1
|
Tian J, Tong D, Li Z, Wang E, Yu Y, Lv H, Hu Z, Sun F, Wang G, He M, Xia T. Mage transposon: a novel gene delivery system for mammalian cells. Nucleic Acids Res 2024; 52:2724-2739. [PMID: 38300794 PMCID: PMC10954464 DOI: 10.1093/nar/gkae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Transposons, as non-viral integration vectors, provide a secure and efficient method for stable gene delivery. In this study, we have discovered Mage (MG), a novel member of the piggyBac(PB) family, which exhibits strong transposability in a variety of mammalian cells and primary T cells. The wild-type MG showed a weaker insertion preference for near genes, transcription start sites (TSS), CpG islands, and DNaseI hypersensitive sites in comparison to PB, approaching the random insertion pattern. Utilizing in silico virtual screening and feasible combinatorial mutagenesis in vitro, we effectively produced the hyperactive MG transposase (hyMagease). This variant boasts a transposition rate 60% greater than its native counterpart without significantly altering its insertion pattern. Furthermore, we applied the hyMagease to efficiently deliver chimeric antigen receptor (CAR) into T cells, leading to stable high-level expression and inducing significant anti-tumor effects both in vitro and in xenograft mice models. These findings provide a compelling tool for gene transfer research, emphasizing its potential and prospects in the domains of genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jinghan Tian
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Doudou Tong
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | - Erqiang Wang
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yifei Yu
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Hangya Lv
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Zhendan Hu
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Fang Sun
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Guoping Wang
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min He
- Elongevity Inc, Wuhan, Hubei 430000, China
| | - Tian Xia
- Institute of Pathology, Department of Pathology, School of Basic Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Bittner S, Hehlgans T, Feuerer M. Engineered Treg cells as putative therapeutics against inflammatory diseases and beyond. Trends Immunol 2023; 44:468-483. [PMID: 37100644 DOI: 10.1016/j.it.2023.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Regulatory T (Treg) cells ensure tolerance against self-antigens, limit excessive inflammation, and support tissue repair processes. Therefore, Treg cells are currently attractive candidates for the treatment of certain inflammatory diseases, autoimmune disorders, or transplant rejection. Early clinical trials have proved the safety and efficacy of certain Treg cell therapies in inflammatory diseases. We summarize recent advances in engineering Treg cells, including the concept of biosensors for inflammation. We assess Treg cell engineering possibilities for novel functional units, including Treg cell modifications influencing stability, migration, and tissue adaptation. Finally, we outline perspectives of engineered Treg cells going beyond inflammatory diseases by using custom-designed receptors and read-out systems, aiming to use Treg cells as in vivo diagnostic tools and drug delivery vehicles.
Collapse
Affiliation(s)
- Sebastian Bittner
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
3
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
4
|
Singh H, Srour SA, Milton DR, McCarty J, Dai C, Gaballa MR, Ammari M, Olivares S, Huls H, De Groot E, Marin D, Petropoulos D, Olson AL, Anderlini P, Im JS, Khouri I, Hosing CM, Rezvani K, Champlin RE, Shpall EJ, Cooper LJN, Kebriaei P. Sleeping beauty generated CD19 CAR T-Cell therapy for advanced B-Cell hematological malignancies. Front Immunol 2022; 13:1032397. [PMID: 36439104 PMCID: PMC9684710 DOI: 10.3389/fimmu.2022.1032397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged recently as a standard of care treatment for patients with relapsed or refractory acute lymphoblastic leukemia (ALL) and several subtypes of B-cell non-Hodgkin lymphoma (NHL). However, its use remains limited to highly specialized centers, given the complexity of its administration and its associated toxicities. We previously reported our experience in using a novel Sleeping Beauty (SB) CD19-specific CAR T-cell therapy in the peri-transplant setting, where it exhibited an excellent safety profile with encouraging survival outcomes. We have since modified the SB CD19 CAR construct to improve its efficacy and shorten its manufacturing time. We report here the phase 1 clinical trial safety results. Fourteen heavily treated patients with relapsed/refractory ALL and NHL were infused. Overall, no serious adverse events were directly attributed to the study treatment. Three patients developed grades 1-2 cytokine release syndrome and none of the study patients experienced neurotoxicity. All dose levels were well tolerated and no dose-limiting toxicities were reported. For efficacy, 3 of 8 (38%) patients with ALL achieved CR/CRi (complete remission with incomplete count recovery) and 1 (13%) patient had sustained molecular disease positivity. Of the 4 patients with DLBCL, 2 (50%) achieved CR. The SB-based CAR constructs allow manufacturing of targeted CAR T-cell therapies that are safe, cost-effective and with encouraging antitumor activity.
Collapse
Affiliation(s)
- Harjeet Singh
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samer A. Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Denái R. Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica McCarty
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cuiping Dai
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mahmoud R. Gaballa
- Cellular Therapy Program and Bone Marrow Transplant Unit, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Mariam Ammari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Simon Olivares
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Helen Huls
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Demetrios Petropoulos
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amanda L. Olson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paolo Anderlini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jin S. Im
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Issa Khouri
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chitra M. Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: Partow Kebriaei,
| |
Collapse
|
5
|
Wei Y, Jiang W. Development of non-viral site-specific integrated CAR-T technology and its application in clinical treatment of relapsed/refractory B-cell non-Hodgkin lymphoma. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Tipanee J, Samara-Kuko E, Gevaert T, Chuah MK, VandenDriessche T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol Ther 2022; 30:3155-3175. [PMID: 35711141 PMCID: PMC9552804 DOI: 10.1016/j.ymthe.2022.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic CD19-specific chimeric antigen receptor (CAR) T cells with inactivated donor T cell receptor (TCR) expression can be used as an "off-the-shelf" therapeutic modality for lymphoid malignancies, thus offering an attractive alternative to autologous, patient-derived T cells. Current approaches for T cell engineering mainly rely on the use of viral vectors. Here, we optimized and validated a non-viral genetic modification platform based on Sleeping Beauty (SB) transposons delivered with minicircles to express CD19-28z.CAR and CRISPR-Cas9 ribonucleoparticles to inactivate allogeneic TCRs. Efficient TCR gene disruption was achieved with minimal cytotoxicity and with attainment of robust and stable CD19-28z.CAR expression. The CAR T cells were responsive to CD19+ tumor cells with antitumor activities that induced complete tumor remission in NALM6 tumor-bearing mice while significantly reducing TCR alloreactivity and GvHD development. Single CAR signaling induced the similar T cell signaling signatures in TCR-disrupted CAR T cells and control CAR T cells. In contrast, TCR disruption inhibited T cell signaling/protein phosphorylation compared with the control CAR T cells during dual CAR/TCR signaling. This non-viral SB transposon-CRISPR-Cas9 combination strategy serves as an alternative for generating next-generation CD19-specific CAR T while reducing GvHD risk and easing potential manufacturing constraints intrinsic to viral vectors.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Saunderson SC, Hosseini-Rad SMA, McLellan AD. Noise-Reduction and Sensitivity-Enhancement of a Sleeping Beauty-Based Tet-On System. Genes (Basel) 2022; 13:genes13101679. [PMID: 36292564 PMCID: PMC9602432 DOI: 10.3390/genes13101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Tetracycline-inducible systems are widely used control elements for mammalian gene expression. Despite multiple iterations to improve inducibility, their use is still compromised by basal promoter activity in the absence of tetracyclines. In a mammalian system, we previously showed that the introduction of the G72V mutation in the rtTA-M2 tetracycline activator lowers the basal level expression and increases the fold-induction of multiple genetic elements in a long chimeric antigen receptor construct. In this study, we confirmed that the G72V mutation was effective in minimising background expression in the absence of an inducer, resulting in an increase in fold-expression. Loss of responsiveness due to the G72V mutation was compensated through the incorporation of four sensitivity enhancing (SE) mutations, without compromising promoter tightness. However, SE mutations alone (without G72V) led to undesirable leakiness. Although cryptic splice site removal from rtTA did not alter the inducible control of the luciferase reporter gene in this simplified vector system, this is still recommended as a precaution in more complex multi-gene elements that contain rtTA. The optimized expression construct containing G72V and SE mutations currently provides the best improvement of fold-induction mediated by the rtTA-M2 activator in a mammalian system.
