1
|
Gao G, Xia H, Shi J, Zheng P, Wu W, Wu S, Qi T, Song H, Gu Y, Li J, Lei P, Liu C, Wu K. Carbon Dot Nanozymes with Ferrous Ion-Chelating and Antioxidative Activity Inhibiting Ferroptosis to Alleviate Renal Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407372. [PMID: 40051148 DOI: 10.1002/smll.202407372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/26/2025] [Indexed: 04/25/2025]
Abstract
Renal ischemia-reperfusion (I/R) significantly contributes to acute kidney injury (AKI), causing substantial oxidative stress and metabolic disruptions. Ferroptosis, a Fe2+-dependent form of regulated cell death characterized by lipid peroxide accumulation, is the predominant cause of renal I/R injury (RIRI). Here, carbon dot (C-dot) nanozymes that inhibit ferroptosis by regulating Fe2⁺ levels and scavenging reactive oxygen species, offering a potential treatment for RIRI are reported. C-dots chelate Fe2⁺ via surface carbonyl, hydroxyl, and carboxyl groups to reduce free Fe2⁺ levels, suppress the Fenton reaction, and limit hydroxyl radical generation. Additionally, C-dots scavenge superoxide anions and hydroxyl radicals to restore redox balance. By targeting the kidneys, C-dots effectively reduce renal iron overload and lipid peroxidation to prevent ferroptotic cell death in the renal I/R male mice model. RNA sequencing (RNA-seq) analysis further confirms the crucial roles of C-dots in mitigating oxidative stress, preserving iron homeostasis, and downregulating acyl-CoA synthetase long-chain family member 4 (ACSL4) after I/R. This work emphasizes the perfect alignment between the multifunctional roles of C-dots and the conditions required for inhibiting ferroptosis and offers an innovative strategy to treat RIRI effectively.
Collapse
Affiliation(s)
- Guoqiang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Huayu Xia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jinyu Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Pengyi Zheng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Department of Urology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, P. R. China
| | - Wentai Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Shiqi Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tianyu Qi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Hao Song
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanan Gu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an, 710061, P. R. China
| | - Jing Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Pu Lei
- Yulin Hospital of the First Affiliated Hospital of Xi'an Jiaotong University, Yulin, 719000, P. R. China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Yulin Hospital of the First Affiliated Hospital of Xi'an Jiaotong University, Yulin, 719000, P. R. China
| |
Collapse
|
2
|
Wang M, Chen Z, Tang Z, Tang S. Natural products derived from traditional Chinese medicines targeting ER stress for the treatment of kidney diseases. Ren Fail 2024; 46:2396446. [PMID: 39192602 PMCID: PMC11360642 DOI: 10.1080/0886022x.2024.2396446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Various factors, both internal and external, can disrupt endoplasmic reticulum (ER) homeostasis and increase the burden of protein folding, resulting in ER stress. While short periods of ER stress can help cells return to normal function, excessive or prolonged ER stress triggers a complex signaling network that negatively affects cells. Numerous studies have demonstrated the significant role of ER stress in various kidney diseases, such as immune-related kidney injury, diabetic kidney diseases, renal ischemia reperfusion injury, and renal fibrosis. To date, there is a severe shortage of medications for the treatment of acute and chronic kidney diseases of all causes. Natural products derived from various traditional Chinese medicines (TCM), which are a major source of new drugs, have garnered considerable attention. Recent research has revealed that many natural products have renoprotective effects by targeting ER stress-mediated events, such as apoptosis, oxidative stress, inflammation, autophagy, and epithelial-mesenchymal transition. This article provides a comprehensive review of the current research progress on natural products targeting ER stress for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Mengping Wang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ziru Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Wu J, Jia Y, Liao Y, Yang D, Ren H, Xie Z, Hu J, Lu Y. Protective effect and mechanism of CoQ10 in mitochondrial dysfunction in diquat-induced renal proximal tubular injury. J Biochem Mol Toxicol 2024; 38:e70023. [PMID: 39434449 DOI: 10.1002/jbt.