1
|
Plourde G, Roumes H, Suissa L, Hirt L, Doche É, Pellerin L, Bouzier-Sore AK, Quintard H. Neuroprotective effects of lactate and ketone bodies in acute brain injury. J Cereb Blood Flow Metab 2024; 44:1078-1088. [PMID: 38603600 PMCID: PMC11179615 DOI: 10.1177/0271678x241245486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
The goal of neurocritical care is to prevent and reverse the pathologic cascades of secondary brain injury by optimizing cerebral blood flow, oxygen supply and substrate delivery. While glucose is an essential energetic substrate for the brain, we frequently observe a strong decrease in glucose delivery and/or a glucose metabolic dysregulation following acute brain injury. In parallel, during the last decades, lactate and ketone bodies have been identified as potential alternative fuels to provide energy to the brain, both under physiological conditions and in case of glucose shortage. They are now viewed as integral parts of brain metabolism. In addition to their energetic role, experimental evidence also supports their neuroprotective properties after acute brain injury, regulating in particular intracranial pressure control, decreasing ischemic volume, and leading to an improvement in cognitive functions as well as survival. In this review, we present preclinical and clinical evidence exploring the mechanisms underlying their neuroprotective effects and identify research priorities for promoting lactate and ketone bodies use in brain injury.
Collapse
Affiliation(s)
- Guillaume Plourde
- Division of Intensive Care Medicine, Department of Medicine, Centre hospitalier de l’Université de Montréal, Montréal, Canada
| | - Hélène Roumes
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Univ. Bordeaux, CNRS, CRMSB/UMR 5536, Bordeaux, France
| | | | - Lorenz Hirt
- Division of Neurology, Department of Clinical Neuroscience, Centre hospitalier universitaire vaudois, Lausanne, Suisse
| | - Émilie Doche
- Neurovascular Unit, CHU de Marseille, Marseille, France
| | - Luc Pellerin
- IRMETIST Inserm U1313, Université et CHU de Poitiers, Poitiers, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Univ. Bordeaux, CNRS, CRMSB/UMR 5536, Bordeaux, France
| | - Hervé Quintard
- Division of Intensive Care Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Hôpitaux universitaires de Genéve, Genéve, Suisse
| |
Collapse
|
2
|
Gribnau A, van Zuylen ML, Coles JP, Plummer MP, Hermanns H, Hermanides J. Cerebral Glucose Metabolism following TBI: Changes in Plasma Glucose, Glucose Transport and Alternative Pathways of Glycolysis-A Translational Narrative Review. Int J Mol Sci 2024; 25:2513. [PMID: 38473761 DOI: 10.3390/ijms25052513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic brain injury (TBI) is a major public health concern with significant consequences across various domains. Following the primary event, secondary injuries compound the outcome after TBI, with disrupted glucose metabolism emerging as a relevant factor. This narrative review summarises the existing literature on post-TBI alterations in glucose metabolism. After TBI, the brain undergoes dynamic changes in brain glucose transport, including alterations in glucose transporters and kinetics, and disruptions in the blood-brain barrier (BBB). In addition, cerebral glucose metabolism transitions from a phase of hyperglycolysis to hypometabolism, with upregulation of alternative pathways of glycolysis. Future research should further explore optimal, and possibly personalised, glycaemic control targets in TBI patients, with GLP-1 analogues as promising therapeutic candidates. Furthermore, a more fundamental understanding of alterations in the activation of various pathways, such as the polyol and lactate pathway, could hold the key to improving outcomes following TBI.
Collapse
Affiliation(s)
- Annerixt Gribnau
- Department of Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mark L van Zuylen
- Department of Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Paediatric Intensive Care, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jonathan P Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Mark P Plummer
- Intensive Care Unit, Royal Melbourne Hospital, 300 Grattan Street, Parkville, VIC 3050, Australia
| | - Henning Hermanns
- Department of Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen Hermanides
- Department of Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Stovell MG, Howe DJ, Thelin EP, Jalloh I, Helmy A, Guilfoyle MR, Grice P, Mason A, Giorgi-Coll S, Gallagher CN, Murphy MP, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KLH. High-physiological and supra-physiological 1,2- 13C 2 glucose focal supplementation to the traumatised human brain. J Cereb Blood Flow Metab 2023; 43:1685-1701. [PMID: 37157814 PMCID: PMC10581237 DOI: 10.1177/0271678x231173584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/12/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023]
Abstract
How to optimise glucose metabolism in the traumatised human brain remains unclear, including whether injured brain can metabolise additional glucose when supplied. We studied the effect of microdialysis-delivered 1,2-13C2 glucose at 4 and 8 mmol/L on brain extracellular chemistry using bedside ISCUSflex, and the fate of the 13C label in the 8 mmol/L group using high-resolution NMR of recovered microdialysates, in 20 patients. Compared with unsupplemented perfusion, 4 mmol/L glucose increased extracellular concentrations of pyruvate (17%, p = 0.04) and lactate (19%, p = 0.01), with a small increase in lactate/pyruvate ratio (5%, p = 0.007). Perfusion with 8 mmol/L glucose did not significantly influence extracellular chemistry measured with ISCUSflex, compared to unsupplemented perfusion. These extracellular chemistry changes appeared influenced by the underlying metabolic states of patients' traumatised brains, and the presence of relative neuroglycopaenia. Despite abundant 13C glucose supplementation, NMR revealed only 16.7% 13C enrichment of recovered extracellular lactate; the majority being glycolytic in origin. Furthermore, no 13C enrichment of TCA cycle-derived extracellular glutamine was detected. These findings indicate that a large proportion of extracellular lactate does not originate from local glucose metabolism, and taken together with our earlier studies, suggest that extracellular lactate is an important transitional step in the brain's production of glutamine.