1
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
2
|
Mohib K, Cherukuri A, Zhou Y, Ding Q, Watkins SC, Rothstein DM. Antigen-dependent interactions between regulatory B cells and T cells at the T:B border inhibit subsequent T cell interactions with DCs. Am J Transplant 2020; 20:52-63. [PMID: 31355483 PMCID: PMC8117747 DOI: 10.1111/ajt.15546] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/20/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023]
Abstract
IL-10+ regulatory B cells (Bregs) inhibit immune responses in various settings. While Bregs appear to inhibit inflammatory cytokine expression by CD4+ T cells and innate immune cells, their reported impact on CD8+ T cells is contradictory. Moreover, it remains unclear which effects of Bregs are direct versus indirect. Finally, the subanatomical localization of Breg suppressive function and the nature of their intercellular interactions remain unknown. Using novel tamoxifen-inducible B cell-specific IL-10 knockout mice, we found that Bregs inhibit CD8+ T cell proliferation and inhibit inflammatory cytokine expression by both CD4+ and CD8+ T cells. Sort-purified Bregs from IL-10-reporter mice were adoptively transferred into wild-type hosts and examined by live-cell imaging. Bregs localized to the T:B border, specifically entered the T cell zone, and made more frequent and longer contacts with both CD4+ and CD8+ T cells than did non-Bregs. These Breg:T cell interactions were antigen-specific and reduced subsequent T:DC contacts. Thus, Bregs inhibit T cells through direct cognate interactions that subsequently reduce DC:T cell interactions.
Collapse
Affiliation(s)
- Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Tsinghua University, Bejing Shi, China
| | - Qing Ding
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Kobayashi T, Oishi K, Okamura A, Maeda S, Komuro A, Hamaguchi Y, Fujimoto M, Takehara K, Matsushita T. Regulatory B1a Cells Suppress Melanoma Tumor Immunity via IL-10 Production and Inhibiting T Helper Type 1 Cytokine Production in Tumor-Infiltrating CD8+ T Cells. J Invest Dermatol 2019; 139:1535-1544.e1. [DOI: 10.1016/j.jid.2019.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/16/2022]
|
4
|
Prognostic role of immune infiltrates in breast ductal carcinoma in situ. Breast Cancer Res Treat 2019; 177:17-27. [PMID: 31134489 DOI: 10.1007/s10549-019-05272-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) of the breast is often regarded as a non-obligate precursor to invasive breast carcinoma but current diagnostic tools are unable to accurately predict the invasive potential of DCIS. Infiltration of immune cells into the tumour and its microenvironment is often an early event at the site of tumourigenesis. These immune infiltrates may be potential predictive and/or prognostic biomarkers for DCIS. This review aims to discuss recent findings pertaining to the potential prognostic significance of immune infiltrates as well as their evaluation in DCIS. METHODS A literature search on PubMed was conducted up to 28th January 2019. Search terms used were "DCIS", "ductal carcinoma in situ", "immune", "immunology", "TIL", "TIL assessment", and "tumour-infiltrating lymphocyte". Search filters for "Most Recent" and "English" were applied. Information from published papers related to the research topic were synthesised and summarised for this review. RESULTS Studies have revealed that immune infiltrates play a role in the biology and microenvironment of DCIS, as well as treatment response. There is currently no consensus on the evaluation of TILs in DCIS for clinical application. CONCLUSIONS This review highlights the recent findings on the potential influence and prognostic value of immunological processes on DCIS progression, as well as the evaluation of TILs in DCIS. Further characterisation of the immune milieu of DCIS is recommended to better understand the immune response in DCIS progression and recurrence.
Collapse
|
5
|
Kaplon H, Dieu-Nosjean MC. Quel avenir pour les lymphocytes B infiltrant les tumeurs solides. Med Sci (Paris) 2018; 34:72-78. [DOI: 10.1051/medsci/20183401016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Le rôle des lymphocytes B (LB) dans l’immuno-surveillance des tumeurs a longtemps été négligé car il a été souvent considéré comme peu efficace, voire pro-tumoral. Des études approfondies du microenvironnement immunitaire, notamment dans les cancers humains, ont permis de préciser la nature des interactions entre le LB et ses partenaires cellulaires. Cette revue examine un certain nombre de paramètres qui dictent le devenir du LB vers une fonction pro-ou anti-tumorale. Ainsi, la capacité à élaborer une immunité antitumorale qui repose sur les lymphocytes B, et/ ou des anticorps qu’ils sécrètent, fait appel à une palette très variée de mécanismes moléculaires et cellulaires dont certains pourraient représenter de nouvelles cibles thérapeutiques en oncologie.
