1
|
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X, Chen F. Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 2023; 62:71. [PMID: 37144487 PMCID: PMC10198712 DOI: 10.3892/ijo.2023.5519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs in vivo and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyuan Li
- Traditional Chinese Medicine College, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Daren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruijie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
2
|
Buck AM, Deveau TM, Henrich TJ, Deitchman AN. Challenges in HIV-1 Latent Reservoir and Target Cell Quantification in CAR-T Cell and Other Lentiviral Gene Modifying HIV Cure Strategies. Viruses 2023; 15:1126. [PMID: 37243212 PMCID: PMC10222761 DOI: 10.3390/v15051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy or following analytical treatment interruption (ATI). However, there are technical challenges in the quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and also in the identification of cells expressing target antigens. First, there is a lack of validated techniques to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field, resolving these challenges in CAR-T-cell therapy will be crucial.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
3
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
4
|
Raskin S, Van Pelt S, Toner K, Balakrishnan PB, Dave H, Bollard CM, Yvon E. Novel TCR-like CAR-T cells targeting an HLA∗0201-restricted SSX2 epitope display strong activity against acute myeloid leukemia. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:296-306. [PMID: 34729377 PMCID: PMC8526777 DOI: 10.1016/j.omtm.2021.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022]
Abstract
The synovial sarcoma X breakpoint 2 (SSX2) belongs to a multigene family of cancer-testis antigens and can be found overexpressed in multiple malignancies. Its restricted expression in immune-privileged normal tissues suggest that SSX2 may be a relevant target antigen for chimeric antigen receptor (CAR) therapy. We have developed a T cell receptor (TCR)-like antibody (Fab/3) that binds SSX2 peptide 41-49 (KASEKIFYV) in the context of HLA-A∗-0201. The sequence of Fab/3 was utilized to engineer a CAR with the CD3 zeta intra-cellular domain along with either a CD28 or 4-1BB costimulatory endodomain. Human T cells from HLA-A2+ donors were transduced to mediate anti-tumor activity against acute myeloid leukemia (AML) tumor cells. Upon challenge with HLA-A2+/SSX2+ AML tumor cells, CAR-expressing T cells released interferon-γ and eliminated the tumor cells in a long-term co-culture assay. Using the HLA-A2+ T2 cell line, we demonstrated a strong specificity of the single-chain variable fragment (scFv) for SSX2 p41-49 and the closely related SSX3 p41-49, with no response against the others SSX-homologous peptides or unrelated homologous peptides. Since SSX3 has not been observed in tumor cells and expression cannot be induced by pharmacological intervention, SSX241-49 represents an attractive target for CAR-based cellular therapy to treat multiple types of cancer.
Collapse
Affiliation(s)
- Scott Raskin
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC 20010, USA
| | - Stacey Van Pelt
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.,The George Washington University Cancer Center, Washington, DC 20052, USA
| | - Keri Toner
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC 20010, USA.,The George Washington University Cancer Center, Washington, DC 20052, USA
| | | | - Hema Dave
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.,The George Washington University Cancer Center, Washington, DC 20052, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC 20010, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.,The George Washington University Cancer Center, Washington, DC 20052, USA
| | - Eric Yvon
- The George Washington University Cancer Center, Washington, DC 20052, USA.,Department of Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
5
|
Zahm CD, Moseman JE, Delmastro LE, G Mcneel D. PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. Oncoimmunology 2021; 10:1912892. [PMID: 33996265 PMCID: PMC8078506 DOI: 10.1080/2162402x.2021.1912892] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Concurrent blockade of different checkpoint receptors, notably PD-1 and CTLA-4, elicits greater anti-tumor activity for some tumor types, and the combination of different checkpoint receptor inhibitors is an active area of clinical research. We have previously demonstrated that anti-tumor vaccination, by activating CD8 + T cells, increases the expression of PD-1, CTLA-4, LAG-3 and other inhibitory receptors, and the anti-tumor efficacy of vaccination can be increased with checkpoint blockade. In the current study, we sought to determine whether anti-tumor vaccination might be further improved with combined checkpoint blockade. Using an OVA-expressing mouse tumor model, we found that CD8 + T cells activated in the presence of professional antigen presenting cells (APC) expressed multiple checkpoint receptors; however, T cells activated without APCs expressed LAG-3 alone, suggesting that LAG-3 might be a preferred target in combination with vaccination. Using three different murine tumor models, and peptide or DNA vaccines targeting three tumor antigens, we assessed the effects of vaccines with blockade of PD-1 and/or LAG-3 on tumor growth. We report that, in each model, the anti-tumor efficacy of vaccination was increased with PD-1 and/or LAG-3 blockade. However, combined PD-1 and LAG-3 blockade elicited the greatest anti-tumor effect when combined with vaccination in a MycCaP prostate cancer model in which PD-1 blockade alone with vaccination targeting a “self” tumor antigen had less efficacy. These results suggest anti-tumor vaccination might best be combined with concurrent blockade of both PD-1 and LAG-3, and potentially other checkpoint receptors whose expression is increased on CD8 + T cells following vaccine-mediated activation.
