1
|
Sharathkumar A, Carr J, Claassen D, Syrbu S, Bhagavathi S, Al-Huniti A, Modi A, Bates M, Mott SL. Romiplostim for Treatment of Children and Young Adults With Severe Aplastic Anemia and Myelodysplastic Syndrome. J Pediatr Hematol Oncol 2024; 46:252-261. [PMID: 38787686 DOI: 10.1097/mph.0000000000002891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Thrombopoietin receptor agonists (TPO-RAs) induce trilineage hematopoiesis under conditions with acquired hematopoietic failure. We evaluated safety, tolerability, and preliminary efficacy of a TPO-RA, romiplostim (Nplate), with or without standard-of-care immunosuppressive therapy (±IST) for children (ages < 21 y) with newly diagnosed and relapsed/refractory severe aplastic anemia (SAA) and myelodysplastic syndrome (MDS). Data were collected from an observational study and a single arm interventional pilot study. The safety outcome was treatment-related adverse events (AEs). Efficacy was evaluated by complete hematopoietic response (CHR) at week 24. Romiplostim was commenced at 5 µg/kg/week, with dose escalation of 2.5 µg/kg/week (maximum, 20 µg/kg/dose) based on platelet response. Romiplostim was continued until CHR was observed. Ten subjects (SAA, 9 [IST, 4; without IST, 5]; MDS, 1) completed the study (median age: 9.2 y). Median romiplostim dose was 10 µg/kg/week (range: 5 to 17.5 µg/kg/week). The cumulative incidence of CHR was 70.4% (95% CI, 20.2%-92.6%). Among 21 AEs (Grade 1 to 3), 3 were attributed to romiplostim. At a median posttherapy follow-up of 10.9 months (range: 0.7 to 77.5), no clonal evolution, bone marrow fibrosis or mortality was reported. This proof-of-concept study provides data about short-term safety, tolerability, and preliminary efficacy of romiplostim (±IST) for treatment of pediatric SAA/MDS.
Collapse
Affiliation(s)
- Anjali Sharathkumar
- Stead Family Department of Pediatrics, Carver College of Medicine
- Holden Comprehensive Cancer Center
| | - Jamie Carr
- Institute for Clinical and Translational Science
| | - David Claassen
- Stead Family Department of Pediatrics, Carver College of Medicine
| | - Sergei Syrbu
- Department of Pathology, University of Iowa, Iowa City, IA
| | | | - Ahmad Al-Huniti
- Department of Pediatrics, Mayo Clinic, Hematology, Rochester, MN
| | - Arunkumar Modi
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Melissa Bates
- Holden Comprehensive Cancer Center
- Department of Health and Human Physiology
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | | |
Collapse
|
2
|
Kosmidou A, Gavriilaki E, Tragiannidis A. The Challenge for a Correct Diagnosis of Refractory Thrombocytopenia: ITP or MDS with Isolated Thrombocytopenia? Cancers (Basel) 2024; 16:1462. [PMID: 38672544 PMCID: PMC11048195 DOI: 10.3390/cancers16081462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by isolated thrombocytopenia. It is diagnosed in patients with a platelet count below 100,000 per cubic millimeter in whom other causes of thrombocytopenia have been ruled out, and its diagnosis is generally one of exclusion. Clinical manifestations of patients may vary from asymptomatic disease to mild mucocutaneous or life-threatening bleeding. Glucocorticoids are used as first-line treatment for ITP, while other second-line medications, mainly thrombopoietin-receptor agonists (TPO-RA) and rituximab, are given to patients in whom ITP does not remit, or relapses soon after glucocorticoid treatment. Refractoriness of ITP strongly questions its diagnosis and necessitates a thorough clinical and laboratory work-up to decide whether that is the case of refractory ITP or a misdiagnosis. The aim of this review is to summarize the conditions associated with isolated thrombocytopenia and highlight the characteristics of confusing cases. Even though the case of a myelodysplastic syndrome presented with isolated thrombocytopenia (MDS-IT) is relatively rare and not well-established in the literature, it constitutes one of the most predominant misdiagnoses of refractory ITP. MDS-IT patients are thought to present with multilineage dysplasia, normal karyotype and low risk prognostic score, based on IPSS-R. It has been shown that a significant proportion of MDS-IT patients are misdiagnosed as having the more common ITP. Therefore, it is crucial that in confusing cases of persistent thrombocytopenia a detailed diagnostic work-up is applied-including evaluation of peripheral-blood smear, bone marrow examination and cytogenetic testing-to avoid unnecessary therapy delay.