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Coenzyme Q10 (CoQ10) plays an important role in improving mitochondrial function and has many beneficial effects on the kidney. However, whether CoQ10 protects against diquat (DQ)-induced acute kidney injury (AKI) remains unclear. In this study, we investigated the protective effects and mechanism of action of CoQ10 against DQ-induced AKI. Institute of Cancer Research (ICR) mice were intraperitoneally injected with DQ to induce AKI. The expression levels of serum creatinine (Cr), urea, and kidney injury molecule-1 (KIM-1) increased, those of aquaporin 1 (AQP-1) decreased, and those of mitochondrial reactive oxygen species (ROS) increased with increased depolarization of mitochondrial membranes and mitochondrial rupture. In contrast, treatment with CoQ10 significantly improved DQ-induced AKI. CoQ10 treatment reduced serum Cr, urea, and KIM-1 contents, increased the AQP-1 expression, and reduced ROS contents in mice with DQ poisoning. Our results suggest that AKI caused by DQ poisoning may be related to the disruption of mitochondrial homeostasis and that CoQ10 treatment protects against AKI caused by DQ poisoning by improving mitochondrial kinetic homeostasis. Thus, CoQ10 represents a new therapeutic option for the prevention and treatment of AKI caused by DQ poisoning.
Collapse
Affiliation(s)
- Jin Wu
- Emergency Department, The Afffliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingmao Jia
- Emergency Department, The Afffliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ya Liao
- Emergency Department, The Afffliated Hospital of Zunyi Medical University, Zunyi, China
| | - Denghui Yang
- Emergency Department, The Afffliated Hospital of Zunyi Medical University, Zunyi, China
| | - Honglin Ren
- Emergency Department, The Afffliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhihui Xie
- Hyperbaric oxygen Department, The Afffliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Hu
- Department of Critical Care Medicine, The Afffliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanlan Lu
- Emergency Department, The Afffliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Cheng C, Yuan Y, Yuan F, Li X. Acute kidney injury: exploring endoplasmic reticulum stress-mediated cell death. Front Pharmacol 2024; 15:1308733. [PMID: 38434710 PMCID: PMC10905268 DOI: 10.3389/fphar.2024.1308733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is a global health problem, given its substantial morbidity and mortality rates. A better understanding of the mechanisms and factors contributing to AKI has the potential to guide interventions aimed at mitigating the risk of AKI and its subsequent unfavorable outcomes. Endoplasmic reticulum stress (ERS) is an intrinsic protective mechanism against external stressors. ERS occurs when the endoplasmic reticulum (ER) cannot deal with accumulated misfolded proteins completely. Excess ERS can eventually cause pathological reactions, triggering various programmed cell death (autophagy, ferroptosis, apoptosis, pyroptosis). This article provides an overview of the latest research progress in deciphering the interaction between ERS and different programmed cell death. Additionally, the report consolidates insights into the roles of ERS in AKI and highlights the potential avenues for targeting ERS as a treatment direction toward for AKI.
Collapse
Affiliation(s)
- Cong Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Emergency, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| |
Collapse
|
5
|
刘 颖, 马 良, 付 平. [Ketone Body Metabolism and Renal Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1091-1096. [PMID: 38162055 PMCID: PMC10752776 DOI: 10.12182/20231160202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 01/03/2024]
Abstract
A ketogenic diet limits energy supply from glucose and stimulates lipolysis, lipid oxidation, and ketogenesis, resulting in elevated levels of ketone bodies in the bloodstream. Ketone bodies are synthesized in the mitochondrial matrix of liver cells and β-hydroxybutyric acid (BHB) is the most abundant type of ketone body. Herein, we reviewed published findings on the metabolism of ketone bodies and the role of BHB in renal diseases. Through blood circulation, ketone bodies reach metabolically active tissues and provides an alternative source of energy. BHB, being a signaling molecule, mediates various types of cellular signal transduction and participates in the development and progression of many diseases. BHB also has protective and therapeutic effects on a variety of renal diseases. BHB improves the prognosis of renal diseases, such as diabetic kidney disease, chronic kidney disease, acute kidney injury, and polycystic kidney disease, through its antioxidant, anti-inflammatory, and stress response mechanisms. Previous studies have focused on the role of ketone bodies in regulating inflammation and oxidative stress in immune cells. Investigations into the effect of elevated levels of ketone bodies on the metabolism of renal podocytes and tubular cells remain inconclusive. Further research is needed to investigate the effect of BHB on podocyte damage and podocyte senescence in renal diseases.