Collapse
Affiliation(s)
- Christopher D Zahm
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Jena E Moseman
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Lauren E Delmastro
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Douglas G Mcneel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
6
|
Jerby-Arnon L, Neftel C, Shore ME, Weisman HR, Mathewson ND, McBride MJ, Haas B, Izar B, Volorio A, Boulay G, Cironi L, Richman AR, Broye LC, Gurski JM, Luo CC, Mylvaganam R, Nguyen L, Mei S, Melms JC, Georgescu C, Cohen O, Buendia-Buendia JE, Segerstolpe A, Sud M, Cuoco MS, Labes D, Gritsch S, Zollinger DR, Ortogero N, Beechem JM, Petur Nielsen G, Chebib I, Nguyen-Ngoc T, Montemurro M, Cote GM, Choy E, Letovanec I, Cherix S, Wagle N, Sorger PK, Haynes AB, Mullen JT, Stamenkovic I, Rivera MN, Kadoch C, Wucherpfennig KW, Rozenblatt-Rosen O, Suvà ML, Riggi N, Regev A. Opposing immune and genetic mechanisms shape oncogenic programs in synovial sarcoma. Nat Med 2021; 27:289-300. [PMID: 33495604 PMCID: PMC8817899 DOI: 10.1038/s41591-020-01212-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/14/2020] [Indexed: 11/08/2022]
Abstract
Synovial sarcoma (SyS) is an aggressive neoplasm driven by the SS18-SSX fusion, and is characterized by low T cell infiltration. Here, we studied the cancer-immune interplay in SyS using an integrative approach that combines single-cell RNA sequencing (scRNA-seq), spatial profiling and genetic and pharmacological perturbations. scRNA-seq of 16,872 cells from 12 human SyS tumors uncovered a malignant subpopulation that marks immune-deprived niches in situ and is predictive of poor clinical outcomes in two independent cohorts. Functional analyses revealed that this malignant cell state is controlled by the SS18-SSX fusion, is repressed by cytokines secreted by macrophages and T cells, and can be synergistically targeted with a combination of HDAC and CDK4/CDK6 inhibitors. This drug combination enhanced malignant-cell immunogenicity in SyS models, leading to induced T cell reactivity and T cell-mediated killing. Our study provides a blueprint for investigating heterogeneity in fusion-driven malignancies and demonstrates an interplay between immune evasion and oncogenic processes that can be co-targeted in SyS and potentially in other malignancies.
Collapse
Affiliation(s)
- Livnat Jerby-Arnon
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Cyril Neftel
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marni E Shore
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hannah R Weisman
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nathan D Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew J McBride
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Brian Haas
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin Izar
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Columbia Center for Translational Immunology, New York, NY, USA
- Columbia University Medical Center, Division of Hematology and Oncology, New York, NY, USA
| | - Angela Volorio
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gaylor Boulay
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Luisa Cironi
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alyssa R Richman
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Liliane C Broye
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Joseph M Gurski
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christina C Luo
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ravindra Mylvaganam
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lan Nguyen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Shaolin Mei
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Johannes C Melms
- Columbia Center for Translational Immunology, New York, NY, USA
- Columbia University Medical Center, Division of Hematology and Oncology, New York, NY, USA
| | | | - Ofir Cohen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jorge E Buendia-Buendia
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Malika Sud
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael S Cuoco
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Danny Labes
- Flow Cytometry Facility, Department of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Simon Gritsch
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | - G Petur Nielsen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivan Chebib
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tu Nguyen-Ngoc
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Michael Montemurro
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Gregory M Cote
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Choy
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Igor Letovanec
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stéphane Cherix
- Department of Orthopedics, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nikhil Wagle
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alex B Haynes
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - John T Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ivan Stamenkovic
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Miguel N Rivera
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cigall Kadoch
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kai W Wucherpfennig
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Nicolò Riggi
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
7
|
Johnson LE, Frye TP, McNeel DG. Immunization with a prostate cancer xenoantigen elicits a xenoantigen epitope-specific T-cell response. Oncoimmunology 2021; 1:1546-1556. [PMID: 23264901 PMCID: PMC3525610 DOI: 10.4161/onci.22564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccines encoding xenoantigens, “non-self” proteins that are highly homologous to their autologous counterparts, have been investigated as a means to increase immunogenicity and overcome tolerance to “self” antigens. We have previously shown that DNA vaccines encoding native prostatic acid phosphatase (PAP) were able to elicit PAP-specific T cells in both rats and humans, but required multiple immunization courses. In this study, we investigated in a preclinical model whether immunizations with a DNA vaccine encoding a xenoantigen could elicit a cross-reactive immune response to the native protein, potentially requiring fewer immunizations. Lewis rats were immunized with a DNA vaccine encoding human PAP and splenocytes from immunized rats were screened with a human peptide library containing overlapping, 15-mer PAP-derived peptides using T-cell proliferation and interferon γ (IFNγ) release as measures of the immune response. One dominant PAP-specific, RT1.Al-restricted, epitope was identified. Direct immunization with the immunodominant peptide (HP201–215) containing this epitope demonstrated that it included a naturally presented MHC Class I epitope recognized by CD8+ T cells in Lewis rats. However, no cross-reactive immune response was elicited to the corresponding rat peptide despite a difference of only three amino acids. Immunization with DNA vaccines encoding rat PAP (rPAP) in which this foreign dominant epitope was included as well as with DNA vaccines coding for a variant of the xenoantigen from which this epitope was deleted, did not elicit responses to the native antigen. Overall, these results indicate that the immunization with a xenoantigen-coding DNA vaccine can lead to an immune response which potentially favors foreign epitopes and hence limits any cross-reactive response to the native antigen.