Collapse
Affiliation(s)
- Aikaterini Kosmidou
- 2nd Department of Internal Medicine, General Hospital of Kavala, 65500 Kavala, Greece
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| |
Collapse
|
3
|
Li Y, Cheng L, Peng Y, Wang L, Zhang W, Yin Y, Zhang J, Wu X. The role of genetic factors in pediatric myelodysplastic syndromes with different outcomes. BMC Pediatr 2024; 24:28. [PMID: 38191334 PMCID: PMC10773107 DOI: 10.1186/s12887-023-04492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Pediatric myelodysplastic syndromes (MDS) are rare disorders with an unrevealed pathogenesis. Our aim is to explore the role of genetic factors in the pathogenesis of MDS in children with different outcomes and to discover the correlation between genetic features and clinical outcomes as well as disease characteristics. METHODS We conducted an analysis of archived genetic data from 26 patients diagnosed with pediatric MDS at our institution between 2015 and 2021, examining the association between different genetic characteristics and clinical manifestations as well as prognosis. Additionally, We presented three cases with distinct genetic background and outcomes as examples to elaborate the role of genetic factors in pediatric MDS with different prognoses. RESULTS Genetic variations were detected in 13 out of the 26 patients, including 8 patients with co-occurrence of somatic and germline mutations (CSGMs) and 5 patients with somatic mutations alone. Our analysis revealed that advanced MDS (4/8, 50% vs. 1/5, 20% and 4/11, 36.4%), PD (3/8, 37.5% vs. 1/5, 20% and 1/11 9.1%), and TD (6/8, 75% vs. 2/5, 40% and 2/11, 18.2%) were more common in patients with CSGMs than those with somatic mutations alone or without any mutations. We also found out in our study that 8 patients with CSGMs had evidently different clinical outcomes, and we presented 3 of them as examples for elaboration. Case 1 with germline and somatic mutations of unknown significance had a relatively slow disease course and a good prognosis. Case 2 with compound heterozygous germline SBDS variants and somatic mutations like del20q had a stable disease course and a reversed outcome. Case 3 with a germline GATA2 variant and somatic mutations including - 7 had a rapidly progressive disease course and a worst prognosis. CONCLUSION Our findings indicate that genetic background of pediatric MDS is closely linked with disease characteristics as well as outcomes and that CSGMs may lead to disease progression. It should be emphasized that the interaction between certain germline variants and somatic mutations, such as SBDS and del20q, may result in hematopoietic stem cell adaptation (improved hematopoiesis) and reversed clinical outcomes, which can facilitate the development of targeted therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Cheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenzhi Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhong Yin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Tseng S, Lee ME, Lin PC. A Review of Childhood Acute Myeloid Leukemia: Diagnosis and Novel Treatment. Pharmaceuticals (Basel) 2023; 16:1614. [PMID: 38004478 PMCID: PMC10674205 DOI: 10.3390/ph16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is the second most common hematologic malignancy in children. The incidence of childhood AML is much lower than acute lymphoblastic leukemia (ALL), which makes childhood AML a rare disease in children. The role of genetic abnormalities in AML classification, management, and prognosis prediction is much more important than before. Disease classifications and risk group classifications, such as the WHO classification, the international consensus classification (ICC), and the European LeukemiaNet (ELN) classification, were revised in 2022. The application of the new information in childhood AML will be upcoming in the next few years. The frequency of each genetic abnormality in adult and childhood AML is different; therefore, in this review, we emphasize well-known genetic subtypes in childhood AML, including core-binding factor AML (CBF AML), KMT2Ar (KMT2A/11q23 rearrangement) AML, normal karyotype AML with somatic mutations, unbalanced cytogenetic abnormalities AML, NUP98 11p15/NUP09 rearrangement AML, and acute promyelocytic leukemia (APL). Current risk group classification, the management algorithm in childhood AML, and novel treatment modalities such as targeted therapy, immune therapy, and chimeric antigen receptor (CAR) T-cell therapy are reviewed. Finally, the indications of hematopoietic stem cell transplantation (HSCT) in AML are discussed.