Collapse
Affiliation(s)
- 颖 刘
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 良 马
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 平 付
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Wang S, Sang X, Li S, Yang W, Wang S, Chen H, Lu C. Increased Ca2 + transport across the mitochondria-associated membranes by Mfn2 inhibiting endoplasmic reticulum stress in ischemia/reperfusion kidney injury. Sci Rep 2023; 13:17257. [PMID: 37828353 PMCID: PMC10570331 DOI: 10.1038/s41598-023-44538-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury, which leads to acute kidney injury (AKI), is a major cause of morbidity and mortality in a variety of clinical situations. This study aimed to investigate the protective role of Mfn2 during renal I/R injury. Overexpression of Mfn2 in NRK-52E rat renal tubular epithelial cells and rats, then we constructed hypoxia reoxygenation (H/R) cells and I/R rat model. Apoptosis, ROS, ATP, Ca2+ levels in cells and rats, as well as renal tissue and functional injury in rats were detected respectively. Endoplasmic reticulum (ER) stress was further examined in cells and rats. The morphological changes of mitochondria-associated ER membranes (MAMs) were also detected. Mfn2 expression is reduced in H/R-treated NRK-52E cells and renal tissue of I/R rats. At the cellular level, overexpression of Mfn2 promoted cell proliferation, inhibited cell apoptosis, attenuated mitochondrial damage and Ca2+ overload, and ER stress. In addition, Mfn2 also restored the MAMs structure. In vivo experiments found that overexpression of Mfn2 could improve renal function and alleviate tissue injury. Concomitant with elevated Mfn2 expression in the kidney, reduced renal cell apoptosis, restored mitochondrial function, and reduced calcium overload. Finally, ER stress in rat kidney tissue was alleviated after overexpression of Mfn2. These results reveal that Mfn2 contributes to ER stress, mitochondrial function, and cell death in I/R injury, which provides a novel therapeutic target for AKI.
Collapse
Affiliation(s)
- Shun Wang
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, 830054, China
| | - Xiaohong Sang
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, 830054, China
| | - Suhua Li
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, 830054, China
| | - Wenjun Yang
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, 830054, China
| | - Shihan Wang
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, 830054, China
| | - Haixia Chen
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, 830054, China
| | - Chen Lu
- Nephrology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, 830054, China.
