1
|
Coyoy-Salgado A, Segura-Uribe J, Salgado-Ceballos H, Castillo-Mendieta T, Sánchez-Torres S, Freyermuth-Trujillo X, Orozco-Barrios C, Orozco-Suarez S, Feria-Romero I, Pinto-Almazán R, Moralí de la Brena G, Guerra-Araiza C. Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines 2024; 12:1478. [PMID: 39062051 PMCID: PMC11274729 DOI: 10.3390/biomedicines12071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The primary mechanism of traumatic spinal cord injury (SCI) comprises the initial mechanical trauma due to the transmission of energy to the spinal cord, subsequent deformity, and persistent compression. The secondary mechanism of injury, which involves structures that remained undamaged after the initial trauma, triggers alterations in microvascular perfusion, the liberation of free radicals and neurotransmitters, lipid peroxidation, alteration in ionic concentrations, and the consequent cell death by necrosis and apoptosis. Research in the treatment of SCI has sought to develop early therapeutic interventions that mitigate the effects of these pathophysiological mechanisms. Clinical and experimental evidence has demonstrated the therapeutic benefits of sex-steroid hormone administration after traumatic brain injury and SCI. The administration of estradiol, progesterone, and testosterone has been associated with neuroprotective effects, better neurological recovery, and decreased mortality after SCI. This review evaluated evidence supporting hormone-related neuroprotection over SCI and the possible underlying mechanisms in animal models. As neuroprotection has been associated with signaling pathways, the effects of these hormones are observed on astrocytes and microglia, modulating the inflammatory response, cerebral blood flow, and metabolism, mediating glutamate excitotoxicity, and their antioxidant effects. Based on the current evidence, it is essential to analyze the benefit of sex steroid hormone therapy in the clinical management of patients with SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Carlos Orozco-Barrios
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Gabriela Moralí de la Brena
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
2
|
Galatolo D, Trovato R, Scarlatti A, Rossi S, Natale G, De Michele G, Barghigiani M, Cioffi E, Filla A, Bilancieri G, Casali C, Santorelli FM, Silvestri G, Tessa A. Power of NGS-based tests in HSP diagnosis: analysis of massively parallel sequencing in clinical practice. Neurogenetics 2023; 24:147-160. [PMID: 37131039 DOI: 10.1007/s10048-023-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of heterogeneous neurological disorders mainly characterized by corticospinal degeneration (pure forms), but sometimes associated with additional neurological and extrapyramidal features (complex HSP). The advent of next-generation sequencing (NGS) has led to huge improvements in knowledge of HSP genetics and made it possible to clarify the genetic etiology of hundreds of "cold cases," accelerating the process of reaching a molecular diagnosis. The different NGS-based strategies currently employed as first-tier approaches most commonly involve the use of targeted resequencing panels and exome sequencing, whereas genome sequencing remains a second-tier approach because of its high costs. The question of which approach is the best is still widely debated, and many factors affect the choice. Here, we aim to analyze the diagnostic power of different NGS techniques applied in HSP, by reviewing 38 selected studies in which different strategies were applied in different-sized cohorts of patients with genetically uncharacterized HSP.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Arianna Scarlatti
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Salvatore Rossi
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Gemma Natale
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Gabriella Silvestri
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | | |
Collapse
|
3
|
Wang J, Bu WT, Zhu MJ, Tang JY, Liu XM. Novel mutation of SPG4 gene in a Chinese family with hereditary spastic paraplegia: A case report. World J Clin Cases 2023; 11:3288-3294. [PMID: 37274038 PMCID: PMC10237142 DOI: 10.12998/wjcc.v11.i14.3288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a group of neurogenetic diseases of the corticospinal tract, accompanied by distinct spasticity and weakness of the lower extremities. Mutations in the spastic paraplegia type 4 (SPG4) gene, encoding the spastin protein, are the major cause of the disease. This study reported a Chinese family with HSP caused by a novel mutation of the SPG4 gene.
CASE SUMMARY A 44-year-old male was admitted to our hospital for long-term right lower limb weakness, leg stiffness, and unstable walking. His symptoms gradually worsened, while no obvious muscle atrophy in the lower limbs was found. Neurological examinations revealed that the muscle strength of the lower limbs was normal, and knee reflex hyperreflexia and bilateral positive Babinski signs were detected. Members of his family also had the same symptoms. Using mutation analysis, a novel heterozygous duplication mutation, c.1053dupA, p. (Gln352Thrfs*15), was identified in the SPG4 gene in this family.
CONCLUSION A Chinese family with HSP had a novel mutation of the SPG4 gene, which is autosomal dominant and inherited as pure HSP. The age of onset, sex distribution, and clinical manifestations of all existing living patients in this family were analyzed. The findings may extend the current knowledge on the existing mutations in the SPG4 gene.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Wei-Ting Bu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Weifang Medical University, Jinan 250014, Shandong Province, China
| | - Mei-Jia Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ji-You Tang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Xiao-Min Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| |
Collapse
|
4
|
The neuroprotective effects of estrogen and estrogenic compounds in spinal cord injury. Neurosci Biobehav Rev 2023; 146:105074. [PMID: 36736846 DOI: 10.1016/j.neubiorev.2023.105074] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) occurs when the spinal cord is damaged from either a traumatic event or disease. SCI is characterised by multiple injury phases that affect the transmission of sensory and motor signals and lead to temporary or long-term functional deficits. There are few treatments for SCI. Estrogens and estrogenic compounds, however, may effectively mitigate the effects of SCI and therefore represent viable treatment options. This review systematically examines the pre-clinical literature on estrogen and estrogenic compound neuroprotection after SCI. Several estrogens were examined by the included studies: estrogen, estradiol benzoate, Premarin, isopsoralen, genistein, and selective estrogen receptor modulators. Across these pharmacotherapies, we find significant evidence that estrogens indeed offer protection against myriad pathophysiological effects of SCI and lead to improvements in functional outcomes, including locomotion. A STRING functional network analysis of proteins modulated by estrogen after SCI demonstrated that estrogen simultaneously upregulates known neuroprotective pathways, such as HIF-1, and downregulates pro-inflammatory pathways, including IL-17. These findings highlight the strong therapeutic potential of estrogen and estrogenic compounds after SCI.
