1
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Pichol-Thievend C, Anezo O, Pettiwala AM, Bourmeau G, Montagne R, Lyne AM, Guichet PO, Deshors P, Ballestín A, Blanchard B, Reveilles J, Ravi VM, Joseph K, Heiland DH, Julien B, Leboucher S, Besse L, Legoix P, Dingli F, Liva S, Loew D, Giani E, Ribecco V, Furumaya C, Marcos-Kovandzic L, Masliantsev K, Daubon T, Wang L, Diaz AA, Schnell O, Beck J, Servant N, Karayan-Tapon L, Cavalli FMG, Seano G. VC-resist glioblastoma cell state: vessel co-option as a key driver of chemoradiation resistance. Nat Commun 2024; 15:3602. [PMID: 38684700 PMCID: PMC11058782 DOI: 10.1038/s41467-024-47985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.
Collapse
Affiliation(s)
- Cathy Pichol-Thievend
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Oceane Anezo
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Aafrin M Pettiwala
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
- Institut Curie, PSL University, 75005, Paris, France
| | - Guillaume Bourmeau
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Remi Montagne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Anne-Marie Lyne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Pauline Deshors
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Alberto Ballestín
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Benjamin Blanchard
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Juliette Reveilles
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Boris Julien
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | | | - Laetitia Besse
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UMS2016, INSERM US43, Multimodal Imaging Center, 91400, Orsay, France
| | - Patricia Legoix
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
| | - Florent Dingli
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Stephane Liva
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Damarys Loew
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Elisa Giani
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Valentino Ribecco
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Charita Furumaya
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Laura Marcos-Kovandzic
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Thomas Daubon
- Université Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Hematologic Malignancies Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicolas Servant
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Florence M G Cavalli
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Giorgio Seano
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France.
| |
Collapse
|
3
|
Wang S, Riedstra CP, Zhang Y, Anandh S, Dudley AC. PTEN-restoration abrogates brain colonisation and perivascular niche invasion by melanoma cells. Br J Cancer 2024; 130:555-567. [PMID: 38148377 PMCID: PMC10876963 DOI: 10.1038/s41416-023-02530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) continue to be a significant clinical problem with limited treatment options. Highly invasive melanoma cells migrate along the vasculature and perivascular cells may contribute to residual disease and recurrence. PTEN loss and hyperactivation of AKT occur in MBM; however, a role for PTEN/AKT in perivascular invasion has not been described. METHODS We used in vivo intracranial injections of murine melanoma and bulk RNA sequencing of melanoma cells co-cultured with brain endothelial cells (brECs) to investigate brain colonisation and perivascular invasion. RESULTS We found that PTEN-null melanoma cells were highly efficient at colonising the perivascular niche relative to PTEN-expressing counterparts. PTEN re-expression (PTEN-RE) in melanoma cells significantly reduced brain colonisation and migration along the vasculature. We hypothesised this phenotype was mediated through vascular-induced TGFβ secretion, which drives AKT phosphorylation. Disabling TGFβ signalling in melanoma cells reduced colonisation and perivascular invasion; however, the introduction of constitutively active myristolated-AKT (myrAKT) restored overall tumour size but not perivascular invasion. CONCLUSIONS PTEN loss facilitates perivascular brain colonisation and invasion of melanoma. TGFβ-AKT signalling partially contributes to this phenotype, but further studies are needed to determine the complementary mechanisms that enable melanoma cells to both survive and spread along the brain vasculature.
Collapse
Affiliation(s)
- Sarah Wang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Caroline P Riedstra
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Yu Zhang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Swetha Anandh
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
- The University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
5
|
Genoud V, Kinnersley B, Brown NF, Ottaviani D, Mulholland P. Therapeutic Targeting of Glioblastoma and the Interactions with Its Microenvironment. Cancers (Basel) 2023; 15:5790. [PMID: 38136335 PMCID: PMC10741850 DOI: 10.3390/cancers15245790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour, and it confers a dismal prognosis despite intensive multimodal treatments. Whilst historically, research has focussed on the evolution of GBM tumour cells themselves, there is growing recognition of the importance of studying the tumour microenvironment (TME). Improved characterisation of the interaction between GBM cells and the TME has led to a better understanding of therapeutic resistance and the identification of potential targets to block these escape mechanisms. This review describes the network of cells within the TME and proposes treatment strategies for simultaneously targeting GBM cells, the surrounding immune cells, and the crosstalk between them.