| |
Collapse
|
7
|
Oh CJ, Kim MJ, Lee JM, Kim DH, Kim IY, Park S, Kim Y, Lee KB, Lee SH, Lim CW, Kim M, Lee JY, Pagire HS, Pagire SH, Bae MA, Chanda D, Thoudam T, Khang AR, Harris RA, Ahn JH, Jeon JH, Lee IK. Inhibition of pyruvate dehydrogenase kinase 4 ameliorates kidney ischemia-reperfusion injury by reducing succinate accumulation during ischemia and preserving mitochondrial function during reperfusion. Kidney Int 2023; 104:724-739. [PMID: 37399974 DOI: 10.1016/j.kint.2023.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/05/2023]
Abstract
Ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury (AKI), is still without effective therapies. Succinate accumulation during ischemia followed by its oxidation during reperfusion leads to excessive reactive oxygen species (ROS) and severe kidney damage. Consequently, the targeting of succinate accumulation may represent a rational approach to the prevention of IR-induced kidney injury. Since ROS are generated primarily in mitochondria, which are abundant in the proximal tubule of the kidney, we explored the role of pyruvate dehydrogenase kinase 4 (PDK4), a mitochondrial enzyme, in IR-induced kidney injury using proximal tubule cell-specific Pdk4 knockout (Pdk4ptKO) mice. Knockout or pharmacological inhibition of PDK4 ameliorated IR-induced kidney damage. Succinate accumulation during ischemia, which is responsible for mitochondrial ROS production during reperfusion, was reduced by PDK4 inhibition. PDK4 deficiency established conditions prior to ischemia resulting in less succinate accumulation, possibly because of a reduction in electron flow reversal in complex II, which provides electrons for the reduction of fumarate to succinate by succinate dehydrogenase during ischemia. The administration of dimethyl succinate, a cell-permeable form of succinate, attenuated the beneficial effects of PDK4 deficiency, suggesting that the kidney-protective effect is succinate-dependent. Finally, genetic or pharmacological inhibition of PDK4 prevented IR-induced mitochondrial damage in mice and normalized mitochondrial function in an in vitro model of IR injury. Thus, inhibition of PDK4 represents a novel means of preventing IR-induced kidney injury, and involves the inhibition of ROS-induced kidney toxicity through reduction in succinate accumulation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Hun Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Sanghee Park
- Department of Exercise Rehabilitation, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Kyung-Bok Lee
- Center for Research Equipment (104-Dong), Korea Basic Science Institute, Ochang, Cheongju, Chungbuk, Republic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment (104-Dong), Korea Basic Science Institute, Ochang, Cheongju, Chungbuk, Republic of Korea
| | - Chae Won Lim
- Department of Medicine, Graduate School, Daegu Catholic University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Myeongjin Kim
- Department of Medicine, Graduate School, Daegu Catholic University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jung-Yi Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ah Reum Khang
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University College of Medicine, Yangsan, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
8
|
Panes J, Nguyen TKO, Gao H, Christensen TA, Stojakovic A, Trushin S, Salisbury JL, Fuentealba J, Trushina E. Partial Inhibition of Complex I Restores Mitochondrial Morphology and Mitochondria-ER Communication in Hippocampus of APP/PS1 Mice. Cells 2023; 12:1111. [PMID: 37190020 PMCID: PMC10137328 DOI: 10.3390/cells12081111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aβ and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aβ and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD.
Collapse
Affiliation(s)
- Jessica Panes
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology, Universidad de Concepcion, Concepción 4030000, Chile
| | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Trace A. Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sergey Trushin
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey L. Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jorge Fuentealba
- Department of Physiology, Universidad de Concepcion, Concepción 4030000, Chile
- Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Universidad de Concepción, Concepción 4030000, Chile
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Li X, Yang Q, Liu S, Song S, Wang C. Mitochondria-associated endoplasmic reticulum membranes promote mitochondrial fission through AKAP1-Drp1 pathway in podocytes under high glucose conditions. Exp Cell Res 2023; 424:113512. [PMID: 36775185 DOI: 10.1016/j.yexcr.2023.113512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Excessive mitochondrial fission in podocytes is a critical feature of diabetic nephropathy (DN). Mitochondria-associated endoplasmic reticulum membranes (MAMs) are contact sites between the endoplasmic reticulum (ER) and mitochondria, which are suggested to be related to mitochondrial function. However, the role of MAMs in mitochondrial dynamics disorder in podocytes remains unknown. Here, we firstly reported a novel mechanism of MAMs' effects on mitochondrial dynamics in podocytes under diabetic conditions. Increased MAMs were found in diabetic podocytes in vivo and in vitro, which were positively correlated with excessive mitochondrial fission. What's more, we also found that A-kinase anchoring protein 1 (AKAP1) was located in MAMs, and its translocation to MAMs was increased in podocytes cultured with high glucose (HG). In addition, AKAP1 knockdown significantly reduced mitochondrial fission and attenuated high glucose induced-podocyte injury through regulating phosphorylation of dynamin-related protein 1 (Drp1) and its subsequent mitochondrial translocation. On the contrary, AKAP1 overexpression in these podocytes showed the opposite effect. Finally, pharmacological inhibition of Drp1 alleviated excessive mitochondrial fission and podocyte damage in AKAP1 overexpressed podocytes. Our data suggest that MAMs were increased in podocytes under diabetic conditions, leading to excessive mitochondrial fission and podocyte damage through AKAP1-Drp1 signaling.