Collapse
Affiliation(s)
- Serena Tseng
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mu-En Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Pei-Chin Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Toorani ZA, Radhi AA, Hassan MM, Aloraibi AA. A Rare Concurrence of Myelodysplastic Neoplasia and Tetrasomy 8 in a 3-Year-Old Bahraini Male. Cureus 2023; 15:e41988. [PMID: 37593262 PMCID: PMC10427950 DOI: 10.7759/cureus.41988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Myelodysplastic neoplasia (MDS) is a group of stem cell disorders involving ineffective hematopoiesis. It can be associated with an increased risk of progression toward acute myeloid leukemia (AML). In Bahrain, MDS is the fifth most common primary hematologic malignancy. MDS has an annual incidence of up to 4 million cases. Some of the presenting signs and symptoms of MDS are often nonspecific, such as fatigue, pallor, malaise, fevers, bleeding, bruising, weight loss, and anorexia. Approximately 40% of patients with MDS progress to AML. This paper outlines a case of a 3-year-old Bahraini male (known to have sickle cell trait) who presented to the emergency department of Salmaniya Medical Complex with a five-day history of fever, congested throat, left ear pain, and abdominal pain. He had one episode of vomiting gastric content the previous day. He had previously gone to a private clinic with similar symptoms. Physical examination revealed a short neck and short stature, which was found to be below the 5th percentile. He had generalized pallor and hepatosplenomegaly. A blood smear showed leukopenia and normochromic normocytic anemia. There were excessive blasts found which consisted of 17% of nucleated cells and few granulopoietic cells. Erythropoiesis was active with a few showing mild megaloblastic changes. There were rare megakaryocytes noted. Moreover, the bone marrow aspirate showed two populations on dim CD45. The first population consisted of 3.15% on dim CD45 comprising of hematogones which brightly expressed CD19, HLA-DR, CD79a, and dim CD10. The second population consisted of 14.85% on dim CD45 which expressed CD34, CD13, CD117, HLA-DR, and dim CD7. Based on the peripheral blood smear and bone marrow immunophenotyping findings, a diagnosis of myelodysplastic syndrome with excessive blasts was made, which soon transformed into a diagnosis of AML. Furthermore, increased levels of dysplastic changes and percentage of blasts in the peripheral blood smear and bone marrow lead to a higher possibility of transformation into AML. As per the WHO classification, a diagnosis of MDS needs evaluation of the morphology of blood and bone marrow.
Collapse
Affiliation(s)
| | | | - Merna M Hassan
- Medicine, Royal College of Surgeons in Ireland, Muharraq, BHR
| | - Ameera A Aloraibi
- Pediatric Hematology/Oncology, Salmaniya Medical Complex, Manama, BHR
| |
Collapse
|
6
|
Tsang MMC, Ha SY, Chan N, So CC, Cheuk DKL, Chan GCF. Spontaneous resolution of refractory cytopenia of childhood with monosomy 7 in an infant without an identifiable genetic cause. Pediatr Blood Cancer 2022; 69:e29654. [PMID: 35389555 DOI: 10.1002/pbc.29654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Michelle M C Tsang
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong SAR
| | - Shau Yin Ha
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Children's Hospital, Hong Kong SAR
| | - Nelson Chan
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong SAR
| | - Chi Chiu So
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong SAR
| | - Daniel K L Cheuk
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Children's Hospital, Hong Kong SAR
| | - Godfrey C F Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Children's Hospital, Hong Kong SAR
| |
Collapse
|
7
|