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosurgery, The Walton Centre, Liverpool, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Neurotrauma and Intracranial Pressure Management. Crit Care Clin 2023; 39:103-121. [DOI: 10.1016/j.ccc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Hermanides J, Hong YT, Trivedi M, Outtrim J, Aigbirhio F, Nestor PJ, Guilfoyle M, Winzeck S, Newcombe VFJ, Das T, Correia MM, Carpenter KLH, Hutchinson PJA, Gupta AK, Fryer TD, Pickard JD, Menon DK, Coles JP. Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain 2021; 144:3492-3504. [PMID: 34240124 PMCID: PMC8677561 DOI: 10.1093/brain/awab255] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic derangements following traumatic brain injury are poorly characterized. In this single-centre observational cohort study we combined 18F-FDG and multi-tracer oxygen-15 PET to comprehensively characterize the extent and spatial pattern of metabolic derangements. Twenty-six patients requiring sedation and ventilation with intracranial pressure monitoring following head injury within a Neurosciences Critical Care Unit, and 47 healthy volunteers were recruited. Eighteen volunteers were excluded for age over 60 years (n = 11), movement-related artefact (n = 3) or physiological instability during imaging (n = 4). We measured cerebral blood flow, blood volume, oxygen extraction fraction, and 18F-FDG transport into the brain (K1) and its phosphorylation (k3). We calculated oxygen metabolism, 18F-FDG influx rate constant (Ki), glucose metabolism and the oxygen/glucose metabolic ratio. Lesion core, penumbra and peri-penumbra, and normal-appearing brain, ischaemic brain volume and k3 hotspot regions were compared with plasma and microdialysis glucose in patients. Twenty-six head injury patients, median age 40 years (22 male, four female) underwent 34 combined 18F-FDG and oxygen-15 PET at early, intermediate, and late time points (within 24 h, Days 2-5, and Days 6-12 post-injury; n = 12, 8, and 14, respectively), and were compared with 20 volunteers, median age 43 years (15 male, five female) who underwent oxygen-15, and nine volunteers, median age 56 years (three male, six female) who underwent 18F-FDG PET. Higher plasma glucose was associated with higher microdialysate glucose. Blood flow and K1 were decreased in the vicinity of lesions, and closely related when blood flow was <25 ml/100 ml/min. Within normal-appearing brain, K1 was maintained despite lower blood flow than volunteers. Glucose utilization was globally reduced in comparison with volunteers (P < 0.001). k3 was variable; highest within lesions with some patients showing increases with blood flow <25 ml/100 ml/min, but falling steeply with blood flow lower than 12 ml/100 ml/min. k3 hotspots were found distant from lesions, with k3 increases associated with lower plasma glucose (Rho -0.33, P < 0.001) and microdialysis glucose (Rho -0.73, P = 0.02). k3 hotspots showed similar K1 and glucose metabolism to volunteers despite lower blood flow and oxygen metabolism (P < 0.001, both comparisons); oxygen extraction fraction increases consistent with ischaemia were uncommon. We show that glucose delivery was dependent on plasma glucose and cerebral blood flow. Overall glucose utilization was low, but regional increases were associated with reductions in glucose availability, blood flow and oxygen metabolism in the absence of ischaemia. Clinical management should optimize blood flow and glucose delivery and could explore the use of alternative energy substrates.
Collapse
Affiliation(s)
- Jeroen Hermanides
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Monica Trivedi
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Joanne Outtrim
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Nestor
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Matthew Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefan Winzeck
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
- BioMedIA Group, Department of Computing, Imperial College, London, UK
| | | | - Tilak Das
- Department of Radiology, Addenbrooke’s Hospital, Cambridge, UK
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Arun K Gupta
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Jonathan P Coles
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Svedung Wettervik TM, Lewén A, Enblad P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front Neurol 2021; 12:638132. [PMID: 33716941 PMCID: PMC7943830 DOI: 10.3389/fneur.2021.638132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Neurointensive care (NIC) has contributed to great improvements in clinical outcomes for patients with severe traumatic brain injury (TBI) by preventing, detecting, and treating secondary insults and thereby reducing secondary brain injury. Traditional NIC management has mainly focused on generally applicable escalated treatment protocols to avoid high intracranial pressure (ICP) and to keep the cerebral perfusion pressure (CPP) at sufficiently high levels. However, TBI is a very heterogeneous disease regarding the type of injury, age, comorbidity, secondary injury mechanisms, etc. In recent years, the introduction of multimodality monitoring, including, e.g., pressure autoregulation, brain tissue oxygenation, and cerebral energy metabolism, in addition to ICP and CPP, has increased the understanding of the complex pathophysiology and the physiological effects of treatments in this condition. In this article, we will present some potential future approaches for more individualized patient management and fine-tuning of NIC, taking advantage of multimodal monitoring to further improve outcome after severe TBI.