Collapse
Affiliation(s)
- Laura E Johnson
- Department of Medicine; University of Wisconsin; Madison, WI USA
| | | | | |
Collapse
|
8
|
Zahm CD, Colluru VT, McIlwain SJ, Ong IM, McNeel DG. TLR Stimulation during T-cell Activation Lowers PD-1 Expression on CD8 + T Cells. Cancer Immunol Res 2018; 6:1364-1374. [PMID: 30201735 PMCID: PMC6215515 DOI: 10.1158/2326-6066.cir-18-0243] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/20/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
Expression of T-cell checkpoint receptors can compromise antitumor immunity. Blockade of these receptors, notably PD-1 and LAG-3, which become expressed during T-cell activation with vaccination, can improve antitumor immunity. We evaluated whether T-cell checkpoint expression could be separated from T-cell activation in the context of innate immune stimulation with TLR agonists. We found that ligands for TLR1/2, TLR7, and TLR9 led to a decrease in expression of PD-1 on antigen-activated CD8+ T cells. These effects were mediated by IL12 released by professional antigen-presenting cells. In two separate tumor models, treatment with antitumor vaccines combined with TLR1/2 or TLR7 ligands induced antigen-specific CD8+ T cells with lower PD-1 expression and improved antitumor immunity. These findings highlight the role of innate immune activation during effector T-cell development and suggest that at least one mechanism by which specific TLR agonists can be strategically used as vaccine adjuvants is by modulating the expression of PD-1 during CD8+ T-cell activation. Cancer Immunol Res; 6(11); 1364-74. ©2018 AACR.
Collapse
Affiliation(s)
- Christopher D Zahm
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Viswa T Colluru
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Sean J McIlwain
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Irene M Ong
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
9
|
Fan PW, Huang L, Chang XM, Feng YN, Yao X, Peng YC, Dong T, Wang RZ. Human Leukocyte Antigen-A Allele Distribution in Nasopharyngeal Carcinoma Patients Showing Anti-Melanoma-Associated Antigen A or Synovial Sarcoma X-2 T Cell Response in Blood. Chin Med J (Engl) 2018; 131:1289-1295. [PMID: 29786040 PMCID: PMC5987498 DOI: 10.4103/0366-6999.232791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Development of innovative immunotherapy is imperative to improve the poor survival of the nasopharyngeal carcinoma (NPC) patients. In this study, we evaluated the T cell response to melanoma-associated antigen (MAGE)-A1, MAGE-A3, or synovial sarcoma X-2 (SSX-2) in the peripheral blood of treatment-naive NPC patients. The relationship of responses among the three proteins and the human leukocyte antigen (HLA)-A types were analyzed to provide evidence of designing novel therapy. Methods: Sixty-one NPC patients admitted into the Tumor Hospital affiliated to the Xinjiang Medical University between March 2015 and July 2016 were enrolled. Mononuclear cells were isolated from the peripheral blood before any treatment. HLA-A alleles were typed with Sanger sequence-based typing technique. The T cell response to the MAGE-A1, MAGE-A3, or SSX-2 was evaluated with the Enzyme-Linked ImmunoSpot assay. Mann-Whitney U-test was used to compare the T cell responses from different groups. Spearman's rank correlation was used to analyze the relationship of T cell responses. Results: HLA-A*02:01, A*02:07, and A*24:02 were the three most frequent alleles (18.9%, 12.3%, and 11.5%, respectively) among the 22 detected alleles. 31.1%, 19.7%, and 16.4% of the patients displayed MAGE-A1, MAGE-A3, or SSX-2-specific T cell response, respectively. The magnitudes of response to the three proteins were 32.5, 38.0, and 28.7 SFC/106 peripheral blood mononuclear cells, respectively. The T cell response against the three proteins correlated with each other to different extent. The percentage of A*02:01 and A*24:02 carriers were significantly higher in patients responding to any of the three proteins compared to the nonresponders. Conclusion: MAGE-A1, MAGE-A3, or SSX-2-specific T cell responses were detectable in a subgroup of NPC patients, the frequency and magnitude of which were correlated.
Collapse
Affiliation(s)
- Pei-Wen Fan
- Xinjiang Key Laboratory of Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Li Huang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xue-Mei Chang
- Xinjiang Key Laboratory of Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Ya-Ning Feng
- Xinjiang Key Laboratory of Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xuan Yao
- CAMS Oxford Center for Translation Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Yan-Chun Peng
- CAMS Oxford Center for Translation Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Tao Dong
- CAMS Oxford Center for Translation Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Ruo-Zheng Wang
- Xinjiang Key Laboratory of Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University; Department of Radiation Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| |
Collapse
|
10
|
Immunoreactivity of a Monoclonal Antibody to SS18-SSX Fusion Gene Product in Formalin-fixed Paraffin-embedded Synovial Sarcoma Tissue Section. Appl Immunohistochem Mol Morphol 2018; 26:206-211. [DOI: 10.1097/pai.0000000000000413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Colluru VT, McNeel DG. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget 2018; 7:67901-67918. [PMID: 27661128 PMCID: PMC5356528 DOI: 10.18632/oncotarget.12178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/16/2016] [Indexed: 01/21/2023] Open
Abstract
In spite of remarkable preclinical efficacy, DNA vaccination has demonstrated low immunogenicity in humans. While efforts have focused on increasing cross-presentation of DNA-encoded antigens, efforts to increase DNA vaccine immunogenicity by targeting direct presentation have remained mostly unexplored. In these studies, we compared the ability of different APCs to present antigen to T cells after simple co-culture with plasmid DNA. We found that human primary peripheral B lymphocytes, and not monocytes or in vitro derived dendritic cells (DCs), were able to efficiently encode antigen mRNA and expand cognate tumor antigen-specific CD8 T cells ex vivo. Similarly, murine B lymphocytes co-cultured with plasmid DNA, and not DCs, were able to prime antigen-specific T cells in vivo. Moreover, B lymphocyte-mediated presentation of plasmid antigen led to greater Th1-biased immunity and was sufficient to elicit an anti-tumor effect in vivo. Surprisingly, increasing plasmid presentation by B cells, and not cross presentation of peptides by DCs, further augmented traditional plasmid vaccination. Together, these data suggest that targeting plasmid DNA to B lymphocytes, for example through transfer of ex vivo plasmidloaded B cells, may be novel means to achieve greater T cell immunity from DNA vaccines.
