|
15
|
Chen N, Zhou P, Liu X, Li J, Wan Y, Liu S, Wei F. Overexpression of Rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury. FASEB J 2020; 34:6984-6998. [PMID: 32232913 DOI: 10.1096/fj.201903171r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 11/11/2022]
Abstract
Rictor is an essential component that directly activates the mammalian target of rapamycin (mTOR) activity, which contributes to the intrinsic axon growth capacity of adult sensory neurons after injury. However, whether its action also applies to regeneration after spinal cord injury (SCI) remains unknown. In this study, rats were given spinal cord contusion at the T9-10 level to establish the SCI model and were subsequently treated with intraspinal cord injection of a Rictor overexpression lentiviral vector to locally upregulate the Rictor expression in the injured spinal cord. Thereafter, we investigated the therapeutic effects of Rictor overexpression in the injured spinal cords of SCI rats. Rictor overexpression not only significantly attenuated the acute inflammatory response and cell death after SCI but also markedly increased the shift in macrophages around the lesion from the M1 to M2 phenotype compared to those of the control lentiviral vector injection-treated group. Furthermore, Rictor overexpression dramatically increased neurogenesis in the lesion epicenter, subsequently promoting the tissue repair and functional recovery in SCI rats. Interestingly, the mechanism underlying the beneficial effects of Rictor overexpression on SCI may be associated with the Rictor overexpression playing a role in the anti-inflammatory response and driving macrophage polarization toward the M2 phenotype, which benefits resident neuronal and oligodendrocyte survival. Our findings demonstrate that Rictor is an effective target that affects the generation of molecules that inhibit spinal cord regeneration. In conclusion, localized Rictor overexpression represents a promising potential strategy for the repair of SCI.
Collapse
Affiliation(s)
- Ningning Chen
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Pengxiang Zhou
- Department of Physical Diagnostic, Daqing Longnan Hospital, Daqing, China
| | - Xizhe Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiachun Li
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
16
|
Zhou X, Du J, Jia X. Effects of Hydrogel-Fiber on Cystic Cavity after Spinal Cord Injury. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1070-1073. [PMID: 31946079 DOI: 10.1109/embc.2019.8857115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) affects millions of people around the world, however, functional recovery is far from satisfying. The continuous emergence of biomaterials provides a new idea for the repair of SCI. Hydrogels can mimic the extracellular matrix (ECM), however, the unstable hydrogel shape limits its application. In this study, we evaluate the effect of hydrogel fiber (Polycaprolactone, PCL fiber was added to the hydrogel) on the recovery after SCI. 20 adult male Wistar rats were randomly divided into 4 groups: SCI+hydrogel group (H), SCI+hydrogel + PCL fiber group (HF), SCI group (SCI) and SHAM group (SHAM) and (N=5). SCI contusion injury was induced by a MASCIS Impactor (20g weight, 50cm high) at the T9 level in rats. Hydrogels or PCL fiber were administered into the SCI site one week after surgery. Periodical Basso, Beattie, and Bresnahan (BBB) locomotor score, spinal cord hematoxylin and eosin stain (HE) staining, and immunofluorescence staining were performed 28 days after the operation. HE staining showed that the average cystic cavity area in SCI (20.78 ±2.93 mm2) group was significantly higher than that in H group (6.54 ±0.85 mm2), HF group (5.06 ±0.76 mm2) and SHAM group (1.76 ±0.27 mm2) (P <; 0.001). There was no significant difference in BBB motor score among the HF group (16.80±1.10), SCI (14.20±1.09) and H group (15.00±1.23) (P > 0.05), except the sham group. Immunofluorescence showed higher NeuN positive cells in both the H group and the HF group. This preliminary result may indicate that PCL fiber optimized the strength of hydrogels, thus providing better support for the axon regeneration. Future investigation is needed to further characterize PCL fiber and elucidate related mechanisms.
Collapse
|
17
|
A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromolecular Med 2020; 22:447-463. [DOI: 10.1007/s12017-019-08589-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
18
|
Kafka J, Lukacova N, Sulla I, Maloveska M, Vikartovska Z, Cizkova D. Hypothermia in the course of acute traumatic spinal cord injury. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
All AH, Al Nashash H, Mir H, Luo S, Liu X. Characterization of transection spinal cord injuries by monitoring somatosensory evoked potentials and motor behavior. Brain Res Bull 2019; 156:150-163. [PMID: 31866455 DOI: 10.1016/j.brainresbull.2019.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 01/20/2023]
Abstract
Standardization of spinal cord injury (SCI) models is crucial for reproducible injury in research settings and their objective assessments. Basso, Beattie and Bresnahan (BBB) scoring, the traditional behavioral evaluation method, is subjective and susceptible to human error. On the other hand, neuro-electrophysiological monitoring, such as somatosensory evoked potential (SSEP), is an objective assessment method that can be performed continuously for longitudinal studies. We implemented both SSEP and BBB assessments on transection SCI model. Five experimental groups are designed as follows: left hemi-transection at T8, right hemi-transection at T10, double hemi-transection at left T8 and right T10, complete transection at T8 and control group which receives only laminectomy with intact dura and no injury on spinal cord parenchyma. On days 4, 7, 14 and 21 post-injury, first BBB scores in awake and then SSEP signals in anesthetized rats were obtained. Our results show SSEP signals and BBB scores are both closely associated with transection model and injury progression. However, the two assessment modalities demonstrate different sensitivity in measuring injury progression when it comes to late-stage double hemi-transection, complete transection and hemi-transection injury. Furthermore, SSEP amplitudes are found to be distinct in different injury groups and the progress of their attenuation is increasingly rapid with more severe transection injuries. It is evident from our findings that SSEP and BBB methods provide distinctive and valuable information and could be complementary of each other. We propose incorporating both SSEP monitoring and conventional BBB scoring in SCI research to more effectively standardize injury progression.