Collapse
Affiliation(s)
- Sarah C. Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| | - SM Ali Hosseini-Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Centre of Excellence in Immunology and Immune-Mediated Diseases, University of Chulalongkorn, Bangkok 10330, Thailand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
8
|
Zhang J, Hu Y, Yang J, Li W, Zhang M, Wang Q, Zhang L, Wei G, Tian Y, Zhao K, Chen A, Tan B, Cui J, Li D, Li Y, Qi Y, Wang D, Wu Y, Li D, Du B, Liu M, Huang H. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature 2022; 609:369-374. [PMID: 36045296 PMCID: PMC9452296 DOI: 10.1038/s41586-022-05140-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1–7. However, CAR-T cell therapy currently has several limitations8–12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specific targeted CAR-T cells through CRISPR–Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were effective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efficacy of non-viral, gene-specific integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy. Non-viral CAR-T cells with gene-specific targeted integration are safe and effective in patients with lymphoma.
Collapse
Affiliation(s)
- Jiqin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jiaxuan Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Li
- BRL Medicine, Inc., Shanghai, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | | | - Linjie Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yue Tian
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kui Zhao
- PETCT Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,BRL Medicine, Inc., Shanghai, China
| | - Binghe Tan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,BRL Medicine, Inc., Shanghai, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Deqi Li
- BRL Medicine, Inc., Shanghai, China
| | - Yi Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yalei Qi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yuxuan Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,BRL Medicine, Inc., Shanghai, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,BRL Medicine, Inc., Shanghai, China.
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,BRL Medicine, Inc., Shanghai, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,BRL Medicine, Inc., Shanghai, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
9
|
Baldassarri S, Benati D, D’Alessio F, Patrizi C, Cattin E, Gentile M, Raggioli A, Recchia A. Engineered Sleeping Beauty Transposon as Efficient System to Optimize Chimp Adenoviral Production. Int J Mol Sci 2022; 23:ijms23147538. [PMID: 35886882 PMCID: PMC9316264 DOI: 10.3390/ijms23147538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sleeping Beauty (SB) is the first DNA transposon employed for efficient transposition in vertebrate cells, opening new applications for genetic engineering and gene therapies. A transposon-based gene delivery system holds the favourable features of non-viral vectors and an attractive safety profile. Here, we employed SB to engineer HEK293 cells for optimizing the production of a chimpanzee Adenovector (chAd) belonging to the Human Mastadenovirus C species. To date, chAd vectors are employed in several clinical settings for infectious diseases, last but not least COVID-19. A robust, efficient and quick viral vector production could advance the clinical application of chAd vectors. To this aim, we firstly swapped the hAd5 E1 with chAd-C E1 gene by using the CRISPR/Cas9 system. We demonstrated that in the absence of human Ad5 E1, chimp Ad-C E1 gene did not support HEK293 survival. To improve chAd-C vector production, we engineered HEK293 cells to stably express the chAd-C precursor terminal protein (ch.pTP), which plays a crucial role in chimpanzee Adenoviral DNA replication. The results indicate that exogenous ch.pTP expression significantly ameliorate the packaging and amplification of recombinant chAd-C vectors thus, the engineered HEK293ch.pTP cells could represent a superior packaging cell line for the production of these vectors.
Collapse
Affiliation(s)
- Samantha Baldassarri
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Federica D’Alessio
- ReiThera S.r.l., 00128 Rome, Italy; (F.D.); (M.G.); (A.R.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80138 Naples, Italy
| | - Clarissa Patrizi
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Eleonora Cattin
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | | | | | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
- Correspondence:
| |
Collapse
|
10
|
Shi M, Li L, Wang S, Cheng H, Chen W, Sang W, Qi K, Li Z, Wang G, Li H, Lan J, Huang J, Fei X, Yu M, Li F, Qiao J, Wu Q, Zeng L, Jing G, Zheng J, Gale RP, Xu K, Cao J. Safety and efficacy of a humanized CD19 chimeric antigen receptor T cells for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol 2022; 97:711-718. [PMID: 35179242 DOI: 10.1002/ajh.26506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
CD19-targeted chimeric antigen receptor T (CAR-T) cells using murine single-chain variable fragment (scFv) has shown substantial clinical efficacy in treating relapsed/refractory acute lymphoblastic leukemia (R/R ALL). However, potential immunogenicity of the murine scFv domain may limit the persistence of CAR-T cells. In this study, we treated 52 consecutive subjects with R/R ALL with humanized CD19-specific CAR-T cells (hCART19s). Forty-six subjects achieved complete remission (CR) (N = 43) or CR with incomplete count recovery (CRi) (N = 3) within 1 month post infusion. During the follow-up with a median time of 20 months, the 1-year cumulative incidence of relapse was 25% (95% confidence interval [CI] 13-46), and 1-year event-free survival was 45% (95% CI 29-60). To the cutoff date, 20 patients presented CD19+ relapse and 2 had CD19- relapse. Among the 22 relapsed patients, 14 had treatment-mediated and treatment-boosted antidrug antibodies (ADA) as detected in a sensitive and specific cell-based assay. ADA positivity was correlated with the disease relapse risk. ADA-positive patients had a significantly lower CAR copy number than ADA-negative patients at the time of recurrence (p < .001). In conclusion, hCART19s therapy is safe and highly active in R/R ALL patients, and the hCART19s treatment could induce the emergence of ADA, which is related to the recurrence of the primary disease.
Collapse
Affiliation(s)
- Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotheraty, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Li Li
- Department of Gastroenterology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Shiyuan Wang
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Hai Cheng
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Wei Chen
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Wei Sang
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Kunming Qi
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Zhenyu Li
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotheraty, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Huizhong Li
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotheraty, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Jianping Lan
- Department of Hematology Zhejiang Provincial People's Hospital Zhejiang China
| | - Jinqi Huang
- Department of Hematology The Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Xiaoming Fei
- Department of Hematology The Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Min Yu
- Center of Hematology The First Affiliated Hospital of Nanchang University Nanchang China
| | - Fei Li
- Center of Hematology The First Affiliated Hospital of Nanchang University Nanchang China
| | - Jianlin Qiao
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou Medical University Xuzhou China
| | - Qingyun Wu
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou Medical University Xuzhou China
| | - Lingyu Zeng
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou Medical University Xuzhou China
| | | | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotheraty, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Robert Peter Gale
- Centre for Hematology Research, Department of Immunology and Inflammation Imperial College London London UK
| | - Kailin Xu
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou Medical University Xuzhou China
| | - Jiang Cao
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| |
Collapse
|
11
|
He X, Zeng XX. Immunotherapy and CRISPR Cas Systems: Potential Cure of COVID-19? Drug Des Devel Ther 2022; 16:951-972. [PMID: 35386853 PMCID: PMC8979261 DOI: 10.2147/dddt.s347297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 has plunged the world into a pandemic that affected millions. The continually emerging new variants of concern raise the question as to whether the existing vaccines will continue to provide sufficient protection for individuals from SARS-CoV-2 during natural infection. This narrative review aims to briefly outline various immunotherapeutic options and discuss the potential of clustered regularly interspaced short palindromic repeat (CRISPR Cas system technology against COVID-19 treatment as specific cure. As the development of vaccine, convalescent plasma, neutralizing antibodies are based on the understanding of human immune responses against SARS-CoV-2, boosting human body immune responses in case of SARS-CoV-2 infection, immunotherapeutics seem feasible as specific cure against COVID-19 if the present challenges are overcome. In cell based therapeutics, apart from the high costs, risks and side effects, there are technical problems such as the production of sufficient potent immune cells and antibodies under limited time to treat the COVID-19 patients in mild conditions prior to progression into a more severe case. The CRISPR Cas technology could be utilized to refine the specificity and safety of CAR-T cells, CAR-NK cells and neutralizing antibodies against SARS-CoV-2 during various stages of the COVID-19 disease progression in infected individuals. Moreover, CRISPR Cas technology are proposed in hypotheses to degrade the viral RNA in order to terminate the infection caused by SARS-CoV-2. Thus personalized cocktails of immunotherapeutics and CRISPR Cas systems against COVID-19 as a strategy might prevent further disease progression and circumvent immunity escape.