Collapse
Affiliation(s)
- Viswa Teja Colluru
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Bloom JE, McNeel DG. SSX2 regulates focal adhesion but does not drive the epithelial to mesenchymal transition in prostate cancer. Oncotarget 2018; 7:50997-51011. [PMID: 27276714 PMCID: PMC5239454 DOI: 10.18632/oncotarget.9802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy for men in the United States. Metastatic prostate cancer, the lethal form of the disease, has a life expectancy of approximately five years. Identification of factors associated with this transition to metastatic disease is crucial for future therapies. One such factor is the SSX gene family, a family of cancer/testis antigens (CTA) transcription factors which have been shown to be aberrantly expressed in other cancers and associated with the epithelial to mesenchymal transition (EMT). We have previously shown that SSX expression in prostate cancers was restricted to metastatic tissue and not primary tumors. In this study, we have identified SSX2 as the predominant SSX family member expressed in prostate cancer, and found its expression in the peripheral blood of 19 of 54 (35%) prostate cancer patients, with expression restricted to circulating tumor cells, and in 7 of 15 (47%) metastatic cDNA samples. Further, we examined SSX2 function in prostate cancer through knockdown and overexpression in prostate cancer cell lines. While overexpression had little effect on morphology or gene transcript changes, knockdown of SSX2 resulted in an epithelial morphology, increased cell proliferation, increased expression of genes involved in focal adhesion, decreased anchorage independent growth, increased invasion, and increased tumorigenicity in vivo. We conclude from these findings that SSX2 expression in prostate cancer is not a driver of EMT, but is involved in processes associated with EMT including loss of focal adhesion that may be related to tumor cell dissemination.
Collapse
Affiliation(s)
- Jordan E Bloom
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
13
|
Zeng Y, Gao T, Zhao G, Jiang Y, Yang Y, Yu H, Kou Z, Lone Y, Sun S, Zhou Y. Generation of human MHC (HLA-A11/DR1) transgenic mice for vaccine evaluation. Hum Vaccin Immunother 2017; 12:829-36. [PMID: 26479036 DOI: 10.1080/21645515.2015.1103405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rapid occurrence of emerging infectious diseases demonstrates an urgent need for a new preclinical experimental model that reliably replicates human immune responses. Here, a new homozygous humanized human leukocyte antigen (HLA)-A11/DR1 transgenic mouse (HLA-A11(+/+)/DR01(+/+)/H-2-β2m(-/-)/IAβ(-/-)) was generated by crossing HLA-A11 transgenic (Tg) mice with HLA-A2(+/+)/DR01(+/+)/H-2-β2m(-/-)/IAβ(-/-) mice. The HLA-A11-restricted immune response of this mouse model was then examined. HLA-A11 Tg mice expressing a chimeric major histocompatibility complex (MHC) molecule comprising the α1, α2, and β2m domains of human HLA-A11 and the α3 transmembrane and cytoplasmic domains of murine H-2D(b) were generated. The correct integration of HLA-A11 and HLA-DR1 into the genome of the HLA-A11/DR1 Tg mice (which lacked the expression of endogenous H-2-I/II molecules) was then confirmed. Immunizing mice with a recombinant HBV vaccine or a recombinant HIV-1 protein resulted in the generation of IFN-γ-producing cytotoxic T lymphocyte (CTL) and antigen-specific antibodies. The HLA-A11-restricted CTL response was directed at HLA immunodominant epitopes. These mice represent a versatile animal model for studying the immunogenicity of HLA CTL epitopes in the absence of a murine MHC response. The established animal model will also be useful for evaluating and optimizing T cell-based vaccines and for studying differences in antigen processing between mice and humans.