Collapse
Affiliation(s)
- Vassilis Genoud
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
- Department of Oncology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Centre for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Ben Kinnersley
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Nicholas F. Brown
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Guy’s Cancer, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 3SS, UK
| | - Diego Ottaviani
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Paul Mulholland
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| |
Collapse
|
6
|
Katz S, Gattegno R, Peko L, Zarik R, Hagani Y, Ilovitsh T. Diameter-dependent assessment of microvascular leakage following ultrasound-mediated blood-brain barrier opening. iScience 2023; 26:106965. [PMID: 37378309 PMCID: PMC10291464 DOI: 10.1016/j.isci.2023.106965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Blood brain barrier disruption (BBBD) using focused ultrasound (FUS) and microbubbles (MB) is an effective tool for therapeutic delivery to the brain. BBBD depends to a great extent on MB oscillations. Because the brain vasculature is heterogenic in diameter, reduced MB oscillations in smaller blood vessels, together with a lower number of MBs in capillaries, can lead to variations in BBBD. Therefore, evaluating the impact of microvasculature diameter on BBBD is of great importance. We present a method to characterize molecules extravasation following FUS-mediated BBBD, at a single blood vessel resolution. Evans blue (EB) leakage was used as marker for BBBD, whereas blood vessels localization was done using FITC labeled Dextran. Automated image processing pipeline was developed to quantify the extent of extravasation as function of microvasculature diameter, including a wide range of vascular morphological parameters. Variations in MB vibrational response were observed in blood vessel mimicking fibers with varied diameters. Higher peak negative pressures (PNP) were required to initiate stable cavitation in fibers with smaller diameters. In vivo in the treated brains, EB extravasation increased as a function of blood vessel diameter. The percentage of strong BBBD blood vessels increased from 9.75% for 2-3 μm blood vessels to 91.67% for 9-10 μm. Using this method, it is possible to conduct a diameter-dependent analysis that measures vascular leakage resulting from FUS-mediated BBBD at a single blood vessel resolution.
Collapse
Affiliation(s)
- Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Gattegno
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lea Peko
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Romario Zarik
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yulie Hagani
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
8
|
Chen L, Fang W, Chen W, Wei Y, Ding J, Li J, Lin J, Wu Q. Deciphering the molecular mechanism of the THBS1 gene in the TNF signaling axis in glioma stem cells. Cell Signal 2023; 106:110656. [PMID: 36935087 DOI: 10.1016/j.cellsig.2023.110656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Glioma stem cells (GSCs) are thought to be responsible for the initiation and progression of glioblastoma (GBM). GBM presents highly invasive growth with a very high recurrence rate, so it has become a clinical problem to be solved urgently. RNAseq demonstrates that thrombospondin 1 (THBS1) acts not only in the angiogenic core of glioma but also with a high degree of invasiveness and infiltration. Nevertheless, defects in the signaling pathway research lead to a poor prognosis in glioma patients. To investigate the relevant molecular mechanism and signal pathway of glioma stem cell behavior mediated by THBS1, U251 astroglioma cells and GSCs were taken as model cells for in vitro experiments. The biological effects of THBS1 on glioma proliferation, migration, and adhesion were evaluated using Cell Counting Kit-8(CCK8) assays, EdU incorporation assays, migration assays, Transwell assays, Western blotting, and RNAseq. We found that the knockout of the THBS1 gene by CRISPR/Cas9 promoted proliferation and migration in U251 cells and GSCs, as well as influencing cell cycle progression by regulating the TNF/MAPK/NF-κB and TGF-β/Smad signaling pathways. Moreover, U251 cells and GSCs showed different responses to THBS1 knockout, suggesting specific and potential targets for GSCs in signaling pathways mediated by THBS1.
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Wei Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Weizhi Chen
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yiliu Wei
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinwang Ding
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Jiafeng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Jun Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China.
| | - Qiaoyi Wu
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
9
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
10
|
O’Neill KC, Liapis E, Harris BT, Perlin DS, Carter CL. Mass spectrometry imaging discriminates glioblastoma tumor cell subpopulations and different microvascular formations based on their lipid profiles. Sci Rep 2022; 12:17069. [PMID: 36224354 PMCID: PMC9556690 DOI: 10.1038/s41598-022-22093-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/10/2022] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is a prevalent malignant brain tumor and despite clinical intervention, tumor recurrence is frequent and usually fatal. Genomic investigations have provided a greater understanding of molecular heterogeneity in glioblastoma, yet there are still no curative treatments, and the prognosis has remained unchanged. The aggressive nature of glioblastoma is attributed to the heterogeneity in tumor cell subpopulations and aberrant microvascular proliferation. Ganglioside-directed immunotherapy and membrane lipid therapy have shown efficacy in the treatment of glioblastoma. To truly harness these novel therapeutics and develop a regimen that improves clinical outcome, a greater understanding of the altered lipidomic profiles within the glioblastoma tumor microenvironment is urgently needed. In this work, high resolution mass spectrometry imaging was utilized to investigate lipid heterogeneity in human glioblastoma samples. Data presented offers the first insight into the histology-specific accumulation of lipids involved in cell metabolism and signaling. Cardiolipins, phosphatidylinositol, ceramide-1-phosphate, and gangliosides, including the glioblastoma stem cell marker, GD3, were shown to differentially accumulate in tumor and endothelial cell subpopulations. Conversely, a reduction in sphingomyelins and sulfatides were detected in tumor cell regions. Cellular accumulation for each lipid class was dependent upon their fatty acid residue composition, highlighting the importance of understanding lipid structure-function relationships. Discriminating ions were identified and correlated to histopathology and Ki67 proliferation index. These results identified multiple lipids within the glioblastoma microenvironment that warrant further investigation for the development of predictive biomarkers and lipid-based therapeutics.