Collapse
Affiliation(s)
- Angelo H All
- Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, 720 Rutland Ave., Baltimore, Maryland, 21205, USA; SINAPSE Institute, National University of Singapore, Singapore.
| | - Hasan Al Nashash
- Department of Electrical Engineering, College of Engineering, American University of Sharjah, Engineering Building Left, Sharjah, 26666, United Arab Emirates.
| | - Hasan Mir
- Department of Electrical Engineering, College of Engineering, American University of Sharjah, Engineering Building Left, Sharjah, 26666, United Arab Emirates
| | - Shiyu Luo
- Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, 720 Rutland Ave., Baltimore, Maryland, 21205, USA
| | - Xiaogang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
20
|
Jorge A, Fish EJ, Dixon CE, Hamilton KD, Balzer J, Thirumala P. The Effect of Prophylactic Hypothermia on Neurophysiological and Functional Measures in the Setting of Iatrogenic Spinal Cord Impact Injury. World Neurosurg 2019; 129:e607-e613. [PMID: 31158549 DOI: 10.1016/j.wneu.2019.05.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Iatrogenic spinal cord injury (iSCI) during spinal corrective surgery can result in devastating complications, such as paraplegia or paraparesis. Perioperatively, iSCI often occurs as a direct injury during spinal cord instrumentation placement. Currently, treatment of iSCI remains limited to posttraumatic hypothermia, which has demonstrated some value in recent clinical trials. Here we report the outcomes of preinjury hypothermia initiated preprocedurally and maintained for a considerable time after iSCI. METHODS Twenty-six female Sprague-Dawley rats were assigned at random to either a normothermic group (36 °C) or a hypothermic group (32 °C) and then underwent a laminectomy procedure at the T8 level. Each group was further divided at random to receive a 200-kdyn force contusive spinal cord injury or a sham impact. Hypothermic rats were then rewarmed after 2 hours of hypothermic treatment. Behavioral scores, temperature profiles, weights, and somatosensory evoked potentials were obtained at baseline and at specified time points after the procedure. RESULTS The median survival was 42 days for the iSCI hypothermic group and 11 days for the iSCI normothermic group (hazard ratio, 3.82; 95% confidence interval, 1.52-9.57). The probability of survival was significantly higher in the iSCI hypothermic group compared with the iSCI normothermic group (χ2 = 4.18; P = 0.040). The hypothermic group exhibited a higher Basso, Beattie and Bresnahan (BBB) locomotor rating scale score (17 vs. 14; P < 0.01), lower normalized latencies (1.06 ± 0.16 seconds vs. 1.34 ± 0.17 seconds; P = 0.04), and higher peak-to-peak amplitudes (0.32 ± 0.10 μV vs. 0.12 ± 0.09 μV; P = 0.005). CONCLUSIONS The use of prophylactic hypothermia before iSCI was significantly associated with an increased survival rate, higher BBB scores, and improved neurophysiological measures.
Collapse
Affiliation(s)
- Ahmed Jorge
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Erika J Fish
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - C Edward Dixon
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kojo D Hamilton
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Balzer
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Parthasarathy Thirumala
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Somatosensory evoked potential changes and decompression timing for spinal cord function recovery and evoked potentials in rats with spinal cord injury. Brain Res Bull 2019; 146:7-11. [DOI: 10.1016/j.brainresbull.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022]
|
22
|
Verma R, Virdi JK, Singh N, Jaggi AS. Animals models of spinal cord contusion injury. Korean J Pain 2019; 32:12-21. [PMID: 30671199 PMCID: PMC6333579 DOI: 10.3344/kjp.2019.32.1.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/03/2022] Open
Abstract
Spinal cord contusion injury is one of the most serious nervous system disorders, characterized by high morbidity and disability. To mimic spinal cord contusion in humans, various animal models of spinal contusion injury have been developed. These models have been developed in rats, mice, and monkeys. However, most of these models are developed using rats. Two types of animal models, i.e. bilateral contusion injury and unilateral contusion injury models, are developed using either a weight drop method or impactor method. In the weight drop method, a specific weight or a rod, having a specific weight and diameter, is dropped from a specific height on to the exposed spinal cord. Low intensity injury is produced by dropping a 5 g weight from a height of 8 cm, moderate injury by dropping 10 g weight from a height of 12.5–25 mm, and high intensity injury by dropping a 25 g weight from a height of 50 mm. In the impactor method, injury is produced through an impactor by delivering a specific force to the exposed spinal cord area. Mild injury is produced by delivering 100 ± 5 kdyn of force, moderate injury by delivering 200 ± 10 kdyn of force, and severe injury by delivering 300 ± 10 kdyn of force. The contusion injury produces a significant development of locomotor dysfunction, which is generally evident from the 0–14th day of surgery and is at its peak after the 28–56th day. The present review discusses different animal models of spinal contusion injury.