Collapse
Affiliation(s)
- Yang Zeng
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China.,b INSERM U1197 (ex U1014), University of Paris-Sud, Hospital Paul Brousse , Villejuif , France
| | | | - Guangyu Zhao
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yuting Jiang
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yi Yang
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Hong Yu
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Zhihua Kou
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yuchun Lone
- b INSERM U1197 (ex U1014), University of Paris-Sud, Hospital Paul Brousse , Villejuif , France
| | - Shihui Sun
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yusen Zhou
- a State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China.,c Wenzhou Medical University , Zhejiang , China
| |
Collapse
|
14
|
Zahm CD, Colluru VT, McNeel DG. Vaccination with High-Affinity Epitopes Impairs Antitumor Efficacy by Increasing PD-1 Expression on CD8 + T Cells. Cancer Immunol Res 2017. [PMID: 28634215 DOI: 10.1158/2326-6066.cir-16-0374] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antitumor vaccines encoding self-antigens generally have low immunogenicity in clinical trials. Several approaches are aimed at improving vaccine immunogenicity, including efforts to alter encoded epitopes. Immunization with epitopes altered for increased affinity for the major histocompatibility complex (MHC) or T-cell receptor (TCR) elicits greater numbers of CD8 T cells but inferior antitumor responses. Our previous results suggested that programmed death 1 (PD-1) and its ligand (PD-L1) increased on antigen-specific CD8 T cells and tumor cells, respectively, after high-affinity vaccination. In this report, we use two murine models to investigate whether the dose, MHC affinity, or TCR affinity of an epitope affected the antitumor response via the PD-1/PD-L1 axis. T cells activated with high-affinity epitopes resulted in prolonged APC:T-cell contact time that led to elevated, persistent PD-1 expression, and expression of other checkpoint molecules, in vitro and in vivo Immunization with high-affinity epitopes also decreased antitumor efficacy in the absence of PD-1 blockade. Thus, APC:T-cell contact time can be altered by epitope affinity and lead to therapeutically relevant changes in vaccine efficacy mediated by changes in PD-1 expression. These findings have implications for the use of agents targeting PD-1 expression or function whenever high-affinity CD8 T cells are elicited or supplied by means of vaccination or adoptive transfer. Cancer Immunol Res; 5(8); 630-41. ©2017 AACR.
Collapse
Affiliation(s)
- Christopher D Zahm
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Viswa T Colluru
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
15
|
Abstract
DNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation. Studies into the mechanism of action of DNA vaccines in terms of antigen-presenting cell types able to directly present or cross-present DNA-encoded antigens, and the activation of innate immune responses due to DNA itself, have suggested opportunities to increase the immunogenicity of these vaccines. In addition, studies into the mechanisms of tumor resistance to anti-tumor vaccination have suggested combination approaches that can increase the anti-tumor effect of DNA vaccines. This review focuses on these mechanisms of action and mechanisms of resistance using DNA vaccines, and how this information is being used to improve the anti-tumor effect of DNA vaccines. These approaches are then specifically discussed in the context of human prostate cancer, a disease for which DNA vaccines have been and continue to be explored as treatments.
Collapse
Affiliation(s)
- Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Viswa Teja Colluru
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
16
|
Colluru VT, Zahm CD, McNeel DG. Mini-intronic plasmid vaccination elicits tolerant LAG3 + CD8 + T cells and inferior antitumor responses. Oncoimmunology 2016; 5:e1223002. [PMID: 27853647 DOI: 10.1080/2162402x.2016.1223002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022] Open
Abstract
Increasing transgene expression has been a major focus of attempts to improve DNA vaccine-induced immunity in both preclinical studies and clinical trials. Novel mini-intronic plasmids (MIPs) have been shown to cause elevated and sustained transgene expression in vivo. We sought to test the antitumor activity of a MIP, compared to standard DNA plasmid immunization, using the tumor-specific antigen SSX2 in an HLA-A2-restricted tumor model. We found that MIP vaccination elicited a greater frequency of antigen-specific CD8+ T cells when compared to conventional plasmid, and protected animals from subsequent tumor challenge. However, therapeutic vaccination with the MIP resulted in an inferior antitumor effect, and CD8+ tumor-infiltrating lymphocytes from these mice expressed higher levels of surface LAG3. Antitumor efficacy of MIP vaccination could be recovered upon antibody blockade of LAG3. In non-tumor bearing mice, MIP immunization led to a loss of epitope dominance, attenuated CD8+ cytokine responses to the dominant p103 epitope, and increased LAG3 expression on p103-specific CD8+ T cells. Further, LAG3 expression on CD8+ T cells was associated with antigen dose and persistence in spite of DNA-induced innate immunity. These data suggest that for antitumor immunization, approaches leading to increased antigen expression following vaccination might optimally be combined with LAG3 inhibition in human trials. On the other hand, mini-intronic vector approaches may be a superior means to elicit LAG3-dependent tolerance in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Viswa Teja Colluru
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-Madison , Madison, WI, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Guo K, Lu M, Xu P, Li H. [Expression and Clinical Significance of MAGE-C2 in Lung Adenocarcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:88-92. [PMID: 26903162 PMCID: PMC6015139 DOI: 10.3779/j.issn.1009-3419.2016.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The aim of this study is to detect the expression of melanoma antigen-C2 (MAGE-C2) in lung adenocarcinoma tissues and adjacent non-cancerousous tissues and analyze its clinical significance. METHODS The expression level of MAGE-C2 mRNA and MAGE-C2 protein were measured in 87 cases of lung adenocarcinoma tissues and adjacent non-cancerous tissues were detected by Real-time fluorescence quantitative PCR and Western blot. RESULTS Over-expression of the MAGE-C2 mRNA and MAGE-C2 protein were observed in lung adenocarcinoma tissues (53/87, 60.9%), but nor in adjacent non-cancerous tissues. The expressions of MAGE-C2 mRNA and MAGE-C2 protein were closely associated with clinical stage, metastasis and differentiation (P<0.05). The expression rate of MAGE-C2 mRNA had no relationship with gender, age, smoking (P>0.05). The expression of MAGE-C2 had an adverse effect on overall survival rate (P<0.05). CONCLUSIONS Over-expression of the MAGE-C2 mRNA and protein is existed in lung adenocarcinoma. The high expression of MAGE-C2 may be closely related to the occurrence and development in lung adenocarcinoma. MAGE-C2 may predict a poor prognosis and could be as a novel lung adenocarcinoma molecule marker.