Cohen DL, Salman NA, Conklin HM, Ehrhardt MJ, Potter BS. Case series: Neurocognitive assessment of three siblings with SAMD9-associated monosomy 7/myelodysplastic syndrome. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Gilad O, Dgany O, Noy-Lotan S, Krasnov T, Yacobovich J, Rabinowicz R, Goldberg T, Kuperman AA, Abu-Quider A, Miskin H, Kapelushnik N, Mandel-Shorer N, Shimony S, Harlev D, Ben-Ami T, Adam E, Levin C, Aviner S, Elhasid R, Berger-Achituv S, Chaitman-Yerushalmi L, Kodman Y, Oniashvilli N, Hameiri-Grosman M, Izraeli S, Tamary H, Steinberg-Shemer O. Syndromes predisposing to leukemia are a major cause of inherited cytopenias in children. Haematologica 2022; 107:2081-2095. [PMID: 35295078 PMCID: PMC9425329 DOI: 10.3324/haematol.2021.280116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Prolonged cytopenias are a non-specific sign with a wide differential diagnosis. Among inherited disorders, cytopenias predisposing to leukemia require a timely and accurate diagnosis to ensure appropriate medical management, including adequate monitoring and stem cell transplantation prior to the development of leukemia. We aimed to define the types and prevalences of the genetic causes leading to persistent cytopenias in children. The study comprises children with persistent cytopenias, myelodysplastic syndrome, aplastic anemia, or suspected inherited bone marrow failure syndromes, who were referred for genetic evaluation from all pediatric hematology centers in Israel during 2016-2019. For variant detection, we used Sanger sequencing of commonly mutated genes and a custom-made targeted next-generation sequencing panel covering 226 genes known to be mutated in inherited cytopenias; the minority subsequently underwent whole exome sequencing. In total, 189 children with persistent cytopenias underwent a genetic evaluation. Pathogenic and likely pathogenic variants were identified in 59 patients (31.2%), including 47 with leukemia predisposing syndromes. Most of the latter (32, 68.1%) had inherited bone marrow failure syndromes, nine (19.1%) had inherited thrombocytopenia predisposing to leukemia, and three each (6.4%) had predisposition to myelodysplastic syndrome or congenital neutropenia. Twelve patients had cytopenias with no known leukemia predisposition, including nine children with inherited thrombocytopenia and three with congenital neutropenia. In summary, almost one third of 189 children referred with persistent cytopenias had an underlying inherited disorder; 79.7% of whom had a germline predisposition to leukemia. Precise diagnosis of children with cytopenias should direct follow-up and management programs and may positively impact disease outcome.
Collapse
Affiliation(s)
- Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Ron Rabinowicz
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Tracie Goldberg
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Amir A Kuperman
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel; Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| | - Abed Abu-Quider
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva
| | - Hagit Miskin
- Pediatric Hematology Unit, Shaare Zedek Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University, Jerusalem
| | - Noa Kapelushnik
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Goldschleger Eye Institute, Sheba Medical Center, Hashomer
| | - Noa Mandel-Shorer
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus; Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa
| | - Shai Shimony
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Rabin Medical Center, Institute of Hematology, Davidoff Cancer Centre, Beilinson Hospital, Petach-Tikva, Israel; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Dan Harlev
- Pediatric Hematology-Oncology Department, Hadassah University Medical Center, Jerusalem
| | - Tal Ben-Ami
- Pediatric Hematology Unit, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hebrew University of Jerusalem
| | - Etai Adam
- Pediatric Hematology-Oncology Department, Sheba Medical Center, Hashomer
| | - Carina Levin
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel; Pediatric Hematology Unit and Research Laboratory, Emek Medical Center, Afula
| | - Shraga Aviner
- Department of Pediatrics, Barzilai University Medical Center, Ashkelon, affiliated to Ben Gurion University, Beer-Sheva
| | - Ronit Elhasid
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Department of Pediatric Hemato-Oncology, Aviv Medical Center
| | - Sivan Berger-Achituv
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Department of Pediatric Hemato-Oncology, Aviv Medical Center
| | | | - Yona Kodman
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Nino Oniashvilli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Michal Hameiri-Grosman
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva.
| | - Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| |
Collapse
|
9
|
Gao J, Hu Y, Gao L, Xiao P, Lu J, Hu S. The effect of decitabine-combined minimally myelosuppressive regimen bridged allo-HSCT on the outcomes of pediatric MDS from 10 years' experience of a single center. BMC Pediatr 2022; 22:312. [PMID: 35624441 PMCID: PMC9137053 DOI: 10.1186/s12887-022-03376-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a rare disease in children and the treatment option before the allogeneic hematopoietic stem cell transplantation (allo-HSCT) is rarely reported. Our main objective was to report our single-center experience with the DNA-hypomethylating agent, decitabine-combined minimally myelosuppressive regimen (DAC + MMR) bridged allo-HSCT in children with MDS. Methods Twenty-eight children with de novo MDS who underwent allo-HSCT between 2011 and 2020 were enrolled. Patients were divided into subgroups (refractory cytopenia of childhood [RCC] and advanced MDS [aMDS]) and treated by HSCT alone or pre-transplant combination treatment based on risk stratification. The patients’ clinical characteristics, treatment strategies and outcomes were retrospectively evaluated. Results Twenty patients with aMDS had received pre-transplant treatment (three were treated with decitabine alone, thirteen with DAC + MMR, and four with acute myeloid leukemia type [AML-type] induction therapy). DAC + MMR was well tolerated and the most common adverse events were myelosuppression and gastrointestinal reaction. DAC + MMR had shown an improved marrow complete remission (mCR) compared with AML-type chemotherapy (13/13, 100% versus 2/4, 50%, P = 0.044). The median follow-up for total cohort was 53.0 months (range, 2.3-127.0 months) and the 4-year overall survival (OS) was 71.4 ± 8.5%. In the subgroup of aMDS, pretreatment of DAC + MMR resulted in a much better survival rate than AML-type chemotherapy (84.6 ± 10.0% versus 0.0 ± 0.0%, P < 0.001). Conclusions The DAC + MMR bridged allo-HSCT may be recommended as a novel and effective approach. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03376-1.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yixin Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Gao
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peifang Xiao
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Lu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shaoyan Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Atmar K, Ruivenkamp CAL, Hooimeijer L, Nibbeling EAR, Eckhardt CL, Huisman EJ, Lankester AC, Bartels M, Santen GWE, Smiers FJ, van der Burg M, Mohseny AB. Diagnostic Value of a Protocolized In-Depth Evaluation of Pediatric Bone Marrow Failure: A Multi-Center Prospective Cohort Study. Front Immunol 2022; 13:883826. [PMID: 35572556 PMCID: PMC9094492 DOI: 10.3389/fimmu.2022.883826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Severe multilineage cytopenia in childhood caused by bone marrow failure (BMF) often represents a serious condition requiring specific management. Patients are at risk for invasive infections and bleeding complications. Previous studies report low rates of identifiable causes of pediatric BMF, rendering most patients with a descriptive diagnosis such as aplastic anemia (AA). Methods We conducted a multi-center prospective cohort study in which an extensive diagnostic approach for pediatric patients with suspected BMF was implemented. After exclusion of malignant and transient causes of BMF, patients entered thorough diagnostic evaluation including bone marrow analysis, whole exome sequencing (WES) including copy number variation (CNV) analysis and/or single nucleotide polymorphisms (SNP) array analysis. In addition, functional and immunological evaluation were performed. Here we report the outcomes of the first 50 patients (2017-2021) evaluated by this approach. Results In 20 patients (40%) a causative diagnosis was made. In this group, 18 diagnoses were established by genetic analysis, including 14 mutations and 4 chromosomal deletions. The 2 remaining patients had short telomeres while no causative genetic defect was found. Of the remaining 30 patients (60%), 21 were diagnosed with severe aplastic anemia (SAA) based on peripheral multi-lineage cytopenia and hypoplastic bone marrow, and 9 were classified as unexplained cytopenia without bone marrow hypoplasia. In total 28 patients had undergone hematopoietic stem cell transplantation (HSCT) of which 22 patients with an unknown cause and 6 patients with an identified cause for BMF. Conclusion We conclude that a standardized in-depth diagnostic protocol as presented here, can increase the frequency of identifiable causes within the heterogeneous group of pediatric BMF. We underline the importance of full genetic analysis complemented by functional tests of all patients as genetic causes are not limited to patients with typical (syndromal) clinical characteristics beyond cytopenia. In addition, it is of importance to apply genome wide genetic analysis, since defects in novel genes are frequently discovered in this group. Identification of a causal abnormality consequently has implications for the choice of treatment and in some cases prevention of invasive therapies.