Collapse
Affiliation(s)
- Kelly C. O’Neill
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA
| | - Evangelos Liapis
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA
| | - Brent T. Harris
- grid.411667.30000 0001 2186 0438Departments of Neurology and Pathology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - David S. Perlin
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA ,grid.429392.70000 0004 6010 5947Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110 USA
| | - Claire L. Carter
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA ,grid.429392.70000 0004 6010 5947Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ 07110 USA
| |
Collapse
|
11
|
Abstract
BACKGROUND Glioblastoma stem cells (GSCs) and their interplay with tumor-associated macrophages (TAMs) are responsible for malignant growth and tumor recurrence of glioblastoma multiforme (GBM), but the underlying mechanisms are largely unknown. METHODS Cell viability, stemness, migration, and invasion were measured in GSCs after the knockdown of upstream stimulating factor 1 (USF1). Luciferase assay and chromatin immunoprecipitation qPCR were performed to determine the regulation of CD90 by USF1. Immunohistochemistry and immunofluorescent staining were used to examine the expression of USF1 and GSC markers, as well as the crosstalk between GSCs and TAMs. In addition, the interaction between GSCs and TAMs was confirmed using in vivo GBM models. RESULTS We show that USF1 promotes malignant glioblastoma phenotypes and GSCs-TAMs physical interaction by inducing CD90 expression. USF1 predicts a poor prognosis for glioma patients and is upregulated in patient-derived GSCs and glioblastoma cell lines. USF1 overexpression increases the proliferation, invasion, and neurosphere formation of GSCs and glioblastoma cell lines, while USF1 knockdown exerts an opposite effect. Further mechanistic studies reveal that USF1 promotes GSC stemness by directly regulating CD90 expression. Importantly, CD90 of GSCs functions as an anchor for physical interaction with macrophages. Additionally, the USF1/CD90 signaling axis supports the GSCs and TAMs adhesion and immunosuppressive feature of TAMs, which in turn enhance the stemness of GSCs. Moreover, the overexpression of CD90 restores the stemness property in USF1 knockdown GSCs and its immunosuppressive microenvironment. CONCLUSIONS Our findings indicate that the USF1/CD90 axis might be a potential therapeutic target for the treatment of glioblastoma.
Collapse
|
12
|
Kryvoshlyk I. CIRCULATING TUMOR CELLS: WHERE WE LEFT OFF? BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer metastasis and recurrence are the leading causes of cancer-related death. Tumor cells which leave the primary or secondary tumors and shed into the bloodstream are called circulating tumor cells (CTC). These cells are the key drivers of cancer dissemination to surrounding tissues and to distant organs. The use of CTC in clinical practice necessitates the deep insight into their biology, as well as into their role in cancer evasion of immune surveillance, tumor resistance to chemo- radio- and immunotherapies and metastatic dormancy. Aim. The purpose of the work was to review the current knowledge on the CTC biology, as well as the prospects for their use for the diagnosis and targeted treatment of metastatic disease. Methods. The work proposed the integrative literature review using MEDLINE, Biological Abstracts and EMBASE databases. Results. This review summarizes and discusses historical milestones and current data concerning СTС biology, the main stages of their life cycle, their role in metastatic cascade, clinical prospects for their use as markers for the diagnosis and prognostication of the disease course, as well as targets for cancer treatment. Conclusions. Significant progress in the area of CTC biology and their use in cancer theranostics convincingly proved the attractiveness of these cells as targets for cancer prognosis and therapy. The effective use of liquid biopsy with quantitative and phenotypic characteristics of CTCs is impeded by the imperfection of the methodology for taking biological material and by the lack of reliable markers for assessing the metastatic potential of CTCs of various origins. The variety of mechanisms of tumor cells migration and invasion requires the development of complex therapeutic approaches for anti-metastatic therapy targeting CTCs. Efforts to address these key issues could help developing new and effective cancer treatment strategies.
Collapse
|
13
|
Awan H, Balasubramaniam S, Odysseos A. A Voxel Model to Decipher the Role of Molecular Communication in the Growth of Glioblastoma Multiforme. IEEE Trans Nanobioscience 2021; 20:296-310. [PMID: 33830926 DOI: 10.1109/tnb.2021.3071922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glioblastoma Multiforme (GBM), the most malignant human tumour, can be defined by the evolution of growing bio-nanomachine networks within an interplay between self-renewal (Grow) and invasion (Go) potential of mutually exclusive phenotypes of transmitter and receiver cells. Herein, we present a mathematical model for the growth of GBM tumour driven by molecule-mediated inter-cellular communication between two populations of evolutionary bio-nanomachines representing the Glioma Stem Cells (GSCs) and Glioma Cells (GCs). The contribution of each subpopulation to tumour growth is quantified by a voxel model representing the end to end inter-cellular communication models for GSCs and progressively evolving invasiveness levels of glioma cells within a network of diverse cell configurations. Mutual information, information propagation speed and the impact of cell numbers and phenotypes on the communication output and GBM growth are studied by using analysis from information theory. The numerical simulations show that the progression of GBM is directly related to higher mutual information and higher input information flow of molecules between the GSCs and GCs, resulting in an increased tumour growth rate. These fundamental findings contribute to deciphering the mechanisms of tumour growth and are expected to provide new knowledge towards the development of future bio-nanomachine-based therapeutic approaches for GBM.