Collapse
|
5
|
Amelioration of White Matter Injury Through Mitigating Ferroptosis Following Hepcidin Treatment After Spinal Cord Injury. Mol Neurobiol 2023; 60:3365-3378. [PMID: 36853431 DOI: 10.1007/s12035-023-03287-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Spinal cord injury (SCI) usually introduces permanent or long-lasting neurological impairments. Maintaining the integrity of the limited number of white matter bundles (5-10%) preserves wholly or partially locomotor following SCI. Considering that the basic structure of white matter bundles is axon wrapped by oligodendrocytes, promoting oligodendrocytes survival might be a feasible strategy for reducing white matter injury (WMI) after SCI. Oligodendrocytes are rich in unsaturated fatty acid and susceptible to ferroptosis-induced damage. Hence, exploring method to reduce ferroptosis is supposed to expedite oligodendrocytes survival, thereafter mitigating WMI to facilitate functional recovery post-SCI. Here, the results indicated the administration of hepcidin reduced iron accumulation to promote oligodendrocytes survival and to decrease spinal cord atrophy, therefore facilitating functional recovery. Then, the WMI was evidently decreased owing to attenuating ferroptosis. Subsequently, the results revealed that the expression of divalent metal transporter 1 (DMT1) and transferrin receptor (TfR) was expressed in CC1+ cells. The expression level of DMT1 and TfR was significantly increased, while this phenomenon was obviously neutralized with the administration of hepcidin in the epicenter of spinal cord after SCI. Afterward, the application of hepcidin downregulated reactive oxygen species (ROS) overload, which was evidently increased with the treatment of 20 μM FeCl3, therefore increasing cell viability and reducing lactate dehydrogenase (LDH) activity through downregulating the expression of DMT1 and TfR to inhibit ferroptosis in oligodendrocyte progenitor cells (OPCs). The present study provides evidence that the application of hepcidin facilitates oligodendrocytes survival to alleviate WMI via reducing the expression of DMT1 and TfR.
Collapse
|
6
|
Arterburn JB, Prossnitz ER. G Protein-Coupled Estrogen Receptor GPER: Molecular Pharmacology and Therapeutic Applications. Annu Rev Pharmacol Toxicol 2023; 63:295-320. [PMID: 36662583 PMCID: PMC10153636 DOI: 10.1146/annurev-pharmtox-031122-121944] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and β), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
| | - Eric R Prossnitz
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
7
|
Ferrostatin-1 Alleviates White Matter Injury Via Decreasing Ferroptosis Following Spinal Cord Injury. Mol Neurobiol 2021; 59:161-176. [PMID: 34635980 DOI: 10.1007/s12035-021-02571-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI), a devastating neurological impairment, usually imposes a long-term psychological stress and high socioeconomic burden for the sufferers and their family. Recent researchers have paid arousing attention to white matter injury and the underlying mechanism following SCI. Ferroptosis has been revealed to be associated with diverse diseases including stroke, cancer, and kidney degeneration. Ferrostatin-1, a potent inhibitor of ferroptosis, has been illustrated to curb ferroptosis in neurons, subsequently improving functional recovery after traumatic brain injury (TBI) and SCI. However, the role of ferroptosis in white matter injury and the therapeutic effect of ferrostatin-1 on SCI are still unknown. Here, our results indicated that ferroptosis played a pivotal role in the secondary white matter injury, and ferrostatin-1 could reduce iron and reactive oxygen species (ROS) accumulation and downregulate the ferroptosis-related genes and its products of IREB2 and PTGS2 to further inhibit ferroptosis in oligodendrocyte, finally reducing white matter injury and promoting functional recovery following SCI in rats. Meanwhile, the results demonstrated that ferrostatin-1 held the potential of inhibiting the activation of reactive astrocyte and microglia. Mechanically, the present study deciphers the potential mechanism of white matter damage, which enlarges the therapeutic effects of ferrostatin-1 on SCI and even in other central nervous system (CNS) diseases existing ferroptosis.
Collapse
|
8
|
Shams R, Drasites KP, Zaman V, Matzelle D, Shields DC, Garner DP, Sole CJ, Haque A, Banik NL. The Pathophysiology of Osteoporosis after Spinal Cord Injury. Int J Mol Sci 2021; 22:3057. [PMID: 33802713 PMCID: PMC8002377 DOI: 10.3390/ijms22063057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects approximately 300,000 people in the United States. Most individuals who sustain severe SCI also develop subsequent osteoporosis. However, beyond immobilization-related lack of long bone loading, multiple mechanisms of SCI-related bone density loss are incompletely understood. Recent findings suggest neuronal impairment and disability may lead to an upregulation of receptor activator of nuclear factor-κB ligand (RANKL), which promotes bone resorption. Disruption of Wnt signaling and dysregulation of RANKL may also contribute to the pathogenesis of SCI-related osteoporosis. Estrogenic effects may protect bones from resorption by decreasing the upregulation of RANKL. This review will discuss the current proposed physiological and cellular mechanisms explaining osteoporosis associated with SCI. In addition, we will discuss emerging pharmacological and physiological treatment strategies, including the promising effects of estrogen on cellular protection.
Collapse
Affiliation(s)
- Ramsha Shams
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Kelsey P. Drasites
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
| | - Dena P. Garner
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Christopher J. Sole
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| |
Collapse
|
9
|
Cox A, Capone M, Matzelle D, Vertegel A, Bredikhin M, Varma A, Haque A, Shields DC, Banik NL. Nanoparticle-Based Estrogen Delivery to Spinal Cord Injury Site Reduces Local Parenchymal Destruction and Improves Functional Recovery. J Neurotrauma 2021; 38:342-352. [PMID: 32680442 PMCID: PMC11864116 DOI: 10.1089/neu.2020.7047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) patients sustain significant functional impairments; this is causally related to restricted neuronal regeneration after injury. The ensuing reactive gliosis, inflammatory cascade, and glial scar formation impede axonal regrowth. Although systemic anti-inflammatory agents (steroids) have been previously administered to counteract this, no current therapeutic is approved for post-injury neuronal regeneration, in part because of related side effects. Likewise, therapeutic systemic estrogen levels exhibit neuroprotective properties, but dose-dependent side effects are prohibitive. The current study thus uses low-dose estrogen delivery to the spinal cord injury (SCI) site using an agarose gel patch embedded with estrogen-loaded nanoparticles. Compared to controls, spinal cords from rodents treated with nanoparticle site-directed estrogen demonstrated significantly decreased post-injury lesion size, reactive gliosis, and glial scar formation. However, axonal regeneration, vascular endothelial growth factor production, and glial-cell-derived neurotrophic factor levels were increased with estrogen administration. Concomitantly improved locomotor and bladder functional recovery were observed with estrogen administration after injury. Therefore, low-dose site-directed estrogen may provide a future approach for enhanced neuronal repair and functional recovery in SCI patients.