Collapse
Affiliation(s)
- Xuehong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qinglan Yang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
10
|
Zhou X, Chen Q, Guo C, Su Y, Guo H, Cao M, Liu Z, Zhang D, Diao N, Fan H, Chen D. CD44 Receptor-Targeted and Reactive Oxygen Species-Responsive H 2S Donor Micelles Based on Hyaluronic Acid for the Therapy of Renal Ischemia/Reperfusion Injury. ACS OMEGA 2022; 7:42339-42346. [PMID: 36440107 PMCID: PMC9686187 DOI: 10.1021/acsomega.2c05407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
For the therapy attenuating renal ischemia-reperfusion (IR) injury, a novel drug delivery system was urgently needed, which could precisely deliver drugs to the pathological renal tissue. Here, we have prepared new nanomaterials with a reactive oxygen species (ROS)-responsive hydrogen sulfide (H2S) donor and hyaluronic acid that targets CD44 receptor. The novel material was synthesized and characterized via related experiments. Then, rapamycin was loaded, which inhibited kidney damage. In the in vitro study, we found that the micelles had ROS-responsiveness, biocompatibility, and cell penetration. In addition, the experimental results showed that the intracellular H2S concentration after administration was threefold higher than that of the control group. The western blot assay revealed that they have anti-inflammatory effects via H2S donor blocking the NF-κB signaling pathway. Consequently, the rising CD44 receptor-targeting and ROS-sensitive H2S donor micelles would provide a promising way for renal IR injury. This work provides a strategy for improving ischemia/reperfusion injury for pharmaceuticals.
Collapse
Affiliation(s)
- Xiudi Zhou
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
- Department
of Pharmacy, Binzhou People’s Hospital
Affiliated to Shandong First Medical University, China, Binzhou256600, P. R. China
| | - Qiang Chen
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Chunjing Guo
- College
of Marine Life Science, Ocean University
of China, Qingdao266003, P. R. China
| | - Yanguo Su
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Huimin Guo
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Min Cao
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Zhongxin Liu
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Dandan Zhang
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Ningning Diao
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Huaying Fan
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Daquan Chen
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| |
Collapse
|
11
|
Mitochondria-Associated Endoplasmic Reticulum Membranes: Inextricably Linked with Autophagy Process. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7086807. [PMID: 36052160 PMCID: PMC9427242 DOI: 10.1155/2022/7086807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023]
Abstract
Mitochondria-associated membranes (MAMs), physical connection sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM), are involved in numerous cellular processes, such as calcium ion transport, lipid metabolism, autophagy, ER stress, mitochondria morphology, and apoptosis. Autophagy is a highly conserved intracellular process in which cellular contents are delivered by double-membrane vesicles, called autophagosomes, to the lysosomes for destruction and recycling. Autophagy, typically triggered by stress, eliminates damaged or redundant protein molecules and organelles to maintain regular cellular activity. Dysfunction of MAMs or autophagy is intimately associated with various diseases, including aging, cardiovascular, infections, cancer, multiple toxic agents, and some genetic disorders. Increasing evidence has shown that MAMs play a significant role in autophagy development and maturation. In our study, we concentrated on two opposing functions of MAMs in autophagy: facilitating the formation of autophagosomes and inhibiting autophagy. We recognized the link between MAMs and autophagy in the occurrence and progression of the diseases and therefore collated and summarized the existing intrinsic molecular mechanisms. Furthermore, we draw attention to several crucial data and open issues in the area that may be helpful for further study.
Collapse
|
12
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|