Collapse
|
14
|
Stanzani E, Pedrosa L, Bourmeau G, Anezo O, Noguera-Castells A, Esteve-Codina A, Passoni L, Matteoli M, de la Iglesia N, Seano G, Martínez-Soler F, Tortosa A. Dual Role of Integrin Alpha-6 in Glioblastoma: Supporting Stemness in Proneural Stem-Like Cells While Inducing Radioresistance in Mesenchymal Stem-Like Cells. Cancers (Basel) 2021; 13:cancers13123055. [PMID: 34205341 PMCID: PMC8235627 DOI: 10.3390/cancers13123055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Glioblastoma stem-like cells (GSCs) are responsible for most of the malignant characteristics of glioblastoma, including therapeutic resistance, tumour recurrence, and tumour cellular heterogeneity. Therefore, increased understanding of the mechanisms regulating GSCs aggressiveness may help to improve patients’ outcomes. Here, we investigated the role of integrin a6 in controlling stemness and resistance to radiotherapy across proneural and mesenchymal molecular subtypes. We observed that integrin a6 had a clear role in stemness maintenance in proneural but not in mesenchymal GSCs. In addition, we proved a crucial role of integrin a6 in supporting mesenchymal GSCs resistance to ionizing radiation. Finally, we highlighted that integrin a6 may control different stem-associated features in GSCs, depending on the molecular subtype. The inhibition of integrin a6 limits stem-like malignant characteristics in both GSCs subtypes and thus may potentially control tumour relapse following conventional treatment. Abstract Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients’ prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.
Collapse
Affiliation(s)
- Elisabetta Stanzani
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Correspondence: or (E.S.); (A.T.)
| | - Leire Pedrosa
- Haematology and Oncology Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (L.P.); (N.d.l.I.)
| | - Guillaume Bourmeau
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Oceane Anezo
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Aleix Noguera-Castells
- Laboratory of Molecular and Translational Oncology, Departament of Medicine, CELLEX Biomedical Research Centre, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain;
| | - Anna Esteve-Codina
- Functional Genomics, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Lorena Passoni
- Laboratory of Pharmacology and Brain Pathology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Michela Matteoli
- CNR Institute of Neuroscience, c/o Humanitas, 20089 Rozzano, Italy;
| | - Núria de la Iglesia
- Haematology and Oncology Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (L.P.); (N.d.l.I.)
| | - Giorgio Seano
- Tumor Microenvironment Lab., Institut Curie, Université PSL, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (G.B.); (O.A.); (G.S.)
| | - Fina Martínez-Soler
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Department of Basic Nursing, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain
| | - Avelina Tortosa
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain;
- Department of Basic Nursing, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain
- Correspondence: or (E.S.); (A.T.)
| |
Collapse
|
15
|
Jandrey EHF, Bezerra M, Inoue LT, Furnari FB, Camargo AA, Costa ÉT. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front Oncol 2021; 11:652133. [PMID: 34178638 PMCID: PMC8222785 DOI: 10.3389/fonc.2021.652133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
There are no effective strategies for the successful treatment of glioblastomas (GBM). Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance is mostly driven by tumor cell plasticity: a concept associated with reactivating transcriptional programs in response to adverse and dynamic conditions from the tumor microenvironment. Autophagy, or "self-eating", pathway is an emerging target for cancer therapy and has been regarded as one of the key drivers of cell plasticity in response to energy demanding stress conditions. Many studies shed light on the importance of autophagy as an adaptive mechanism, protecting GBM cells from unfavorable conditions, while others recognize that autophagy can kill those cells by triggering a non-apoptotic cell death program, called 'autophagy cell death' (ACD). In this review, we carefully analyzed literature data and conclude that there is no clear evidence indicating the presence of ACD under pathophysiological settings in GBM disease. It seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that autophagy is an emblematic example of the 'dark-side' of a rescue pathway that contributes profoundly to a pro-tumoral adaptive response. From a standpoint of treating the real human disease, only combinatorial therapy targeting autophagy with cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and enhance the sensibility of glioma cells to conventional therapies.
Collapse
Affiliation(s)
| | - Marcelle Bezerra
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego (UCSD), San Diego, CA, United States
| | | | | |
Collapse
|
16
|
Filppu P, Tanjore Ramanathan J, Granberg KJ, Gucciardo E, Haapasalo H, Lehti K, Nykter M, Le Joncour V, Laakkonen P. CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity. JCI Insight 2021; 6:141486. [PMID: 33986188 PMCID: PMC8262342 DOI: 10.1172/jci.insight.141486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem cells (GSCs) drive propagation and therapeutic resistance of glioblastomas, the most aggressive diffuse brain tumors. However, the molecular mechanisms that maintain the stemness and promote therapy resistance remain poorly understood. Here we report CD109/STAT3 axis as crucial for the maintenance of stemness and tumorigenicity of GSCs and as a mediator of chemoresistance. Mechanistically, CD109 physically interacts with glycoprotein 130 to promote activation of the IL-6/STAT3 pathway in GSCs. Genetic depletion of CD109 abolished the stemness and self-renewal of GSCs and impaired tumorigenicity. Loss of stemness was accompanied with a phenotypic shift of GSCs to more differentiated astrocytic-like cells. Importantly, genetic or pharmacologic targeting of CD109/STAT3 axis sensitized the GSCs to chemotherapy, suggesting that targeting CD109/STAT3 axis has potential to overcome therapy resistance in glioblastoma.