Collapse
Affiliation(s)
- April Cox
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mollie Capone
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Mikhail Bredikhin
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Abhay Varma
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naren L. Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
10
|
A Selective Ligand for Estrogen Receptor Proteins Discriminates Rapid and Genomic Signaling. Cell Chem Biol 2019; 26:1692-1702.e5. [PMID: 31706983 DOI: 10.1016/j.chembiol.2019.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/05/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022]
Abstract
Estrogen exerts extensive and diverse effects throughout the body of women. In addition to the classical nuclear estrogen receptors (ERα and ERβ), the G protein-coupled estrogen receptor GPER is an important mediator of estrogen action. Existing ER-targeted therapeutic agents act as GPER agonists. Here, we report the identification of a small molecule, named AB-1, with the previously unidentified activity of high selectivity for binding classical ERs over GPER. AB-1 also possesses a unique functional activity profile as an agonist of transcriptional activity but an antagonist of rapid signaling through ERα. Our results define a class of small molecules that discriminate between the classical ERs and GPER, as well as between modes of signaling within the classical ERs. Such an activity profile, if developed into an ER antagonist, could represent an opportunity for the development of first-in-class nuclear hormone receptor-targeted therapeutics for breast cancer exhibiting reduced acquired and de novo resistance.
Collapse
|
11
|
Roque C, Mendes-Oliveira J, Duarte-Chendo C, Baltazar G. The role of G protein-coupled estrogen receptor 1 on neurological disorders. Front Neuroendocrinol 2019; 55:100786. [PMID: 31513775 DOI: 10.1016/j.yfrne.2019.100786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
G protein-coupled estrogen receptor 1 (GPER) is a membrane-associated estrogen receptor (ER) associated with rapid estrogen-mediated effects. Over recent years GPER emerged has a potential therapeutic target to induce neuroprotection, avoiding the side effects elicited by the activation of classical ERs. The putative neuroprotection triggered by GPER selective activation was demonstrated in mood disorders, Alzheimer's disease or Parkinson's disease of male and female in vivo rodent models. In others, like ischemic stroke, the results are contradictory and currently there is no consensus on the role played by this receptor. However, it seems clear that sex is a biological variable that may impact the results. The major objective of this review is to provide an overview about the physiological effects of GPER in the brain and its putative contribution in neurodegenerative disorders, discussing the data about the signaling pathways involved, as well as, the diverse effects observed.
Collapse
Affiliation(s)
- C Roque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - J Mendes-Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - C Duarte-Chendo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - G Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
12
|
Wei Y, Huang J. Role of estrogen and its receptors mediated-autophagy in cell fate and human diseases. J Steroid Biochem Mol Biol 2019; 191:105380. [PMID: 31078693 DOI: 10.1016/j.jsbmb.2019.105380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Studies have shown that morbidity of several diseases varies between males and females. This difference likely arises due to sex-related hormones. Estrogen, a primary female sex steroid hormone, plays a critical role in mediating many of the physiological functions like growth, differentiation, metabolism, and cell death. Recently, it has been demonstrated that estrogen mediates autophagy through its receptors (ERs) namely ERα, ERβ, and G-protein coupled estrogen receptor (GPER). However, the specific role of estrogen and its receptors mediated-autophagy in cell fate and human diseases such as cancers, cardiovascular disease and nervous system disease remains unclear. In this review, we comprehensively summarize the complex role of estrogen and its receptors-mediated autophagy in different cell lines and human diseases. In addition, we further discuss the key signaling molecules governing the role of ERs in autophagy. This review will serve as the basis for a proposed model of autophagy constituting a new frontier in estrogen-related human diseases. Here, we discuss the dual role of ERα in classical and non-classical autophagy through B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). Next, we review the role of ERβ in pro-survival pathways through the promotion of autophagy under stress conditions. We further discuss activation of GPER via estrogen often mediates autophagy or mitophagy suppression, respectively. In summary, we believe that understanding the relationship between estrogen and its receptors mediated-autophagy on cell fate and human diseases will provide insightful knowledge for future therapeutic implications.
Collapse
Affiliation(s)
- Yong Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
13
|
G protein-coupled estrogen receptor 1 negatively regulates the proliferation of mouse-derived neural stem/progenitor cells via extracellular signal-regulated kinase pathway. Brain Res 2019; 1714:158-165. [PMID: 30797747 DOI: 10.1016/j.brainres.2019.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
G protein-coupled estrogen receptor 1 (GPER1, also known as GPR30) has been reported to play a wide range of function in the central nervous system (CNS). However, whether GPER1 is expressed by neural stem/progenitor cells (NSPCs) and its role has not been established. Here, we found the expression of GPER1 in mouse-derived NSPCs via western blot and immunofluorescent staining. Moreover, we revealed that specific activation of GPER1 by the agonist G1 decreased the proliferation of NSPCs in a dose-dependent manner. The neurosphere formation assay and Ki67 staining further demonstrated that activation of GPER1 inhibited the proliferation of NSPCs. Additionally, the inhibitory effect of G1 on the proliferation of NSPCs could be blocked by the specific GPER1 antagonist G15. Intriguingly, ERK pathway was involved in the negative effect of GPER1 on the proliferation of NSPCs, because the phosphorylation level of ERK in NSPCs was remarkably decreased during G1 treatment. However, the antagonist G15 reversed the down-regulated level of p-ERK. Knock-down GPER1 also reversed the inhibitory effect of G1 on NSPCs proliferation. Together, our results provide the first evidence that GPER1 is expressed by NSPCs and its activation negatively modulates the proliferation of NSPCs, highlighting the importance of GPER1 in regulating NSPC behaviors.