.
Collapse
Affiliation(s)
- Kang Guo
- Cancer Center, the Affiliated Hospital of Qingdao Universitiy, Qingdao 266003, China
| | - Mengshi Lu
- Cancer Center, the Affiliated Hospital of Qingdao Universitiy, Qingdao 266003, China
| | - Ping Xu
- Cancer Center, the Affiliated Hospital of Qingdao Universitiy, Qingdao 266003, China
| | - Hongmei Li
- Cancer Center, the Affiliated Hospital of Qingdao Universitiy, Qingdao 266003, China
| |
Collapse
|
18
|
Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization. Cancer Immunol Res 2015; 3:946-55. [PMID: 26041735 DOI: 10.1158/2326-6066.cir-14-0206] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/17/2015] [Indexed: 01/22/2023]
Abstract
DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8(+) T cells in non-tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8(+) T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8(+) T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date.
Collapse
Affiliation(s)
- Brian T Rekoske
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heath A Smith
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Brian M Olson
- The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Brett B Maricque
- The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin. The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
19
|
Oncogenic functions of the cancer-testis antigen SSX on the proliferation, survival, and signaling pathways of cancer cells. PLoS One 2014; 9:e95136. [PMID: 24787708 PMCID: PMC4005730 DOI: 10.1371/journal.pone.0095136] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/24/2014] [Indexed: 01/22/2023] Open
Abstract
SSX is a transcription factor with elusive oncogenic functions expressed in a variety of human tumors of epithelial and mesenchymal origin. It has raised substantial interest as a target for cancer therapy since it elicits humoral responses and displays restricted expression to cancer, spermatogonia and mesenchymal stem cells. Here, we investigated the oncogenic properties of SSX by employing a RNA interference to knock-down the endogenous expression of SSX in melanoma and osteosarcoma cell lines. Depletion of SSX expression resulted in reduced proliferation with cells accumulating in the G1 phase of the cell cycle. We found that the growth promoting and survival properties of SSX are mediated in part though modulation of MAPK/Erk and Wnt signaling pathways, since SSX silencing inhibited Erk-mediated signaling and transcription of cMYC and Akt-1. We also found that SSX forms a transient complex with β-catenin at the G1-S phase boundary resulting in the altered expression of β-catenin target genes such as E-cadherin, snail-2 and vimentin, involved in epithelial-mesenchymal transitions. Importantly the silencing of SSX expression in in vivo significantly impaired the growth of melanoma tumor xenografts. Tumor biopsies from SSX silenced tumors displayed reduced cyclin A staining, indicative of low proliferation and predominantly cycloplasmic β-catenin compared to SSX expressing tumors. The present study demonstrates a previously unknown function of SSX, that as an oncogene and as a tumor target for the development of novel anti-cancer drugs.
Collapse
|
20
|
Smith HA, Rekoske BT, McNeel DG. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune responses. Vaccine 2014; 32:1707-15. [PMID: 24492013 DOI: 10.1016/j.vaccine.2014.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/19/2013] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
Abstract
Plasmid DNA serves as a simple and easily modifiable form of antigen delivery for vaccines. The USDA approval of DNA vaccines for several non-human diseases underscores the potential of this type of antigen delivery method as a cost-effective approach for the treatment or prevention of human diseases, including cancer. However, while DNA vaccines have demonstrated safety and immunological effect in early phase clinical trials, they have not consistently elicited robust anti-tumor responses. Hence many recent efforts have sought to increase the immunological efficacy of DNA vaccines, and we have specifically evaluated several target antigens encoded by DNA vaccine as treatments for human prostate cancer. In particular, we have focused on SSX2 as one potential target antigen, given its frequent expression in metastatic prostate cancer. We have previously identified two peptides, p41-49 and p103-111, as HLA-A2-restricted SSX2-specific epitopes. In the present study we sought to determine whether the efficacy of a DNA vaccine could be enhanced by an altered peptide ligand (APL) strategy wherein modifications were made to anchor residues of these epitopes to enhance or ablate their binding to HLA-A2. A DNA vaccine encoding APL modified to increase epitope binding elicited robust peptide-specific CD8+ T cells producing Th1 cytokines specific for each epitope. Ablation of one epitope in a DNA vaccine did not enhance immune responses to the other epitope. These results demonstrate that APL encoded by a DNA vaccine can be used to elicit increased numbers of antigen-specific T cells specific for multiple epitopes simultaneously, and suggest this could be a general approach to improve the immunogenicity of DNA vaccines encoding tumor antigens.