Collapse
|
6
|
Jones HP, Aldridge B, Boss-Williams K, Weiss JM. A role for B cells in facilitating defense against an NK cell-sensitive lung metastatic tumor is revealed by stress. J Neuroimmunol 2017; 313:99-108. [PMID: 29153616 DOI: 10.1016/j.jneuroim.2017.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/28/2022]
Abstract
Stressors impair immune defenses and pose risks among cancer patients. Natural Killer cells are not the sole immune defense against tumor development. Utilizing an NK-sensitive tumor model, this study evaluated immune effects to stress and determined whether lung metastasis resulted from B cells' inability to augment tumorlytic function. Lung metastasis directly correlated with delayed lung B cell accumulation compared to NK, and T cells. Decreased interleukin-12 cytokine and CD80+ molecule expression by B cells correlated with decreased tumor lysis and increased tumor development. Thus, tumor defenses in the lung given stress exposure can depend on the B cell function.
Collapse
Affiliation(s)
- Harlan P Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Beau Aldridge
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Katherine Boss-Williams
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Miligy I, Mohan P, Gaber A, Aleskandarany MA, Nolan CC, Diez-Rodriguez M, Mukherjee A, Chapman C, Ellis IO, Green AR, Rakha EA. Prognostic significance of tumour infiltrating B lymphocytes in breast ductal carcinoma in situ. Histopathology 2017; 71:258-268. [PMID: 28326600 DOI: 10.1111/his.13217] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/18/2017] [Indexed: 12/21/2022]
Abstract
AIMS Tumour-infiltrating lymphocytes (TILs) are an important component of the immune response to cancer and have a prognostic value in breast cancer. Although several studies have investigated the role of T lymphocytes in breast cancer, the role of B lymphocytes (TIL-Bs) in ductal carcinoma in situ (DCIS) remains uncertain. This study aimed to assess the role of TIL-Bs in DCIS. METHODS AND RESULTS Eighty DCIS cases (36 pure DCIS and 44 mixed with invasive cancer) were stained immunohistochemically for B lineage markers CD19, CD20 and the plasma cell marker CD138. TIL-Bs density and localization were assessed, including relation to the in-situ and invasive components. An association with clinicopathological data and patient outcome was performed. Pure DCIS showed a higher number of TIL-Bs and lymphoid aggregates than DCIS associated with invasion. In pure DCIS, a higher number of peri- and paratumoral TIL-Bs was associated significantly with large tumour size (P = 0.016), hormone receptor (ER/PR) negative (P = 0.008) and HER2+ status (P = 0.010). In tumours with mixed DCIS and invasive components, cases with high-density B lymphocytes, irrespective of their location or topographic distribution, were associated significantly with variables of poor prognosis, including larger size, high grade, lymphovascular invasion, lymph node metastases, ER/PR-negative and HER2+ status. Outcome analysis showed that pure DCIS associated with higher numbers of B lymphocytes had shorter recurrence-free interval (P = 0.04); however, the association was not significant with the CD138+ plasma cell count (P = 0.07). CONCLUSION Assessment of TIL-B cells based on location and topographic distribution can provide prognostic information. Validation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Islam Miligy
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK.,Histopathology Department, Faculty of Medicine, Monofiya University, Egypt
| | - Priya Mohan
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Ahmed Gaber
- General Surgery Department, Faculty of Medicine, Monofiya University, Egypt
| | - Mohammed A Aleskandarany
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK.,Histopathology Department, Faculty of Medicine, Monofiya University, Egypt
| | - Christopher C Nolan
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Maria Diez-Rodriguez
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Abhik Mukherjee
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Caroline Chapman
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK.,Histopathology Department, Faculty of Medicine, Monofiya University, Egypt
| |
Collapse
|
8
|
Biragyn A, Aliseychik M, Rogaev E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin Immunopathol 2017; 39:283-294. [PMID: 28083646 DOI: 10.1007/s00281-016-0615-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.
Collapse
Affiliation(s)
- Arya Biragyn
- Immunoregulation section, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| | - Maria Aliseychik
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evgeny Rogaev
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Genomics and Human Genetics, Russian Academy of Sciences, Institute of General Genetics, Moscow, Russia.,Center for Brain Neurobiology and Neurogenetics, Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russia
| |
Collapse
|
9
|
Kaltenmeier C, Gawanbacht A, Beyer T, Lindner S, Trzaska T, van der Merwe JA, Härter G, Grüner B, Fabricius D, Lotfi R, Schwarz K, Schütz C, Hönig M, Schulz A, Kern P, Bommer M, Schrezenmeier H, Kirchhoff F, Jahrsdörfer B. CD4+ T cell-derived IL-21 and deprivation of CD40 signaling favor the in vivo development of granzyme B-expressing regulatory B cells in HIV patients. THE JOURNAL OF IMMUNOLOGY 2015; 194:3768-77. [PMID: 25780036 DOI: 10.4049/jimmunol.1402568] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
IL-21 can induce both plasma cells and regulatory B cells. In this article, we demonstrate that untreated HIV patients display CD4(+) T cells with enhanced IL-21 expression and high in vivo frequencies of regulatory B cells overexpressing the serine protease granzyme B. Granzyme B-expressing regulatory B cells (GraB cells) cells from HIV patients exhibit increased expression of CD5, CD43, CD86, and CD147 but do not produce IL-10. The main functional characteristic of their regulatory activity is direct granzyme B-dependent degradation of the TCR-ζ-chain, resulting in significantly decreased proliferative T cell responses. Although Th cells from HIV patients secrete IL-21 in a Nef-dependent manner, they barely express CD40L. When culturing such IL-21(+)CD40L(-) Th cells with B cells, the former directly induce B cell differentiation into GraB cells. In contrast, the addition of soluble CD40L multimers to T cell/B cell cultures redirects B cell differentiation toward plasma cells, indicating that CD40L determines the direction of IL-21-dependent B cell differentiation. As proof of principle, we confirmed this mechanism in a patient lacking intact CD40 signaling due to a NEMO mutation. The majority of peripheral B cells from this patient were GraB cells and strongly suppressed T cell proliferation. In conclusion, GraB cells represent potent regulatory B cells in humans that are phenotypically and functionally distinct from B10 cells and occur in early HIV infection. GraB cells may contribute significantly to immune dysfunction in HIV patients, and may also explain ineffective Ab responses after vaccination. The use of soluble CD40L multimers may help to improve vaccination responses in HIV patients.