Collapse
|
14
|
Namjoo Z, Mortezaee K, Joghataei MT, Moradi F, Piryaei A, Abbasi Y, Hosseini A, Majidpoor J. Targeting axonal degeneration and demyelination using combination administration of 17β‐estradiol and Schwann cells in the rat model of spinal cord injury. J Cell Biochem 2018; 119:10195-10203. [DOI: 10.1002/jcb.27361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Zeinab Namjoo
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Mohammad T. Joghataei
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Faculty of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Fateme Moradi
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Faculty of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Yusef Abbasi
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Amir Hosseini
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Jamal Majidpoor
- Department of Anatomy School of Medicine, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Lu C, Li LX, Dong HL, Wei Q, Liu ZJ, Ni W, Gitler AD, Wu ZY. Targeted next-generation sequencing improves diagnosis of hereditary spastic paraplegia in Chinese patients. J Mol Med (Berl) 2018; 96:701-712. [PMID: 29934652 DOI: 10.1007/s00109-018-1655-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of neurodegenerative diseases characterized by progressive weakness and spasticity of lower limbs. To clarify the genetic spectrum and improve the diagnosis of HSP patients, targeted next-generation sequencing (NGS) was applied to detect the culprit genes in 55 Chinese HSP pedigrees. The classification of novel variants was based on the American College of Medical Genetics and Genomics (ACMG) standards and guidelines. Patients remaining negative following targeted NGS were further screened for gross deletions/duplications by multiplex ligation-dependent probe amplification (MLPA). We made a genetic diagnosis in 61.8% (34/55) of families and identified 33 mutations, including 14 known mutations and 19 novel mutations. Of them, one was de novo mutation (NIPA1: c.316G>A). SPAST mutations (22/39, 56.4%) are the most common in Chinese AD-HSP followed by ATL1 (4/39, 10.3%). Moreover, we identified the third BSCL2 mutation (c.1309G>C) related to HSP by further functional studies and first reported the KIF1A mutation (c.304G>A) in China. Our findings broaden the genetic spectrum of HSP and improve the diagnosis of HSP patients. These results demonstrate the efficiency of targeted NGS to make a more rapid and precise diagnosis in patients with clinically suspected HSP. KEY MESSAGES We made a genetic diagnosis in 61.8% of families and identified 33 mutations. SPAST mutations are the most common in Chinese AD-HSP followed by ATL1. Our findings broaden the genetic spectrum and improve the diagnosis of HSP.
Collapse
Affiliation(s)
- Cong Lu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Li-Xi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zhi-Jun Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wang Ni
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
- Joint Institute for Genetics and Genome Medicine Between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Tehrani MA, Veney SL. Intracranial administration of the G-protein coupled estrogen receptor 1 antagonist, G-15, selectively affects dimorphic characteristics of the song system in zebra finches (Taeniopygia guttata). Dev Neurobiol 2018; 78:775-784. [PMID: 29675990 DOI: 10.1002/dneu.22599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022]
Abstract
In zebra finches (Taeniopygia guttata), estradiol contributes to sexual differentiation of the song system but the receptor(s) underlying its action are not exactly known. Whereas mRNA and/or protein for nuclear estrogen receptors ERα and ERβ are minimally expressed, G-protein coupled estrogen receptor 1 (GPER1) has a much greater distribution within neural song regions and the syrinx. At present, however, it is unclear if this receptor contributes to dimorphic development of the song system. To test this, the specific GPER1 antagonist, G-15, was intracranially administered to zebra finches for 25 days beginning on the day of hatching. In males, G-15 significantly decreased nuclear volumes of HVC and Area X. It also decreased the muscle fiber sizes of ventralis and dorsalis in the syrinx. In females, G-15 had no effect on measures within the brain, but did increase fiber sizes of both muscle groups. In sum, these data suggest that GPER1 can have selective and opposing influences on dimorphisms within the song system, but since not all features were affected additional factors are likely involved. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
| | - Sean L Veney
- Department of Biological Sciences, University Esplanade, Kent, Ohio, 44242
- School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
17
|
Fan DX, Yang XH, Li YN, Guo L. 17β-Estradiol on the Expression of G-Protein Coupled Estrogen Receptor (GPER/GPR30) Mitophagy, and the PI3K/Akt Signaling Pathway in ATDC5 Chondrocytes In Vitro. Med Sci Monit 2018; 24:1936-1947. [PMID: 29608013 PMCID: PMC5898603 DOI: 10.12659/msm.909365] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Osteoarthritis is a progressive inflammatory joint disease resulting in damage to articular cartilage. G-protein coupled estrogen receptor (GPER/GPR30) activates cell signaling in response to 17β-estradiol, which can be blocked by the GPR30 agonist, G15, an analog of G-1. The aims of this study were to investigate the effects of 17β-estradiol on the expression of G-protein coupled estrogen receptor (GPER/GPR30) on mitophagy and the PI3K/Akt signaling pathway in ATDC5 chondrocytes in vitro. Material/Methods Cultured ATDC5 chondrocytes were treated with increasing concentrations of 17β-estradiol with and without G15, p38 inhibitor (SB203580), JNK inhibitor (SP600125), PI3K inhibitor (LY294002, S1737), and mTOR inhibitor (S1842). Expression of GPER/GPR30 and components of the PI3K/Akt pathway in cultured ATDC5 chondrocytes were detected by immunofluorescence (IF) staining, Western blot, and real-time polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) and IF were used to detect mitophagosomes. Expression of LC-3, LAMP2, TOM20, Hsp60, p-Akt, p-mTOR, p-p38, and p-JNK was investigated by Western blot. Proliferation and viability of the ATDC5 chondrocytes were determined using BrdU and MTT assays. Results In 17β-estradiol-treated ATDC5 chondrocytes, increased expression of GPER/GPR30 was found, but fewer mitophagosomes were observed, and decreased numbers of TOM20-positive granules were co-localized with decreased LAMP2 and increased expression levels of TOM20, Hsp60, p-Akt, and p-mTOR, and reduced expression of LC3-II, were found. In 17β-estradiol-treated ATDC5 chondrocytes, the proliferation and viability of the 17β-estradiol-treated ATDC5 chondrocytes were significantly elevated. Conclusions Treatment with 17β-estradiol protected ATDC5 chondrocytes against mitophagy via the GPER/GPR30 and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Dong-Xiao Fan
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland).,Orthopedic Surgery, First Affiliated Hospital, China Medical University, , China (mainland)
| | - Xu-Hao Yang
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yi-Nan Li
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
18
|
Prossnitz ER. GPER modulators: Opportunity Nox on the heels of a class Akt. J Steroid Biochem Mol Biol 2018; 176:73-81. [PMID: 28285016 PMCID: PMC5591048 DOI: 10.1016/j.jsbmb.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