Collapse
Affiliation(s)
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut-Microbiome-Brain Axis. Foods 2021; 10:foods10020221. [PMID: 33494481 PMCID: PMC7911192 DOI: 10.3390/foods10020221] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean paste is an indigenous food for use in cooking in East and Southeast Asia. Korea developed and used its traditional fermented foods two thousand years ago. Chungkookjang has unique characteristics such as short-term fermentation (24–72 h) without salt, and fermentation mostly with Bacilli. Traditionally fermented chungkookjang (TFC) is whole cooked soybeans that are fermented predominantly by Bacillus species. However, Bacillus species are different in the environment according to the regions and seasons due to the specific bacteria. Bacillus species differently contribute to the bioactive components of chungkookjang, resulting in different functionalities. In this review, we evaluated the production process of poly-γ-glutamic acid (γ-PGA)-rich chungkookjang fermented with specific Bacillus species and their effects on memory function through the modulation of brain insulin resistance, neuroinflammation, and the gut–microbiome–brain axis. Bacillus species were isolated from the TFC made in Sunchang, Korea, and they included Bacillus (B.) subtilis, B. licheniformis, and B. amyloliquefaciens. Chungkookjang contains isoflavone aglycans, peptides, dietary fiber, γ-PGA, and Bacillus species. Chungkookjangs made with B. licheniformis and B. amyloliquefaciens have higher contents of γ-PGA, and they are more effective for improving glucose metabolism and memory function. Chungkookjang has better efficacy for reducing inflammation and oxidative stress than other fermented soy foods. Insulin sensitivity is improved, not only in systemic organs such as the liver and adipose tissues, but also in the brain. Chungkookjang intake prevents and alleviates memory impairment induced by Alzheimer’s disease and cerebral ischemia. This review suggests that the intake of chungkookjang (20–30 g/day) rich in γ-PGA acts as a synbiotic in humans and promotes memory function by suppressing brain insulin resistance and neuroinflammation and by modulating the gut–microbiome–brain axis.
Collapse
|
8
|
High Arterial Glucose is Associated with Poor Pressure Autoregulation, High Cerebral Lactate/Pyruvate Ratio and Poor Outcome Following Traumatic Brain Injury. Neurocrit Care 2020; 31:526-533. [PMID: 31123993 PMCID: PMC6872512 DOI: 10.1007/s12028-019-00743-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Arterial hyperglycemia is associated with poor outcome in traumatic brain injury (TBI), but the pathophysiology is not completely understood. Previous preclinical and clinical studies have indicated that arterial glucose worsens pressure autoregulation. The aim of this study was to evaluate the relationship of arterial glucose to both pressure reactivity and cerebral energy metabolism. Method This retrospective study was based on 120 patients with severe TBI treated at the Uppsala University hospital, Sweden, 2008–2018. Data from cerebral microdialysis (glucose, pyruvate, and lactate), arterial glucose, and pressure reactivity index (PRx55-15) were analyzed the first 3 days post-injury. Results High arterial glucose was associated with poor outcome/Glasgow Outcome Scale-Extended at 6-month follow-up (r = − 0.201, p value = 0.004) and showed a positive correlation with both PRx55-15 (r = 0.308, p = 0.001) and cerebral lactate/pyruvate ratio (LPR) days 1–3 (r = 0. 244, p = 0.014). Cerebral lactate-to-pyruvate ratio and PRx55-15 had a positive association day 2 (r = 0.219, p = 0.048). Multivariate linear regression analysis showed that high arterial glucose predicted poor pressure autoregulation on days 1 and 2. Conclusions High arterial glucose was associated with poor outcome, poor pressure autoregulation, and cerebral energy metabolic disturbances. The latter two suggest a pathophysiological mechanism for the negative effect of arterial hyperglycemia, although further studies are needed to elucidate if the correlations are causal or confounded by other factors.
Collapse
|
9
|
Kurtz P, Rocha EEM. Nutrition Therapy, Glucose Control, and Brain Metabolism in Traumatic Brain Injury: A Multimodal Monitoring Approach. Front Neurosci 2020; 14:190. [PMID: 32265626 PMCID: PMC7105880 DOI: 10.3389/fnins.2020.00190] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
The goal of neurocritical care in patients with traumatic brain injury (TBI) is to prevent secondary brain damage. Pathophysiological mechanisms lead to loss of body mass, negative nitrogen balance, dysglycemia, and cerebral metabolic dysfunction. All of these complications have been shown to impact outcomes. Therapeutic options are available that prevent or mitigate their negative impact. Nutrition therapy, glucose control, and multimodality monitoring with cerebral microdialysis (CMD) can be applied as an integrated approach to optimize systemic immune and organ function as well as adequate substrate delivery to the brain. CMD allows real-time bedside monitoring of aspects of brain energy metabolism, by measuring specific metabolites in the extracellular fluid of brain tissue. Sequential monitoring of brain glucose and lactate/pyruvate ratio may reveal pathologic processes that lead to imbalances in supply and demand. Early recognition of these patterns may help individualize cerebral perfusion targets and systemic glucose control following TBI. In this direction, recent consensus statements have provided guidelines and recommendations for CMD applications in neurocritical care. In this review, we summarize data from clinical research on patients with severe TBI focused on a multimodal approach to evaluate aspects of nutrition therapy, such as timing and route; aspects of systemic glucose management, such as intensive vs. moderate control; and finally, aspects of cerebral metabolism. Research and clinical applications of CMD to better understand the interplay between substrate supply, glycemic variations, insulin therapy, and their effects on the brain metabolic profile were also reviewed. Novel mechanistic hypotheses in the interpretation of brain biomarkers were also discussed. Finally, we offer an integrated approach that includes nutritional and brain metabolic monitoring to manage severe TBI patients.
Collapse
Affiliation(s)
- Pedro Kurtz
- Department of Neurointensive Care, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Department of Intensive Care Medicine, Hospital Copa Star, Rio de Janeiro, Brazil
| | - Eduardo E M Rocha
- Department of Intensive Care Medicine, Hospital Copa Star, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Abstract
Neuromonitoring plays an important role in the management of traumatic brain injury. Simultaneous assessment of cerebral hemodynamics, oxygenation, and metabolism allows an individualized approach to patient management in which therapeutic interventions intended to prevent or minimize secondary brain injury are guided by monitored changes in physiologic variables rather than generic thresholds. This narrative review describes various neuromonitoring techniques that can be used to guide the management of patients with traumatic brain injury and examines the latest evidence and expert consensus guidelines for neuromonitoring.