Collapse
Affiliation(s)
- Christof Kaltenmeier
- Institute of Transfusion Medicine, Ulm University, 89081 Ulm, Germany; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ali Gawanbacht
- Institute of Molecular Virology, Ulm University, 89081 Ulm, Germany
| | - Thamara Beyer
- Institute of Transfusion Medicine, Ulm University, 89081 Ulm, Germany
| | - Stefanie Lindner
- Institute of Transfusion Medicine, Ulm University, 89081 Ulm, Germany
| | - Timo Trzaska
- Institute of Transfusion Medicine, Ulm University, 89081 Ulm, Germany
| | | | - Georg Härter
- Comprehensive Infectious Diseases Center, Ulm University, 89081 Ulm, Germany
| | - Beate Grüner
- Comprehensive Infectious Diseases Center, Ulm University, 89081 Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics, Ulm University, 89075 Ulm, Germany; and
| | - Ramin Lotfi
- Institute of Transfusion Medicine, Ulm University, 89081 Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Red Cross Blood Service Baden-Württemberg - Hessen, 89081 Ulm, Germany
| | - Klaus Schwarz
- Institute of Transfusion Medicine, Ulm University, 89081 Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Red Cross Blood Service Baden-Württemberg - Hessen, 89081 Ulm, Germany
| | - Catharina Schütz
- Department of Pediatrics, Ulm University, 89075 Ulm, Germany; and
| | - Manfred Hönig
- Department of Pediatrics, Ulm University, 89075 Ulm, Germany; and
| | - Ansgar Schulz
- Department of Pediatrics, Ulm University, 89075 Ulm, Germany; and
| | - Peter Kern
- Comprehensive Infectious Diseases Center, Ulm University, 89081 Ulm, Germany
| | - Martin Bommer
- Comprehensive Infectious Diseases Center, Ulm University, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, 89081 Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Red Cross Blood Service Baden-Württemberg - Hessen, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute of Transfusion Medicine, Ulm University, 89081 Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Red Cross Blood Service Baden-Württemberg - Hessen, 89081 Ulm, Germany
| |
Collapse
|
10
|
Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K, Matsushita T. B Cells Promote Tumor Immunity against B16F10 Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3120-9. [DOI: 10.1016/j.ajpath.2014.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 01/12/2023]
|
11
|
Thorn M, Point GR, Burga RA, Nguyen CT, Joseph Espat N, Katz SC. Liver metastases induce reversible hepatic B cell dysfunction mediated by Gr-1+CD11b+ myeloid cells. J Leukoc Biol 2014; 96:883-94. [PMID: 25085111 DOI: 10.1189/jlb.3a0114-012rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
LM escape immune surveillance, in part, as a result of the expansion of CD11b+MC, which alter the intrahepatic microenvironment to promote tumor tolerance. HBC make up a significant proportion of liver lymphocytes and appear to delay tumor progression; however, their significance in the setting of LM is poorly defined. Therefore, we characterized HBC and HBC/CD11b+MC interactions using a murine model of LM. Tumor-bearing livers showed a trend toward elevated absolute numbers of CD19+ HBC. A significant increase in the frequency of IgM(lo)IgD(hi) mature HBC was observed in mice with LM compared with normal mice. HBC derived from tumor-bearing mice demonstrated increased proliferation in response to TLR and BCR stimulation ex vivo compared with HBC from normal livers. HBC from tumor-bearing livers exhibited significant down-regulation of CD80 and were impaired in inducing CD4(+) T cell proliferation ex vivo. We implicated hepatic CD11b+MC as mediators of CD80 down-modulation on HBC ex vivo via a CD11b-dependent mechanism that required cell-to-cell contact and STAT3 activity. Therefore, CD11b+MC may compromise the ability of HBC to promote T cell activation in the setting of LM as a result of diminished expression of CD80. Cross-talk between CD11b+MC and HBC may be an important component of LM-induced immunosuppression.