The (patho)physiology of estrogen and its receptors is complex. It is therefore not surprising that therapeutic approaches targeting this hormone include stimulation of its activity through supplementation with either the hormone itself or natural or synthetic agonists, inhibition of its activity through the use of antagonists or inhibitors of its synthesis, and tissue-selective modulation of its activity with biased ligands. The physiology of this hormone is further complicated by the existence of at least three receptors, the classical nuclear estrogen receptors α and β (ERα and ERβ), and the 7-transmembrane G protein-coupled estrogen receptor (GPER/GPR30), with overlapping but distinct pharmacologic profiles, particularly of anti-estrogenic ligands. GPER-selective ligands, as well as GPER knockout mice, have greatly aided our understanding of the physiological roles of GPER. Such ligands have revealed that GPER activation mediates many of the rapid cellular signaling events (including Ca2+ mobilization, ERK and PI3K/Akt activation) associated with estrogen activity, as opposed to the nuclear ERs that are traditionally described to function as ligand-induced transcriptional factors. Many of the salutary effects of estrogen throughout the body are reproduced by the GPER-selective agonist G-1, which, owing to its minimal effects on reproductive tissues, can be considered a non-feminizing estrogenic compound, and thus of potential therapeutic use in both women and men. On the contrary, until recently GPER-selective antagonists had predominantly found preclinical application in cancer models where estrogen stimulates cell growth and survival. This viewpoint changed recently with the discovery that GPER is associated with aging, particularly that of the cardiovascular system, where the GPER antagonist G36 reduced hypertension and GPER deficiency prevented cardiac fibrosis and vascular dysfunction with age, through the downregulation of Nox1 and as a consequence superoxide production. Thus, similar to the classical ERs, both agonists and antagonists of GPER may be of therapeutic benefit depending on the disease or condition to be treated.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
19
|
Colón JM, González PA, Cajigas Á, Maldonado WI, Torrado AI, Santiago JM, Salgado IK, Miranda JD. Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats. Exp Neurol 2018; 299:109-121. [PMID: 29037533 PMCID: PMC5723542 DOI: 10.1016/j.expneurol.2017.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
No treatment is available for patients with spinal cord injury (SCI). Patients often arrive to the hospital hours after SCI suggesting the need of a therapy that can be used on a clinically relevant window. Previous studies showed that Tamoxifen (TAM) treatment 24h after SCI benefits locomotor recovery in female rats. Tamoxifen exerts beneficial effects in male and female rodents but a gap of knowledge exists on: the therapeutic window of TAM, the spatio-temporal mechanisms activated and if this response is sexually dimorphic. We hypothesized that TAM will favor locomotor recovery when administered up-to 24h after SCI in male Sprague-Dawley rats. Rats received a thoracic (T10) contusion using the MACSIS impactor followed by placebo or TAM (15mg/21days) pellets in a therapeutic window of 0, 6, 12, or 24h. Animals were sacrificed at 2, 7, 14, 28 or 35days post injury (DPI) to study the molecular and cellular changes in the acute and chronic stages. Immediate or delayed therapy (t=6h) improved locomotor function, increased white matter spared tissue, and neuronal survival. TAM reduced reactive gliosis during chronic stages and increased the expression of Olig-2. A significant difference was observed in estrogen receptor alpha between male and female rodents from 2 to 28 DPI suggesting a sexually dimorphic characteristic that could be related to the behavioral differences observed in the therapeutic window of TAM. This study supports the use of TAM in the SCI setting due to its neuroprotective effects but with a significant sexually dimorphic therapeutic window.
Collapse
Affiliation(s)
- Jennifer M Colón
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Pablo A González
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Ámbar Cajigas
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Wanda I Maldonado
- University of Puerto Rico Carolina Campus, Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, Carolina, PR 00984, USA.
| | - Aranza I Torrado
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - José M Santiago
- University of Puerto Rico Carolina Campus, Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, Carolina, PR 00984, USA.
| | - Iris K Salgado
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Jorge D Miranda
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| |
Collapse
|
20
|
Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. ACTA ACUST UNITED AC 2017; 6:15-29. [PMID: 28845391 PMCID: PMC5567743 DOI: 10.2147/nan.s105134] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2) is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS) injuries such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic brain injury (IBI). These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for the treatment of CNS injuries due to the controversies surrounding it, the neuroprotective effects of its metabolite and derivative or combination of E2 with another therapeutic agent are showing significant impacts in animal models that can potentially shape the new treatment strategies for these CNS injuries in humans.
Collapse
Affiliation(s)
- Narayan Raghava
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Bhaskar C Das
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
21
|
Expression of aromatase and estrogen receptors in lumbar motoneurons of mice. Neurosci Lett 2017; 653:7-11. [PMID: 28501695 DOI: 10.1016/j.neulet.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
Estrogen exerts protective roles in amyotrophic lateral sclerosis (ALS). However, the expression of aromatase (ARO) and estrogen receptors (ERs) in the motoneurons of spinal cord, has not yet been elucidated. By immunohistochemistry, we found that ARO and ERs were present in the ventral horn of adult mice lumbar spinal cord, and colocalized with SMI-32, a motoneuron specific marker. Within motoneurons, we observed that ARO is detected primarily in the cytoplasm, with fewer ARO in the nucleus; ERα and ERβ mainly localized in the nucleus with less in the cytoplasm; while GPR30 is located in soma and processes. In conclusion, we found that ERs and ARO are expressed in the motoneurons of lumbar spinal cord in adult mice. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in ALS.
Collapse
|
22
|
Zendedel A, Mönnink F, Hassanzadeh G, Zaminy A, Ansar MM, Habib P, Slowik A, Kipp M, Beyer C. Estrogen Attenuates Local Inflammasome Expression and Activation after Spinal Cord Injury. Mol Neurobiol 2017; 55:1364-1375. [PMID: 28127698 DOI: 10.1007/s12035-017-0400-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
17-estradiol (E2) is a neuroprotective hormone with a high anti-inflammatory potential in different neurological disorders. The inflammatory response initiated by spinal cord injury (SCI) involves the processing of interleukin-1beta (IL-1b) and IL-18 mediated by caspase-1 which is under the control of an intracellular multiprotein complex called inflammasome. We recently described in a SCI model that between 24 and 72 h post-injury, most of inflammasome components including IL-18, IL-1b, NLRP3, ASC, and caspase-1 are upregulated. In this study, we investigated the influence of E2 treatment after spinal cord contusion on inflammasome regulation. After contusion of T9 spinal segment, 12-week-old male Wistar rats were treated subcutaneously with E2 immediately after injury and every 12 h for the next 3 days. Behavioral scores were significantly improved in E2-treated animals compared to vehicle-treated groups. Functional improvement in E2-treated animals was paralleled by the attenuated expression of certain inflammasome components such as ASC, NLRP1b, and NLRP3 together with IL1b, IL-18, and caspase-1. On the histopathological level, microgliosis and oligodendrocyte injury was ameliorated. These findings support and extend the knowledge of the E2-mediated neuroprotective function during SCI. The control of the inflammasome machinery by E2 might be a missing piece of the puzzle to understand the anti-inflammatory potency of E2.