Collapse
|
11
|
Mesotten D, Joosten K, van Kempen A, Verbruggen S. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Carbohydrates. Clin Nutr 2018; 37:2337-2343. [PMID: 30037708 DOI: 10.1016/j.clnu.2018.06.947] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- D Mesotten
- University Hospitals Leuven, Department of Intensive Care Medicine, KU Leuven, Leuven, Belgium.
| | - K Joosten
- Sophia Children's Hospital, Department of Pediatrics and Pediatric Surgery, Subdivision Intensive Care, Erasmus MC, Rotterdam, The Netherlands
| | - A van Kempen
- Department of Pediatrics and Neonatology, OLVG, Amsterdam, The Netherlands
| | - S Verbruggen
- Sophia Children's Hospital, Department of Pediatrics and Pediatric Surgery, Subdivision Intensive Care, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Li M, Sirko S. Traumatic Brain Injury: At the Crossroads of Neuropathology and Common Metabolic Endocrinopathies. J Clin Med 2018. [PMID: 29538298 PMCID: PMC5867585 DOI: 10.3390/jcm7030059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Building on the seminal work by Geoffrey Harris in the 1970s, the neuroendocrinology field, having undergone spectacular growth, has endeavored to understand the mechanisms of hormonal connectivity between the brain and the rest of the body. Given the fundamental role of the brain in the orchestration of endocrine processes through interactions among neurohormones, it is thus not surprising that the structural and/or functional alterations following traumatic brain injury (TBI) can lead to endocrine changes affecting the whole organism. Taking into account that systemic hormones also act on the brain, modifying its structure and biochemistry, and can acutely and chronically affect several neurophysiological endpoints, the question is to what extent preexisting endocrine dysfunction may set the stage for an adverse outcome after TBI. In this review, we provide an overview of some aspects of three common metabolic endocrinopathies, e.g., diabetes mellitus, obesity, and thyroid dysfunction, and how these could be triggered by TBI. In addition, we discuss how the complex endocrine networks are woven into the responses to sudden changes after TBI, as well as some of the potential mechanisms that, separately or synergistically, can influence outcomes after TBI.
Collapse
Affiliation(s)
- Melanie Li
- Physiological Genomics, Biomedical Center (BMC), Institute of Physiology, Medical Faculty of the Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany.
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center (BMC), Institute of Physiology, Medical Faculty of the Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany.
| |
Collapse
|
13
|
Kofler M, Schiefecker AJ, Beer R, Gaasch M, Rhomberg P, Stover J, Pfausler B, Thomé C, Schmutzhard E, Helbok R. Enteral nutrition increases interstitial brain glucose levels in poor-grade subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 2018; 38:518-527. [PMID: 28322077 PMCID: PMC5851142 DOI: 10.1177/0271678x17700434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Low brain tissue glucose levels after acute brain injury are associated with poor outcome. Whether enteral nutrition (EN) reliably increases cerebral glucose levels remains unclear. In this retrospective analysis of prospectively collected observational data, we investigate the effect of EN on brain metabolism in 17 poor-grade subarachnoid hemorrhage (SAH) patients undergoing cerebral microdialysis (CMD) monitoring. CMD-values were obtained hourly. A nutritional intervention was defined as the clinical routine administration of EN without supplemental parenteral nutrition. Sixty-three interventions were analyzed. The mean amount of EN per intervention was 472.4 ± 10.7 kcal. CMD-glucose levels significantly increased from 1.59 ± 0.13 mmol/l at baseline to a maximum of 2.03 ± 0.2 mmol/l after 5 h (p < 0.001), independently of insulin-treatment, baseline serum glucose, baseline brain metabolic distress (CMD-lactate-to-pyruvate-ratio (LPR) > 40) and the microdialysis probe location. The increase in CMD-glucose was directly dependent on the magnitude of increase of serum glucose levels (p = 0.007). No change in CMD-lactate, CMD-pyruvate, CMD-LPR, or CMD-glutamate (p > 0.4) was observed. Routine EN also increased CMD-glucose even if baseline concentrations were critically low ( < 0.7 mmol/l, neuroglucopenia; p < 0.001). These results may have treatment implications regarding glucose management of poor-grade aneurysmal SAH patients.
Collapse
Affiliation(s)
- Mario Kofler
- 1 Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois J Schiefecker
- 1 Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronny Beer
- 1 Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maxime Gaasch
- 1 Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Rhomberg
- 2 Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - John Stover
- 3 Fresenius Kabi, Bad Homburg vor der Höhe, Germany
| | - Bettina Pfausler
- 1 Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- 4 Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Schmutzhard
- 1 Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- 1 Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Cerebrospinal fluid and brain extracellular fluid in severe brain trauma. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:237-258. [DOI: 10.1016/b978-0-12-804279-3.00014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Faried A, Arief G, Arifin MZ, Nataprawira HM. Correlation of Lactate Concentration in Peripheral Plasma and Cerebrospinal Fluid with Glasgow Outcome Scale for Patients with Tuberculous Meningitis Complicated by Acute Hydrocephalus Treated with Fluid Diversions. World Neurosurg 2017; 111:e178-e182. [PMID: 29248780 DOI: 10.1016/j.wneu.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tuberculous meningitis (TBM) is an endemic infectious disease in developing countries, and it can become a serious illness in children. Treatment of TBM is more difficult and prone to failure than treatment of pulmonary tuberculosis. TBM causes hydrocephalus, cerebral edema, increased intracranial pressure, global ischemia, and neurologic deficits, which disturb cellular metabolism and increase lactate levels. A reliable, widely available clinical indicator of TBM severity is needed. Successful treatment of TBM is assessed using the Glasgow Outcome Scale (GOS). METHODS This prospective cohort study included 34 patients with TBM and acute hydrocephalus who had undergone fluid diversions and were admitted to Dr. Hasan Sadikin Hospital in Bandung from 2014 to 2015. A portable machine for blood glucose measurement was used to measure lactate concentrations. Statistical significance was defined as P ≤ 0.05. RESULTS Average levels of plasma and cerebrospinal fluid (CSF) lactate were 1.99 ± 0.70 mmol/L and 3.04 ± 1.05 mmol/L, respectively. A significantly higher level of lactate was observed in CSF compared with plasma. Preoperative plasma lactate was negatively correlated to GOS (r = -0.539; P = 0.013), and CSF lactate was negatively correlated to GOS (r = -0.412; P = 0.027). Average lactate levels in CSF (central) were higher than plasma (peripheral) levels. GOS scale of patients decreased with increased plasma and CSF lactate levels. CONCLUSIONS Examination of plasma and CSF lactate levels should be included in routine examinations to determine extent of cellular damage and GOS score in patients with TBM and acute hydrocephalus who have undergone fluid diversions.