Collapse
Affiliation(s)
- Xuesong He
- Department of Cardiology, Changzhou Jintan First People’s Hospital, Changzhou City, Jiangsu Province, 213200, People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan City, Guangdong Province, 528000, People’s Republic of China
| |
Collapse
|
12
|
Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. Int J Mol Sci 2022; 23:ijms23063154. [PMID: 35328572 PMCID: PMC8955360 DOI: 10.3390/ijms23063154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a rapidly emerging modality that engineers T cells to redirect tumor-specific cytotoxicity. CAR T cells have been well characterized for their efficacy against B cell malignancies, and rigorously studied in other types of tumors. Preclinical evaluation of CAR T cell function, including direct tumor killing, cytokine production, and memory responses, is crucial to the development and optimization of CAR T cell therapies. Such comprehensive examinations are usually performed in different types of models. Model establishment should focus on key challenges in the clinical setting and the capability to generate reliable data to indicate CAR T cell therapeutic potency in the clinic. Further, modeling the interaction between CAR T cells and tumor microenvironment provides additional insight for the future endeavors to enhance efficacy, especially against solid tumors. This review will summarize both in vitro and in vivo models for CAR T cell functional evaluation, including how they have evolved with the needs of CAR T cell research, the information they can provide for preclinical assessment of CAR T cell products, and recent technology advances to test CAR T cells in more clinically relevant models.
Collapse
|
13
|
Kyte JA. Strategies for Improving the Efficacy of CAR T Cells in Solid Cancers. Cancers (Basel) 2022; 14:cancers14030571. [PMID: 35158839 PMCID: PMC8833730 DOI: 10.3390/cancers14030571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cell therapy with genetically retargeted T cells shows strong clinical efficacy against leukaemia and lymphoma. To make this therapy efficient against solid cancers, a series of hurdles must be addressed. This includes the need to enable the T cells to survive long term in patients and to overcome immunosuppressive mechanisms in the tumour. Further, it is essential to prevent tumour cells from escaping by losing the protein that is recognised by the infused cells. The present article provides an overview of the key strategies that are currently being investigated to overcome these hurdles. A series of approaches have been described in preclinical models, but these remain untested in patients. The further progress of the field will depend on evaluating more strategies in a proper clinical setting. Abstract Therapy with T cells equipped with chimeric antigen receptors (CARs) shows strong efficacy against leukaemia and lymphoma, but not yet against solid cancers. This has been attributed to insufficient T cell persistence, tumour heterogeneity and an immunosuppressive tumour microenvironment. The present article provides an overview of key strategies that are currently investigated to overcome these hurdles. Basic aspects of CAR design are revisited, relevant for tuning the stimulatory signal to the requirements of solid tumours. Novel approaches for enhancing T cell persistence are highlighted, based on epigenetic or post-translational modifications. Further, the article describes CAR T strategies that are being developed for overcoming tumour heterogeneity and the escape of cancer stem cells, as well as for countering prevalent mechanisms of immune suppression in solid cancers. In general, personalised medicine is faced with a lack of drugs matching the patient’s profile. The advances and flexibility of modern gene engineering may allow for the filling of some of these gaps with tailored CAR T approaches addressing mechanisms identified as important in the individual patient. At this point, however, CAR T cell therapy remains unproved in solid cancers. The further progress of the field will depend on bringing novel strategies into clinical evaluation, while maintaining safety.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway;
- Department of Clinical Cancer Research, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
14
|
The Immune Landscape of Breast Cancer: Strategies for Overcoming Immunotherapy Resistance. Cancers (Basel) 2021; 13:cancers13236012. [PMID: 34885122 PMCID: PMC8657247 DOI: 10.3390/cancers13236012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is a rapidly advancing field in breast cancer treatment, however, it encounters many obstacles that leave open gateways for breast cancer cells to resist novel immunotherapies. It is believed that the tumor microenvironment consisting of cancer, stromal, and immune cells as well as a plethora of tumor-promoting soluble factors, is responsible for the failure of therapeutic strategies in cancer, including breast tumors. Therefore, an in-depth understanding of key barriers to effective immunotherapy, focusing the research efforts on harnessing the power of the immune system, and thus, developing new strategies to overcome the resistance may contribute significantly to increase breast cancer patient survival. In this review, we discuss the latest reports regarding the strategies rendering the immunosuppressive tumor microenvironment more sensitive to immunotherapy in breast cancers, HER2-positive and triple-negative types of breast cancer, which are attractive from an immunotherapeutic point of view. Abstract Breast cancer (BC) has traditionally been considered to be not inherently immunogenic and insufficiently represented by immune cell infiltrates. Therefore, for a long time, it was thought that the immunotherapies targeting this type of cancer and its microenvironment were not justified and would not bring benefits for breast cancer patients. Nevertheless, to date, a considerable number of reports have indicated tumor-infiltrating lymphocytes (TILs) as a prognostic and clinically relevant biomarker in breast cancer. A high TILs expression has been demonstrated in primary tumors, of both, HER2-positive BC and triple-negative (TNBC), of patients before treatment, as well as after treatment with adjuvant and neoadjuvant chemotherapy. Another milestone was reached in advanced TNBC immunotherapy with the help of the immune checkpoint inhibitors directed against the PD-L1 molecule. Although those findings, together with the recent developments in chimeric antigen receptor T cell therapies, show immense promise for significant advancements in breast cancer treatments, there are still various obstacles to the optimal activity of immunotherapeutics in BC treatment. Of these, the immunosuppressive tumor microenvironment constitutes a key barrier that greatly hinders the success of immunotherapies in the most aggressive types of breast cancer, HER2-positive and TNBC. Therefore, the improvement of the current and the demand for the development of new immunotherapeutic strategies is strongly warranted.
Collapse
|
15
|
Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS, Lizee G. Evolution of CD8 + T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells 2021; 10:cells10092379. [PMID: 34572028 PMCID: PMC8469972 DOI: 10.3390/cells10092379] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer.
Collapse
Affiliation(s)
- Yimo Sun
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Fenge Li
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Heather Sonnemann
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Kyle R. Jackson
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Amjad H. Talukder
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Arjun S. Katailiha
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Gregory Lizee
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
16
|
Lou Y, Chen C, Long X, Gu J, Xiao M, Wang D, Zhou X, Li T, Hong Z, Li C, Zhou J, Chen L. Detection and Quantification of Chimeric Antigen Receptor Transgene Copy Number by Droplet Digital PCR versus Real-Time PCR. J Mol Diagn 2021; 22:699-707. [PMID: 32409121 DOI: 10.1016/j.jmoldx.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapy is a new strategy for the treatment of refractory B-cell malignancies; therefore, the rapid and accurate quantification of CAR transgene copy number is essential. Real-time PCR was used for quantifying the copy number of chimeric antigen receptor transgene. Droplet digital PCR (ddPCR) is an absolute quantification method that does not require a standard curve. In this study, key performance parameters of the ddPCR and real-time PCR methods were assessed, including linearity, detection range, the lower limit of detection, repeatability, reproducibility, and accuracy, using a series of gradient diluted standards and clinical peripheral blood samples from CAR T-cell patients. The two platforms showed a good correlation for the standards (Pearson R2 = 0.9966; P < 0.0001) and clinical samples (Pearson R2 = 0.8952; P < 0.0001), and both showed good linearity (R2 = 0.9996 for ddPCR; R2 = 0.9984 for real-time PCR) over the detection range. Compared with real-time PCR, ddPCR showed lower intra-assay and interassay CVs for the series of diluted standards, which indicated ddPCR has better repeatability and reproducibility. The limit of detection of ddPCR was lower compared with that of real-time PCR. The combined results suggest that ddPCR is a more promising tool for the detection and quantification of the chimeric antigen receptor transgene copy number.
Collapse
Affiliation(s)
- Yaoyao Lou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Caixia Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaolu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jia Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tongjuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chunrui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
17
|
Kumar ARK, Shou Y, Chan B, L K, Tay A. Materials for Improving Immune Cell Transfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007421. [PMID: 33860598 DOI: 10.1002/adma.202007421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy holds great promise for preventing and treating deadly diseases such as cancer. However, it remains challenging to transfect and engineer primary immune cells for clinical cell manufacturing. Conventional tools using viral vectors and bulk electroporation suffer from low efficiency while posing risks like viral transgene integration and excessive biological perturbations. Emerging techniques using microfluidics, nanoparticles, and high-aspect-ratio nanostructures can overcome these challenges, and on top of that, provide universal and high-throughput cargo delivery. Herein, the strengths and limitations of traditional and emerging materials for immune cell transfection, and commercial development of these tools, are discussed. To enhance the characterization of transfection techniques and uptake by the clinical community, a list of in vitro and in vivo assays to perform, along with relevant protocols, is recommended. The overall aim, herein, is to motivate the development of novel materials to meet rising demand in transfection for clinical CAR-T cell manufacturing.