Collapse
Affiliation(s)
- Mitchell Thorn
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gary R Point
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and
| | - Rachel A Burga
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and
| | - Cang T Nguyen
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and
| | - N Joseph Espat
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and Boston University School of Medicine, Boston, Massachusetts, USA
| | - Steven C Katz
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Fang L, Lowther DE, Meizlish ML, Anderson RCE, Bruce JN, Devine L, Huttner AJ, Kleinstein SH, Lee JY, Stern JNH, Yaari G, Lovato L, Cronk KM, O'Connor KC. The immune cell infiltrate populating meningiomas is composed of mature, antigen-experienced T and B cells. Neuro Oncol 2013; 15:1479-90. [PMID: 23978377 DOI: 10.1093/neuonc/not110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Meningiomas often harbor an immune cell infiltrate that can include substantial numbers of T and B cells. However, their phenotype and characteristics remain undefined. To gain a deeper understanding of the T and B cell repertoire in this tumor, we characterized the immune infiltrate of 28 resected meningiomas representing all grades. METHODS Immunohistochemistry was used to grossly characterize and enumerate infiltrating lymphocytes. A molecular analysis of the immunoglobulin variable region of tumor-infiltrating B cells was used to characterize their antigen experience. Flow cytometry of fresh tissue homogenate and paired peripheral blood lymphocytes was used to identify T cell phenotypes and characterize the T cell repertoire. RESULTS A conspicuous B and T cell infiltrate, primarily clustered in perivascular spaces, was present in the microenvironment of most tumors examined. Characterization of 294 tumor-infiltrating B cells revealed clear evidence of antigen experience, in that the cardinal features of an antigen-driven B cell response were present. Meningiomas harbored populations of antigen-experienced CD4+ and CD8+ memory/effector T cells, regulatory T cells, and T cells expressing the immune checkpoint molecules PD-1 and Tim-3, indicative of exhaustion. All of these phenotypes were considerably enriched relative to their frequency in the circulation. The T cell repertoire in the tumor microenvironment included populations that were not reflected in paired peripheral blood. CONCLUSION The tumor microenvironment of meningiomas often includes postgerminal center B cell populations. These tumors invariably include a selected, antigen-experienced, effector T cell population enriched by those that express markers of an exhausted phenotype.
Collapse
Affiliation(s)
- Liangjuan Fang
- Corresponding Author: Dr. Kevin C. O'Connor, PhD, Yale School of Medicine, 300 George Street, Room 353J, New Haven, CT, USA 06511..
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TFE, Beyer T, Reister F, Fabricius D, Lotfi R, Lunov O, Nienhaus GU, Simmet T, Kreienberg R, Möller P, Schrezenmeier H, Jahrsdörfer B. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res 2013; 73:2468-79. [PMID: 23384943 DOI: 10.1158/0008-5472.can-12-3450] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathogenic impact of tumor-infiltrating B cells is unresolved at present, however, some studies suggest that they may have immune regulatory potential. Here, we report that the microenvironment of various solid tumors includes B cells that express granzyme B (GrB, GZMB), where these B cells can be found adjacent to interleukin (IL)-21-secreting regulatory T cells (Treg) that contribute to immune tolerance of tumor antigens. Because Tregs and plasmacytoid dendritic cells are known to modulate T-effector cells by a GrB-dependent mechanism, we hypothesized that a similar process may operate to modulate regulatory B cells (Breg). IL-21 induced outgrowth of B cells expressing high levels of GrB, which thereby limited T-cell proliferation by a GrB-dependent degradation of the T-cell receptor ζ-chain. Mechanistic investigations into how IL-21 induced GrB expression in B cells to confer Breg function revealed a CD19(+)CD38(+)CD1d(+)IgM(+)CD147(+) expression signature, along with expression of additional key regulatory molecules including IL-10, CD25, and indoleamine-2,3-dioxygenase. Notably, induction of GrB by IL-21 integrated signals mediated by surface immunoglobulin M (B-cell receptor) and Toll-like receptors, each of which were enhanced with expression of the B-cell marker CD5. Our findings show for the first time that IL-21 induces GrB(+) human Bregs. They also establish the existence of human B cells with a regulatory phenotype in solid tumor infiltrates, where they may contribute to the suppression of antitumor immune responses. Together, these findings may stimulate novel diagnostic and cell therapeutic approaches to better manage human cancer as well as autoimmune and graft-versus-host pathologies.