Collapse
Affiliation(s)
- Ahmad Faried
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia.
| | - Gusman Arief
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Muhammad Z Arifin
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Heda M Nataprawira
- Department of Child Health, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| |
Collapse
|
16
|
Carteron L, Bouzat P, Oddo M. Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data. Front Neurol 2017; 8:601. [PMID: 29180981 PMCID: PMC5693841 DOI: 10.3389/fneur.2017.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine interventions—such as optimization of cerebral perfusion pressure, blood transfusion, glycemic control and oxygen therapy—in the individual patient. Using CMD as clinical research tool has greatly contributed to identify and better understand important post-injury mechanisms—such as energy dysfunction, posttraumatic glycolysis, post-aneurysmal early brain injury, cortical spreading depressions, and subclinical seizures. Main CMD metabolites (namely, lactate/pyruvate ratio, and glucose) can be used to monitor the brain response to specific interventions, to assess the extent of injury, and to inform about prognosis. Recent consensus statements have provided guidelines and recommendations for CMD monitoring in neurocritical care. Here, we summarize recent clinical investigation conducted in ABI patients, specifically focusing on the role of CMD to guide individualized intensive care therapy and to improve our understanding of the complex disease mechanisms occurring in the immediate phase following ABI. Promising brain biomarkers will also be described.
Collapse
Affiliation(s)
- Laurent Carteron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Besançon, University of Bourgogne - Franche-Comté, Besançon, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, University Hospital Grenoble, Grenoble, France
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Li J, Donangelo I, Abe K, Scremin O, Ke S, Li F, Milanesi A, Liu YY, Brent GA. Thyroid hormone treatment activates protective pathways in both in vivo and in vitro models of neuronal injury. Mol Cell Endocrinol 2017; 452:120-130. [PMID: 28549992 DOI: 10.1016/j.mce.2017.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023]
Abstract
Thyroid hormone plays an important role in brain development and adult brain function, and may influence neuronal recovery after Traumatic Brain Injury (TBI). We utilized both animal and cell culture models to determine the effects of thyroid hormone treatment, post TBI or during hypoxia, on genes important for neuronal survival and neurogenesis. We show that TBI in rats is associated with a reduction in serum thyroxine (T4) and triiodothyronine (T3). A single dose of levothyroxine (T4), one hour after injury, increased serum T4 and normalized serum T3 levels. Expression of genes important for thyroid hormone action in the brain, MCT8 and Type 2 deiodinase (Dio2) mRNA, diminished after injury, but were partially restored with T4 treatment. mRNA from the Type 3 deiodinase (Dio3) gene, which inactivates T4 to reverse T3 (rT3), was induced 2.7 fold by TBI, and further stimulated 6.7-fold by T4 treatment. T4 treatment significantly increased the expression of mRNA from Bcl2, VEGFA, Sox2 and neurotrophin, genes important for neuronal survival and recovery. The cortex, compared to the hippocampus and cerebellum, sustained the greatest injury and had the most significant change in gene expression as a result of injury and the greatest response to T4 treatment. We utilized hypoxia to study the effect of neuronal injury in vitro. Neuroblastoma cells were exposed to reduced oxygen tension, 0.2%, and were compared to cells grown at control oxygen levels of 21%. T3 treatment significantly increased hypoxia inducible factor (HIF)-2α protein, but not HIF-1α. In a hypoxia time course exposure, expression of hypoxia-mediated genes (VEGF, Enolase, HIF2α, c-Jun) peaked at least 8 h earlier with T3-treatment, compared to cells grown without T3. The early induction of these genes may promote cellular growth after injury. After hypoxic injury, T3 induced mRNA expression of the genes, KLF9 and hairless, important for T3-mediated brain function. The findings from both in vitro and in vivo studies support a role of thyroid hormone in activating pathways important for neuronal protection and promotion of neuronal recovery after injury.
Collapse
Affiliation(s)
- Jianrong Li
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Endocrinology, Union Hospital, Fujian Medical University, China
| | - Ines Donangelo
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kiyomi Abe
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Oscar Scremin
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Sujie Ke
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Feng Li
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Anna Milanesi
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - Gregory A Brent
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
18
|
Wolahan SM, Prins ML, McArthur DL, Real CR, Hovda DA, Martin NA, Vespa PM, Glenn TC. Influence of Glycemic Control on Endogenous Circulating Ketone Concentrations in Adults Following Traumatic Brain Injury. Neurocrit Care 2017; 26:239-246. [PMID: 27761730 PMCID: PMC5336412 DOI: 10.1007/s12028-016-0313-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The objective was to investigate the impact of targeting tight glycemic control (4.4-6.1 mM) on endogenous ketogenesis in severely head-injured adults. METHODS The data were prospectively collected during a randomized, within-patient crossover study comparing tight to loose glycemic control, defined as 6.7-8.3 mM. Blood was collected periodically during both tight and loose glycemic control epochs. Post hoc analysis of insulin dose and total nutritional provision was performed. RESULTS Fifteen patients completed the crossover study. Total ketones were increased 81 μM ([38 135], p < 0.001) when blood glucose was targeted to tight (4.4-6.1 mM) compared with loose glycemic control (6.7-8.3 mM), corresponding to a 60 % increase. There was a significant decrease in total nutritional provisions (p = 0.006) and a significant increase in insulin dose (p = 0.008). CONCLUSIONS Permissive underfeeding was tolerated when targeting tight glycemic control, but total nutritional support is an important factor when treating hyperglycemia.