Collapse
Affiliation(s)
- Renuka Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Jasleen Kaur Virdi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| |
Collapse
|
23
|
Teh DBL, Chua SM, Prasad A, Kakkos I, Jiang W, Yue M, Liu X, All AH. Neuroprotective assessment of prolonged local hypothermia post contusive spinal cord injury in rodent model. Spine J 2018; 18:507-514. [PMID: 29074466 DOI: 10.1016/j.spinee.2017.10.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although general hypothermia is recognized as a clinically applicable neuroprotective intervention, acute moderate local hypothermia post contusive spinal cord injury (SCI) is being considered a more effective approach. Previously, we have investigated the feasibility and safety of inducing prolonged local hypothermia in the central nervous system of a rodent model. PURPOSE Here, we aimed to verify the efficacy and neuroprotective effects of 5 and 8 hours of local moderate hypothermia (30±0.5°C) induced 2 hours after moderate thoracic contusive SCI in rats. STUDY DESIGN Rats were induced with moderate SCI (12.5 mm) at its T8 section. Local hypothermia (30±0.5°C) was induced 2 hours after injury induction with an M-shaped copper tube with flow of cold water (12°C), from the T6 to the T10 region. Experiment groups were divided into 5-hour and 8-hour hypothermia treatment groups, respectively, whereas the normothermia control group underwent no hypothermia treatment. METHODS The neuroprotective effects were assessed through objective weekly somatosensory evoked potential (SSEP) and motor behavior (basso, beattie and bresnahan Basso, Beattie and Bresnahan (BBB) scoring) monitoring. Histology on spinal cord was performed until at the end of day 56. All authors declared no conflict of interest. This work was supported by the Singapore Institute for Neurotechnology Seed Fund (R-175-000-121-733), National University of Singapore, Ministry of Education, Tier 1 (R-172-000-414-112.). RESULTS Our results show significant SSEP amplitudes recovery in local hypothermia groups starting from day 14 post-injury onward for the 8-hour treatment group, which persisted up to days 28 and 42, whereas the 5-hour group showed significant improvement only at day 42. The functional improvement plateaued after day 42 as compared with control group of SCI with normothermia. This was supported by both 5-hour and 8-hour improvement in locomotion as measured by BBB scores. Local hypothermia also observed insignificant changes in its SSEP latency, as compared with the control. In addition, 5- and 8-hour hypothermia rats' spinal cord showed higher percentage of parenchyma preservation. CONCLUSIONS Early local moderate hypothermia can be induced for extended periods of time post SCI in the rodent model. Such intervention improves functional electrophysiological outcome and motor behavior recovery for a long time, lasting until 8 weeks.
Collapse
Affiliation(s)
- Daniel Boon Loong Teh
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore
| | - Soo Min Chua
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore
| | - Ankshita Prasad
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore; Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Dr 3, Singapore 117583, Singapore
| | - Ioannis Kakkos
- Department of Electrical and Computing Engineering, National Technical University of Athens, Zografos, 15773, Athens, Greece
| | - Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mu Yue
- Department of Statistics and Applied Probability, National University of Singapore, Level 7, Block S16,6 Science Dr 2, Singapore 117546, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Dr 3, Singapore 117543, Singapore
| | - Angelo Homayoun All
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore; Department of Biomedical Engineering and Department of Neurology, John Hopkins School of Medicine, 701C Rutland Ave 720, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Zhu L. Hypothermia Used in Medical Applications for Brain and Spinal Cord Injury Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:295-319. [PMID: 30315552 DOI: 10.1007/978-3-319-96445-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite more than 80 years of animal experiments and clinical practice, efficacy of hypothermia in improving treatment outcomes in patients suffering from cell and tissue damage caused by ischemia is still ongoing. This review will first describe the history of utilizing cooling in medical treatment, followed by chemical and biochemical mechanisms of cooling that can lead to neuroprotection often observed in animal studies and some clinical studies. The next sections will be focused on current cooling approaches/devices, as well as cooling parameters recommended by researchers and clinicians. Animal and clinical studies of implementing hypothermia to spinal cord and brain tissue injury patients are presented next. This section will review the latest outcomes of hypothermia in treating patients suffering from traumatic brain injury (TBI), spinal cord injury (SCI), stroke, cardiopulmonary surgery, and cardiac arrest, followed by a summary of available evidence regarding both demonstrated neuroprotection and potential risks of hypothermia. Contributions from bioengineers to the field of hypothermia in medical treatment will be discussed in the last section of this review. Overall, an accumulating body of clinical evidence along with several decades of animal research and mathematical simulations has documented that the efficacy of hypothermia is dependent on achieving a reduced temperature in the target tissue before or soon after the injury-precipitating event. Mild hypothermia with temperature reduction of several degrees Celsius is as effective as modest or deep hypothermia in providing therapeutic benefit without introducing collateral/systemic complications. It is widely demonstrated that the rewarming rate must be controlled to be lower than 0.5 °C/h to avoid mismatch between local blood perfusion and metabolism. In the past several decades, many different cooling methods and devices have been designed, tested, and used in medical treatments with mixed results. Accurately designing treatment protocols to achieve specific cooling outcomes requires collaboration among engineers, researchers, and clinicians. Although this problem is quite challenging, it presents a major opportunity for bioengineers to create methods and devices that quickly and safely produce hypothermia in targeted tissue regions without interfering with routine medical treatment.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
25
|
Cobas MA, Vera-Arroyo A. Hypothermia: Update on Risks and Therapeutic and Prophylactic Applications. Adv Anesth 2017; 35:25-45. [PMID: 29103575 DOI: 10.1016/j.aan.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Miguel A Cobas
- Department of Anesthesiology and Perioperative Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Arnaldo Vera-Arroyo
- Department of Anesthesiology and Perioperative Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
26
|
|
27
|
Multiple beneficial effects of melanocortin MC 4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Prog Neurobiol 2016; 148:40-56. [PMID: 27916623 DOI: 10.1016/j.pneurobio.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
Melanocortin peptides induce neuroprotection in acute and chronic experimental neurodegenerative conditions. Melanocortins likewise counteract systemic responses to brain injuries. Furthermore, they promote neurogenesis by activating critical signaling pathways. Melanocortin-induced long-lasting improvement in synaptic activity and neurological performance, including learning and memory, sensory-motor orientation and coordinated limb use, has been consistently observed in experimental models of acute and chronic neurodegeneration. Evidence indicates that the neuroprotective and neurogenic effects of melanocortins, as well as the protection against systemic responses to a brain injury, are mediated by brain melanocortin 4 (MC4) receptors, through an involvement of the vagus nerve. Here we discuss the targets and mechanisms underlying the multiple beneficial effects recently observed in animal models of neurodegeneration. We comment on the potential clinical usefulness of melanocortin MC4 receptor agonists as neuroprotective and neuroregenerative agents in ischemic stroke, subarachnoid hemorrhage, traumatic brain injury, spinal cord injury, and Alzheimer's disease.
