1
|
P P, Kumari S, Kumar S, Muthuswamy S. Comprehensive exploration on the role of base excision repair genes in modulating immune infiltration in low-grade glioma. Pathol Res Pract 2024; 262:155559. [PMID: 39216321 DOI: 10.1016/j.prp.2024.155559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Glioma is a brain tumour occurring in all age groups but common in adults. Despite advances in the understanding of tumours, we cannot improve the survival of the patients and do not have an appropriate biomarker for progression and prognosis prediction. The base excision repair mechanism maintains the integrity of the genome, preventing tumour formation. However, continuous chemical damage to the cells results in mutations that escape the repair mechanism and support tumour growth. The tumour microenvironment in cancer is crucial in determining the tumour growth, development, and response to treatments. The present study explored the significance of Base Excision Repair genes (BER) in modulating the tumour microenvironment. METHODS We used the publically available data sets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to explore the role of the base excision repair gene in the modulating tumour microenvironment. The data was analysed for the expression of base excision repair genes, their correlation with the immune markers, their prognostic potential, and enrichment analysis to understand the pathways they modulate in low-grade glioma (LGG) progression. RESULTS The analysis showed BER genes contribute an integral role in the overall and disease-free survival of LGG. Genes like MUTYH, PNKP, UNG and XRCC1 showed a correlation with the immune infiltration levels and a significant correlation with various immune markers associated with different immune cells, including tumour-associated macrophages. MUTYH, UNG and XRCC1 correlated with IDH1 mutation status, and functional enrichment analysis showed that these genes are enriched in several pathways like Wnt, PD-1 and Integrin signalling. CONCLUSION Our findings suggest that the BER genes MUTYH, PNKP, UNG and XRCC1 can potentially be prognostic biomarkers and highly correlate with the immune cells of the tumour microenvironment.
Collapse
Affiliation(s)
- Parthipan P
- Human Molecular Genetics Lab, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Subhadra Kumari
- Human Molecular Genetics Lab, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Santosh Kumar
- RNA Biology Lab, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Srinivasan Muthuswamy
- Human Molecular Genetics Lab, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Palathingal Bava E, Sanfrancesco JM, Alkashash A, Favazza L, Aldilami A, Williamson SR, Cheng L, Idrees MT, Al-Obaidy KI. Acquired cystic disease associated renal cell carcinoma: A clinicopathologic and molecular study of 31 tumors. Hum Pathol 2024; 149:48-54. [PMID: 38862094 DOI: 10.1016/j.humpath.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Acquired cystic disease associated renal cell carcinomas (ACD-RCC) are rare and their molecular and histopathological characteristics are still being explored. We therefore investigated the clinicopathologic and molecular characteristics of 31 tumors. The patients were predominantly male (n = 30), with tumors mainly left-sided (n = 17), unifocal (n = 19), and unilateral (n = 29) and a mean tumor size of 25 mm (range, 3-65 mm). Microscopically, several histologic patterns were present, including pure classic sieve-like (n = 4), and varied proportions of mixed classic sieve-like with papillary (n = 23), tubulocystic (n = 9), compact tubular (n = 4) and solid (n = 1) patterns. Calcium-oxalate crystals were seen in all tumors. Molecular analysis of 9 tumors using next generation sequencing showed alterations in SMARCB1 in 3 tumors (1 with frameshift deletion and 2 with copy number loss in chromosome 22 involving SMARCB1 region), however, INI1 stain was retained in all. Nonrecurrent genetic alterations in SETD2, NF1, NOTCH4, BRCA2 and CANT1 genes were also seen. Additionally, MTOR p.Pro351Ser was identified in one tumor. Copy number analysis showed gains in chromosome 16 (n = 5), 17 (n = 2) and 8 (n = 2) as well as loss in chromosome 22 (n = 2). In summary, ACD-RCC is a recognized subtype of kidney tumors, with several histological architectural patterns. Our molecular data identifies genetic alterations in chromatin modifying genes (SMARCB1 and SETD2), which may suggest a role of such genes in ACD-RCC development.
Collapse
Affiliation(s)
- Ejas Palathingal Bava
- Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, MI, USA.
| | | | - Ahmed Alkashash
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA.
| | - Laura Favazza
- Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, MI, USA.
| | - Akram Aldilami
- Department of Neurology, Henry Ford Health, Detroit, MI, USA.
| | - Sean R Williamson
- Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH, USA.