Collapse
Affiliation(s)
- Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kirsi J. Granberg
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Erika Gucciardo
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Kaisa Lehti
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Costagliola di Polidoro A, Zambito G, Haeck J, Mezzanotte L, Lamfers M, Netti PA, Torino E. Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells. Cancers (Basel) 2021; 13:cancers13030503. [PMID: 33525655 PMCID: PMC7865309 DOI: 10.3390/cancers13030503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive malignant brain tumor with poor patient prognosis. The presence of the blood-brain barrier and the complex tumor microenvironment impair the efficient accumulation of drugs and contrast agents, causing late diagnosis, inefficient treatment and monitoring. Functionalized theranostic nanoparticles are a valuable tool to modulate biodistribution of active agents, promoting their active delivery and selective accumulation for an earlier diagnosis and effective treatment, and provide simultaneous therapy and imaging for improved evaluation of treatment efficacy. In this work, we developed angiopep-2 functionalized crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and irinotecan (Thera-ANG-cHANPs) that were shown to boost relaxometric properties of Gd-DTPA by the effect of Hydrodenticity, improve the uptake of nanoparticles by the exploitation of angiopep-2 improved transport properties, and accelerate the therapeutic effect of Irinotecan. Abstract Glioblastoma multiforme (GBM) has a mean survival of only 15 months. Tumour heterogeneity and blood-brain barrier (BBB) mainly hinder the transport of active agents, leading to late diagnosis, ineffective therapy and inaccurate follow-up. The use of hydrogel nanoparticles, particularly hyaluronic acid as naturally occurring polymer of the extracellular matrix (ECM), has great potential in improving the transport of drug molecules and, furthermore, in facilitatating the early diagnosis by the effect of hydrodenticity enabling the T1 boosting of Gadolinium chelates for MRI. Here, crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and the chemotherapeutic agent irinotecan (Thera-cHANPs) are proposed as theranostic nanovectors, with improved MRI capacities. Irinotecan was selected since currently repurposed as an alternative compound to the poorly effective temozolomide (TMZ), generally approved as the gold standard in GBM clinical care. Also, active crossing and targeting are achieved by theranostic cHANPs decorated with angiopep-2 (Thera-ANG-cHANPs), a dual-targeting peptide interacting with low density lipoprotein receptor related protein-1(LRP-1) receptors overexpressed by both endothelial cells of the BBB and glioma cells. Results showed preserving the hydrodenticity effect in the advanced formulation and internalization by the active peptide-mediated uptake of Thera-cHANPs in U87 and GS-102 cells. Moreover, Thera-ANG-cHANPs proved to reduce ironotecan time response, showing a significant cytotoxic effect in 24 h instead of 48 h.
Collapse
Affiliation(s)
- Angela Costagliola di Polidoro
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Fondazione Istituto Italiano di Tecnologia, IIT, 80125 Naples, Italy
| | - Giorgia Zambito
- Department of Molecular Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (G.Z.); (L.M.)
- Medres Medical Research GmBH, 50931 Cologne, Germany
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Joost Haeck
- AMIE Core Facility, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Laura Mezzanotte
- Department of Molecular Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (G.Z.); (L.M.)
- Medres Medical Research GmBH, 50931 Cologne, Germany
| | - Martine Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Fondazione Istituto Italiano di Tecnologia, IIT, 80125 Naples, Italy
- AMIE Core Facility, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples Federico II, 80125 Naples, Italy
- Correspondence:
| |
Collapse
|
18
|
Pezzella F, Ribatti D. Vascular co-option and vasculogenic mimicry mediate resistance to antiangiogenic strategies. Cancer Rep (Hoboken) 2020; 5:e1318. [PMID: 33295149 PMCID: PMC9780428 DOI: 10.1002/cnr2.1318] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The concept that all the tumors need the formation of new vessels to grow inspired the hypothesis that inhibition of angiogenesis would have led to "cure" cancer. The expectancy that this type of therapy would have avoided the insurgence of resistance was based on the concept that targeting normal vessels, instead of the cancer cells which easily develop new mutations, would have allowed evasion of drug caused selection is, however, more complex as it was made apparent by the discovery of nonangiogenic tumors. At the same time an increasing number of trials with antiangiogenic drugs were coming out as not as successful as expected, mostly because of the appearance of unexpected resistance. RECENT FINDINGS Among the several different mechanisms of resistance to antiangiogenic treatment by now described, we review the evidences that vascular co-option and vasculogenic mimicry by nonangiogenic tumors are effectively two of such mechanisms. We focused on reviewing exclusively the study, both clinical and preclinical, that offer a demonstration that vascular co-option and vasculogenic mimicry are effectively two mechanisms of both intrinsic and acquired resistance. CONCLUSION The discovery that vascular co-opting and vasculogenic mimicry are two ways of escaping antiangiogenic treatment, prompts the need for a better understanding of this phenomenon in order to improve cancer treatment.