Collapse
Affiliation(s)
- Arun R K Kumar
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Krishaa L
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
18
|
Atsavapranee ES, Billingsley MM, Mitchell MJ. Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine 2021; 67:103354. [PMID: 33910123 PMCID: PMC8099660 DOI: 10.1016/j.ebiom.2021.103354] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
While initial approaches to adoptive T cell therapy relied on the identification and expansion of rare tumour-reactive T cells, genetic engineering has transformed cancer immunotherapy by enabling the modification of primary T cells to increase their therapeutic potential. Specifically, gene editing technologies have been utilized to create T cell populations with improved responses to antigens, lower rates of exhaustion, and potential for use in allogeneic applications. In this review, we provide an overview of T cell therapy gene editing strategies and the delivery technologies utilized to genetically engineer T cells. We also discuss recent investigations and clinical trials that have utilized gene editing to enhance the efficacy of T cells and broaden the application of cancer immunotherapies.
Collapse
Affiliation(s)
- Ella S Atsavapranee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Chimeric antigen receptor T cell therapy in oncology – Pipeline at a glance: Analysis of the ClinicalTrials.gov database. Crit Rev Oncol Hematol 2021; 159:103239. [DOI: 10.1016/j.critrevonc.2021.103239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
|
20
|
Agarwalla P, Ogunnaike EA, Ahn S, Ligler FS, Dotti G, Brudno Y. Scaffold-Mediated Static Transduction of T Cells for CAR-T Cell Therapy. Adv Healthc Mater 2020; 9:e2000275. [PMID: 32592454 PMCID: PMC7518635 DOI: 10.1002/adhm.202000275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/08/2020] [Indexed: 01/08/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive clinical responses in patients with B-cell malignancies. Critical to the success of CAR-T cell therapies is the achievement of robust gene transfer into T cells mediated by viral vectors such as gamma-retroviral vectors. However, current methodologies of retroviral gene transfer rely on spinoculation and the use of retronectin, which may limit the implementation of cost-effective CAR-T cell therapies. Herein, a low-cost, tunable, macroporous, alginate scaffold that transduces T cells with retroviral vectors under static condition is described. CAR-T cells produced by macroporous scaffold-mediated viral transduction exhibit >60% CAR expression, retain effector phenotype, expand to clinically relevant cell numbers, and eradicate CD19+ lymphoma in vivo. Efficient transduction is dependent on scaffold macroporosity. Taken together, the data show that macroporous alginate scaffolds serve as an attractive alternative to current transduction protocols and have high potential for clinical translation to genetically modify T cells for adoptive cellular therapy.
Collapse
Affiliation(s)
- Pritha Agarwalla
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University - Raleigh, 1840 Enterpreneur Way, Raleigh, NC, 27695, USA
| | - Edikan A Ogunnaike
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sarah Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University - Raleigh, 1840 Enterpreneur Way, Raleigh, NC, 27695, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill. 450 West Dr., Chapel Hill, NC, 27599, USA
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University - Raleigh, 1840 Enterpreneur Way, Raleigh, NC, 27695, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill. 450 West Dr., Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Yang Y, Badeti S, Tseng HC, Ma MT, Liu T, Jiang JG, Liu C, Liu D. Superior Expansion and Cytotoxicity of Human Primary NK and CAR-NK Cells from Various Sources via Enriched Metabolic Pathways. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:428-445. [PMID: 32695845 PMCID: PMC7364029 DOI: 10.1016/j.omtm.2020.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Clinical success of chimeric antigen receptor (CAR) T cell immunotherapy requires the engineering of autologous T cells, which limits the broader implementation of CAR cell therapy. The development of allogeneic and universal cell products will significantly broaden their application and reduce costs. Allogeneic natural killer (NK) cells can be used for universal CAR immunotherapy. Here, we develop an alternative approach for the rapid expansion of primary NK and CAR-NK cells with superior expansion capability and in vivo cytotoxicity from various sources (including peripheral blood, cord blood, and tumor tissue). We apply a human B-lymphoblastoid cell-line 721.221 (hereinafter, 221)-based artificial feeder cell system with membrane-bound interleukin 21 (mIL-21) to propagate NK and CAR-NK cells. The expansion capability, purity, and cytotoxicity of NK cells expanded with 221-mIL-21 feeder cells are superior to that of conventional K562-mIL-21 feeder cells. RNA sequencing (RNA-seq) data show that 221-mIL-21 feeder cell-expanded NK cells display a less differentiated, non-exhausted, limited fratricidal, memory-like phenotype correlated with enriched metabolic pathways, which explains underlying mechanisms. Thus, “off-the-shelf” NK and CAR-NK cells with superior functionalities and expansion using a genetically modified 221-mIL-21 feeder cell expansion system will greatly support clinical use of NK immunotherapy.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Hsiang-Chi Tseng
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Minh Tuyet Ma
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Ting Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, 205 South Orange Avenue, Newark, NJ 07101, USA
| |
Collapse
|
22
|
Kunz A, Gern U, Schmitt A, Neuber B, Wang L, Hückelhoven-Krauss A, Michels B, Hofmann S, Müller-Tidow C, Dreger P, Schmitt M, Schubert ML. Optimized Assessment of qPCR-Based Vector Copy Numbers as a Safety Parameter for GMP-Grade CAR T Cells and Monitoring of Frequency in Patients. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:448-454. [PMID: 32201711 PMCID: PMC7078460 DOI: 10.1016/j.omtm.2020.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T cells are considered genetically modified organisms (GMOs) and constitute gene therapy medicinal products. Thus, CAR T cell manufacturing for clinical application is strictly regulated. Appropriate methods to assess vector copy numbers (VCNs) in CAR T cell products and monitoring of CAR T cell frequencies in patients are required. Quantitative polymerase chain reaction (qPCR) is the preferred method for VCN assessment. However, no standardized procedure with high reproducibility has been described yet. Here, we report on a single copy gene (SCG)-based duplex (DP)-qPCR assay (SCG-DP-PCR) to determine VCN in CAR T cell products. SCG-DP-PCR was validated and compared to the absolute standard curve method (ACM) within the framework of a clinical trial treating patients with good manufacturing practice (GMP)-grade CAR T cells at the University Hospital Heidelberg. Methodologically, SCG-DP-PCR displayed technical advantages over ACM and minimized mathematical analysis. SCG-DP-PCR, as a highly reproducible approach, can be used for clinical follow-up of patients treated with CAR T cells or other GMOs and might replace established methods for VCN quantification. This work will enable clinicians to assess VCN, as well as CAR T cell frequencies, in patients as a basis for decisions on subsequent therapies, including repeated CAR T cell administration.
Collapse
Affiliation(s)
- Alexander Kunz
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Gern
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| | - Lei Wang
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| | - Birgit Michels
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Hofmann
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Maria-Luisa Schubert
- Department of Internal Medicine V (Hematology/Oncology/Rheumatology), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Abstract
T cells engineered with chimeric antigen receptors (CARs) are emerging as powerful cancer immunotherapies. Remarkable efficacies have been demonstrated in treating B-cell malignancies with CAR-T cells, leading to the FDA's first approval of gene therapy. Currently, numerous clinical trials for hematological malignancies and solid tumors are underway worldwide. Production of CAR-T cells with proper qualities is essential for CAR-T success in vivo. Here we detail optimized protocols for the generation of CAR-T cells for preclinical studies using lentiviral gene transfer, expansion of CAR-T cells in culture, detection of CAR expression, and evaluation of CAR-T cellular cytotoxicity in vitro.