Collapse
Affiliation(s)
- Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fabian Mönnink
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arash Zaminy
- Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Malek Masoud Ansar
- Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pardes Habib
- Department of Neurology, RWTH Aachen, 52074, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,JARA-Brain, 52074, Aachen, Germany
| |
Collapse
|
23
|
Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M. Neuroprotection by Estrogen and Progesterone in Traumatic Brain Injury and Spinal Cord Injury. Curr Neuropharmacol 2017; 14:641-53. [PMID: 26955967 PMCID: PMC4981744 DOI: 10.2174/1570159x14666160309123554] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/31/2015] [Accepted: 02/25/2016] [Indexed: 12/25/2022] Open
Abstract
In recent years there has been a growing body of clinical and laboratory evidence demonstrating the neuroprotective effects of estrogen and progesterone after traumatic brain injury (TBI) and spinal cord injury (SCI). In humans, women have been shown to have a lower incidence of morbidity and mortality after TBI compared with age-matched men. Similarly, numerous laboratory studies have demonstrated that estrogen and progesterone administration is associated with a mortality reduction, improvement in neurological outcomes, and a reduction in neuronal apoptosis after TBI and SCI. Here, we review the evidence that supports hormone-related neuroprotection and discuss possible underlying mechanisms. Estrogen and progesterone-mediated neuroprotection are thought to be related to their effects on hormone receptors, signaling systems, direct antioxidant effects, effects on astrocytes and microglia, modulation of the inflammatory response, effects on cerebral blood flow and metabolism, and effects on mediating glutamate excitotoxicity. Future laboratory research is needed to better determine the mechanisms underlying the hormones' neuroprotective effects, which will allow for more clinical studies. Furthermore, large randomized clinical control trials are needed to better assess their role in human neurodegenerative conditions.
Collapse
Affiliation(s)
- Evgeni Brotfain
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
24
|
Cheng Q, Meng J, Wang XS, Kang WB, Tian Z, Zhang K, Liu G, Zhao JN. G-1 exerts neuroprotective effects through G protein-coupled estrogen receptor 1 following spinal cord injury in mice. Biosci Rep 2016; 36:e00373. [PMID: 27407175 PMCID: PMC5006313 DOI: 10.1042/bsr20160134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) always occurs accidently and leads to motor dysfunction because of biochemical and pathological events. Estrogen has been shown to be neuroprotective against SCI through estrogen receptors (ERs), but the underlying mechanisms have not been fully elucidated. In the present study, we investigated the role of a newly found membrane ER, G protein-coupled estrogen receptor 1 (GPR30 or GPER1), and discussed the feasibility of a GPR30 agonist as an estrogen replacement. Forty adult female C57BL/6J mice (10-12 weeks old) were divided randomly into vehicle, G-1, E2, G-1 + G-15 and E2 + G-15 groups. All mice were subjected to SCI using a crushing injury approach. The specific GPR30 agonist, G-1, mimicked the effects of E2 treatment by preventing SCI-induced apoptotic cell death and enhancing motor functional recovery after injury. GPR30 activation regulated phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK/extracellular signal-regulated kinase (ERK) signalling pathways, increased GPR30 and anti-apoptosis proteins Bcl-2 and brain derived neurotrophic factor (BDNF), but decreased the pro-apoptosis factor Bax and cleaved caspase-3. However, the neuroprotective effects of G-1 and E2 were blocked by the specific GPR30 antagonist, G-15. Thus, GPR30 rather than classic ERs is required to induce estrogenic neuroprotective effects. Given that estrogen replacement therapy may cause unexpected side effects, especially on the reproductive system, GPR30 agonists may represent a potential therapeutic approach for treating SCI.
Collapse
Affiliation(s)
- Qiang Cheng
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Jia Meng
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Bo Kang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Liu
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Jian-Ning Zhao
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| |
Collapse
|
25
|
Kilanczyk E, Saraswat Ohri S, Whittemore SR, Hetman M. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione. ASN Neuro 2016; 8:8/4/1759091416660404. [PMID: 27449129 PMCID: PMC4962338 DOI: 10.1177/1759091416660404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/29/2016] [Indexed: 01/02/2023] Open
Abstract
The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter.
Collapse
Affiliation(s)
- Ewa Kilanczyk
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY, USA Department of Neurological Surgery, University of Louisville, KY, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY, USA Department of Neurological Surgery, University of Louisville, KY, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY, USA Department of Neurological Surgery, University of Louisville, KY, USA Department of Anatomical Sciences and Neurobiology, University of Louisville, KY, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY, USA Department of Neurological Surgery, University of Louisville, KY, USA Department of Pharmacology and Toxicology, University of Louisville, KY, USA
| |
Collapse
|
26
|
Lin CW, Chen B, Huang KL, Dai YS, Teng HL. Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats. Neurosci Bull 2016; 32:137-44. [PMID: 26924807 DOI: 10.1007/s12264-016-0017-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
17β-estradiol (E2) has been shown to have neuroprotective effects in different central nervous system diseases. The mechanisms underlying estrogen neuroprotection in spinal cord injury (SCI) remain unclear. Previous studies have shown that autophagy plays a crucial role in the course of nerve injury. In this study, we showed that E2 treatment improved the restoration of locomotor function and decreased the loss of motor neurons in SCI rats. Real-time PCR and western blot analysis revealed that the protective function of E2 was related to the suppression of LC3II and beclin-1 expression. Immunohistochemical study further confirmed that the immunoreactivity of LC3 in the motor neurons was down-regulated when treated with E2. In vitro studies demonstrated similar results that E2 pretreatment decreased the autophagic activity induced by rapamycin (autophagy sensitizer) and increased viability in a PC12 cell model. These results indicated that the neuroprotective effects of E2 in SCI are partly related to the suppression of excessive autophagy.