Collapse
Affiliation(s)
- Stephanie M Wolahan
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Mayumi L Prins
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
| | - David L McArthur
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
| | - Courtney R Real
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
| | - David A Hovda
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California - Los Angeles, Los Angeles, CA, USA
| | - Neil A Martin
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
| | - Paul M Vespa
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
| | - Thomas C Glenn
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, University of California - Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Association of brain metabolites with blood lactate and glucose levels with respect to neurological outcomes after out-of-hospital cardiac arrest: A preliminary microdialysis study. Resuscitation 2017; 110:26-31. [DOI: 10.1016/j.resuscitation.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/22/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
|
20
|
|
21
|
Abstract
PURPOSE OF REVIEW Alterations of blood glucose levels are secondary insults with detrimental consequences for the injured brain. Here, we review various aspects of brain glucose metabolism and analyze the evidence on glycemic control during acute brain injury. RECENT FINDINGS An essential component in the overall management of acute brain injury, especially during the acute phase, is maintaining adequate and appropriate control of serum glucose. This is one of the few physiological parameters that is modifiable. Hypoglycemia should be rigorously avoided. However, intensive insulin therapy is associated with unacceptable rates of hypoglycemia and metabolic crisis, and does not necessarily provide benefit. Hyperglycemia is harmful to the injured brain as it compromises microcirculatory blood flow, increases blood-brain barrier permeability, and promotes inflammation. In addition, it triggers osmotic diuresis, hypovolemia, and immunosuppression. SUMMARY Glucose is the primary energy substrate for the brain. During injury, the brain increases its needs and is vulnerable to glucose deficit. In these situations, alternative fuel can be lactate, which has potential implications for future research. In this review, various pathophysiological aspects of glucose metabolism during acute brain injury, as well as the risks, causes, and consequences of glucose deficiency or excess, will be discussed.
Collapse
|
22
|
Abstract
Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then, there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.
Collapse
|
23
|
Grejs AM, Gjedsted J, Pedersen M, Birke-Sørensen H, Rauff-Mortensen A, Andersen KK, Kirkegaard H. Cerebral Effects of Targeted Temperature Management Methods Assessed by Diffusion-Weighted Magnetic Resonance Imaging. Ther Hypothermia Temp Manag 2016; 6:198-207. [PMID: 27249179 DOI: 10.1089/ther.2016.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this randomized porcine study was to compare surface targeted temperature management (TTM) to endovascular TTM evaluated by cerebral diffusion-weighted magnetic resonance imaging (MRI): apparent diffusion coefficient (ADC), and by intracerebral/intramuscular microdialysis. It is well known that alteration in the temperature affects ADC, but the relationship between cerebral ADC values and the cooling method per se has not been established. Eighteen anesthetized 60-kg female swine were hemodynamically and intracerebrally monitored and subsequently subjected to a baseline MRI. The animals were then randomized into three groups: (1) surface cooling (n = 6) at 33.5°C using EMCOOLSpad®, (2) endovascular cooling (n = 6) at 33.5°C using an Icy® cooling catheter with the CoolGard 3000®, or (3) control (n = 6) at 38.5°C using a Bair Hugger™. The swine were treated with TTM for 6 hours followed by a second MRI examination, including ADC. Blood and microdialysate were sampled regularly throughout the experiment, and glucose, lactate, pyruvate, glycerol, and the lactate/pyruvate ratio did not differ among groups, neither intracerebrally nor intramuscularly. Surface cooling yielded a significantly lower median ADC than endovascular cooling: 714 (634; 804) × 10-6 mm2/s versus 866 (828; 927) × 10-6 mm2/s, (p < 0.05). The surface cooling ADC was lowered to a range usually attributed to cytotoxic edema and these low values could not be explained solely by the temperature effect per se. To what extent the ADC is fully reversible at rewarming is unknown and the clinical implications should be further investigated in clinical studies.
Collapse
Affiliation(s)
- Anders Morten Grejs
- 1 Research Center for Emergency Medicine, Aarhus University Hospital , Aarhus C, Denmark .,2 Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital , Aarhus N, Denmark .,3 Department of Clinical Medicine, Aarhus University Hospital , Aarhus N, Denmark
| | - Jakob Gjedsted
- 2 Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital , Aarhus N, Denmark
| | - Michael Pedersen
- 3 Department of Clinical Medicine, Aarhus University Hospital , Aarhus N, Denmark
| | - Hanne Birke-Sørensen
- 3 Department of Clinical Medicine, Aarhus University Hospital , Aarhus N, Denmark
| | | | | | - Hans Kirkegaard
- 1 Research Center for Emergency Medicine, Aarhus University Hospital , Aarhus C, Denmark
| |
Collapse
|
24
|
Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study. J Neurosurg Anesthesiol 2016; 27:187-93. [PMID: 25144502 DOI: 10.1097/ana.0000000000000107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. METHODS We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. RESULT Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. CONCLUSIONS These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.