Collapse
Affiliation(s)
- Heath A Smith
- Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brian T Rekoske
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
21
|
Colluru VT, Johnson LE, Olson BM, McNeel DG. Preclinical and clinical development of DNA vaccines for prostate cancer. Urol Oncol 2013; 34:193-204. [PMID: 24332642 DOI: 10.1016/j.urolonc.2013.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens. As such, several therapeutic vaccines have entered clinical trials, with one autologous cellular vaccine (sipuleucel-T) recently gaining Food and Drug Administration approval after demonstrating overall survival benefit in randomized phase III clinical trials. DNA-based vaccines are safe, economical, alternative "off-the-shelf" approaches that have undergone extensive evaluation in preclinical models. In fact, the first vaccine approved in the United States for the treatment of cancer was a DNA vaccine for canine melanoma. Several prostate cancer-specific DNA vaccines have been developed in the last decade and have shown promising results in early phase clinical trials. This review summarizes anticancer human DNA vaccine trials, with a focus on those conducted for prostate cancer. We conclude with an outline of special considerations important for the development and successful translation of DNA vaccines from the laboratory to the clinic.
Collapse
Affiliation(s)
- V T Colluru
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Laura E Johnson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI.
| |
Collapse
|
22
|
Neumann F, Kaddu-Mulindwa D, Widmann T, Preuss KD, Held G, Zwick C, Roemer K, Pfreundschuh M, Kubuschok B. EBV-transformed lymphoblastoid cell lines as vaccines against cancer testis antigen-positive tumors. Cancer Immunol Immunother 2013; 62:1211-22. [PMID: 23619976 PMCID: PMC11028802 DOI: 10.1007/s00262-013-1412-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/28/2013] [Indexed: 12/25/2022]
Abstract
EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.
Collapse
Affiliation(s)
- Frank Neumann
- Department of Internal Medicine I, José Carreras-Center for Immuno- and Gene Therapy, University of Saarland Medical School, 66421, Homburg, Saar, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bloom JE, McNeel DG, Olson BM. Vaccination using peptides spanning the SYT-SSX tumor-specific translocation. Expert Rev Vaccines 2013; 11:1401-4. [PMID: 23252384 DOI: 10.1586/erv.12.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Evaluation of: Kawaguchi S, Tsukahara T, Ida K et al. SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group. Cancer Sci. 103(9), 1625-1630 (2012). The identification of genetic translocations as key tumor-initiating events has led to the development of novel antigen-specific vaccines targeting these tumor-specific breakpoint regions. Previous studies have evaluated vaccines targeting the breakpoints in the BCR-ABL translocation in patients with chronic myelogenous leukemia and EWS-FLI1 in patients with Ewing sarcoma. In the article under evaluation, the authors evaluated a peptide vaccine targeting the breakpoint in the SYT-SSX translocation, the genetic translocation essentially pathognomonic for synovial sarcoma. This is the second small clinical trial reported by this group using HLA-A24-binding peptides as vaccine antigens. In this four-arm trial, using a native or HLA-A24-optimized SYT-SSX peptide with or without adjuvant plus IFN-α, they immunized patients with metastatic synovial sarcoma. Immune responses were evaluated by delayed-type hypersensitivity testing and tetramer analysis. No robust evidence of immune response to the target epitope was detected. Some patients treated with peptide in adjuvant plus IFN-α had stable disease. These results suggest that future similar studies might best evaluate patients with a lower burden of disease, consider alternative immunization approaches to the SYT-SSX target antigen and consider the efficacy of IFN-α alone for the treatment of synovial sarcoma.
Collapse
Affiliation(s)
- Jordan E Bloom
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
24
|
New targets for the immunotherapy of colon cancer-does reactive disease hold the answer? Cancer Gene Ther 2013; 20:157-68. [PMID: 23492821 DOI: 10.1038/cgt.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in both men and women, posing a serious demographic and economic burden worldwide. In the United Kingdom, CRC affects 1 in every 20 people and it is often detected once well established and after it has spread beyond the bowel (Stage IIA-C and Stage IIIA-C). A diagnosis at such advanced stages is associated with poor treatment response and survival. However, studies have identified two sub-groups of post-treatment CRC patients--those with good outcome (reactive disease) and those with poor outcome (non-reactive disease). We aim to review the state-of-the-art for CRC with respect to the expression of cancer-testis antigens (CTAs) and their identification, evaluation and correlation with disease progression, treatment response and survival. We will also discuss the relationship between CTA expression and regulatory T-cell (Treg) activity to tumorigenesis and tumor immune evasion in CRC and how this could account for the clinical presentation of CRC. Understanding the molecular basis of reactive CRC may help us identify more potent novel immunotherapeutic targets to aid the effective treatment of this disease. In this review, based on our presentation at the 2012 International Society for the Cell and Gene Therapy of Cancer annual meeting, we will summarize some of the most current advances in CTA and CRC research and their influence on the development of novel immunotherapeutic approaches for this common and at times difficult to treat disease.