Collapse
Affiliation(s)
- Chao-Wei Lin
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bi Chen
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ke-Lun Huang
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu-Sen Dai
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Lin Teng
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
27
|
Samantaray S, Das A, Matzelle DC, Yu SP, Wei L, Varma A, Ray SK, Banik NL. Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cord injury in rats. J Neurochem 2016; 136:1064-73. [PMID: 26662641 DOI: 10.1111/jnc.13464] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/29/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition with neurological deficits and loss of motor function that, depending on the severity, may lead to paralysis. The only treatment currently available is methylprednisolone, which is widely used and renders limited efficacy in SCI. Therefore, other therapeutic agents must be developed. The neuroprotective efficacy of estrogen in SCI was studied with a pre-clinical and pro-translational perspective. Acute SCI was induced in rats that were treated with low doses of estrogen (1, 5, 10, or 100 μg/kg) and compared with vehicle-treated injured rats or laminectomy control (sham) rats at 48 h post-SCI. Changes in gliosis and other pro-inflammatory responses, expression and activity of proteolytic enzymes (e.g., calpain, caspase-3), apoptosis of neurons in SCI, and cell death were monitored via Western blotting and immunohistochemistry. Negligible pro-inflammatory responses or proteolytic events and very low levels of neuronal death were found in sham rats. In contrast, vehicle-treated SCI rats showed profound pro-inflammatory responses with reactive gliosis, elevated expression and activity of calpain and caspase-3, elevated Bax:Bcl-2 ratio, and high levels of neuronal death in lesion and caudal regions of the injured spinal cord. Estrogen treatment at each dose reduced pro-inflammatory and proteolytic activities and protected neurons in the caudal penumbra in acute SCI. Estrogen treatment at 10 μg was found to be as effective as 100 μg in ameliorating the above parameters in injured animals. Results from this investigation indicated that estrogen at a low dose could be a promising therapeutic agent for treating acute SCI. Experimental studies with low dose estrogen therapy in acute spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes. Estrogen has been found to ameliorate several degenerative pathways following SCI. Thus, such early protective effects may even lead to functional recovery in long term injury. Studies are underway in chronic SCI in a follow up manuscript.
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Arabinda Das
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Denise C Matzelle
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shan P Yu
- Department of Anesthesia, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesia, Emory University School of Medicine, Atlanta, GA, USA
| | - Abhay Varma
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
28
|
Neuroactive gonadal drugs for neuroprotection in male and female models of Parkinson's disease. Neurosci Biobehav Rev 2015; 67:79-88. [PMID: 26708712 DOI: 10.1016/j.neubiorev.2015.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022]
Abstract
The existence of sex differences in Parkinson's disease (PD) incidence is well documented with greater prevalence and earlier age at onset in men than in women. These reported sex differences could be related to estrogen exposure. In PD animal models, estrogen is well documented to be neuroprotective against dopaminergic neuron loss induced by neurotoxins. Using the 1-methyl 4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) mouse model, we showed that several compounds are neuroprotective on dopaminergic neurons including estrogen, the selective estrogen receptor modulator raloxifene, progesterone, dehydroepiandrosterone, the estrogen receptor alpha (ERα) agonist PPT as well as the G protein-coupled membrane estrogen receptor (GPER1) specific agonist G1. Accumulating evidence suggests that GPER1 could be implicated in the neuroprotective effects of estrogen, raloxifene and G1 in collaboration with ERα. We recently reported that the 5α-reductase inhibitor Dutasteride is also neuroprotective and could bring an alternative to estrogens for therapy in male. Additional studies are needed to optimize therapies with these gonadal drugs into safe personalized treatments according to sex for treatment of PD.
Collapse
|
29
|
Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G. The brain cytokine levels are modulated by estrogen following traumatic brain injury: Which estrogen receptor serves as modulator? Int Immunopharmacol 2015; 28:279-87. [PMID: 26112336 DOI: 10.1016/j.intimp.2015.05.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
The present study was designed to explore whether administration of estrogen affects brain cytokine levels in TBI. We also sought determine which one of type of classical estrogen receptors (ERs) is involved. Ovariectomized female rats were divided in to eight groups. Estrogen or vehicle was administered following TBI (E2 and oil groups). Antagonist of ER(ICI 182, 780) or vehicle was also administered following TBI (ICI and DMSO groups). The ICI or vehicle was administered either before induction of TBI and administration of estrogen (ICI+E2 and DMSO+E2 groups). TBI was induced by Marmarou's method. In addition to brain water content, the levels of brain proinflammatory and anti-inflammatory cytokines were measured 24 hours post- TBI. Present results demonstrated that, estrogen reduced TBI- induced brain edema. The antiedema effect of estrogen was attenuated by ICI. The brain measures of IL-1β, IL-6 and TNF-α in TBI were also reduced by estrogen. The anti-inflammatory effect of estrogen was attenuated by ICI. The inhibition level of estrogen by ICI was 53.2%, 12.09% and 48.45% for IL-1β, IL-6 and TNF-α, respectively. Estrogen also elevated IL-10 in TBI. ICI inversely controlled the effect of estrogen on IL-10, by 33.84%. This effect was not observed once ICI was used alone. The estrogen administration following TBI probably results in proinflammatory cytokines reduction, and inversely enhancement of anti-inflammatory cytokines. In our study, the neuroprotective effect of estrogen is proposed to be mediated by both ERα and ERα, and accordingly the inhibition of neuroprotective effect of estrogen by ICI.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Dehghan
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Dept. of Biochemistry, Medical School of Afzalipour, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
CHEN JINGYU, HU RONG, GE HONGFEI, DUANMU WANGSHENG, LI YUHONG, XUE XINGSENG, HU SHENGLI, FENG HUA. G-protein-coupled receptor 30-mediated antiapoptotic effect of estrogen on spinal motor neurons following injury and its underlying mechanisms. Mol Med Rep 2015; 12:1733-1740. [PMID: 25872489 PMCID: PMC4464192 DOI: 10.3892/mmr.2015.3601] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/12/2015] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) may result in severe dysfunction of motor neurons. G-protein-coupled receptor 30 (GPR30) expression in the motor neurons of the ventral horn of the spinal cord mediates neuroprotection through estrogen signaling. The present study explored the antiapoptotic effect of estrogen, mediated by GPR30 following SCI, and the mechanisms underlying this effect. Spinal motor neurons from rats were cultured in vitro in order to establish cell models of oxygen and glucose deprivation (OGD). The effects of estrogen, the estrogen agonist, G1, and the estrogen inhibitor, G15, on motor neurons were observed using MTT assays. The effects of E2, G1 and G15 on spinal motor neuron apoptosis following OGD, were detected using flow cytometry. The role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor, LY294002, was also determined using flow cytometry. Rat SCI models were established. E2, G1 and E2+LY294002 were administered in vivo. Motor function was scored at 3, 7, 14, 21 and 28 d following injury, using Basso-Beattie-Bresnahan (BBB) standards. Cell activity in the estrogen and G1 groups was higher than that in the solvent group, whereas cell activity in the E2+G15 group was lower than that in the E2 group (P<0.05). Following OGD, the proportion of apoptotic cells significantly increased (P<0.05). The proportion in the estrogen group was significantly lower than that in the solvent group, whereas the proportion of apoptotic cells in the E2+G15 and E2+LY294002 groups was higher than that in the E2 group (P<0.05). Treatment with E2 and G1 led to upregulation of P-Akt expression in normal cells and post-OGD cells. The BBB scores of rats in the E2 and G1 groups were higher than those in the placebo group (P<0.05). The BBB scores of the E2+LY294002 group were lower than those of the E2 group (P<0.05). Estrogen thus appears to exert a protective effect on spinal motor neurons following OGD, via GPR30. The PI3K/Akt pathway may be one of those involved in the estrogen‑related antiapoptotic effects mediated by GPR30.
