1
|
Functional Characterization of Transgenic Mice Overexpressing Human 15-Lipoxygenase-1 (ALOX15) under the Control of the aP2 Promoter. Int J Mol Sci 2023; 24:ijms24054815. [PMID: 36902243 PMCID: PMC10003068 DOI: 10.3390/ijms24054815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory, hyperproliferative, neurodegenerative, and metabolic diseases, but the physiological function of ALOX15 still remains a matter of discussion. To contribute to this discussion, we created transgenic mice (aP2-ALOX15 mice) expressing human ALOX15 under the control of the aP2 (adipocyte fatty acid binding protein 2) promoter, which directs expression of the transgene to mesenchymal cells. Fluorescence in situ hybridization and whole-genome sequencing indicated transgene insertion into the E1-2 region of chromosome 2. The transgene was highly expressed in adipocytes, bone marrow cells, and peritoneal macrophages, and ex vivo activity assays proved the catalytic activity of the transgenic enzyme. LC-MS/MS-based plasma oxylipidome analyses of the aP2-ALOX15 mice suggested in vivo activity of the transgenic enzyme. The aP2-ALOX15 mice were viable, could reproduce normally, and did not show major phenotypic alterations when compared with wildtype control animals. However, they exhibited gender-specific differences with wildtype controls when their body-weight kinetics were evaluated during adolescence and early adulthood. The aP2-ALOX15 mice characterized here can now be used for gain-of-function studies evaluating the biological role of ALOX15 in adipose tissue and hematopoietic cells.
Collapse
|
2
|
Benatzy Y, Palmer MA, Brüne B. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Front Pharmacol 2022; 13:1042420. [PMID: 36438817 PMCID: PMC9682198 DOI: 10.3389/fphar.2022.1042420] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 10/30/2023] Open
Abstract
As a lipoxygenase (LOX), arachidonate 15-lipoxygenase type B (ALOX15B) peroxidizes polyenoic fatty acids (PUFAs) including arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA) to their corresponding fatty acid hydroperoxides. Distinctive to ALOX15B, fatty acid oxygenation occurs with positional specificity, catalyzed by the non-heme iron containing active site, and in addition to free PUFAs, membrane-esterified fatty acids serve as substrates for ALOX15B. Like other LOX enzymes, ALOX15B is linked to the formation of specialized pro-resolving lipid mediators (SPMs), and altered expression is apparent in various inflammatory diseases such as asthma, psoriasis, and atherosclerosis. In primary human macrophages, ALOX15B expression is associated with cellular cholesterol homeostasis and is induced by hypoxia. Like in inflammation, the role of ALOX15B in cancer is inconclusive. In prostate and breast carcinomas, ALOX15B is attributed a tumor-suppressive role, whereas in colorectal cancer, ALOX15B expression is associated with a poorer prognosis. As the biological function of ALOX15B remains an open question, this review aims to provide a comprehensive overview of the current state of research related to ALOX15B.
Collapse
Affiliation(s)
- Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A. Palmer
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
3
|
Male Knock-in Mice Expressing an Arachidonic Acid Lipoxygenase 15B (Alox15B) with Humanized Reaction Specificity Are Prematurely Growth Arrested When Aging. Biomedicines 2022; 10:biomedicines10061379. [PMID: 35740398 PMCID: PMC9220125 DOI: 10.3390/biomedicines10061379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/09/2023] Open
Abstract
Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest.