Collapse
|
28
|
Vayrynen E, Noponen K, Vipin A, Thow XY, Al-Nashash H, Kortelainen J, All A. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling. IEEE Trans Neural Syst Rehabil Eng 2016; 24:981-992. [DOI: 10.1109/tnsre.2016.2525829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Hu D, Zhu S, Potas JR. Red LED photobiomodulation reduces pain hypersensitivity and improves sensorimotor function following mild T10 hemicontusion spinal cord injury. J Neuroinflammation 2016; 13:200. [PMID: 27561854 PMCID: PMC5000419 DOI: 10.1186/s12974-016-0679-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background The development of hypersensitivity following spinal cord injury can result in incurable persistent neuropathic pain. Our objective was to examine the effect of red light therapy on the development of hypersensitivity and sensorimotor function, as well as on microglia/macrophage subpopulations following spinal cord injury. Methods Wistar rats were treated (or sham treated) daily for 30 min with an LED red (670 nm) light source (35 mW/cm2), transcutaneously applied to the dorsal surface, following a mild T10 hemicontusion injury (or sham injury). The development of hypersensitivity was assessed and sensorimotor function established using locomotor recovery and electrophysiology of dorsal column pathways. Immunohistochemistry and TUNEL were performed to examine cellular changes in the spinal cord. Results We demonstrate that red light penetrates through the entire rat spinal cord and significantly reduces signs of hypersensitivity following a mild T10 hemicontusion spinal cord injury. This is accompanied with improved dorsal column pathway functional integrity and locomotor recovery. The functional improvements were preceded by a significant reduction of dying (TUNEL+) cells and activated microglia/macrophages (ED1+) in the spinal cord. The remaining activated microglia/macrophages were predominantly of the anti-inflammatory/wound-healing subpopulation (Arginase1+ED1+) which were expressed early, and up to sevenfold greater than that found in sham-treated animals. Conclusions These findings demonstrate that a simple yet inexpensive treatment regime of red light reduces the development of hypersensitivity along with sensorimotor improvements following spinal cord injury and may therefore offer new hope for a currently treatment-resistant pain condition.
Collapse
Affiliation(s)
- Di Hu
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT 2601, Australia
| | - Shuyu Zhu
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT 2601, Australia
| | - Jason Robert Potas
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
30
|
Alkabie S, Boileau AJ. The Role of Therapeutic Hypothermia After Traumatic Spinal Cord Injury—A Systematic Review. World Neurosurg 2016; 86:432-49. [DOI: 10.1016/j.wneu.2015.09.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/16/2022]
|
31
|
Bazley FA, Pashai N, Kerr C, Thakor N, All AH. A simple and effective semi-invasive method for inducing local hypothermia in rat spinal cord. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:6321-4. [PMID: 24111186 DOI: 10.1109/embc.2013.6610999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypothermia has been shown to be an effective treatment for spinal cord injury. Local hypothermia is advantageous because it avoids inducing systemic side effects of general hypothermia while providing the opportunity for greater temperature reduction at the site of injury, which may contribute to increased neuroprotection. We report a new semi-invasive method for inducing local hypothermia in rats' spinal cords. Our method does not require laminectomy or penetration of the dura and is more effective at cooling the cord than transcutaneous approaches. We show that we were successfully able to cool the spinal cord to 30.2 ± 0.3°C for 2 hours with rectal temperature maintained at 37.3 ± 0.3°C after a spinal cord contusion injury. We also validated our method in control rats that received only a laminectomy. Furthermore, this method was able to reliably cool and rewarm the cord at a steady rate (Δ5.5°C in 30 min, or 0.2°C/min). Future work will include validating long-term functional improvements of injured rats after treatment and to apply local cooling to other spinal cord injury models, such as compression injuries.
Collapse
|
32
|
Abstract
Spinal cord injury (SCI) is a major health problem and is associated with a diversity of neurological symptoms. Pathophysiologically, dysfunction after SCI results from the culmination of tissue damage produced both by the primary insult and a range of secondary injury mechanisms. The application of hypothermia has been demonstrated to be neuroprotective after SCI in both experimental and human studies. The myriad of protective mechanisms of hypothermia include the slowing down of metabolism, decreasing free radical generation, inhibiting excitotoxicity and apoptosis, ameliorating inflammation, preserving the blood spinal cord barrier, inhibiting astrogliosis, promoting angiogenesis, as well as decreasing axonal damage and encouraging neurogenesis. Hypothermia has also been combined with other interventions, such as antioxidants, anesthetics, alkalinization and cell transplantation for additional benefit. Although a large body of work has reported on the effectiveness of hypothermia as a neuroprotective approach after SCI and its application has been translated to the clinic, a number of questions still remain regarding its use, including the identification of hypothermia's therapeutic window, optimal duration and the most appropriate rewarming rate. In addition, it is necessary to investigate the neuroprotective effect of combining therapeutic hypothermia with other treatment strategies for putative synergies, particularly those involving neurorepair.