Collapse
Affiliation(s)
- JINGYU CHEN
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - RONG HU
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - HONGFEI GE
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - WANGSHENG DUANMU
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - YUHONG LI
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - XINGSENG XUE
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - SHENGLI HU
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - HUA FENG
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
31
|
Luo Y, Chen C, Zhan Z, Wang Y, Du J, Hu Z, Liao X, Zhao G, Wang J, Yan X, Jiang H, Pan Q, Xia K, Tang B, Shen L. Mutation and clinical characteristics of autosomal-dominant hereditary spastic paraplegias in China. NEURODEGENER DIS 2014; 14:176-83. [PMID: 25341883 DOI: 10.1159/000365513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hereditary spastic paraplegias constitute a heterogeneous group of inherited neurodegenerative disorders. To date, there has been no systematic mutation and clinical analysis for a large group of autosomal-dominant hereditary spastic paraplegias in China. OBJECTIVE The purpose of this study was to investigate the mutation frequencies and the clinical phenotypes of Chinese spastic paraplegia patients. METHODS Direct sequencing and a multiplex ligation-dependent probe amplification assay were applied to detect the mutations of SPAST and ATL1 in 54 autosomal-dominant hereditary spastic paraplegia probands and 66 isolated cases. Next, mutations in NIPA1, KIF5A, REEP1 and SLC33A1 were detected in the negative patients. Subsets of spastic paraplegia patients were genotyped for the modifying variants. Further, detailed clinical data regarding the genetically diagnosed families were analysed. RESULTS Altogether, 27 families were diagnosed as SPG4, 3 as SPG3A and 1 as SPG6. No mutations in KIF5A, REEP1 or SLC33A1 were found; 9 SPAST mutations were novel. There was no p.S44L or p.P45Q variant in SPAST and no p.G563A variant in HSPD1 in either the 120 spastic paraplegia patients or the 500 controls. There was a remarkable clinical difference between the SPG4 and non-SPG4 patients and even between genders among the SPG4 patients. Non-penetrance and remarkable gender difference were observed in some SPG4 and SPG3A families. CONCLUSIONS Our data confirm that hereditary spastic paraplegias in China represent a heterogeneous group of genetic neurodegenerative disorders in autosomal-dominant and apparently sporadic forms. Novel genotype-phenotype correlations were established. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Yingying Luo
- Department of Neurology, Xianga Hospital of Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Elkabes S, Nicot AB. Sex steroids and neuroprotection in spinal cord injury: a review of preclinical investigations. Exp Neurol 2014; 259:28-37. [PMID: 24440641 DOI: 10.1016/j.expneurol.2014.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/25/2013] [Accepted: 01/04/2014] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition that affects motor, sensory and autonomic functions. Subsequent to the first mechanical trauma, secondary events, which include inflammation and glial activation, exacerbate tissue damage and worsen functional deficits. Although these secondary injury mechanisms are amenable to therapeutic interventions, the efficacy of current approaches is inadequate. Further investigations are necessary to implement new therapies that can protect neural cells and attenuate some of the detrimental effects of inflammation while promoting regeneration. Studies on different animal models of SCI indicated that sex steroids, especially 17β-estradiol and progesterone, exert neuroprotective, anti-apoptotic and anti-inflammatory effects, ameliorate tissue sparing and improve functional deficits in SCI. As sex steroid receptors are expressed in a variety of cells including neurons, glia and immune system-related cells which infiltrate the injury epicenter, sex steroids could impact multiple processes simultaneously and in doing so, influence the outcomes of SCI. However, the translation of these pre-clinical findings into the clinical setting presents challenges such as the narrow therapeutic time window of sex steroid administration, the diversity of treatment regimens that have been employed in animal studies and the lack of sufficient information regarding the persistence of the effects in chronic SCI. The current review will summarize some of the major findings in this field and will discuss the challenges associated with the implementation of sex steroids as a promising treatment in human SCI.
Collapse
Affiliation(s)
- Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| | - Arnaud B Nicot
- UMR 1064, INSERM, Nantes, France; Faculté de Médecine, Université de Nantes, France; ITUN, CHU de Nantes, France
| |
Collapse
|
33
|
Habib P, Slowik A, Zendedel A, Johann S, Dang J, Beyer C. Regulation of hypoxia-induced inflammatory responses and M1-M2 phenotype switch of primary rat microglia by sex steroids. J Mol Neurosci 2013; 52:277-85. [PMID: 24163150 DOI: 10.1007/s12031-013-0137-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/03/2013] [Indexed: 01/17/2023]
Abstract
Microglia cells are the primary mediators of the CNS immune defense system and crucial for the outcome of shaping inflammatory responses. They are highly dynamic, moving constantly, and become activated by neuronal signaling under pathological conditions. They fulfill a dual role by not only regulating local neuroinflammation but also conferring neuronal protection. Gonadal steroids are known to exert anti-inflammatory effects in the CNS. Recently, we have shown that the microglial-like cell line BV-2 is hypoxia-sensitive and regulated by gonadal steroids. The present study used primary rat cerebral cortex-derived microglia to analyze whether this cell type directly perceive and respond to acute hypoxia. Second, we investigated whether 17β-estradiol (E2) and progesterone (P) interfere with hypoxia-induced changes. Short-term hypoxia increased the expression of a subset of pro-inflammatory (TNFa, IL1b) and oxidative stress-related (Hif1a) genes. The induction of TNFa and IL1b was counteracted by P. Hypoxia shifted the primary microglia to the pro-inflammatory M1 phenotype. The administration of E2 and P favored the neuroprotective M2 phenotype. Our findings extend previous data obtained with BV-2 cells and show that the primary microglia directly perceive hypoxia which increase their inflammatory activity. Both steroid hormones directly and indirectly interact with the microglia cells by reducing the inflammatory scenario and stimulating neuroprotection.
Collapse
Affiliation(s)
- Pardes Habib
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
G protein-coupled estrogen receptor: a new therapeutic target in stroke and traumatic brain/spinal cord injury? Crit Care Med 2013; 40:3323-5. [PMID: 23164781 DOI: 10.1097/ccm.0b013e31826be998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|