Collapse
|
25
|
Young B, Kalanuria A, Kumar M, Burke K, Balu R, Amendolia O, McNulty K, Marion B, Beckmann B, Ciocco L, Miller K, Schuele D, Maloney-Wilensky E, Frangos S, Wright D. Cerebral Microdialysis. Crit Care Nurs Clin North Am 2016; 28:109-24. [DOI: 10.1016/j.cnc.2015.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Patet C, Quintard H, Suys T, Bloch J, Daniel RT, Pellerin L, Magistretti PJ, Oddo M. Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate. J Neurotrauma 2015; 32:1560-6. [DOI: 10.1089/neu.2014.3781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Camille Patet
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Hervé Quintard
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Tamarah Suys
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Clinical Neurosciences, University of Lausanne, Switzerland
| | - Roy T. Daniel
- Department of Clinical Neurosciences, University of Lausanne, Switzerland
| | - Luc Pellerin
- Departement of Physiology, University of Lausanne, Switzerland
| | - Pierre J. Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mauro Oddo
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| |
Collapse
|
27
|
Perioperative glycemic status of adult traumatic brain injury patients undergoing craniotomy: a prospective observational study. J Neurosurg Anesthesiol 2015; 26:313-9. [PMID: 24633214 DOI: 10.1097/ana.0000000000000057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Patients of traumatic brain injury (TBI) may have hyperglycemia and when they undergo craniotomy, hyperglycemia may be exacerbated and worsen outcome. However, epidemiology of perioperative hyperglycemia in these patients is unknown. The epidemiological study has been undertaken to address the correlation between intraoperative blood glucose variability in nondiabetic adult TBI patients undergoing craniotomy with the severity and type of brain trauma and patients' demographic variables. METHODS A total of 200 adult nondiabetic patients undergoing emergency craniotomy for TBI were recruited in this prospective single-group observational study. Baseline capillary blood glucose (CBG) measurement was performed immediately before induction of anesthesia and then at half hourly interval until the end of surgery and 1 hour after the end of surgery. RESULTS Incidence of at least 1 episode of intraoperative hyperglycemia (CBG≥180 mg/dL) is 20% in patients with TBI during emergency craniotomy. Independent predictors of intraoperative hyperglycemia are severe head injury (Glasgow-Coma score [GCS] <9) and acute subdural hemorrhage. Baseline CBG also correlates with subsequent intraoperative and postoperative CBG. CONCLUSIONS Hyperglycemia is common during emergency craniotomy in TBI patients. We recommend routine monitoring of blood glucose in the intraoperative and postoperative period at least in severe head injury patients.
Collapse
|
28
|
McNett MM, Horowitz DA. International multidisciplinary consensus conference on multimodality monitoring: ICU processes of care. Neurocrit Care 2014; 21 Suppl 2:S215-28. [PMID: 25208666 DOI: 10.1007/s12028-014-0020-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is an increased focus on evaluating processes of care, particularly in the high acuity and cost environment of intensive care. Evaluation of neurocritical-specific care and evidence-based protocol implementation are needed to effectively determine optimal processes of care and effect on patient outcomes. General quality measures to evaluate intensive care unit (ICU) processes of care have been proposed; however, applicability of these measures in neurocritical care populations has not been established. A comprehensive literature search was conducted for English language articles from 1990 to August 2013. A total of 1,061 articles were reviewed, with 145 meeting criteria for inclusion in this review. Care in specialized neurocritical care units or by neurocritical teams can have a positive impact on mortality, length of stay, and in some cases, functional outcome. Similarly, implementation of evidence-based protocol-directed care can enhance outcome in the neurocritical care population. There is significant evidence to support suggested quality indicators for the general ICU population, but limited research regarding specific use in neurocritical care. Quality indices for neurocritical care have been proposed; however, additional research is needed to further validate measures.
Collapse
Affiliation(s)
- Molly M McNett
- MetroHealth Medical Center, The MetroHealth System, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA,
| | | |
Collapse
|
29
|
Welcome M, Pereverzev V. Glycemic Allostasis during Mental Activities on Fasting in Non-alcohol Users and Alcohol Users with Different Durations of Abstinence. Ann Med Health Sci Res 2014; 4:S199-207. [PMID: 25364589 PMCID: PMC4212377 DOI: 10.4103/2141-9248.141959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glycemic allostasis is the process by which blood glucose stabilization is achieved through the balancing of glucose consumption rate and release into the blood stream under a variety of stressors. This paper reviews findings on the dynamics of glycemic levels during mental activities on fasting in non-alcohol users and alcohol users with different periods of abstinence. Referred articles for this review were searched in the databases of PubMed, Scopus, DOAJ and AJOL. The search was conducted in 2013 between January 20 and July 31. The following keywords were used in the search: alcohol action on glycemia OR brain glucose OR cognitive functions; dynamics of glycemia, dynamics of glycemia during mental activities; dynamics of glycemia on fasting; dynamics of glycemia in non-alcohol users OR alcohol users; glycemic regulation during sobriety. Analysis of the selected articles showed that glycemic allostasis during mental activities on fasting is poorly regulated in alcohol users even after a long duration of sobriety (1-4 weeks after alcohol consumption), compared to non-alcohol users. The major contributor to the maintenance of euglycemia during mental activities after the night's rest (during continuing fast) is gluconeogenesis.
Collapse
Affiliation(s)
- Mo Welcome
- Department of Normal Physiology, Belarusian State Medical University, Minsk, Belarus
| | - Va Pereverzev
- Department of Normal Physiology, Belarusian State Medical University, Minsk, Belarus
| |
Collapse
|
30
|
Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab 2014; 34:1736-48. [PMID: 25204393 PMCID: PMC4269761 DOI: 10.1038/jcbfm.2014.153] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022]
Abstract
Lactate is proposed to be generated by astrocytes during glutamatergic neurotransmission and shuttled to neurons as 'preferred' oxidative fuel. However, a large body of evidence demonstrates that metabolic changes during activation of living brain disprove essential components of the astrocyte-neuron lactate shuttle model. For example, some glutamate is oxidized to generate ATP after its uptake into astrocytes and neuronal glucose phosphorylation rises during activation and provides pyruvate for oxidation. Extension of the notion that lactate is a preferential fuel into the traumatic brain injury (TBI) field has important clinical implications, and the concept must, therefore, be carefully evaluated before implementation into patient care. Microdialysis studies in TBI patients demonstrate that lactate and pyruvate levels and lactate/pyruvate ratios, along with other data, have important diagnostic value to distinguish between ischemia and mitochondrial dysfunction. Results show that lactate release from human brain to blood predominates over its uptake after TBI, and strong evidence for lactate metabolism is lacking; mitochondrial dysfunction may inhibit lactate oxidation. Claims that exogenous lactate infusion is energetically beneficial for TBI patients are not based on metabolic assays and data are incorrectly interpreted.