Collapse
Affiliation(s)
- Khaled Atmar
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Louise Hooimeijer
- Department of Pediatric Hematology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Corien L Eckhardt
- Department of Pediatric Hematology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Elise J Huisman
- Department of Pediatric Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Arjan C Lankester
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frans J Smiers
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander B Mohseny
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Faoro C, Ataide SF. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Front Mol Biosci 2021; 8:679584. [PMID: 34113652 PMCID: PMC8185352 DOI: 10.3389/fmolb.2021.679584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex fundamental for co-translational delivery of proteins to their proper membrane localization and secretory pathways. Literature of the past two decades has suggested new roles for individual SRP components, 7SL RNA and proteins SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72, outside the SRP cycle. These noncanonical functions interconnect SRP with a multitude of cellular and molecular pathways, including virus-host interactions, stress response, transcriptional regulation and modulation of apoptosis in autoimmune diseases. Uncovered novel properties of the SRP components present a new perspective for the mammalian SRP as a biological modulator of multiple cellular processes. As a consequence of these findings, SRP components have been correlated with a growing list of diseases, such as cancer progression, myopathies and bone marrow genetic diseases, suggesting a potential for development of SRP-target therapies of each individual component. For the first time, here we present the current knowledge on the SRP noncanonical functions and raise the need of a deeper understanding of the molecular interactions between SRP and accessory cellular components. We examine diseases associated with SRP components and discuss the development and feasibility of therapeutics targeting individual SRP noncanonical functions.
Collapse
Affiliation(s)
- Camilla Faoro
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Zorina T, Black L. Mesenchymal–Hematopoietic Stem Cell Axis: Applications for Induction of Hematopoietic Chimerism and Therapies for Malignancies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Zorina TD. New Insights on the Role of the Mesenchymal-Hematopoietic Stem Cell Axis in Autologous and Allogeneic Hematopoiesis. Stem Cells Dev 2020; 30:2-16. [PMID: 33231142 DOI: 10.1089/scd.2020.0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoreductive protocols are integral both as conditioning regimens for bone marrow (BM) transplantation and as part of therapies for malignancies, but their associated comorbidities represent a long-standing clinical problem. In particular, they cause myeloablation that debilitates the physiological role of mesenchymal stem and precursor cells (MSPCs) in sustaining hematopoiesis. This review addresses the damaging impact of cytoreductive regimens on MSPCs. In addition, it discusses prospects for alleviating the resulting iatrogenic comorbidities. New insights into the structural and functional dynamics of hematopoietic stem cell (HSC) niches reveal the existence of "empty" niches and the ability of the donor-derived healthy HSCs to outcompete the defective HSCs in occupying these niches. These findings support the notion that conditioning regimens, conventionally used to ablate the recipient hematopoiesis to create space for engraftment of the donor-derived HSCs, may not be a necessity for allogeneic BM transplantation. In addition, the capacity of the MSPCs to cross-talk with HSCs, despite major histocompatibility complex disparity, and suppress graft versus host disease indicates the possibility for development of a conditioning-free, MSPCs-enhanced protocol for BM transplantation. The clinical advantage of supplementing cytoreductive protocols with MSPCs to improve autologous hematopoiesis reconstitution and alleviate cytopenia associated with chemo and radiation therapies for cancer is also discussed.