Collapse
|
24
|
Kumbhari V, Li L, Piontek K, Ishida M, Fu R, Khalil B, Garrett CM, Liapi E, Kalloo AN, Selaru FM. Successful liver-directed gene delivery by ERCP-guided hydrodynamic injection (with videos). Gastrointest Endosc 2018; 88:755-763.e5. [PMID: 30220303 PMCID: PMC6249687 DOI: 10.1016/j.gie.2018.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS A simple, safe, targeted, and efficient in vivo DNA delivery system is necessary for clinical-grade liver-targeted gene therapy in humans. Intravascular hydrodynamic gene delivery has been investigated in large animal models, but translation to humans has been hampered by its technical challenges, invasiveness, and potential for significant cardiovascular adverse events. We posited that intrabiliary delivery of DNA plasmids via ERCP-guided hydrodynamic injection could overcome these obstacles. METHODS Twelve pigs (40-50 kg) were divided into 3 groups (4 per group) and survived 21, 30, or 60 days. ERCP was performed by inflating a balloon catheter in the common hepatic duct and creating a closed space between it and the liver parenchyma. Last, a solution composed of plasmid/sleeping beauty (SB) mix was injected under pressure through the catheter into the closed space. Swine were killed at the 3 different time points and liver tissue harvested. Plasmid DNA expression and functional translated protein expression were assessed. RESULTS ERCP-guided hydrodynamic delivery of naked plasmid DNA facilitated by pCytomegalovirus-Sleep Beauty (pCMV-SB) transposons was technically feasible and devoid of cardiovascular and local adverse events in all 12 pigs. Furthermore, plasmid DNA (both single and combination) was successfully transferred into swine hepatocytes in all 12 pigs. Additionally, stable integration of the DNA constructs in hepatocyte genomic DNA was reliably noted at all 3 time points. In the 4 swine that were kept alive to 60 days, successful genomic integration and subsequent protein expression was observed in the targeted liver tissue. CONCLUSIONS ERCP-guided hydrodynamic delivery of gene therapy may usher in the next chapter in gene therapy with the potential to impact a variety of single-gene, complex genetic, and epigenetic liver diseases. It also raises the possibility that other nucleic acid therapeutics (microRNA, lncRNA, siRNA, shRNA) could similarly be delivered.
Collapse
Affiliation(s)
- Vivek Kumbhari
- Department of Medicine and Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ling Li
- Department of Medicine and Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Klaus Piontek
- Department of Medicine and Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Masaharu Ishida
- Department of Medicine and Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Rongdang Fu
- Department of Medicine and Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Bassem Khalil
- Department of Medicine and Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Caroline M Garrett
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eleni Liapi
- Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Anthony N Kalloo
- Department of Medicine and Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Florin M Selaru
- Department of Medicine and Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; The Institute for NanoBio Technology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Sürün D, von Melchner H, Schnütgen F. CRISPR/Cas9 genome engineering in hematopoietic cells. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 28:33-39. [PMID: 30205879 DOI: 10.1016/j.ddtec.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
The development of genome editing tools capable of modifying specific genomic sequences with unprecedented accuracy has opened up a wide range of new possibilities in targeted gene manipulation. In particular, the CRISPR/Cas9 system, a repurposed prokaryotic adaptive immune system, has been widely adopted because of its unmatched simplicity and flexibility. In this review we discuss achievements and current limitations of CRISPR/Cas9 genome editing in hematopoietic cells with special emphasis on its potential use in ex vivo gene therapy of monogenic blood disorders, HIV and cancer.
Collapse
Affiliation(s)
- Duran Sürün
- Department of Molecular Hematology and LOEWE Center for Cell and Gene Therapy, Goethe University Medical School, 60590 Frankfurt am Main, Germany; Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - Harald von Melchner
- Department of Molecular Hematology and LOEWE Center for Cell and Gene Therapy, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Molecular Hematology and LOEWE Center for Cell and Gene Therapy, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Krackhardt AM, Anliker B, Hildebrandt M, Bachmann M, Eichmüller SB, Nettelbeck DM, Renner M, Uharek L, Willimsky G, Schmitt M, Wels WS, Schüssler-Lenz M. Clinical translation and regulatory aspects of CAR/TCR-based adoptive cell therapies-the German Cancer Consortium approach. Cancer Immunol Immunother 2018; 67:513-523. [PMID: 29380009 PMCID: PMC11028374 DOI: 10.1007/s00262-018-2119-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/20/2018] [Indexed: 12/17/2022]
Abstract
Adoptive transfer of T cells genetically modified by TCRs or CARs represents a highly attractive novel therapeutic strategy to treat malignant diseases. Various approaches for the development of such gene therapy medicinal products (GTMPs) have been initiated by scientists in recent years. To date, however, the number of clinical trials commenced in Germany and Europe is still low. Several hurdles may contribute to the delay in clinical translation of these therapeutic innovations including the significant complexity of manufacture and non-clinical testing of these novel medicinal products, the limited knowledge about the intricate regulatory requirements of the academic developers as well as limitations of funds for clinical testing. A suitable good manufacturing practice (GMP) environment is a key prerequisite and platform for the development, validation, and manufacture of such cell-based therapies, but may also represent a bottleneck for clinical translation. The German Cancer Consortium (DKTK) and the Paul-Ehrlich-Institut (PEI) have initiated joint efforts of researchers and regulators to facilitate and advance early phase, academia-driven clinical trials. Starting with a workshop held in 2016, stakeholders from academia and regulatory authorities in Germany have entered into continuing discussions on a diversity of scientific, manufacturing, and regulatory aspects, as well as the benefits and risks of clinical application of CAR/TCR-based cell therapies. This review summarizes the current state of discussions of this cooperative approach providing a basis for further policy-making and suitable modification of processes.
Collapse
Affiliation(s)
- Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Hämatologie und Onkologie, Klinikum rechts der Isar, TU München, TUM School of Medicine, Munich, Germany.
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany.
| | - Brigitte Anliker
- Paul-Ehrlich-Institut (PEI, German Federal Institute for Vaccines and Biomedicines), Langen, Germany
| | - Martin Hildebrandt
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- TUMCells (Interdisciplinary Center for Cellular Therapies), TUM School of Medicine, Munich, Germany
| | - Michael Bachmann
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Radio and Tumorimmunology, Dresden, Germany
- Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg and Dresden, Germany
| | - Stefan B Eichmüller
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg and Dresden, Germany
- GMP and T Cell Therapy Unit, DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
| | - Dirk M Nettelbeck
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
| | - Matthias Renner
- Paul-Ehrlich-Institut (PEI, German Federal Institute for Vaccines and Biomedicines), Langen, Germany
| | - Lutz Uharek
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Stem Cell Facility, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerald Willimsky
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Schmitt
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Department of Internal Medicine V, GMP Core Facility, Heidelberg University Hospital, Heidelberg, Germany
| | - Winfried S Wels
- DKTK-Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium) and DKFZ-Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Martina Schüssler-Lenz
- Paul-Ehrlich-Institut (PEI, German Federal Institute for Vaccines and Biomedicines), Langen, Germany
| |
Collapse
|
27
|
Benati D, Cocchiarella F, Recchia A. An Efficient In Vitro Transposition Method by a Transcriptionally Regulated Sleeping Beauty System Packaged into an Integration Defective Lentiviral Vector. J Vis Exp 2018. [PMID: 29364270 DOI: 10.3791/56742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a non-viral integrating system with proven efficacy for gene transfer and functional genomics. To optimize the SB transposon machinery, a transcriptionally regulated hyperactive transposase (SB100X) and T2-based transposon are employed. Typically, the transposase and transposon are provided transiently by plasmid transfection and SB100X expression is driven by a constitutive promoter. Here, we describe an efficient method to deliver the SB components to human cells that are resistant to several physical and chemical transfection methods, to control SB100X expression and stably integrate a gene of interest (GOI) through a "cut and paste" SB mechanism. The expression of hyperactive transposase is tightly controlled by the Tet-ON system, widely used to control gene expression since 1992. The gene of interest is flanked by inverted repeats (IR) of the T2 transposon. Both SB components are packaged in integration defective lentiviral vectors transiently produced in HEK293T cells. Human cells, either cell lines or primary cells from human tissue, are in vitro transiently transduced with viral vectors. Upon addition of doxycycline (dox, tetracycline analog) into the culture medium, a fine-tuning of transposase expression is measured and results in a long-lasting integration of the gene of interest in the genome of the treated cells. This method is efficient and applicable to the cell line (e.g., HeLa cells) and primary cells (e.g., human primary keratinocytes), and thus represents a valuable tool for genetic engineering and therapeutic gene transfer.