Collapse
|
25
|
Becker JT, McNeel DG. Presence of antigen-specific somatic allelic mutations and splice variants do not predict for immunological response to genetic vaccination. J Immunother Cancer 2013; 1:2. [PMID: 24764533 PMCID: PMC3986973 DOI: 10.1186/2051-1426-1-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Antigen-specific anti-tumor vaccines have demonstrated clinical efficacy, but immunological and clinical responses appear to be patient-dependent. We hypothesized that naturally-occurring differences in amino acid sequence of a host’s target antigen might predict for immunological outcome from genetic vaccination by presentation of epitopes different from the vaccine. Methods Using peripheral blood cells from 33 patients who had been treated with a DNA vaccine encoding prostatic acid phosphatase (PAP), we sequenced the exons encoding PAP and PSA genes from somatic DNA to identify single nucleotide polymorphisms. In addition, mRNA was collected to detect alternative splice variants of PAP. Results We detected four synonymous coding mutations of PAP among 33 patients; non-synonymous coding mutations were not identified. Alternative splice variants of PAP were detected in 22/27 patients tested. The presence of detectable splice variants was not predictive of immunological outcome from vaccination. Immune responses to peptides encoded by these splice variants were common (16/27) prior to immunization, but not associated with immune responses elicited with vaccination. Conclusions These results suggest that antigen-specific immune responses detectable after treatment with this genetic vaccine are specific for the host-encoded antigen and not due to epitope differences between the vaccine and a particular individual’s somatic coding sequence.
Collapse
Affiliation(s)
- Jordan T Becker
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
26
|
McNeel DG, Becker JT, Johnson LE, Olson BM. DNA Vaccines for Prostate Cancer. CURRENT CANCER THERAPY REVIEWS 2012; 8:254-263. [PMID: 24587772 DOI: 10.2174/157339412804143113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Delivery of plasmid DNA encoding an antigen of interest has been demonstrated to be an effective means of immunization, capable of eliciting antigen-specific T cells. Plasmid DNA vaccines offer advantages over other anti-tumor vaccine approaches in terms of simplicity, manufacturing, and possibly safety. The primary disadvantage is their poor transfection efficiency and subsequent lower immunogenicity relative to other genetic vaccine approaches. However, multiple preclinical models demonstrate anti-tumor efficacy, and many efforts are underway to improve the immunogenicity and anti-tumor effect of these vaccines. Clinical trials using DNA vaccines as treatments for prostate cancer have begun, and to date have demonstrated safety and immunological effect. This review will focus on DNA vaccines as a specific means of antigen delivery, advantages and disadvantages of this type of immunization, previous experience in preclinical models and human trials specifically conducted for the treatment of prostate cancer, and future directions for the application of DNA vaccines to prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jordan T Becker
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Laura E Johnson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
27
|
Kulkarni P, Shiraishi T, Rajagopalan K, Kim R, Mooney SM, Getzenberg RH. Cancer/testis antigens and urological malignancies. Nat Rev Urol 2012; 9:386-96. [PMID: 22710665 DOI: 10.1038/nrurol.2012.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer/testis antigens (CTAs) are a group of tumour-associated antigens (TAAs) that display normal expression in the adult testis--an immune-privileged organ--but aberrant expression in several types of cancers, particularly in advanced cancers with stem cell-like characteristics. There has been an explosion in CTA-based research since CTAs were first identified in 1991 and MAGE-1 was shown to elicit an autologous cytotoxic T-lymphocyte (CTL) response in a patient with melanoma. The resulting data have not only highlighted a role for CTAs in tumorigenesis, but have also underscored the translational potential of these antigens for detecting and treating many types of cancers. Studies that have investigated the use of CTAs for the clinical management of urological malignancies indicate that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic, and therapeutic targets for cancer immunotherapy. Increasing evidence supports the utilization of these promising tools for urological indications.
Collapse
Affiliation(s)
- Prakash Kulkarni
- James Buchanan Brady Urological Institute, 600 North Wolfe Street, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Tumor-associated antigens for specific immunotherapy of prostate cancer. Cancers (Basel) 2012; 4:193-217. [PMID: 24213236 PMCID: PMC3712678 DOI: 10.3390/cancers4010193] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8+ cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4+ T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy.
Collapse
|
29
|
Smith HA, Cronk RJ, Lang JM, McNeel DG. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res 2011; 71:6785-95. [PMID: 21880588 DOI: 10.1158/0008-5472.can-11-2127] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent U.S. Food and Drug Administration approval of the first immunotherapy for prostate cancer encourages efforts to improve immune targeting of this disease. The synovial sarcoma X chromosome breakpoint (SSX) proteins comprise a set of cancer-testis antigens that are upregulated in MHC class I-deficient germline cells and in various types of advanced cancers with a poor prognosis. Humoral and cell-mediated immune responses to the SSX family member SSX2 can arise spontaneously in prostate cancer patients. Thus, SSX2 and other proteins of the SSX family may offer useful targets for tumor immunotherapy. In this study, we evaluated the expression of SSX family members in prostate cancer cell lines and tumor biopsies to identify which members might be most appropriate for immune targeting. We found that SSX2 was expressed most frequently in prostate cell lines, but that SSX1 and SSX5 were also expressed after treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine. Immunohistochemical analysis of microarrayed tissue biopsies confirmed a differential level of SSX protein expression in human prostate cancers. Notably, SSX expression in patient tumor samples was restricted to metastatic lesions (5/22; 23%) and no expression was detected in primary prostate tumors examined (0/73; P < 0.001). We determined that cross-reactive immune responses to a dominant HLA-A2-specific SSX epitope (p103-111) could be elicited by immunization of A2/DR1 transgenic mice with SSX vaccines. Our findings suggest that multiple SSX family members are expressed in metastatic prostate cancers which are amenable to simultaneous targeting.
Collapse
Affiliation(s)
- Heath A Smith
- Department of Medicine and Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|