Collapse
|
4
|
Pochard C, Coquenlorge S, Jaulin J, Cenac N, Vergnolle N, Meurette G, Freyssinet M, Neunlist M, Rolli-Derkinderen M. Defects in 15-HETE Production and Control of Epithelial Permeability by Human Enteric Glial Cells From Patients With Crohn's Disease. Gastroenterology 2016; 150:168-80. [PMID: 26433161 DOI: 10.1053/j.gastro.2015.09.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Enteric glial cells (EGCs) produce soluble mediators that regulate homeostasis and permeability of the intestinal epithelial barrier (IEB). We investigated the profile of polyunsaturated fatty acid (PUFA) metabolites produced by EGCs from rats and from patients with Crohn's disease (CD), compared with controls, along with the ability of one of these metabolites, 15-hydroxyeicosatetraenoic acid (15-HETE), to regulate the permeability of the IEB. METHODS We isolated EGCs from male Sprague-Dawley rats, intestinal resections of 6 patients with CD, and uninflamed healthy areas of intestinal tissue from 6 patients who underwent surgery for colorectal cancer (controls). EGC-conditioned media was analyzed by high-sensitivity liquid-chromatography tandem mass spectrometry to determine PUFA signatures. We used immunostaining to identify 15-HETE-producing enzymes in EGCs and tissues. The effects of human EGCs and 15-HETE on permeability and transepithelial electrical resistance of the IEB were measured using Caco-2 cells; effects on signal transduction proteins were measured with immunoblots. Levels of proteins were reduced in Caco-2 cells using short-hairpin RNAs or proteins were inhibited pharmacologically. Rats were given intraperitoneal injections of 15-HETE or an inhibitor of 15-lipoxygenase (the enzyme that produces 15-HETE); colons were collected and permeability was measured. RESULTS EGCs expressed 15-lipoxygenase-2 and produced high levels of 15-HETE, which increased IEB resistance and reduced IEB permeability. 15-HETE production was reduced in EGCs from patients with CD compared with controls. EGCs from patients with CD were unable to reduce the permeability of the IEB; the addition of 15-HETE restored permeability to levels of control tissues. Inhibiting 15-HETE production in rats increased the permeability of the IEB in colon tissues. We found that 15-HETE regulates IEB permeability by inhibiting an adenosine monophosphate-activated protein kinase and increasing expression of zonula occludens-1. CONCLUSIONS Enteric glial cells from patients with CD have reduced production of 15-HETE, which controls IEB permeability by inhibiting adenosine monophosphate-activated protein kinase and increasing expression of zonula occludens-1.
Collapse
Affiliation(s)
- Camille Pochard
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Sabrina Coquenlorge
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Julie Jaulin
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | | | | | - Guillaume Meurette
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Marie Freyssinet
- INSERM, UMR913, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France
| | - Michel Neunlist
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France.
| | - Malvyne Rolli-Derkinderen
- INSERM, UMR913, Nantes, France; Nantes University, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France; Centre de Recherche en Nutrition Humaine, Nantes, France.
| |
Collapse
|
5
|
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:308-30. [PMID: 25316652 DOI: 10.1016/j.bbalip.2014.10.002] [Citation(s) in RCA: 459] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Swathi Banthiya
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts Genrel Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
6
|
Yao L, Nie X, Shi S, Song S, Hao X, Li S, Zhu D. Reciprocal regulation of HIF-1α and 15-LO/15-HETE promotes anti-apoptosis process in pulmonary artery smooth muscle cells during hypoxia. Prostaglandins Other Lipid Mediat 2012; 99:96-106. [PMID: 22982617 DOI: 10.1016/j.prostaglandins.2012.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/03/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022]
Abstract
15-Hydroxyeicosatetraenoic acid, a predominant metabolic product of arachidonic acid (AA) catalyzed by 15-lipoxygenase (15-LO), plays an important role in hypoxic pulmonary arterial hypertension (PAH). Hypoxia-inducible factor-1α (HIF-1α) as a critical oxygen-sensitive transcriptional factor participates in many physiological and pathological processes including PAH. Therefore, it is possible that there may be some connections between HIF-1α and 15-LO/15-HETE in hypoxic pulmonary artery smooth muscle cells. Our results showed that HIF-1α inhibitor or siRNA reduced hypoxia-induced upregulation of 15-LO and endogenous 15-HETE, meanwhile HIF-1α expression and transcriptional activity were induced by 15-HETE under both normoxic and hypoxic conditions. It suggests there exists a potential positive feedback regulatory loop between HIF-1α and 15-LO/15-HETE. Furthermore, cell viability assay and several cell apoptosis assays, including TUNEL assay, Western blot, nuclear morphology determination, mitochondrial potential analysis, indicated that blocking HIF-1α induced apoptosis, decreased cell viability and suppressed the anti-apoptosis effects of 15-HETE. Taken together, our data indicate that upregulation of 15-LO/15-HETE in response to hypoxia may be partially mediated by HIF-1α which is also regulated by 15-HETE in a positive feedback manner, and HIF-1α can effectively inhibit pulmonary artery smooth muscle cells apoptosis which leads to vascular remodeling. The feedback loop between HIF-1α and 15-LO/15-HETE would obviously reinforce hypoxia-induced anti-apoptosis effect and may become a novel target of therapy in PAH.