Collapse
|
14
|
Nguyen-Hoai T, Hohn O, Vu MD, Baldenhofer G, Sayed Ahmed MS, Dörken B, Norley S, Lipp M, Pezzutto A, Westermann J. CCL19 as an adjuvant for intradermal gene gun immunization in a Her2/neu mouse tumor model: improved vaccine efficacy and a role for B cells as APC. Cancer Gene Ther 2012; 19:880-7. [DOI: 10.1038/cgt.2012.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Biragyn A, Lee-Chang C. A new paradigm for an old story: the role of regulatory B cells in cancer. Front Immunol 2012; 3:206. [PMID: 22837759 PMCID: PMC3401824 DOI: 10.3389/fimmu.2012.00206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022] Open
Affiliation(s)
- Arya Biragyn
- Immunotherapeutics Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging Baltimore, MD, USA
| | | |
Collapse
|
16
|
Forte G, Sorrentino R, Montinaro A, Luciano A, Adcock IM, Maiolino P, Arra C, Cicala C, Pinto A, Morello S. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. THE JOURNAL OF IMMUNOLOGY 2012; 189:2226-33. [PMID: 22826317 DOI: 10.4049/jimmunol.1200744] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD73 is a cell surface enzyme that suppresses T cell-mediated immune responses by producing extracellular adenosine. Growing evidence suggests that targeting CD73 in cancer may be useful for an effective therapeutic outcome. In this study, we demonstrate that administration of a specific CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP), to melanoma-bearing mice induced a significant tumor regression by promoting the release of Th1- and Th17-associated cytokines in the tumor microenvironment. CD8+ T cells were increased in melanoma tissue of APCP-treated mice. Accordingly, in nude mice APCP failed to reduce tumor growth. Importantly, we observed that after APCP administration, the presence of B cells in the melanoma tissue was greater than that observed in control mice. This was associated with production of IgG2b within the melanoma. Depletion of CD20+ B cells partially blocked the anti-tumor effect of APCP and significantly reduced the production of IgG2b induced by APCP, implying a critical role for B cells in the anti-tumor activity of APCP. Our results also suggest that APCP could influence B cell activity to produce IgG through IL-17A, which significantly increased in the tumor tissue of APCP-treated mice. In support of this, we found that in melanoma-bearing mice receiving anti-IL-17A mAb, the anti-tumor effect of APCP was ablated. This correlated with a reduced capacity of APCP-treated mice to mount an effective immune response against melanoma, as neutralization of this cytokine significantly affected both the CD8+ T cell- and B cell-mediated responses. In conclusion, we demonstrate that both T cells and B cells play a pivotal role in the APCP-induced anti-tumor immune response.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fisciano, 84084 Salerno, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Namm JP, Li Q, Lao X, Lubman DM, He J, Liu Y, Zhu J, Wei S, Chang AE. B lymphocytes as effector cells in the immunotherapy of cancer. J Surg Oncol 2012; 105:431-5. [PMID: 21898417 PMCID: PMC4315332 DOI: 10.1002/jso.22093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 11/06/2022]
Abstract
Over the years, the role of B cells in the host immune response to malignancy has been overshadowed by our focus on T cells. Nevertheless, B cells play important roles as antigen-presenting cells and in the production of antibodies. Furthermore, B cells can function as effector cells that mediate tumor destruction on their own. This review will highlight the various functions of B cells that are involved in the host response to tumor.
Collapse
Affiliation(s)
- Jukes P. Namm
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
- Department of Surgery, Loma Linda University, Loma Linda, CA
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Xiangming Lao
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
- Sun Yat-sen University Cancer Center & State Key Laboratory of Oncology in Southern China, Guangzhou, China
| | - David M. Lubman
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Jintang He
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Yashu Liu
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Jianhui Zhu
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Shuang Wei
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Alfred E. Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| |
Collapse
|
18
|
Abstract
The major human antigen-presenting cells (APCs) include monocytes/macrophages, myeloid dendritic cells (mDC), plasmacytoid dendritic cells (pDC), and B cells. These APC subsets have been observed in ovarian tumor environments. Their phenotypes and functionalities are subjected to alteration by multiple factors in the tumor environment. In this review, we summarize the nature, cellular interactions, and prognostic significance of the main APC populations in ovarian cancer, and discuss the relevance of manipulating APC subsets for patient treatment.
Collapse
Affiliation(s)
- Cailin Moira Wilke
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0669, USA
| | | | | |
Collapse
|
19
|
Li Q, Lao X, Pan Q, Ning N, Yet J, Xu Y, Li S, Chang AE. Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res 2011; 17:4987-95. [PMID: 21690573 DOI: 10.1158/1078-0432.ccr-11-0207] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE We investigated the antitumor reactivity of adoptively transferred effector B cells and the mechanisms by which they may mediate tumor regression in a spontaneous metastases model. EXPERIMENTAL DESIGN 4T1 breast cancer cells were inoculated into the flanks of syngeneic Balb/C mice to prime draining lymph nodes. Tumor-draining lymph nodes (TDLN) were harvested and B cells activated ex vivo with lipopolysaccharide and anti-CD40 monoclonal antibody. These activated B cells were adoptively transferred into mice inoculated with 4T1 tumor in the mammary fat pad. The induction of host T-cell immunity was evaluated. RESULTS Activated 4T1 TDLN B cells secreted immunoglobulin G (IgG) in response to tumor cells which was immunologically specific. These activated B cells were capable of mediating specific lysis of tumor cells in vitro. Transfer of these activated B cells alone mediated the inhibition of spontaneous metastases to the lung. Examination of the host revealed that the transfer of these B cells resulted in the induction of tumor-specific T-cell immunity as measured by cytotoxicity and cytokine (IFNγ and granulocyte-macrophage colony-stimulating factor) production. The combined transfer of activated T and B cells from TDLN resulted in tumor regression, which was greater than either cell population alone, with host B cells capable of producing IgG that mediated lysis of tumor in the presence of complement. CONCLUSIONS We have found that appropriately primed B cells can mediate tumor regression by itself and confers host T-cell antitumor immunity. Furthermore, effector B cells can serve as a useful adjunct in adoptive T-cell therapy.