Collapse
Affiliation(s)
- Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia
| | - Fabienne Cocchiarella
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia
| | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia;
| |
Collapse
|
28
|
Abstract
T-lymphocytes genetically engineered with the chimeric antigen receptor (CAR-T) have shown great therapeutic potential in cancer treatment. A variety of preclinical researches and clinical trials of CAR-T therapy have been carried out to lay the foundation for future clinical application. In these researches, several gene-transfer methods were used to deliver CARs or other genes into T-lymphocytes, equipping CAR-modified T cells with a property of recognizing and attacking antigen-expressing tumor cells in a major histocompatibility complex-independent manner. Here, we summarize the gene-transfer vectors commonly used in the generation of CAR-T cell, including retrovirus vectors, lentivirus vectors, the transposon/transposase system, the plasmid-based system, and the messenger RNA electroporation system. The following aspects were compared in parallel: efficiency of gene transfer, the integration methods in the modified T cells, foreground of scale-up production, and application and development in clinical trials. These aspects should be taken into account to generate the optimal CAR-gene vector that may be suitable for future clinical application.
Collapse
|
29
|
Morita D, Nishio N, Saito S, Tanaka M, Kawashima N, Okuno Y, Suzuki S, Matsuda K, Maeda Y, Wilson MH, Dotti G, Rooney CM, Takahashi Y, Nakazawa Y. Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:131-140. [PMID: 29687032 PMCID: PMC5907825 DOI: 10.1016/j.omtm.2017.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Adoptive T cell therapy using chimeric antigen receptor (CAR)-modified T cells is a promising cancer immunotherapy. We previously developed a non-viral method of gene transfer into T cells using a piggyBac transposon system to improve the cost-effectiveness of CAR-T cell therapy. Here, we have further improved our technology by a novel culture strategy to increase the transfection efficiency and to reduce the time of T cell manufacturing. Using a CH2CH3-free CD19-specific CAR transposon vector and combining irradiated activated T cells (ATCs) as feeder cells and virus-specific T cell receptor (TCR) stimulation, we achieved 51.4% ± 14% CAR+ T cells and 2.8-fold expansion after 14 culture days. Expanded CD19.CAR-T cells maintained a significant fraction of CD45RA+CCR7+ T cells and demonstrated potent antitumor activity against CD19+ leukemic cells both in vitro and in vivo. Therefore, piggyBac-based gene transfer may provide an alternative to viral gene transfer for CAR-T cell therapy.
Collapse
Affiliation(s)
- Daisuke Morita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Nobuhiro Nishio
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
- Corresponding author: Shoji Saito, MD, PhD, Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Satoshi Suzuki
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan
| | - Yasuhiro Maeda
- Department of Hematology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Osaka 586-8521, Japan
| | - Matthew H. Wilson
- Department of Medicine, Vanderbilt University School of Medicine and VA Tennessee Valley Health Care, Nashville, TN 37232, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cliona M. Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
30
|
Trubitsyna M, Michlewski G, Finnegan DJ, Elfick A, Rosser SJ, Richardson JM, French CE. Use of mariner transposases for one-step delivery and integration of DNA in prokaryotes and eukaryotes by transfection. Nucleic Acids Res 2017; 45:e89. [PMID: 28204586 PMCID: PMC5449632 DOI: 10.1093/nar/gkx113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposase:DNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing.
Collapse
Affiliation(s)
- Maryia Trubitsyna
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Gracjan Michlewski
- Institute of Cell Biology, School of Biological Sciences, Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David J Finnegan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Alistair Elfick
- Institute of BioEngineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Susan J Rosser
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Christopher E French
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
31
|
Abstract
INTRODUCTION Recent breakthrough advances in Multiple Myeloma (MM) immunotherapy have been achieved with the approval of the first two monoclonal antibodies, elotuzumab and daratumumab. Adoptive cell therapy (ACT) represents yet another, maybe the most powerful modality of immunotherapy, in which allogeneic or autologous effector cells are expanded and activated ex vivo followed by their re-infusion back into patients. Infused effector cells belong to two categories: naturally occurring, non-engineered cells (donor lymphocyte infusion, myeloma infiltrating lymphocytes, deltagamma T cells) or genetically- engineered antigen-specific cells (chimeric antigen receptor T or NK cells, TCR-engineered cells). Areas covered: This review article summarizes our up-to-date knowledge on ACT in MM, its promises, and upcoming strategies to both overcome its toxicity and to integrate it into future treatment paradigms. Expert opinion: Early results of clinical studies using CAR T cells or TCR- engineered T cells in relapsed and refractory MM are particularly exciting, indicating the potential of long-term disease control or even cure. Despite several caveats including toxicity, costs and restricted availability in particular, these forms of immunotherapy are likely to once more revolutionize MM therapy.
Collapse
Affiliation(s)
- Sonia Vallet
- a Department of Internal Medicine , Karl Landsteiner University of Health Sciences, University Hospital , Krems an der Donau , Austria
| | - Martin Pecherstorfer
- a Department of Internal Medicine , Karl Landsteiner University of Health Sciences, University Hospital , Krems an der Donau , Austria
| | - Klaus Podar
- a Department of Internal Medicine , Karl Landsteiner University of Health Sciences, University Hospital , Krems an der Donau , Austria
| |
Collapse
|
32
|
Klose D, Woitok M, Niesen J, Beerli RR, Grawunder U, Fischer R, Barth S, Fendel R, Nachreiner T. Generation of an artificial human B cell line test system using Transpo-mAbTM technology to evaluate the therapeutic efficacy of novel antigen-specific fusion proteins. PLoS One 2017; 12:e0180305. [PMID: 28704435 PMCID: PMC5509223 DOI: 10.1371/journal.pone.0180305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/13/2017] [Indexed: 12/21/2022] Open
Abstract
The antigen-specific targeting of autoreactive B cells via their unique B cell receptors (BCRs) is a novel and promising alternative to the systemic suppression of humoral immunity. We generated and characterized cytolytic fusion proteins based on an existing immunotoxin comprising tetanus toxoid fragment C (TTC) as the targeting component and the modified Pseudomonas aeruginosa exotoxin A (ETA') as the cytotoxic component. The immunotoxin was reconfigured to replace ETA' with either the granzyme B mutant R201K or MAPTau as human effector domains. The novel cytolytic fusion proteins were characterized with a recombinant human lymphocytic cell line developed using Transpo-mAb™ technology. Genes encoding a chimeric TTC-reactive immunoglobulin G were successfully integrated into the genome of the precursor B cell line REH so that the cells could present TTC-reactive BCRs on their surface. These cells were used to investigate the specific cytotoxicity of GrB(R201K)-TTC and TTC-MAPTau, revealing that the serpin proteinase inhibitor 9-resistant granzyme B R201K mutant induced apoptosis specifically in the lymphocytic cell line. Our data confirm that antigen-based fusion proteins containing granzyme B (R201K) are suitable candidates for the depletion of autoreactive B cells.
Collapse
Affiliation(s)
- Diana Klose
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Mira Woitok
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Stefan Barth
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- * E-mail:
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
33
|
Oldham RAA, Medin JA. Practical considerations for chimeric antigen receptor design and delivery. Expert Opin Biol Ther 2017; 17:961-978. [DOI: 10.1080/14712598.2017.1339687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robyn A. A. Oldham
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jeffrey A. Medin
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, USA
- The Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Liu D, Tian S, Zhang K, Xiong W, Lubaki NM, Chen Z, Han W. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 2017; 8:861-877. [PMID: 28488245 PMCID: PMC5712291 DOI: 10.1007/s13238-017-0415-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body’s immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.
Collapse
Affiliation(s)
- Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| | - Shuo Tian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kai Zhang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ndongala Michel Lubaki
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Weidong Han
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
35
|
Gardeck AM, Sheehan J, Low WC. Immune and viral therapies for malignant primary brain tumors. Expert Opin Biol Ther 2017; 17:457-474. [DOI: 10.1080/14712598.2017.1296132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrew M. Gardeck
- Departments of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Jordan Sheehan
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Departments of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
The Promise of Chimeric Antigen Receptor Engineered T Cells in the Treatment of Hematologic Malignancies. Cancer J 2016; 22:27-33. [PMID: 26841014 DOI: 10.1097/ppo.0000000000000166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Relapsed and refractory hematologic malignancies have a very poor prognosis. Chimeric antigen receptor T cells are emerging as a powerful therapy in this setting. Early clinical trials of genetically modified T cells for the treatment of non-Hodgkin lymphoma, chronic lymphocytic leukemia, and acute lymphoblastic leukemia have shown high complete response rates in patients with few therapeutic options. Exploration is ongoing for other hematologic malignancies including multiple myeloma, acute myeloid leukemia, and Hodgkin lymphoma (HL). At the same time, the design and production of chimeric antigen receptor T cells are being advanced so that this therapy can be more widely utilized. Cytokine release syndrome and neurotoxicity are common, but they are treatable and fully reversible. This review will review available data as well as future developments and challenges in the field.