Collapse
Affiliation(s)
- Lan Yao
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Kugita M, Nishii K, Morita M, Yoshihara D, Kowa-Sugiyama H, Yamada K, Yamaguchi T, Wallace DP, Calvet JP, Kurahashi H, Nagao S. Global gene expression profiling in early-stage polycystic kidney disease in the Han:SPRD Cy rat identifies a role for RXR signaling. Am J Physiol Renal Physiol 2011; 300:F177-88. [PMID: 20926632 DOI: 10.1152/ajprenal.00470.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Han:SPRD Cy is a spontaneous rat model of polycystic kidney disease (PKD) caused by a missense mutation in Pkdr1. Cystogenesis in this model is not clearly understood. In the current study, we performed global gene expression profiling in early-stage PKD cyst development in Cy/Cy kidneys and normal (+/+) kidneys at 3 and 7 days of postnatal age. Expression profiles were determined by microarray analysis, followed by validation with real-time RT-PCR. Genes were selected with over 1.5-fold expression changes compared with age-matched +/+ kidneys for canonical pathway analysis. We found nine pathways in common between 3- and 7-day Cy/Cy kidneys. Three significantly changed pathways were designated "Vitamin D Receptor (VDR)/Retinoid X Receptor (RXR) Activation," "LPS/IL-1-Mediated Inhibition of RXR Function," and "Liver X Receptor (LXR)/RXR Activation." These results suggest that RXR-mediated signaling is significantly altered in developing kidneys with mutated Pkdr1. In gene ontology analysis, the functions of these RXR-related genes were found to be involved in regulating cell proliferation and organ morphogenesis. With real-time RT-PCR analysis, the upregulation of Ptx2, Alox15b, OSP, and PCNA, major markers of cell proliferation associated with the RXR pathway, were confirmed in 3- and 7-day Cy/Cy kidneys compared with 3-day +/+ kidneys. The increased RXR protein was observed in both the nucleus and cytoplasm of cystic epithelial cells in early-stage Cy/Cy kidneys, and the RXR-positive cells were strongly positive for PCNA staining. Taken together, cell proliferation and organ morphogenesis signals transduced by RXR-mediated pathways may have important roles for cystogenesis in early-stage PKD in this Pkdr1-mutated Cy rat.
Collapse
Affiliation(s)
- Masanori Kugita
- Education and Research Center of Animal Models for Human Diseases, Faculty of Rehabilitation, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo Kutsukake-cho, Toyoake, Aichi, Japan 470-1192
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li H, Wang D, Zhang H, Kirmani K, Zhao Z, Steinmetz R, Xu Y. Lysophosphatidic acid stimulates cell migration, invasion, and colony formation as well as tumorigenesis/metastasis of mouse ovarian cancer in immunocompetent mice. Mol Cancer Ther 2009; 8:1692-701. [PMID: 19509252 DOI: 10.1158/1535-7163.mct-08-1106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have already established human xenographic models for the effect of lysophosphatidic acid (LPA) on tumor metastasis in vivo. The purpose of this work is to establish a preclinical LPA effect model in immunocompetent mice. We first characterized the mouse epithelial ovarian cancer (EOC) cell line ID8 for its responsiveness to LPA in cell proliferation, migration, and invasion and compared these properties with those of human EOC. The signaling pathways related to cell migration were further investigated using pharmacologic and genetic approaches. The effects of LPA on the tumorigenesis of ID8 cells and mouse survival were then examined using two different mouse models (i.p. and orthotopic injections). LPA stimulated cell proliferation, migration, and invasion of mouse EOC ID8 cells in a manner closely resembling its activity in human EOC cells. The signaling pathways involved in LPA-induced cell migration in ID8 cells were also similar to those identified in human EOC cells. We have identified cyclooxygenase-1 and 15-lipoxygenase as two new signaling molecules involved in LPA-induced cell migration in both human and mouse EOC cells. In addition, LPA enhanced the tumorigenesis/metastasis of ID8 cell in vivo as assessed by increased tumor size, early onset of ascites formation, and reduced animal survival. We have established the first LPA-EOC preclinical model in immunocompetent mice. Because ID8 cells respond to LPA similar to human EOC cells, this model is very valuable in developing and testing therapeutic reagents targeting LPA in EOC.
Collapse
Affiliation(s)
- Hui Li
- Indiana University-Purdue University Indianapolis, 975 West Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|