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Mohammed T Idrees
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA.
| | - Khaleel I Al-Obaidy
- Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, MI, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Yu M, Yang D, Chen C, Xia H. Effects of SETD2 on telomere length and malignant transformation property of Met-5A after one-month crocidolite exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:121-134. [PMID: 37899647 DOI: 10.1080/26896583.2023.2271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Crocidolite is a carcinogen contributing to the pathogenesis of malignant mesothelioma. This study aimed to characterize the possible telomere-related events mediating the malignant transformation of mesothelial cells with and without SETD2 under crocidolite exposure. The crocidolite concentration resulting in 90% viable SETD2 knockout Met-5A (Met-5ASETD2-KO) and Met-5A were estimated to be 0.71 μg/cm2 and 1.8 μg/cm2, respectively, during 72 h of exposure, which was further employed in chronical crocidolite exposure during a 72 h exposure interval per time up to 1 month. Chronical crocidolite-exposed Met-5ASETD2-KO (chronical Cro-Met-5ASETD2-KO) had higher colony formation and increased telomerase reverse transcriptase (TERT) protein levels than chronical crocidolite-exposed Met-5A (chronical Cro-Met-5A) and Met-5ASETD2-KO. Chronical Cro-Met-5ASETD2-KO had longer telomere length (TL) than chronical Cro-Met-5A, although there were no changes in TL for either chronical Cro-Met-5A or chronical Cro-Met-5ASETD2-KO compared with their corresponding cells without crocidolite exposure. BIBR 1532, an inhibitor targeting TERT, partially reduced colony formation and TL for chronical Cro-Met-5ASETD2-KO, while BIBR 1532 reduced TL but had no effect on colony formation for chronical Cro-Met-5A. Therefore, SETD2 deficient mesothelial cells are susceptible to malignant transformation during chronical crocidolite exposure, and TERT-dependent TL modification likely partially drives SETD2 loss-mediated early onset of mesothelial malignant transformation.
Collapse
Affiliation(s)
- Min Yu
- Department of Occupational Health & Radiation Hygiene, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, Zhejiang, China
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dan Yang
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chiyun Chen
- Department of Pulmonary and Critical Care Medicine, Cixi People Hospital Medical Health Group (Cixi People Hospital), Cixi, Zhejiang, China
| | - Hailing Xia
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Kumari S, Singh M, Kumar S, Muthuswamy S. SETD2 controls m6A modification of transcriptome and regulates the molecular oncogenesis of glioma. Med Oncol 2023; 40:249. [PMID: 37490181 DOI: 10.1007/s12032-023-02121-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
SETD2 is known for its epigenetic regulatory function and a frequently mutated gene in multiple cancers. Recently, it has been inferred that SETD2 regulates m6A mRNA methylation (epitranscriptome) via H3K36me3. The m6A RNA methylation is vital for tumor maintenance, self-renewal, and tumorigenesis. RNA modifications are executed by writers, readers, and erasers. m6A modifiers work along with the molecular cues, H3K36me3, laid down by SETD2. A positive correlation observed between SETD2 and RNA modifiers signifies their direct role in epitranscriptomics. Hence, understanding the epitranscriptomics will provide a new facet for molecular oncogenesis. Glioma is a common, malignant grade IV tumor with limited therapeutic alternatives and a poor prognosis. Yet, its function in glioma is not fully defined. In the present study, thorough investigations were done in the m6A RNA methylation regulators expression, the molecular pathways leading to tumor progression, and their respective outcomes in SETD2-mediated RNA methylation. In vitro analysis reveals that SETD2 knockdown positively affected the oncogenic properties of the glioma cell line and a global reduction in m6A levels in the transcriptome. The reduction of m6A in the transcriptome can be attributed to the decreased expression of METTL3 and METTL14. Therefore, we conclude that SETD2-mediated m6A modifications are crucial for glioma oncogenesis.
Collapse
Affiliation(s)
- Subhadra Kumari
- Human Molecular Genetics (HMG) Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Mandakini Singh
- RNA Biology Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- RNA Biology Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Srinivasan Muthuswamy
- Human Molecular Genetics (HMG) Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
5
|
Kumari S, Kumar S, Muthuswamy S. RNA N6-methyladenosine modification in regulating cancer stem cells and tumor immune microenvironment and its implication for cancer therapy. J Cancer Res Clin Oncol 2023; 149:1621-1633. [PMID: 35796777 DOI: 10.1007/s00432-022-04158-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Therapy resistance is a well-known phenomenon in cancer treatment. It can be intrinsic or acquired, accountable for frequent tumor relapse and death worldwide. The interplay between cancer cells and their neighboring environment can activate complex signaling mechanisms influencing epigenetic changes and maintain cancer cell survival leading to the malignant phenotype. Cancer stem cells (CSCs) are tumor-initiating cells (TICs) and constitute the primary source of drug resistance and tumor recurrence. Studies have shown that cancer cells exhibit dysregulated RNA N6-methyladenosine (m6A) "writers," "erasers," and "readers" levels after acquiring drug resistance. The present review provides novel insight into the role of m6A modifiers involved in CSC generation, cancer cell proliferation, and therapy resistance. m6A RNA modifications in the cross-talk between CSC and the tumor immune microenvironment (TIME) have also been highlighted. Further, we have discussed the therapeutic potential of targeting m6A machinery for cancer diagnosis and the development of new therapies for cancer treatment.