Collapse
|
37
|
Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncoimmunology 2016; 5:e1251539. [PMID: 28123893 PMCID: PMC5214859 DOI: 10.1080/2162402x.2016.1251539] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
The chimeric antigen receptor (CAR) is a genetically engineered receptor that combines a scFv domain, which specifically recognizes the tumor-specific antigen, with T cell activation domains. CAR-T cell therapies have demonstrated tremendous efficacy against hematologic malignancies in many clinical trials. Recent studies have extended these efforts to the treatment of solid tumors. However, the outcomes of CAR-T cell therapy for solid tumors are not as remarkable as the outcomes have been for hematologic malignancies. A series of hurdles has arisen with respect to CAR-T cell-based immunotherapy, which needs to be overcome to target solid tumors. The major challenge for CAR-T cell therapy in solid tumors is the selection of the appropriate specific antigen to demarcate the tumor from normal tissue. In this review, we discuss the application of CAR-T cells to gastrointestinal and hepatic carcinomas in preclinical and clinical research. Furthermore, we analyze the usefulness of several specific markers in the study of gastrointestinal tumors and hepatic carcinoma.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zimu Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Meiyu Peng
- Department of Immunology, Basic Medical College, Weifang Medical University , Weifang, China
| | - Shuyu Fu
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
38
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
39
|
Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, Jena B, Dawson MJ, Kumaresan PR, Su S, Maiti S, Dai J, Moriarity B, Forget MA, Senyukov V, Orozco A, Liu T, McCarty J, Jackson RN, Moyes JS, Rondon G, Qazilbash M, Ciurea S, Alousi A, Nieto Y, Rezvani K, Marin D, Popat U, Hosing C, Shpall EJ, Kantarjian H, Keating M, Wierda W, Do KA, Largaespada DA, Lee DA, Hackett PB, Champlin RE, Cooper LJN. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest 2016; 126:3363-76. [PMID: 27482888 DOI: 10.1172/jci86721] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/26/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.
Collapse
|
40
|
Cocchiarella F, Latella MC, Basile V, Miselli F, Galla M, Imbriano C, Recchia A. Transcriptionally regulated and nontoxic delivery of the hyperactive Sleeping Beauty Transposase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16038. [PMID: 27574698 PMCID: PMC4985251 DOI: 10.1038/mtm.2016.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
Abstract
The Sleeping Beauty (SB) transposase and, in particular, its hyperactive variant SB100X raises increasing interest for gene therapy application, including genome modification and, more recently, induced pluripotent stem cells (iPS) reprogramming. The documented cytotoxicity of the transposase, when constitutively expressed by an integrating retroviral vector (iRV), has been circumvented by the transient delivery of SB100X using retroviral mRNA transfer. In this study, we developed an alternative, safe, and efficient transposase delivery system based on a tetracycline-ON regulated expression cassette and the rtTA2(S)-M2 transactivator gene transiently delivered by integration-defective lentiviral vectors (IDLVs). Compared with iRV-mediated delivery, expression of tetracycline-induced SB100X delivered by an IDLV results in more efficient integration of a GFP transposon and reduced toxicity. Tightly regulated expression and reactivation of the transposase was achieved in HeLa cells as wells as in human primary keratinocytes. Based on these properties, the regulated transposase-IDLV vectors may represent a valuable tool for genetic engineering and therapeutic gene transfer.
Collapse
Affiliation(s)
- Fabienne Cocchiarella
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Maria Carmela Latella
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Valentina Basile
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Francesca Miselli
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Alessandra Recchia
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| |
Collapse
|
41
|
Hodges TR, Ferguson SD, Heimberger AB. Immunotherapy in glioblastoma: emerging options in precision medicine. CNS Oncol 2016; 5:175-86. [PMID: 27225028 DOI: 10.2217/cns-2016-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy for glioblastoma (GBM) provides a unique opportunity for targeted therapies for each patient, addressing individual variability in genes, tumor biomarkers and clinical profile. As immunotherapy has the potential to specifically target tumor cells with minimal risk to normal tissue, several immunotherapeutic strategies are currently being evaluated in clinical trials in GBM. With the Precision Medicine Initiative being announced in the President's State of the Union Address in 2016, GBM immunotherapy provides a useful platform for changing the landscape in treating patients with difficult disease.
Collapse
Affiliation(s)
- Tiffany R Hodges
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Morris ER, Grey H, McKenzie G, Jones AC, Richardson JM. A bend, flip and trap mechanism for transposon integration. eLife 2016; 5. [PMID: 27223327 PMCID: PMC5481204 DOI: 10.7554/elife.15537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities. DOI:http://dx.doi.org/10.7554/eLife.15537.001 The complete set of DNA in a cell is referred to as its genome. Most genomes contain short fragments of DNA called transposons that can jump from one place to another. Transposons carry sections of DNA with them when they move, which creates diversity and can influence the evolution of a species. Transposons are also being exploited to develop tools for biotechnology and medical applications. One family of transposons – the Mariner/Tc1 family – has proved particularly useful in these endeavours because it is widespread in nature and can jump around the genomes of a broad range of species, including mammals. DNA transposons are cut out of their position and then pasted at a new site by an enzyme called transposase, which is encoded by some of the DNA within the transposon. DNA is made up of strings of molecules called bases and Mariner/Tc1-family transposons can only insert into a new position in the genome at sites that have a specific sequence of two bases. However, it was not known how this target sequence is chosen and how the transposon inserts into it. Morris et al. have now used a technique called X-ray crystallography to build a three-dimensional model of a Mariner/Tc1-family transposon as it inserts into a new position. The model shows that, as the transposon is pasted into its new site, the surrounding DNA bends. This causes two DNA bases in the surrounding DNA to flip out from their normal position in the DNA molecule, which enables them to be recognised by the transposase. Further experiments showed that this base-flipping is dynamic, that is, the two bases continuously flip in and out of position. Furthermore, Morris et al. identified which parts of the transposase enzyme are required for the transposon to be efficiently pasted into the genome. Together these findings may help researchers to alter the transposase so that it can insert the transposon into different locations in a genome. This will hopefully lead to new tools for biotechnology and medical applications. DOI:http://dx.doi.org/10.7554/eLife.15537.002
Collapse
Affiliation(s)
- Elizabeth R Morris
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather Grey
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Anita C Jones
- EaStCHEM School of Chemistry, Edinburgh, United Kingdom
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Deniger DC, Pasetto A, Tran E, Parkhurst MR, Cohen CJ, Robbins PF, Cooper LJ, Rosenberg SA. Stable, Nonviral Expression of Mutated Tumor Neoantigen-specific T-cell Receptors Using the Sleeping Beauty Transposon/Transposase System. Mol Ther 2016; 24:1078-1089. [PMID: 26945006 DOI: 10.1038/mt.2016.51] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/21/2016] [Indexed: 12/12/2022] Open
Abstract
Neoantigens unique to each patient's tumor can be recognized by autologous T cells through their T-cell receptor (TCR) but the low frequency and/or terminal differentiation of mutation-specific T cells in tumors can limit their utility as adoptive T-cell therapies. Transfer of TCR genes into younger T cells from peripheral blood with a high proliferative potential could obviate this problem. We generated a rapid, cost-effective strategy to genetically engineer cancer patient T cells with TCRs using the clinical Sleeping Beauty transposon/transposase system. Patient-specific TCRs reactive against HLA-A*0201-restriced neoantigens AHNAK(S2580F) or ERBB2(H473Y) or the HLA-DQB*0601-restricted neoantigen ERBB2IP(E805G) were assembled with murine constant chains and cloned into Sleeping Beauty transposons. Patient peripheral blood lymphocytes were coelectroporated with SB11 transposase and Sleeping Beauty transposon, and transposed T cells were enriched by sorting on murine TCRβ (mTCRβ) expression. Rapid expansion of mTCRβ(+) T cells with irradiated allogeneic peripheral blood lymphocytes feeders, OKT3, interleukin-2 (IL-2), IL-15, and IL-21 resulted in a preponderance of effector (CD27(-)CD45RA(-)) and less-differentiated (CD27(+)CD45RA(+)) T cells. Transposed T cells specifically mounted a polyfunctional response against cognate mutated neoantigens and tumor cell lines. Thus, Sleeping Beauty transposition of mutation-specific TCRs can facilitate the use of personalized T-cell therapy targeting unique neoantigens.