Collapse
Affiliation(s)
- Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of MedicineJohn Radcliffe Hospital, University of OxfordOxfordUK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory OrgansUniversity of Bari Medical SchoolBariItaly
| |
Collapse
|
19
|
Long N, Peng S, Chu L, Jia J, Dong M, Liu J. Paclitaxel inhibits the migration of CD133+ U251 malignant glioma cells by reducing the expression of glycolytic enzymes. Exp Ther Med 2020; 20:72. [PMID: 32963602 PMCID: PMC7490788 DOI: 10.3892/etm.2020.9200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/07/2020] [Indexed: 01/24/2023] Open
Abstract
Energy metabolic reprogramming (EMR) allows for the rearrangement of a series of metabolic genes and proteins when tumor cells adapt to their microenvironment. EMR is characterized by changes in the metabolic pattern and metabolic intermediates to meet the needs of tumor cells for their malignant proliferation and infiltrative growth. The present study investigated the role of low-dose paclitaxel (PTX) in changing the expression levels of key genes and proteins during glycolysis in CD133+ U251 glioma cells and explored the relevant regulatory mechanisms of action at the molecular level. CD133 immunomagnetic beads were applied to malignant CD133+ U251 glioma cells, which were then divided into a negative control and an experimental group treated with 1, 2, 4 or 8 µM PTX for 72 h. Cell Counting Kit-8 (CCK-8) was used to measure U251 cell proliferation. RNA and protein were extracted from the malignant glioma cells in all groups to observe changes in the expression levels of key glycolytic enzymes, such as glucose transporter 1 (GLUT1), pyruvate kinase M (PKM) and lactate dehydrogenase A (LDHA), using reverse transcription-quantitative PCR and western blot assays. Transwell migration assays were performed to quantify the effects of PTX solution on U251 cells. CD133+ U251 glioma cells were isolated successfully. CD1133+ cells had a higher rate of proliferation compared with CD1133- cells. In CD1133+ cells treated with PTX, a dose-dependent reduction in the expression levels of the key glycolytic enzymes GLUT1, PKM and LDHA was observed at both the mRNA and protein levels. PTX solution also inhibited cell migration. Differences between the control and experimental groups were statistically significant (P<0.05). Since glycolysis plays an indispensable role in the proliferation and migration of stem cell-like glioma cells, PTX may inhibit tumor cell growth by downregulating the gene and protein expression levels of glycolytic enzymes in CD133+ glioma cells.
Collapse
Affiliation(s)
- Niya Long
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shuo Peng
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Liangzhao Chu
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jun Jia
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Minghao Dong
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jian Liu
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
20
|
Abstract
Brain tumors' severity ranges from benign to highly aggressive and invasive. Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suitable antitumoral treatments. Here, we first describe the physiology and cellular composition of brain tumors. Then, we discuss the development of three-dimensional tissue models utilizing brain tumor cells. In particular, we highlight the role of hydrogels in providing a biomimetic support for the cells to grow into defined structures. Microscale technologies, such as electrospinning and bioprinting, and advanced cellular models aim to mimic the extracellular matrix and natural cellular localization in engineered tumor tissues. Lastly, we review current applications and prospects of hydrogels for therapeutic purposes, such as drug delivery and co-administration with other therapies. Through further development, hydrogels can serve as a reliable option for in vitro modeling and treatment of brain tumors for translational medicine.
Collapse
|
21
|
Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nat Commun 2020; 11:3015. [PMID: 32541784 PMCID: PMC7295765 DOI: 10.1038/s41467-020-16827-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
The interplay between glioma stem cells (GSCs) and the tumor microenvironment plays crucial roles in promoting malignant growth of glioblastoma (GBM), the most lethal brain tumor. However, the molecular mechanisms underlying this crosstalk are incompletely understood. Here, we show that GSCs secrete the Wnt‐induced signaling protein 1 (WISP1) to facilitate a pro-tumor microenvironment by promoting the survival of both GSCs and tumor-associated macrophages (TAMs). WISP1 is preferentially expressed and secreted by GSCs. Silencing WISP1 markedly disrupts GSC maintenance, reduces tumor-supportive TAMs (M2), and potently inhibits GBM growth. WISP1 signals through Integrin α6β1-Akt to maintain GSCs by an autocrine mechanism and M2 TAMs through a paracrine manner. Importantly, inhibition of Wnt/β-catenin-WISP1 signaling by carnosic acid (CA) suppresses GBM tumor growth. Collectively, these data demonstrate that WISP1 plays critical roles in maintaining GSCs and tumor-supportive TAMs in GBM, indicating that targeting Wnt/β-catenin-WISP1 signaling may effectively improve GBM treatment and the patient survival. The tumour microenvironment plays an important role in promoting glioblastoma. Here, the authors show that glioma stem cells secrete WISP1, which promotes both the survival of the stem cells and tumour-associated macrophages.
Collapse
|
22
|
Metastases to the central nervous system: Molecular basis and clinical considerations. J Neurol Sci 2020; 412:116755. [PMID: 32120132 DOI: 10.1016/j.jns.2020.116755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metastatic tumors are the most common malignancies of the central nervous system (CNS) in adults. CNS metastases are associated with unfavorable prognosis, high morbidity and mortality. Lung cancer is the most common source of brain metastases, followed by breast cancer and melanoma. Rising incidence is primarily due to improvements in systemic control of primary malignancies, prolonged survival and advances in cancer detection. PURPOSE To provide an overview of the metastatic cascade and the role of angiogenesis, neuroinflammation, metabolic adaptations, and clinical details about brain metastases from different primary tumors. METHODS A review of the literature on brain metastases was conducted, focusing on the pathophysiology and clinical aspects of the disease. PubMed was used to search for relevant articles published from January 1975 through December 2019 using the keywords brain metabolism, brain metastasis, metastatic cascade, molecular mechanisms, incidence, risk factors, and prognosis. 146 articles met the criteria and were included in this review. DISCUSSION Some primary tumors have a higher tendency to metastasize to the CNS. Establishing a suitable metastatic microenvironment is important in maintaining tumor cell growth and survival. Magnetic resonance imaging (MRI) is a widely used tool for diagnosis and treatment monitoring. Available treatments include surgery, radiotherapy, stereotactic radiosurgery, chemotherapy, immunotherapy, and systemic targeted therapies. CONCLUSIONS Prevention of metastases to the CNS remains a difficult challenge. Advances in screening of high-risk patients and future development of novel treatments may improve patient outcomes.