Collapse
Affiliation(s)
- Jiaqiong Wang
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| |
Collapse
|
33
|
Vipin A, Kortelainen J, Al-Nashash H, Chua SM, Thow X, Manivannan J, Astrid, Thakor NV, Kerr CL, All AH. Prolonged Local Hypothermia Has No Long-Term Adverse Effect on the Spinal Cord. Ther Hypothermia Temp Manag 2015; 5:152-62. [PMID: 26057714 DOI: 10.1089/ther.2015.0005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypothermia is known to be neuroprotective and is one of the most effective and promising first-line treatments for central nervous system (CNS) trauma. At present, induction of local hypothermia, as opposed to general hypothermia, is more desired because of its ease of application and safety; fewer side effects and an absence of severe complications have been noted. Local hypothermia involves temperature reduction of a small and specific segment of the spinal cord. Our group has previously shown the neuroprotective effect of short-term, acute moderate general hypothermia through improvements in electrophysiological and motor behavioral assessments, as well as histological examination following contusive spinal cord injury (SCI) in rats. We have also shown the benefit of using short-term local hypothermia versus short-term general hypothermia post-acute SCI. The overall neuroprotective benefit of hypothermia can be categorized into three main components: (1) induction modality, general versus local, (2) invasive, semi-invasive or noninvasive, and (3) duration of hypothermia induction. In this study, a series of experiments were designed to investigate the feasibility, long-term safety, as well as eventual complications and side effects of prolonged, semi-invasive, moderate local hypothermia (30°C±0.5°C for 5 and 8 hours) in rats with uninjured spinal cord while maintaining their core temperature at 37°C±0.5°C. The weekly somatosensory evoked potential and motor behavioral (Basso, Beattie and Bresnahan) assessments of rats that underwent 5 and 8 hours of semi-invasive local hypothermia, which revealed no statistically significant changes in electrical conductivity and behavioral outcomes. In addition, 4 weeks after local hypothermia induction, histological examination showed no anatomical damages or morphological changes in their spinal cord structure and parenchyma. We concluded that this method of prolonged local hypothermia is feasible, safe, and has the potential for clinical translation.
Collapse
Affiliation(s)
- Ashwati Vipin
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Jukka Kortelainen
- 2 Biomedical Engineering Research Group, Department of Computer Science and Engineering, University of Oulu , Oulu, Finland
| | - Hasan Al-Nashash
- 3 Department of Electrical Engineering, American University of Sharjah , Sharjah, United Arab Emirates
| | - Soo Min Chua
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Xinyuan Thow
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Janani Manivannan
- 4 Department of Orthopedic Surgery, National University of Singapore , Singapore, Singapore
| | - Astrid
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Nitish V Thakor
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore .,5 Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Candace L Kerr
- 6 Department of Biochemistry and Molecular Biology, University of Maryland , Baltimore, Maryland
| | - Angelo H All
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore .,4 Department of Orthopedic Surgery, National University of Singapore , Singapore, Singapore .,5 Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland.,7 Department of Biomedical Engineering, National University of Singapore , Singapore, Singapore .,8 Division of Neurology, Department of Medicine, National University of Singapore , Singapore, Singapore .,9 Department of Neurology, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
34
|
Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats. Neuroscience 2015; 291:260-71. [DOI: 10.1016/j.neuroscience.2015.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/31/2023]
|
35
|
All AH, Gharibani P, Gupta S, Bazley FA, Pashai N, Chou BK, Shah S, Resar LM, Cheng L, Gearhart JD, Kerr CL. Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One 2015; 10:e0116933. [PMID: 25635918 PMCID: PMC4311989 DOI: 10.1371/journal.pone.0116933] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are at the forefront of research in regenerative medicine and are envisaged as a source for personalized tissue repair and cell replacement therapy. Here, we demonstrate for the first time that oligodendrocyte progenitors (OPs) can be derived from iPS cells generated using either an episomal, non-integrating plasmid approach or standard integrating retroviruses that survive and differentiate into mature oligodendrocytes after early transplantation into the injured spinal cord. The efficiency of OP differentiation in all 3 lines tested ranged from 40% to 60% of total cells, comparable to those derived from human embryonic stem cells. iPS cell lines derived using episomal vectors or retroviruses generated a similar number of early neural progenitors and glial progenitors while the episomal plasmid-derived iPS line generated more OPs expressing late markers O1 and RIP. Moreover, we discovered that iPS-derived OPs (iPS-OPs) engrafted 24 hours following a moderate contusive spinal cord injury (SCI) in rats survived for approximately two months and that more than 70% of the transplanted cells differentiated into mature oligodendrocytes that expressed myelin associated proteins. Transplanted OPs resulted in a significant increase in the number of myelinated axons in animals that received a transplantation 24 h after injury. In addition, nearly a 5-fold reduction in cavity size and reduced glial scarring was seen in iPS-treated groups compared to the control group, which was injected with heat-killed iPS-OPs. Although further investigation is needed to understand the mechanisms involved, these results provide evidence that patient-specific, iPS-derived OPs can survive for three months and improve behavioral assessment (BBB) after acute transplantation into SCI. This is significant as determining the time in which stem cells are injected after SCI may influence their survival and differentiation capacity.