Collapse
Affiliation(s)
- Qiao Li
- Division of Surgical Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nagashima T, Ichimiya S, Kikuchi T, Saito Y, Matsumiya H, Ara S, Koshiba S, Zhang J, Hatate C, Tonooka A, Kubo T, Ye RC, Hirose B, Shirasaki H, Izumi T, Takami T, Himi T, Sato N. Arachidonate 5-lipoxygenase establishes adaptive humoral immunity by controlling primary B cells and their cognate T-cell help. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:222-32. [PMID: 21224059 DOI: 10.1016/j.ajpath.2010.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/19/2022]
Abstract
In this study, we report the unique role of arachidonate 5-lipoxygenase (Alox5) in the regulation of specific humoral immune responses. We previously reported an L22 monoclonal antibody with which human primary resting B cells in the mantle zones of lymphoid follicles are well-defined. Proteomics analyses enabled identification of an L22 antigen as Alox5, which was highly expressed by naive and memory B cells surrounding germinal centers. Cellular growth of mantle cell lymphoma cells also seemed to depend on Alox5. Alox5(-/-) mice exhibited weak antibody responses specific to foreign antigens at the initial and recall phases. This was probably attributable to the low number of follicular and memory B cells and the functional loss of interleukin-21-mediated responses of follicular B cells. Moreover, Alox5(-/-) mice could not fully foster the development of follicular B helper T (Tfh) cells even after immunization with foreign antigens. Further experiments indicated that Alox5 affected mortality in experimentally induced enterocolitis in germ-prone circumstances, indicating that Alox5 would endow immunologic milieu. Our results illustrate the novel role of Alox5 in adaptive humoral immunity by managing primary B cells and Tfh cells in vivo.
Collapse
Affiliation(s)
- Tsutomu Nagashima
- Department of Pathology Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:4977-82. [PMID: 20962266 DOI: 10.4049/jimmunol.1001323] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor-infiltrating CD8(+) T cells are strongly associated with patient survival in a wide variety of human cancers. Less is known about tumor-infiltrating CD20(+) B cells, which often colocalize with T cells, sometimes forming organized lymphoid structures. In autoimmunity and organ transplantation, T cells and B cells collaborate to generate potent, unrelenting immune responses that can result in extensive tissue damage and organ rejection. In these settings, B cells enhance T cell responses by producing Abs, stimulatory cytokines, and chemokines, serving as local APCs, and organizing the formation of tertiary lymphoid structures that sustain long-term immunity. Thus, B cells are an important component of immunological circuits associated with persistent, rampant tissue destruction. Engagement of tumor-reactive B cells may be an important condition for generating potent, long-term T cell responses against cancer.
Collapse
Affiliation(s)
- Brad H Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada.
| |
Collapse
|
22
|
Lin JC, Shih YL, Chien PJ, Liu CL, Lee JJ, Liu TP, Ko WC, Shih CM. Increased percentage of B cells in patients with more advanced hepatocellular carcinoma. Hum Immunol 2010; 71:58-62. [PMID: 19819282 DOI: 10.1016/j.humimm.2009.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 09/19/2009] [Accepted: 10/02/2009] [Indexed: 12/17/2022]
Abstract
To compare immunologic phenotypes between (1) hepatocellular carcinoma (HCC) patients and a healthy population and (2) more advanced and early stage HCC patients, we studied 45 HCC patients and 46 healthy controls from January 2006 to January 2008. Using fluorescent activated cell sorter (FACS) analysis, HCC patients were demonstrated to exhibit stronger phagocytosis of granulocytes and monocytes and more peripheral blood mononuclear cells (PBMCs) in the G2/M phase compared with healthy volunteers. By contrast, lower percentages of B and T(h) lymphocytes were also found in the peripheral blood of HCC patients than in the healthy population. Most importantly, a higher percentage of B cells was found in patients with advanced HCC than in those with early HCC in terms of TNM stage (II and III vs I, p = 0.004), the Japanese Integrated Scoring system (2-3 vs 0-1, p = 0.0235), and tumor numbers (> or =2 vs 1, p = 0.005). In conclusion, our findings suggested that HCC patients might exhibit enhanced innate immunity and reduced adaptive immunity compared with healthy volunteers. A higher percentage of B cells was found in patients with more advanced HCC compared with patients with early stage HCC, which might serve as an indicator of the severity of HCC.