Collapse
|
23
|
Steinbichler TB, Savic D, Dudás J, Kvitsaridze I, Skvortsov S, Riechelmann H, Skvortsova II. Cancer stem cells and their unique role in metastatic spread. Semin Cancer Biol 2020; 60:148-156. [PMID: 31521746 DOI: 10.1016/j.semcancer.2019.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSC) possess abilities generally associated with embryonic or adult stem cells, especially self-renewal and differentiation, but also dormancy and cellular plasticity that allow adaption to new environmental circumstances. These abilities are ideal prerequisites for the successful establishment of metastasis. This review highlights the role of CSCs in every step of the metastatic cascade from cancer cell invasion into blood vessels, survival in the blood stream, attachment and extravasation as well as colonization of the host organ and subsequent establishment of distant macrometastasis.
Collapse
Affiliation(s)
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irma Kvitsaridze
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
24
|
Liu Q, Yang Y, Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 2020; 121:109633. [DOI: 10.1016/j.biopha.2019.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
|
25
|
Chen J, Hou C, Wang P, Yang Y, Zhou D. Grade II/III Glioma Microenvironment Mining and Its Prognostic Merit. World Neurosurg 2019; 132:e76-e88. [PMID: 31518750 DOI: 10.1016/j.wneu.2019.08.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The tumor microenvironment greatly influences tumor formation, invasion, and progression. The ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues) algorithm quantifies stromal and immune components in a tumor, reflecting the tumor microenvironment. This study aimed to explore key prognostic genes in a grade II/III glioma microenvironment. METHODS We obtained stromal/immune scores for the Cancer Genome Atlas (TCGA) grade II/III glioma cohort from the online ESTIMATE portal. The associations of stromal/immune scores with clinicopathologic characteristics and overall survival of patients with grade II/III glioma were assessed by the Mann-Whitney U test and the Kaplan-Meier method, respectively. Functional enrichment analysis and protein-protein interaction network assessments were employed to analyze differentially expressed genes (DEGs). The top 7 genes with 5 or more edges in the protein-protein interaction network were selected. For validation, CGGA grade II/III glioma data were analyzed. RESULTS The results showed that elevated stromal/immune/ESTIMATE score was significantly associated with poor survival of patients with TCGA grade II/III glioma. Functional enrichment analysis showed that DEGs were associated with immune cell regulation, extracellular matrix, cytokine activation, and receptor binding. The selected DEGs (interleukin-10, beta-2 microglobulin, C-C motif chemokine ligand 5, cluster of differentiation 74, human leukocyte antigen-DRA, lymphocyte cytosolic protein 2, and myxovirus resistance protein 1) showed prognostic values in patients with grade II/III glioma of the TCGA and CGGA database. CONCLUSIONS Stromal/immune/ESTIMATE scores have prognostic values in patients with grade II/III glioma. The selected DEGs, including interleukin-10, beta-2 microglobulin, C-C motif chemokine ligand 5, cluster of differentiation 74, human leukocyte antigen-DRA, lymphocyte cytosolic protein 2, and myxovirus resistance protein 1, associated with tumor immunity and microenvironment, have prognostic values in grade II/III glioma. Further investigation of these genes could provide novel insights into the tumor microenvironment of glioma.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Chongxian Hou
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Peng Wang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
26
|
Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue. Cancers (Basel) 2019; 11:cancers11040469. [PMID: 30987226 PMCID: PMC6521241 DOI: 10.3390/cancers11040469] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal human brain tumors. At present, GBMs are divided in primary and secondary on the basis of the mutational status of the isocitrate dehydrogenase (IDH) genes. In addition, IDH1 and IDH2 mutations are considered crucial to better define the prognosis. Although primary and secondary GBMs are histologically indistinguishable, they retain distinct genetic alterations that account for different evolution of the tumor. The high invasiveness, the propensity to disperse throughout the brain parenchyma, and the elevated vascularity make these tumors extremely recidivist, resulting in a short patient median survival even after surgical resection and chemoradiotherapy. Furthermore, GBM is considered an immunologically cold tumor. Several studies highlight a highly immunosuppressive tumor microenvironment that promotes recurrence and poor prognosis. Deeper insight into the tumor immune microenvironment, together with the recent discovery of a conventional lymphatic system in the central nervous system (CNS), led to new immunotherapeutic strategies. In the last two decades, experimental evidence from different groups proved the existence of cancer stem cells (CSCs), also known as tumor-initiating cells, that may play an active role in tumor development and progression. Recent findings also indicated the presence of highly infiltrative CSCs in the peritumoral region of GBM. This region appears to play a key role in tumor growing and recurrence. However, until recently, few studies investigated the biomolecular characteristics of the peritumoral tissue. The aim of this review is to recapitulate the pathological features of GBM and of the peritumoral region associated with progression and recurrence.