Collapse
|
31
|
Rostami E. Glucose and the injured brain-monitored in the neurointensive care unit. Front Neurol 2014; 5:91. [PMID: 24936196 PMCID: PMC4047514 DOI: 10.3389/fneur.2014.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/23/2014] [Indexed: 12/16/2022] Open
Abstract
Brain has a continuous demand for energy that is met by oxidative metabolism of oxygen and glucose. This demand is compromised in the injured brain and if the inadequate supply persists it will lead to permanent tissue damage. Zero values of cerebral glucose have been associated with infarction and poor neurological outcome. Furthermore, hyperglycemia is common in patients with neurological insults and associated with poor outcome. Intensive insulin therapy (IIT) to control blood glucose has been suggested and used in neurointensive care with conflicting results. This review covers the studies reporting on monitoring of cerebral glucose with microdialysis in patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH) and ischemic stroke. Studies investigating IIT are also discussed. Available data suggest that low cerebral glucose in patients with TBI and SAH provides valuable information on development of secondary ischemia and has been correlated with worse outcome. There is also indication that the location of the catheter is important for correlation between plasma and brain glucose. In conclusion considering catheter location, monitoring of brain glucose in the neurointensive care not only provides information on imminent secondary ischemia it also reveals the effect of peripheral treatment on the injured brain.
Collapse
Affiliation(s)
- Elham Rostami
- Department of Neuroscience, Section of Neurosurgery, Uppsala University , Uppsala , Sweden ; Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
32
|
Reduced Brain/Serum Glucose Ratios Predict Cerebral Metabolic Distress and Mortality After Severe Brain Injury. Neurocrit Care 2013; 19:311-9. [DOI: 10.1007/s12028-013-9919-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care 2013; 3:23. [PMID: 23837598 PMCID: PMC3716965 DOI: 10.1186/2110-5820-3-23] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/25/2013] [Indexed: 02/17/2023] Open
Abstract
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult—after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Collapse
Affiliation(s)
- Pierre Bouzat
- Department of Intensive Care Medicine, CHUV-University Hospital, Rue du Bugnon 46, BH 08,623, CH-1011 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
34
|
Gupta N, Pandia MP, Dash HH. Research studies that have influenced practice of neuroanesthesiology in recent years: A literature review. Indian J Anaesth 2013; 57:117-26. [PMID: 23825809 PMCID: PMC3696257 DOI: 10.4103/0019-5049.111834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Through evolving research, recent years have witnessed remarkable achievements in neuromonitoring and neuroanesthetic techniques, with a huge body of literature consisting of excellent studies in neuroanaesthesiology. However, little of this work appears to be directly important to clinical practice. Many controversies still exist in care of patients with neurologic injury. This review discusses studies of great clinical importance carried out in the last five years, which have the potential of influencing our current clinical practice and also attempts to define areas in need of further research. Relevant literature was obtained through multiple sources that included professional websites, medical journals and textbooks using key words “neuroanaesthesiology,” “traumatic brain injury,” “aneurysmal subarachnoid haemorrhage,” “carotid artery disease,” “brain protection,” “glycemic management” and “neurocritical care.” In head injured patients, administration of colloid and pre-hospital hypertonic saline resuscitation have not been found beneficial while use of multimodality monitoring, individualized optimal cerebral perfusion pressure therapy, tranexamic acid and decompressive craniectomy needs further evaluation. Studies are underway for establishing cerebroprotective potential of therapeutic hypothermia. Local anaesthesia provides better neurocognitive outcome in patients undergoing carotid endarterectomy compared with general anaesthesia. In patients with aneurysmal subarachnoid haemorrhage, induced hypertension alone is currently recommended for treating suspected cerebral vasospasm in place of triple H therapy. Till date, nimodipine is the only drug with proven efficacy in preventing cerebral vasospasm. In neurocritically ill patients, intensive insulin therapy results in substantial increase in hypoglycemic episodes and mortality rate, with current emphasis on minimizing glucose variability. Results of ongoing multicentric trials are likely to further improvise our practice.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Neuroanaesthesiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
35
|
|
36
|
Abstract
Homeostasis refers to the capacity of the human body to maintain a stable constant state by means of continuous dynamic equilibrium adjustments controlled by a medley of interconnected regulatory mechanisms. Patients who sustain tissue injury, such as trauma or surgery, undergo a well-understood reproducible metabolic and neuroendocrine stress response. This review discusses 3 issues that concern homeostasis in the acute care of trauma patients directly related to the stress response: hyperglycemia, lactic acidosis, and hypothermia. There is significant reason to question the "conventional wisdom" relating to current approaches to restoring homeostasis in critically ill and trauma patients.
Collapse
Affiliation(s)
- Patrick J Neligan
- Department of Anaesthesia and Intensive Care, Galway University Hospitals, Galway, Ireland.
| | | |
Collapse
|
37
|
How much glucose does the injured brain need?*. Crit Care Med 2012; 40:1973-4. [DOI: 10.1097/ccm.0b013e31824e18ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|