Collapse
Affiliation(s)
- Angelo H. All
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
- Departments of Orthopedic Surgery, Biomedical Engineering and Medicine, Division of Neurology, National University of Singapore, Singapore, Singapore
| | - Payam Gharibani
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Siddharth Gupta
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Faith A. Bazley
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Nikta Pashai
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bin-Kuan Chou
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sandeep Shah
- Division of Hematology in Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Linda M. Resar
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Hematology in Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Linzhao Cheng
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Hematology in Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John D. Gearhart
- Department of Cell and Developmental Biology in the School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Animal Biology in the School of Veterinary Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Candace L. Kerr
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Unversity of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 2014; 8:307. [PMID: 25339859 PMCID: PMC4189373 DOI: 10.3389/fnins.2014.00307] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically "expensive" organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kieran P. Normoyle
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Spitler
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Matthew F. Sharrock
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
| | - Claire M. Miller
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Catherine Best
- Molecular and Cellular Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Daniel Llano
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
37
|
Tan LA, Kasliwal MK, Fontes RBV, Fessler RG. Local cooling for traumatic spinal cord injury. J Neurosurg Spine 2014; 21:845-7. [PMID: 25170650 DOI: 10.3171/2014.5.spine14472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lee A Tan
- Rush University Medical Center, Chicago, IL
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Faiz U Ahmad
- Emory University School of Medicine, Atlanta, GA, Grady Memorial Hospital, Atlanta, GA; and
| | | |
Collapse
|
39
|
Barbosa MO, Cristante AF, Santos GBD, Ferreira R, Marcon RM, Barros Filho TEPD. Neuroprotective effect of epidural hypothermia after spinal cord lesion in rats. Clinics (Sao Paulo) 2014; 69:559-64. [PMID: 25141116 PMCID: PMC4129554 DOI: 10.6061/clinics/2014(08)10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/12/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To evaluate the neuroprotective effect of epidural hypothermia in rats subjected to experimental spinal cord lesion. METHODS Wistar rats (n = 30) weighing 320-360 g were randomized to two groups (hypothermia and control) of 15 rats per group. A spinal cord lesion was induced by the standardized drop of a 10-g weight from a height of 2.5 cm, using the New York University Impactor, after laminectomy at the T9-10 level. Rats in the hypothermia group underwent epidural hypothermia for 20 minutes immediately after spinal cord injury. Motor function was assessed for six weeks using the Basso, Beattie and Bresnahan motor scores and the inclined plane test. At the end of the final week, the rats' neurological status was monitored by the motor evoked potential test and the results for the two groups were compared. RESULTS Analysis of the Basso, Beattie and Bresnahan scores obtained during the six-week period indicated that there were no significant differences between the two groups. There was no significant difference between the groups in the inclined plane test scores during the six-week period. Furthermore, at the end of the study, the latency and amplitude values of the motor evoked potential test were not significantly different between the two groups. CONCLUSION Hypothermia did not produce a neuroprotective effect when applied at the injury level and in the epidural space immediately after induction of a spinal cord contusion in Wistar rats.
Collapse
Affiliation(s)
- Marcello Oliveira Barbosa
- Department of Orthopaedics and Traumatology, Hospital das Forças Armadas (HFA), Brasília, DF, Brazil
| | - Alexandre Fogaça Cristante
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Spine Division, São Paulo, SP, Brazil
| | - Gustavo Bispo Dos Santos
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Biologist Laboratory of Medical Investigation - 41, São Paulo, SP, Brazil
| | - Ricardo Ferreira
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Spine Division, São Paulo, SP, Brazil
| | - Raphael Martus Marcon
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Spine Division, São Paulo, SP, Brazil
| | - Tarcisio Eloy Pessoa de Barros Filho
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IOT-HCFMUSP), Spine Division, São Paulo, SP, Brazil
| |
Collapse
|
40
|
Bazley FA, Pashai N, Kerr CL, All AH. The effects of local and general hypothermia on temperature profiles of the central nervous system following spinal cord injury in rats. Ther Hypothermia Temp Manag 2014; 4:115-24. [PMID: 25019643 DOI: 10.1089/ther.2014.0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Local and general hypothermia are used to treat spinal cord injury (SCI), as well as other neurological traumas. While hypothermia is known to provide significant therapeutic benefits due to its neuroprotective nature, it is unclear how the treatment may affect healthy tissues or whether it may cause undesired temperature changes in areas of the body that are not the targets of treatment. We performed 2-hour moderate general hypothermia (32°C core) or local hypothermia (30°C spinal cord) on rats that had received either a moderate contusive SCI or laminectomy (control) while monitoring temperatures at three sites: the core, spinal cord, and cortex. First, we identified that injured rats that received general hypothermia exhibited larger temperature drops at the spinal cord (-3.65°C, 95% confidence intervals [CIs] -3.72, -3.58) and cortex (-3.64°C, CIs -3.73, -3.55) than uninjured rats (spinal cord: -3.17°C, CIs -3.24, -3.10; cortex: -3.26°C, CIs -3.34, -3.17). This was found due to elevated baseline temperatures in the injured group, which could be due to inflammation. Second, both general hypothermia and local hypothermia caused a significant reduction in the cortical temperature (-3.64°C and -1.18°C, respectively), although local hypothermia caused a significantly lower drop in cortical temperature than general hypothermia (p<0.001). Lastly, the rates of rewarming of the cord were not significantly different among the methods or injury groups that were tested; the mean rate of rewarming was 0.13±0.1°C/min. In conclusion, local hypothermia may be more suitable for longer durations of hypothermia treatment for SCI to reduce temperature changes in healthy tissues, including the cortex.