Collapse
Affiliation(s)
- Jiunn-Chang Lin
- Department of General Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Overstreet MG, Freyberger H, Cockburn IA, Chen YC, Tse SW, Zavala F. CpG-enhanced CD8+ T-cell responses to peptide immunization are severely inhibited by B cells. Eur J Immunol 2010; 40:124-33. [PMID: 19830730 DOI: 10.1002/eji.200939493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthetic peptides encoding protective pathogen-derived epitopes represent--in principle--an ideal approach to T-cell vaccination. Empirically, however, these strategies have not been successful. In the current study, we profiled the early activation of CD8+ T cells by MHC class I-restricted peptide immunization to better understand the biology of this response. We found that CD8+ T cells proliferated robustly in response to low doses of short synthetic peptides in PBS, but failed to acquire effector function or form memory populations in the absence of the TLR ligand CpG. CpG was unique among TLR ligands in its ability to enhance the response to peptide and its adjuvant effects had strict temporal requirements. Interestingly, CpG treatment modulated T-cell expression of the surface receptors PD-1 and CD25, providing insight into its possible adjuvant mechanism. The effects of CpG on peptide immunization were dramatically enhanced in the absence of B cells, demonstrating a unique system of regulation of T-cell responses by these lymphocytes. The results reported here provide insight into the complex response to a simple vaccination regimen, as well as a framework for a rational peptide-based vaccine design to both exploit and overcome targeted aspects of the immune response.
Collapse
Affiliation(s)
- Michael G Overstreet
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hoennscheidt C, Max D, Richter N, Staege MS. Expression of CD4 on Epstein-Barr virus-immortalized B cells. Scand J Immunol 2009; 70:216-25. [PMID: 19703011 DOI: 10.1111/j.1365-3083.2009.02286.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human antigen presenting cells commonly express CD4 but the significance of this phenomenon has not been clarified. We analyzed a panel of Epstein-Barr virus-immortalized B cells (so called lymphoblastoid cell lines, LCL) by using flow cytometry, DNA-microarray analysis, and reverse transcriptase-polymerase chain reaction (RT-PCR). The number of CD4(+) cells varied from cell line to cell line but expression of CD4 was detected by flow cytometry and RT-PCR in all investigated cell lines. To characterize CD4 expressing LCL in more detail, we separated CD4(+) and CD4(-) cells from single cell lines by using immunomagnetic beads. When we cultured sorted CD4(+) and CD4(-) cells, we observed that CD4 expression was stable for several passages. However, the number of CD4(+) cells decreased with time in culture. We never observed that CD4(-) cell lines returned back to a CD4(+) phenotype. DNA-microarray analysis of isolated CD4(+) and CD4(-) cells indicated that the overall gene expression profile of both cell populations was highly similar. In addition, CD4(+) and CD4(-) cells showed the same allostimulatory capacity. CD4(+) LCL showed a slightly increased interleukin-16 induced chemotaxis. Differences in the gene expression profile of CD4(+) and CD4(-) cell lines suggested that loss of CD4 expression occurred during a differentiation step involving achaete-scute complex homolog-like 1.
Collapse
Affiliation(s)
- C Hoennscheidt
- University Clinic and Polyclinic for Child and Adolescent Medicine, Martin-Luther-University Halle-Wittenberg, D-06097 Halle, Germany
| | | | | | | |
Collapse
|
25
|
Li Q, Teitz-Tennenbaum S, Donald EJ, Li M, Chang AE. In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. THE JOURNAL OF IMMUNOLOGY 2009; 183:3195-203. [PMID: 19667089 DOI: 10.4049/jimmunol.0803773] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adoptive cellular immunotherapy utilizing tumor-reactive T cells has proven to be a promising strategy for cancer treatment. However, we hypothesize that successful treatment strategies will have to appropriately stimulate not only cellular immunity, but also humoral immunity. We previously reported that B cells in tumor-draining lymph nodes (TDLNs) may function as APCs. In this study, we identified TDLN B cells as effector cells in an adoptive immunotherapy model. In vivo primed and in vitro activated TDLN B cells alone mediated effective (p < 0.05) tumor regression after adoptive transfer into two histologically distinct murine pulmonary metastatic tumor models. Prior lymphodepletion of the host with either chemotherapy or whole-body irradiation augmented the therapeutic efficacy of the adoptively transferred TDLN B cells in the treatment of s.c. tumors as well as metastatic pulmonary tumors. Furthermore, B cell plus T cell transfers resulted in substantially more efficient antitumor responses than B cells or T cells alone (p < 0.05). Activated TDLN B cells conferred strong humoral responses to tumor. This was evident by the production of IgM, IgG, and IgG2b, which bound specifically to tumor cells and led to specific tumor cell lysis in the presence of complement. Collectively, these data indicate that in vivo primed and in vitro activated B cells can be employed as effector cells for cancer therapy. The synergistic antitumor efficacy of cotransferred activated B effector cells and T effector cells represents a novel approach for cancer adoptive immunotherapy.