Collapse
|
27
|
Chio CC, Tai YT, Mohanraj M, Liu SH, Yang ST, Chen RM. Honokiol enhances temozolomide-induced apoptotic insults to malignant glioma cells via an intrinsic mitochondrion-dependent pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 49:41-51. [PMID: 30217261 DOI: 10.1016/j.phymed.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Temozolomide (TMZ) is a first-line chemotherapeutic drug for malignant gliomas. Nonetheless, TMZ-induced side effects and drug resistance remain challenges. Our previous study showed the suppressive effects of honokiol on growth of gliomas. PURPOSE This study was further aimed to evaluate if honokiol could enhance TMZ-induced insults toward malignant glioma cells and its possible mechanisms. METHODS Human U87 MG glioma cells were exposed to TMZ, honokiol, and a combination of TMZ and honokiol. Cell survival, apoptosis, necrosis, and proliferation were successively assayed. Fluorometric substrate assays were conducted to determine activities of caspase-3, -6, -8, and -9. Levels of Fas ligand, Bax, and cytochrome c were immunodetected. Translocation of Bax to mitochondria were examined using confocal microscopy. Mitochondrial function was evaluated by assaying the mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and complex I enzyme activity. Caspase-6 activity was suppressed using specific peptide inhibitors. The honokiol-induced effects were further confirmed using human U373 MG and murine GL261 cells. RESULTS Exposure of human U87 MG glioma cells to honokiol significantly increased TMZ-induced DNA fragmentation and cell apoptosis. Interestingly, honokiol enhanced intrinsic caspase-9 activity without affecting extrinsic Fas ligand levels and caspase-8 activity. Sequentially, TMZ-induced changes in Bax translocation, the MMP, mitochondrial complex I enzyme activity, intracellular ROS levels, and cytochrome c release were enhanced by honokiol. Consequently, honokiol amplified TMZ-induced activation of caspases-3 and -6 in human U87 MG cells. Fascinatingly, suppressing caspase-6 activity concurrently decreased honokiol-induced DNA fragmentation and cell apoptosis. The honokiol-involved improvement in TMZ-induced intrinsic apoptosis was also confirmed in human U373 MG and murine GL261 glioma cells. CONCLUSIONS This study showed that honokiol can enhance TMZ-induced apoptotic insults to glioma cells via an intrinsic mitochondrion-dependent mechanism. Our results suggest the therapeutic potential of honokiol to attenuate TMZ-induced side effects.
Collapse
Affiliation(s)
- Chung-Ching Chio
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Tai
- Department of Anesthesiology, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mahendravarman Mohanraj
- Graduate Institute of Medical Sciences, College of Medicine, Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shun-Tai Yang
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Brain Disease Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, Genitori L, Sardi I. Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. Int J Mol Sci 2018; 19:ijms19102879. [PMID: 30248992 PMCID: PMC6213072 DOI: 10.3390/ijms19102879] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/27/2022] Open
Abstract
For glioblastoma, the tumor microenvironment (TME) is pivotal to support tumor progression and therapeutic resistance. TME consists of several types of stromal, endothelial and immune cells, which are recruited by cancer stem cells (CSCs) to influence CSC phenotype and behavior. TME also promotes the establishment of specific conditions such as hypoxia and acidosis, which play a critical role in glioblastoma chemoresistance, interfering with angiogenesis, apoptosis, DNA repair, oxidative stress, immune escape, expression and activity of multi-drug resistance (MDR)-related genes. Finally, the blood brain barrier (BBB), which insulates the brain microenvironment from the blood, is strongly linked to the drug-resistant phenotype of glioblastoma, being a major physical and physiological hurdle for the delivery of chemotherapy agents into the brain. Here, we review the features of the glioblastoma microenvironment, focusing on their involvement in the phenomenon of chemoresistance; we also summarize recent advances in generating systems to modulate or bypass the BBB for drug delivery into the brain. Genetic aspects associated with glioblastoma chemoresistance and current immune-based strategies, such as checkpoint inhibitor therapy, are described too.
Collapse
Affiliation(s)
- Martina Da Ros
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Veronica De Gregorio
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Anna Lisa Iorio
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, 50139 Florence, Italy.
| | - Milena Guidi
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Maurizio de Martino
- Director Post Graduate Pediatric School University of Florence, Director Meyer Health Campus, Florence, 50139, Italy.
| | - Lorenzo Genitori
- Neurosurgery Unit, Department of Neurosciences, Meyer Children's Hospital, Florence, 50139, Italy.
| | - Iacopo Sardi
- Neuro-oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, 50139, Italy.
| |
Collapse
|
29
|
Roney MSI, Park SK. Antipsychotic dopamine receptor antagonists, cancer, and cancer stem cells. Arch Pharm Res 2018; 41:384-408. [PMID: 29556831 DOI: 10.1007/s12272-018-1017-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Cancer is one of the deadliest diseases in the world. Despite extensive studies, treating metastatic cancers remains challenging. Years of research have linked a rare set of cells known as cancer stem cells (CSCs) to drug resistance, leading to the suggestion that eradication of CSCs might be an effective therapeutic strategy. However, few drug candidates are active against CSCs. New drug discovery is often a lengthy process. Drug screening has been advantageous in identifying drug candidates. Current understanding of cancer biology has revealed various clues to target cancer from different points of view. Many studies have found dopamine receptors (DRs) in various cancers. Therefore, DR antagonists have attracted a lot of attention in cancer research. Recently, a group of antipsychotic DR antagonists has been demonstrated to possess remarkable abilities to restrain and sensitize CSCs to existing chemotherapeutics by a process called differentiation approach. In this review, we will describe current aspects of CSC-targeting therapeutics, antipsychotic DR antagonists, and their extraordinary abilities to fight cancer.
Collapse
Affiliation(s)
- Md Saiful Islam Roney
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
- Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, 08308, Republic of Korea.
| |
Collapse
|