Collapse
Affiliation(s)
- Faith A Bazley
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore
| | | | | | | |
Collapse
|
41
|
Sun L, Liu S, Sun Q, Li Z, Xu F, Hou C, Harada T, Chu M, Xu K, Feng X, Duan Y, Zhang Y, Wu S. Inhibition of TROY promotes OPC differentiation and increases therapeutic efficacy of OPC graft for spinal cord injury. Stem Cells Dev 2014; 23:2104-18. [PMID: 24749558 DOI: 10.1089/scd.2013.0563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endogenous or graft-derived oligodendrocytes promote myelination and aid in the recovery from central nervous system (CNS) injury. Regulatory mechanisms underlying neural myelination and remyelination in response to injury, including spinal cord injury (SCI), are unclear. In the present study, we demonstrated that TROY serves as an important negative regulator of oligodendrocyte development and that TROY inhibition augments the repair potential of oligodendrocyte precursor cell (OPC) graft for SCI. TROY expression was detected by reverse transcriptase-polymerase chain reaction in OPCs as well as in differentiated premature and mature oligodendrocytes of postnatal mice. Pharmacological inhibition or RNAi-induced knockdown of TROY promotes OPC differentiation, whereas overexpression of TROY dampens oligodendrocyte maturation. Further, treatment of cocultures of DRG neurons and OPCs with TROY inhibitors promotes myelination and myelin-sheath-like structures. Mechanically, protein kinase C (PKC) signaling is involved in the regulation of the inhibitory effects of TROY. Moreover, in situ transplantation of OPCs with TROY knockdown leads to notable remyelination and neurological recovery in rats with SCI. Our results indicate that TROY negatively modulates remyelination in the CNS, and thus may be a suitable target for improving the therapeutic efficacy of cell transplantation for CNS injury.
Collapse
Affiliation(s)
- Liang Sun
- 1 Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University , Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bazley FA, Maybhate A, Tan CS, Thakor NV, Kerr C, All AH. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats. IEEE Trans Neural Syst Rehabil Eng 2014; 22:953-64. [PMID: 24801738 DOI: 10.1109/tnsre.2014.2319313] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The adult central nervous system is capable of significant reorganization and adaptation following neurotrauma. After a thoracic contusive spinal cord injury (SCI) neuropathways that innervate the cord below the epicenter of injury are damaged, with minimal prospects for functional recovery. In contrast, pathways above the site of injury remain intact and may undergo adaptive changes in response to injury. We used cortical somatosensory evoked potentials (SSEPs) to evaluate changes in intact forelimb pathways. Rats received a midline contusion SCI, unilateral contusion SCI, or laminectomy with no contusion at the T8 level and were monitored for 28 days post-injury. In the midline injury group, SSEPs recorded from the contralateral forelimb region of the primary somatosensory cortex were 59.7% (CI 34.7%, 84.8%; c(2) = 21.9; dof = 1; p = 2.9 ×10(-6)) greater than the laminectomy group; SSEPs from the ipsilateral somatosensory cortex were 47.6% (CI 18.3%, 77%; c(2) = 10.1; dof = 1; p = 0.001) greater. Activation of the ipsilateral somatosensory cortex was further supported by BOLD-fMRI, which showed increased oxygenation at the ipsilateral hemisphere at day seven post-injury. In the unilateral injury group, ipsilesional side was compared to the contralesional side. SSEPs on day 14 (148%; CI 111%, 185%) and day 21 (137%; CI 110%, 163%) for ipsilesional forelimb stimulation were significantly increased over baseline (100%). SSEPs recorded from the hindlimb sensory cortex upon ipsilesional stimulation were 33.9% (CI 14.3%, 53.4%; c(2) = 11.6; dof = 1; p = 0.0007) greater than contralesional stimulation. Therefore, these results demonstrate the ability of SSEPs to detect significant enhancements in the activation of forelimb sensory pathways following both midline and unilateral contusive SCI at T8. Reorganization of forelimb pathways may occur after thoracic SCI, which SSEPs can monitor to aid the development of future therapies.
Collapse
|
43
|
Kortelainen J, Vipin A, Mir H, Thakor N, Al-Nashash H, All A. Effect of isoflurane on somatosensory evoked potentials in a rat model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:4286-4289. [PMID: 25570940 DOI: 10.1109/embc.2014.6944572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Somatosensory evoked potentials (SEPs) are widely used in the clinic as well as research to study the functional integrity of the different parts of sensory pathways. However, most general anesthetics, such as isoflurane, are known to suppress SEPs, which might affect the interpretation of the signals. In animal studies, the usage of anesthetics during SEP measurements is inevitable due to which detailed effect of these drugs on the recordings should be known. In this paper, the effect of isoflurane on SEPs was studied in a rat model. Both time and frequency properties of the cortical recordings generated by stimulating the tibial nerve of rat's hindlimb were investigated at three different isoflurane levels. While the anesthetic agent is shown to generally suppress the amplitude of the SEP, the effect was found to be nonlinear influencing more substantially the latter part of waveform. This finding will potentially help us in future work aiming at separating the effects of anesthetics on SEP from those due to injury in the ascending neural pathways.
Collapse
|
44
|
Maybhate A, Chen C, Thakor NV, Jia X. Effect of hypothermia on the thalamocortical function in the rat model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:4680-3. [PMID: 23366972 DOI: 10.1109/embc.2012.6347011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuroprotective effects of hypothermia are well documented in many injuries of the central nervous system in animal models as well as clinical studies. However, the underlying mechanisms are not fully understood. An important yet unexplored background issue is the effect of hypothermic cooling on the regional functionality of the healthy CNS. In a pilot study with the rat model, we seek to characterize the effect of moderate bodily cooling on the thalamo-cortical (T-C) function. Multiunit activity (MUA) and local field potentials (LFPs) were recorded from the thalamus (VPL nucleus) and the somatosensory cortex (S1) for normothermic, mild hypothermic and mild hyperthermic conditions in healthy rats and the thalamo-cortical dynamics was characterized with Granger Causal Interaction (GCI). The GCI indicated that the thalamic driving of the cortical activity significantly increases in strength with bodily cooling and weakens with mild heating. These results could have important implications towards understanding of hypothermia.