Collapse
Affiliation(s)
- Drew C Deniger
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Pasetto
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Tran
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria R Parkhurst
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cyrille J Cohen
- Tumor Immunology and Immunotherapy, Bar-Ilan University, Ramat Gan, Israel
| | - Paul F Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laurence Jn Cooper
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA; ZIOPHARM Oncology, Inc., Boston, Massachusetts, USA
| | - Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
44
|
Dai H, Wang Y, Lu X, Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J Natl Cancer Inst 2016; 108:djv439. [PMID: 26819347 PMCID: PMC4948566 DOI: 10.1093/jnci/djv439] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy.
Collapse
Affiliation(s)
- Hanren Dai
- Affiliations of authors: Department of Immunology (HD, YW, WH) and Department of Molecular Biology (WH), Institute of Basic Medicine, School of Life Sciences, Department of Bio-therapeutic (HD, YW, WH), and Department of Hematology (XL), Chinese PLA General Hospital, Beijing, China
| | - Yao Wang
- Affiliations of authors: Department of Immunology (HD, YW, WH) and Department of Molecular Biology (WH), Institute of Basic Medicine, School of Life Sciences, Department of Bio-therapeutic (HD, YW, WH), and Department of Hematology (XL), Chinese PLA General Hospital, Beijing, China
| | - Xuechun Lu
- Affiliations of authors: Department of Immunology (HD, YW, WH) and Department of Molecular Biology (WH), Institute of Basic Medicine, School of Life Sciences, Department of Bio-therapeutic (HD, YW, WH), and Department of Hematology (XL), Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Affiliations of authors: Department of Immunology (HD, YW, WH) and Department of Molecular Biology (WH), Institute of Basic Medicine, School of Life Sciences, Department of Bio-therapeutic (HD, YW, WH), and Department of Hematology (XL), Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
45
|
Dhivya S, Premkumar K. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis. Crit Rev Oncol Hematol 2015; 98:81-93. [PMID: 26548742 DOI: 10.1016/j.critrevonc.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocations as molecular signatures have been reported in various malignancies but, the mechanism behind which is largely unknown. Swapping of chromosomal fragments occurs by induction of double strand breaks (DSBs), most of which were initially assumed de novo. However, decoding of human genome proved that transposable elements (TE) might have profound influence on genome integrity. TEs are highly conserved mobile genetic elements that generate DSBs, subsequently resulting in large chromosomal rearrangements. Previously TE insertions were thought to be harmless, but recently gains attention due to the origin of spectrum of post-insertional genomic alterations and subsequent transcriptional alterations leading to development of deleterious effects mainly carcinogenesis. Though the existing knowledge on the cancer-associated TE dynamics is very primitive, exploration of underlying mechanism promises better therapeutic strategies for cancer. Thus, this review focuses on the prevalence of TE in the genome, associated genomic instability upon transposition activation and impact on tumorigenesis.
Collapse
Affiliation(s)
- Sridaran Dhivya
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumpati Premkumar
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
46
|
Alrifai D, Sarker D, Maher J. Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells. Immunopharmacol Immunotoxicol 2015; 38:50-60. [DOI: 10.3109/08923973.2015.1100204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Guerrero AD, Moyes JS, Cooper LJN. The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors. CHINESE JOURNAL OF CANCER 2015; 33:421-33. [PMID: 25189715 PMCID: PMC4190432 DOI: 10.5732/cjc.014.10100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The adoptive transfer of T cells is a promising approach to treat cancers. Primary human T cells can be modified using viral and non-viral vectors to promote the specific targeting of cancer cells via the introduction of exogenous T-cell receptors (TCRs) or chimeric antigen receptors (CARs). This gene transfer displays the potential to increase the specificity and potency of the anticancer response while decreasing the systemic adverse effects that arise from conventional treatments that target both cancerous and healthy cells. This review highlights the generation of clinical-grade T cells expressing CARs for immunotherapy, the use of these cells to target B-cell malignancies and, particularly, the first clinical trials deploying the Sleeping Beauty gene transfer system, which engineers T cells to target CD19+ leukemia and non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Alan D Guerrero
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
48
|
Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations. PLoS One 2015; 10:e0128151. [PMID: 26030772 PMCID: PMC4451012 DOI: 10.1371/journal.pone.0128151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/22/2015] [Indexed: 01/18/2023] Open
Abstract
T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.
Collapse
|
49
|
Zhou F, Krishnamurthy J, Wei Y, Li M, Hunt K, Johanning GL, Cooper LJ, Wang-Johanning F. Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology 2015; 4:e1047582. [PMID: 26451325 DOI: 10.1080/2162402x.2015.1047582] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
We have previously reported that human endogenous retrovirus-K (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) for cancer vaccines, and that its antibodies (mAbs) possess antitumor activity against cancer. In this study, a chimeric antigen receptor (CAR) specific for HERV-K env protein (K-CAR) was generated using anti-HERV-K mAb. K-CAR T cells from peripheral blood mononuclear cells (PBMCs) of 9 breast cancer (BC) patients and 12 normal donors were able to inhibit growth of, and to exhibit significant cytotoxicity toward, BC cells but not MCF-10A normal breast cells. The antitumor effects in cancer cells were significantly reduced when control T cells were used, or the expression of HERV-K was knocked down by an shRNA. Secretion of multiple cytokines, including IFNγ, TNF-α, and IL-2, was significantly enhanced in culture media of BC cells treated with K-CARs. Significantly reduced tumor growth and tumor weight was observed in xenograft models bearing MDA-MB-231 or MDA-MB-435.eB1 BC cells. Importantly, the K-CAR prevented tumor metastasis to other organs. Furthermore, downregulation of HERV-K expression in tumors of mice treated with K-CAR correlated with upregulation of p53 and downregulation of MDM2 and p-ERK. Importantly, the expression of HERV-K env protein in metastatic tumor tissues treated with K-CAR T cells correlated with the expression of Ras. Our results indicate that HERV-K env protein is an oncoprotein and may play an important role in tumorigenesis related to p53 and Ras signaling pathways. Anti-HERV-K treatment, including K-CAR treatment, shows potential for immunotherapy of BC.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Department of Clinical Hematology; Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University ; Xi'an, Shannxi, China
| | - Janani Krishnamurthy
- Division of Pediatrics; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Graduate School of Biomedical Sciences ; Houston, TX USA
| | - Yongchang Wei
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Department of Clinical Oncology, First Affiliated Hospital; School of Medicine; Xi'an Jiaotong University , Xi'an, Shannxi, China
| | - Ming Li
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Graduate School of Biomedical Sciences ; Houston, TX USA
| | - Kelly Hunt
- Department of Surgical Oncology; University of Texas MD Anderson Cancer Center ; Houston, TX USA
| | - Gary L Johanning
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Graduate School of Biomedical Sciences ; Houston, TX USA
| | - Laurence Jn Cooper
- Division of Pediatrics; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Graduate School of Biomedical Sciences ; Houston, TX USA
| | - Feng Wang-Johanning
- Department of Veterinary Sciences; University of Texas MD Anderson Cancer Center ; Houston, TX USA ; Viral Oncology Program; SRI International ; Menlo Park, CA USA ; Graduate School of Biomedical Sciences ; Houston, TX USA ; Department of Immunology; University of Texas MD Anderson Cancer Center ; Houston, TX USA
| |
Collapse
|
50
|
Krishnamurthy J, Rabinovich BA, Mi T, Switzer KC, Olivares S, Maiti SN, Plummer JB, Singh H, Kumaresan PR, Huls HM, Wang-Johanning F, Cooper LJN. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma. Clin Cancer Res 2015; 21:3241-51. [PMID: 25829402 DOI: 10.1158/1078-0432.ccr-14-3197] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/19/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. EXPERIMENTAL DESIGN Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. RESULTS We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. CONCLUSIONS Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors.
Collapse
Affiliation(s)
- Janani Krishnamurthy
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas. University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Brian A Rabinovich
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tiejuan Mi
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kirsten C Switzer
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Olivares
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sourindra N Maiti
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joshua B Plummer
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas
| | - Harjeet Singh
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Helen M Huls
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Wang-Johanning
- Viral Oncology, Biosciences Division, Center for Cancer and Metabolism, SRI International, Menlo Park, California
| | - Laurence J N Cooper
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas. University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
| |
Collapse
|