Collapse
Affiliation(s)
- Tatiana D Zorina
- Department of Medical Laboratory Science and Biotechnology, Jefferson College of Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Nakano TA, Lau BW, Dickerson KE, Wlodarski M, Pollard J, Shimamura A, Hofmann I, Sasa G, Elghetany T, Cada M, Dror Y, Ding H, Allen SW, Hanna R, Campbell K, Olson TS. Diagnosis and treatment of pediatric myelodysplastic syndromes: A survey of the North American Pediatric Aplastic Anemia Consortium. Pediatr Blood Cancer 2020; 67:e28652. [PMID: 32779892 DOI: 10.1002/pbc.28652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) represent a group of clonal hematopoietic stem cell disorders that commonly progress to acute myeloid leukemia (AML). The diagnostics, prognostics, and treatment of adult MDS are established but do not directly translate to children and adolescents. Pediatric MDS is a rare disease, characterized by unique cytogenetics and histology compared with adult MDS, and often arises secondary to germline predisposition or cytotoxic exposures. Our objective was to highlight aspects of diagnosis/management that would benefit from further systematic review toward the development of clinical practice guidelines for pediatric MDS. PROCEDURE The North American Pediatric Aplastic Anemia Consortium (NAPAAC) is composed of collaborative institutions with a strong interest in pediatric bone marrow failure syndromes and hematologic malignancies. The NAPAAC MDS working group developed a national survey distributed to 35 NAPAAC institutions to assess data on (1) clinical presentation of pediatric MDS, (2) diagnostic evaluation, (3) criteria for diagnosis, (4) supportive care and treatment decisions, and (5) role of hematopoietic stem cell transplantation (HSCT). RESULTS Twenty-eight of 35 institutions returned the survey. Most centers agreed on a common diagnostic workup, though there was considerable variation regarding the criteria for diagnosis. Although there was consensus on supportive care, treatment strategies, including the role of cytoreduction and HSCT, varied across centers surveyed. CONCLUSIONS There is lack of national consensus on diagnosis and treatment of pediatric MDS. This survey identified key aspects of MDS management that will warrant systematic review toward the goal of developing national clinical practice guidelines for pediatric MDS.
Collapse
Affiliation(s)
- Taizo A Nakano
- University of Colorado School of Medicine, Aurora, Colorado
| | - Bonnie W Lau
- Dartmouth Geisel School of Medicine, Lebanon, New Hampshire
| | | | | | - Jessica Pollard
- Dana-Farber/Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inga Hofmann
- University of Wisconsin School of Medicine, Madison, Wisconsin
| | | | | | - Michaela Cada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yigal Dror
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hilda Ding
- Rady Children's Hospital, University of California, San Diego, San Diego, California
| | - Steven W Allen
- University Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rabbi Hanna
- Taussing Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Timothy S Olson
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Yoo JW, Im HJ, Kim H, Koh KN, Kang SH, Min SY, Choi ES, Jang S, Park CJ, Seo JJ. Improved outcomes of allogeneic hematopoietic stem cell transplantation including haploidentical transplantation for childhood myelodysplastic syndrome. Bone Marrow Transplant 2020; 55:1595-1603. [PMID: 32054998 DOI: 10.1038/s41409-020-0814-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 11/09/2022]
Abstract
This retrospective study aimed to investigate the outcomes of allogeneic hematopoietic stem cell transplantation (HSCT) for childhood myelodysplastic syndrome (MDS). Thirty-six patients (low-grade MDS, 24; advanced MDS, 12) received HSCT at the Asan Medical Center over two decades (early period, 1997-2007; recent period, 2008-2017). The transplantation outcomes were analyzed according to disease status, conditioning regimen, various donor types, and period of HSCT. During a median follow-up of 5.6 (range, 1.4-21.1) years, the probability of overall survival (OS) and failure-free survival was 77% and 69%, respectively. The cumulative incidence of transplantation-related mortality (TRM) was 12%. Significantly reduced TRM and improved OS were observed in patients who received HSCT during the recent period vs. the early period (TRM, 4% vs. 30%, P = 0.021; OS, 87% vs. 50%, P = 0.006). Comparable outcomes were observed for HSCT from haploidentical family donors vs. HLA-identical donors (TRM, 10% vs. 14%, P= 0.837; OS, 86% vs. 79%, P = 0.625). This study identified the improved outcomes of allogeneic HSCT for childhood MDS over time, in addition, the feasible outcomes of haploidentical HSCT suggested its use as an attractive alternative in the future procedures.
Collapse
Affiliation(s)
- Jae Won Yoo
- Department of Pediatrics, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, Korea.,Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Ho Joon Im
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea.
| | - Hyery Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Kyung-Nam Koh
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Sung Han Kang
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - So Yoon Min
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Eun Seok Choi
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| | - Seongsoo Jang
- Department of Laboratory medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chan-Jeoung Park
- Department of Laboratory medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jong Jin Seo
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| |
Collapse
|
16
|
Black L, Zorina T. Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discov Today 2020; 25:380-391. [DOI: 10.1016/j.drudis.2019.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
|