Collapse
Affiliation(s)
- Anil Maybhate
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Traylor Building, Room 710-C, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
45
|
Li N, Tian L, Wu W, Lu H, Zhou Y, Xu X, Zhang X, Cheng H, Zhang L. Regional hypothermia inhibits spinal cord somatosensory-evoked potentials without neural damage in uninjured rats. J Neurotrauma 2013; 30:1325-33. [PMID: 22916828 DOI: 10.1089/neu.2012.2516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both the therapeutic effects of regional hypothermia (RH) and somatosensory-evoked potentials (SSEP) have been intensively studied; however, the in vivo relationship between the two remains unknown. The primary focus of the current study was to investigate the impact of RH on SSEP in uninjured rats, as well as the neural safety of RH on neuronal health. An epidural perfusion model was used to keep local temperature steady by adjusting perfusion speed at 30°C, 26°C, 22°C, and 18°C for 30 min, respectively. Total hypothermic duration lasted up to 3 h. Neural signals were recorded at the end of each hypothermic period, as well as before cooling and after spontaneous rewarming. In addition, the Basso, Beattie, and Bresnahan (BBB) Locomotor Rating Scale was used to evaluate the effects of RH pre- and post-operative, combined with hematoxylin and eosin (H&E) and Fluoro-Jade C (FJC) staining. The results showed a marked declining trend in SSEP amplitude, as well as a significant prolongation in latency only during profound hypothermia (18°C). The BBB scale remained consistent at 21 throughout the entire process, signifying that no motor function injury was caused by RH. In addition, H&E and FJC staining did not show obvious histological injury. These findings firmly support the conclusion that RH, specifically profound RH, inhibits spinal cord SSEP in both amplitude and latency without neural damage in uninjured rats.
Collapse
Affiliation(s)
- Ning Li
- Department of Neurosurgery, School of Medicine, Second Military Medical University (Shanghai) , Jinling Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Potential role of therapeutic hypothermia in the salvage of traumatic hemorrhagic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:318. [PMID: 23714428 PMCID: PMC3706987 DOI: 10.1186/cc12559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although therapeutic hypothermia could serve as a potential therapeutic strategy for treatment of traumatic hemorrhagic shock, significant controversy exists regarding its safety and feasibility. The current resuscitation strategy in traumatic hemorrhagic shock may also require updating. In this article, we have carried out an extensive literature search in this field and propose an initial algorithm for use of therapeutic hypothermia in traumatic hemorrhagic shock. This work lays essential groundwork for future investigations in this field.
Collapse
|
47
|
Abstract
Spinal cord injuries are uncommon in sports. Planning and practice for their occurrence, however, remains an essential component of Sideline Medical Team preparedness. Evaluation of cervical nerve injury, cervical cord injury, and cervical disc disease can be complex. Medical management, diagnostic imaging techniques and surgical recommendations in this setting continue to evolve. Most published guidance offers occasionally opposed expert opinion with sport participation after Cervical Cord Neuropraxia in the setting of Cervical Spinal Stenosis appearing particularly polarizing. Such conflicts can present challenges to clinicians in forming management and Return to Play decisions for the health of their athletes.
Collapse
|
48
|
Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care 2013; 18:651-60. [PMID: 23104069 DOI: 10.1097/mcc.0b013e32835a0e54] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Spinal cord injury is a devastating acute neurological condition with loss of function and poor long-term prognosis. This review summarizes current management strategies and innovative concepts on the horizon. RECENT FINDINGS The routine use of steroids in patients with spinal cord injuries has been largely abandoned and considered a 'harmful standard of care'. Prospective trials have shown that early spine stabilization within 24 h results in decreased secondary complication rates. Neuronal plasticity and axonal regeneration in the adult spinal cord are limited due to myelin-associated inhibitory molecules, such as Nogo-A. The experimental inhibition of Nogo-A ameliorates axonal sprouting and functional recovery in animal models. SUMMARY General management strategies for acute spinal cord injury consist of protection of airway, breathing, oxygenation and control of blood loss with maintenance of blood pressure. Unstable spine fractures should be stabilized early to allow unrestricted mobilization of patients with spinal cord injuries and to decrease preventable complications. Steroids are largely considered obsolete and have been abandoned in clinical guidelines. Nogo-A represents a promising new pharmacological target to promote sprouting of injured axons and restore function. Prospective clinical trials of Nogo-A inhibition in patients with spinal cord injuries are currently under way.
Collapse
|
49
|
Ahmad FU, Wang MY, Levi AD. Hypothermia for acute spinal cord injury--a review. World Neurosurg 2013; 82:207-14. [PMID: 23298671 DOI: 10.1016/j.wneu.2013.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/26/2012] [Accepted: 01/03/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Spinal cord injury (SCI) is a catastrophic neurological event with no proven treatments that protect against its consequences. Potential benefits of hypothermia in preventing/limiting central nervous system injury are now well known. There has been an interest in its potential use after SCI. This article reviews the current experimental and clinical evidence on the use of therapeutic hypothermia in patients with SCI. METHODS Review of literature. RESULTS There are various mechanisms by which hypothermia is known to protect the central nervous system. Modest hypothermia (32°C-34°C) can deliver the potential benefits of hypothermia without incurring the complications associated with deep hypothermia. Several recent experimental studies have repeatedly shown that the use of hypothermia provides the benefit of neuroprotection after SCI. Although older clinical studies were often focused on local cooling strategies and demonstrated mixed results, more recent data from systemic hypothermia use demonstrate its safety and its benefits. Endovascular cooling is a safe and reliable method of inducing hypothermia. CONCLUSIONS There is robust experimental and some clinical evidence that hypothermia is beneficial in acute SCI. Larger, multicenter trials should be initiated to further study the usefulness of systemic hypothermia in SCI.
Collapse
Affiliation(s)
- Faiz U Ahmad
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael Y Wang
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Allan D Levi
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
50
|
Dididze M, Green BA, Dalton Dietrich W, Vanni S, Wang MY, Levi AD. Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord 2012; 51:395-400. [DOI: 10.1038/sc.2012.161] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|