Collapse
Affiliation(s)
- Qiao Li
- Division of Surgical Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
26
|
Guo S, Xu J, Denning W, Hel Z. Induction of protective cytotoxic T-cell responses by a B-cell-based cellular vaccine requires stable expression of antigen. Gene Ther 2009; 16:1300-13. [PMID: 19641529 PMCID: PMC2783822 DOI: 10.1038/gt.2009.93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
B cell-based cellular vaccines represent a promising approach to active immunotherapy of cancer complementing the use of dendritic cells, especially in pediatric patients and patients with low bone marrow reserves. B cells can be easily prepared in large numbers and readily home to secondary lymphoid organs, the primary site of induction of cytotoxic T lymphocyte (CTL) responses. However, most B cell-based vaccines tested so far failed to induce functional and protective CTLs in in vivo models. Here we demonstrate that B cells activated via the Toll like receptor-9 (TLR-9) and CD40 up-regulate surface expression of MHC and costimulatory molecules, produce IL-12, and exhibit potent antigen-presenting properties in vitro. Importantly, while administration of peptide-coated or transiently transfected B cells fails to induce immune responses, therapeutic immunization with low numbers of genetically modified B cells stably expressing antigen results in an induction of functional CTLs and protection against the growth of tumor in an animal model. Following activation, B cells partially loose their ability to home to organized lymphoid tissue due to the shedding of CD62L; however, this property can be restored by expression of protease-resistant mutant of CD62L. In summary, the data presented in this report suggest that genetically modified activated B cells represent a promising candidate for a cancer vaccine eliciting functional systemic CTLs.
Collapse
Affiliation(s)
- S Guo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | | | |
Collapse
|
27
|
Lundy SK. Killer B lymphocytes: the evidence and the potential. Inflamm Res 2009; 58:345-57. [PMID: 19262989 DOI: 10.1007/s00011-009-0014-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/04/2008] [Indexed: 12/12/2022] Open
Abstract
Immune regulation plays a critical role in controlling potentially dangerous inflammation and maintaining health. The Fas ligand/Fas receptor axis has been studied extensively as a mechanism of killing T cells and other cells during infections, autoimmunity, and cancer. FasL expression has been primarily attributed to activated T cells and NK cells. Evidence has emerged that B lymphocytes can express FasL and other death-inducing ligands, and can mediate cell death under many circumstances. Among B cell subsets, the expression of both Fas ligand and IL-10 is highest on the CD5(+) B cell population, suggesting that CD5(+) B cells may have a specialized regulatory function. The relevance of killer B cells to normal immune regulation, disease pathogenesis, and inflammation is discussed.
Collapse
Affiliation(s)
- Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
28
|
Shah S, Qiao L. Resting B cells expand a CD4+CD25+Foxp3+ Treg population via TGF-beta3. Eur J Immunol 2008; 38:2488-98. [PMID: 18792402 DOI: 10.1002/eji.200838201] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Treg) play critical roles in maintaining tolerance and preventing autoimmunity. It is not fully clear how these cells are generated and maintained. Here, we show that resting B cells are able to expand Treg. This expansion requires TGF-beta3 and signaling through the TCR and CD28. Upon activation, B cells express less TGF-beta3, which reduces their capacity to expand Treg and which also results in increased Treg death. This may ensure that B cells can function as potent professional antigen presenting cells during infections. However, in the absence of any infection, we find that B-cell-deficient microMT mice have decreased percentages of Treg in the periphery. Our data suggest that resting B cells, which may be presenting self-antigens to T cells, can expand and maintain specific Treg and thus might be involved in the prevention of autoimmunity.
Collapse
Affiliation(s)
- Shivanee Shah
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | | |
Collapse
|
29
|
B-cell depletion using an anti-CD20 antibody augments antitumor immune responses and immunotherapy in nonhematopoetic murine tumor models. J Immunother 2008; 31:446-57. [PMID: 18463540 DOI: 10.1097/cji.0b013e31816d1d6a] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role played by B cells in cancer biology is complex and somewhat controversial. Previous studies using genetically engineered mice suggest that B cells may be immunosuppressive and inhibit tumor rejection. However, the effects of B-cell depletion employing an antibody in mice bearing solid tumors has not been tested owing to difficulties in making an effective antimouse CD20 antibody (similar to rituximab). Injection of a newly developed antimouse CD20 antibody was effective in depleting circulating B cells from blood and lymph nodes, although depletion was less complete in the spleen. B-cell depletion slowed the growth of new solid tumors (not expressing CD20) and retarded the growth of established tumors but did not induce tumor regression. However, when the antibody was combined with an active immunotherapy approach using an adenovirus vaccine expressing the human papilloma virus-E7 gene (Ad.E7) in mice bearing TC1 tumors (murine lung cancer cells expressing human papilloma virus-E7), we noted enhanced antitumor effects and increased numbers of tetramer+/CD8+ T cells within the spleens and activated CD8+ T cells within tumors. B-cell depletion using an anti-CD20 antibody was thus effective in retarding tumor growth in multiple solid tumor models and augmenting immunotherapy in a tumor vaccine model. These studies raise the possibility that B-cell depletion may be a useful adjunct in human immunotherapy trials.
Collapse
|
30
|
Ashour HM, Seif TM. The role of B cells in the induction of peripheral T cell tolerance. J Leukoc Biol 2007; 82:1033-9. [PMID: 17656652 DOI: 10.1189/jlb.0507310] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hossam M Ashour
- Cairo University, Department of Microbiology and Immunology, Cairo, Egypt.
| | | |
Collapse
|