Collapse
Affiliation(s)
- Subhadra Kumari
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | |
Collapse
|
6
|
Zeng Z, Zhang J, Li J, Li Y, Huang Z, Han L, Xie C, Gong Y. SETD2 regulates gene transcription patterns and is associated with radiosensitivity in lung adenocarcinoma. Front Genet 2022; 13:935601. [PMID: 36035179 PMCID: PMC9399372 DOI: 10.3389/fgene.2022.935601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) has high morbidity and mortality worldwide, and its prognosis remains unsatisfactory. Identification of epigenetic biomarkers associated with radiosensitivity is beneficial for precision medicine in LUAD patients. SETD2 is important in repairing DNA double-strand breaks and maintaining chromatin integrity. Our studies established a comprehensive analysis pipeline, which identified SETD2 as a radiosensitivity signature. Multi-omics analysis revealed enhanced chromatin accessibility and gene transcription by SETD2. In both LUAD bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq), we found that SETD2-associated positive transcription patterns were associated with DNA damage responses. SETD2 knockdown significantly upregulated tumor cell apoptosis, attenuated proliferation and migration of LUAD tumor cells, and enhanced radiosensitivity in vitro. Moreover, SETD2 was a favorably prognostic factor whose effects were antagonized by the m6A-related genes RBM15 and YTHDF3 in LUAD. In brief, SETD2 was a promising epigenetic biomarker in LUAD patients.
Collapse
Affiliation(s)
- Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangyi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Yuen K, Liu Y, Zhou Y, Wang Y, Zhou D, Fang J, Xu L. Mutational landscape and clinical outcome of pediatric acute myeloid leukemia with 11q23/KMT2A rearrangements. Cancer Med 2022; 12:1418-1430. [PMID: 35833755 PMCID: PMC9883550 DOI: 10.1002/cam4.5026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Alterations of 11q23/KMT2A are the most prevalent cytogenetic abnormalities in acute myeloid leukemia (AML) and the prognostic significance of 11q23/KMT2A-rearranged AML based on various translocation partners varies among different studies. However, few studies evaluated the molecular characteristics of 11q23/KMT2A-rearranged pediatric AML. We aim to analyze the mutational landscape of 11q23/KMT2A-rearranged AML and assess their prognostic value in outcomes. METHODS The mutational landscape and clinical prognosis of 105 children with 11q23/KMT2A-rearranged AML in comparison with 277 children with non-11q23/KMT2A-rearranged AML were analyzed using publicly accessible next-generation sequencing data from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset. RESULTS Pediatric AML patients with 11q23/KMT2A-rearrangements harbored a low number of mutations (Median, 1 mutation/patient, range, 1-22), 58% of which involved in RAS pathway mutations (KRAS, NRAS, and PTPN11) and 10.5% of which comprised of SETD2 mutations. Compared with non-11q23/KMT2A-rearranged AML, the incidence of KRAS (32.4% vs. 10.1%, P〈0.001) and SETD2 (10.5% vs. 1.4%, P=0.001) gene mutations in 11q23/KMT2A-rearranged AML was significantly higher. Both KRAS and SETD2 mutations occurred more often in t(10;11)(p12;q23). KRAS mutations were correlated with worse 5-year event-free survival [EFS] (Plog-rank = 0.001) and 5-year overall survival [OS] (Plog-rank = 0.009) and the presence of SETD2 mutations increases the 5-year relapse rate (PGray = 0.004). Multivariate analyses confirmed KRAS mutations in 11q23/KMT2A-rearranged AML as an independent predictor for poor EFS (hazard ratio [HR] = 2.10, P=0.05) and OS (HR = 2.39, P=0.054). CONCLUSION Our findings show that pediatric patients with 11q23/KMT2A rearrangements have characteristic mutation patterns and varying clinical outcomes depending on different translocation partners, which could be utilized to develop more accurate risk stratification and tailored therapies.
Collapse
Affiliation(s)
- Ka‐Yuk Yuen
- Department of PediatricsSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Yong Liu
- Department of PediatricsSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Yong‐Zhuo Zhou
- Department of Clinical LaboratorySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Yin Wang
- Department of PediatricsSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Dun‐Hua Zhou
- Department of PediatricsSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Jian‐Pei Fang
- Department of PediatricsSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Lu‐Hong Xu
- Department of PediatricsSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
8
|
mAexpress-Reader: prediction of m6A regulated expression genes by integrating m6A sites and reader binding information in specific- context. Methods 2022; 203:167-178. [DOI: 10.1016/j.ymeth.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
|
9
|
Abstract
Abdominal paragangliomas and pheochromocytomas (PPGLs) are rare neuroendocrine tumors of the infradiaphragmatic paraganglia and adrenal medulla, respectively. Although few pathologists outside of endocrine tertiary centers will ever diagnose such a lesion, the tumors are well known through the medical community-possible due to a combination of the sheer rarity, their often-spectacular presentation due to excess catecholamine secretion as well as their unrivaled coupling to constitutional susceptibility gene mutations and hereditary syndromes. All PPGLs are thought to harbor malignant potential, and therefore pose several challenges to the practicing pathologist. Specifically, a responsible diagnostician should recognize both the capacity and limitations of histological, immunohistochemical, and molecular algorithms to pinpoint high risk for future metastatic disease. This focused review aims to provide the surgical pathologist with a condensed update regarding the current strategies available in order to deliver an accurate prognostication of these enigmatic lesions.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|