1
|
Khodasevich D, Holland N, van der Laan L, Cardenas A. A SuperLearner-based pipeline for the development of DNA methylation-derived predictors of phenotypic traits. PLoS Comput Biol 2025; 21:e1012768. [PMID: 39913632 PMCID: PMC11801726 DOI: 10.1371/journal.pcbi.1012768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND DNA methylation (DNAm) provides a window to characterize the impacts of environmental exposures and the biological aging process. Epigenetic clocks are often trained on DNAm using penalized regression of CpG sites, but recent evidence suggests potential benefits of training epigenetic predictors on principal components. METHODOLOGY/FINDINGS We developed a pipeline to simultaneously train three epigenetic predictors; a traditional CpG Clock, a PCA Clock, and a SuperLearner PCA Clock (SL PCA). We gathered publicly available DNAm datasets to generate i) a novel childhood epigenetic clock, ii) a reconstructed Hannum adult blood clock, and iii) as a proof of concept, a predictor of polybrominated biphenyl exposure using the three developmental methodologies. We used correlation coefficients and median absolute error to assess fit between predicted and observed measures, as well as agreement between duplicates. The SL PCA clocks improved fit with observed phenotypes relative to the PCA clocks or CpG clocks across several datasets. We found evidence for higher agreement between duplicate samples run on alternate DNAm arrays when using SL PCA clocks relative to traditional methods. Analyses examining associations between relevant exposures and epigenetic age acceleration (EAA) produced more precise effect estimates when using predictions derived from SL PCA clocks. CONCLUSIONS We introduce a novel method for the development of DNAm-based predictors that combines the improved reliability conferred by training on principal components with advanced ensemble-based machine learning. Coupling SuperLearner with PCA in the predictor development process may be especially relevant for studies with longitudinal designs utilizing multiple array types, as well as for the development of predictors of more complex phenotypic traits.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California Berkeley School of Public Health, Berkeley, California, United States of America
| | - Lars van der Laan
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
2
|
Kim H, Chen E, Miller GE, Kershaw KN. Does High Self-Control Accelerate Epigenetic Aging in Low-Income Adolescents? J Adolesc Health 2025; 76:300-307. [PMID: 39520463 DOI: 10.1016/j.jadohealth.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Persistent self-control in the context of upward mobility in low-income adolescents, especially those of color, may have physiological costs, such as greater risks of developing cardiometabolic diseases in young adulthood. One potential mechanism linking self-control to cardiometabolic health is epigenetic age acceleration (EAA). However, little is known regarding the association between high self-control and EAA, as well as what factors may play protective roles. Therefore, we evaluated (1) the association between self-control and EAA and if this association varies by race and ethnicity, and (2) whether neighborhood collective efficacy (NCE) and school connectedness moderate the association in low-income adolescents. METHODS This study used data from the Future of Families and Child Wellbeing Study. Participants included 772 adolescents with a household income <300% of poverty level (mean age: 15.6 years). Self-control, NCE, and school connectedness were all self-reported. EAA was assessed in saliva and estimated using Horvath, Skin and Blood, and Pediatric-Buccal-Epigenetic clocks. Multiple linear regression and PROCESS analyses were employed. RESULTS Higher self-control was positively associated with EAA estimated by the skin and blood clock in low-income adolescents of color. Further, the association of higher self-control with EAA was not significant among low-income adolescents of color with higher NCE. No significant association was found among low-income White adolescents. DISCUSSION The results suggest that supportive resources like neighborhood collective efficacy could mitigate adverse associations of high self-control with health in low-income adolescents of color.
Collapse
Affiliation(s)
- Hyungkyung Kim
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Edith Chen
- Department of Psychology and Institute for Policy Research, Northwestern University, Evanston, Illinois
| | - Gregory E Miller
- Department of Psychology and Institute for Policy Research, Northwestern University, Evanston, Illinois
| | - Kiarri N Kershaw
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
3
|
Bozack AK, Trasande L. Prenatal chemical exposures and the methylome: current evidence and opportunities for environmental epigenetics. Epigenomics 2024; 16:1443-1451. [PMID: 39539208 PMCID: PMC11622816 DOI: 10.1080/17501911.2024.2426441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Exposure to pollutants and chemicals during critical developmental periods in early life can impact health and disease risk across the life course. Research in environmental epigenetics has provided increasing evidence that prenatal exposures affect epigenetic markers, particularly DNA methylation. In this article, we discuss the role of DNA methylation in early life programming and review evidence linking the intrauterine environment to epigenetic modifications, with a focus on exposure to tobacco smoke, metals, and endocrine-disrupting chemicals. We also discuss challenges and novel approaches in environmental epigenetic research and explore the potential of epigenetic biomarkers in studies of pediatric populations as indicators of exposure and disease risk. Overall, we aim to highlight how advancements in environmental epigenetics may transform our understanding of early-life exposures and inform new approaches for supporting long-term health.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford School of Medicine, Palo Alto, CA, USA
| | - Leonardo Trasande
- Department of Pediatrics and Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Han LKM, Aghajani M, Penninx BWJH, Copeland WE, Aberg KA, van den Oord EJCG. Lagged effects of childhood depressive symptoms on adult epigenetic aging. Psychol Med 2024; 54:1-9. [PMID: 39370998 PMCID: PMC11496221 DOI: 10.1017/s0033291724001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Cross-sectional studies have identified health risks associated with epigenetic aging. However, it is unclear whether these risks make epigenetic clocks 'tick faster' (i.e. accelerate biological aging). The current study examines concurrent and lagged within-person changes of a variety of health risks associated with epigenetic aging. METHODS Individuals from the Great Smoky Mountains Study were followed from age 9 to 35 years. DNA methylation profiles were assessed from blood, at multiple timepoints (i.e. waves) for each individual. Health risks were psychiatric, lifestyle, and adversity factors. Concurrent (N = 539 individuals; 1029 assessments) and lagged (N = 380 individuals; 760 assessments) analyses were used to determine the link between health risks and epigenetic aging. RESULTS Concurrent models showed that BMI (r = 0.15, PFDR < 0.01) was significantly correlated to epigenetic aging at the subject-level but not wave-level. Lagged models demonstrated that depressive symptoms (b = 1.67 months per symptom, PFDR = 0.02) in adolescence accelerated epigenetic aging in adulthood, also when models were fully adjusted for BMI, smoking, and cannabis and alcohol use. CONCLUSIONS Within-persons, changes in health risks were unaccompanied by concurrent changes in epigenetic aging, suggesting that it is unlikely for risks to immediately 'accelerate' epigenetic aging. However, time lagged analyses indicated that depressive symptoms in childhood/adolescence predicted epigenetic aging in adulthood. Together, findings suggest that age-related biological embedding of depressive symptoms is not instant but provides prognostic opportunities. Repeated measurements and longer follow-up times are needed to examine stable and dynamic contributions of childhood experiences to epigenetic aging across the lifespan.
Collapse
Affiliation(s)
- Laura K. M. Han
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Institute of Child & Education Studies, Section Forensic Family & Youth Care, Leiden University, The Netherlands
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Karolina A. Aberg
- The Center for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Edwin J. C. G. van den Oord
- The Center for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Yaskolka Meir A, Wang G, Hong X, Hu FB, Wang X, Liang L. Newborn DNA methylation age differentiates long-term weight trajectories: the Boston Birth Cohort. BMC Med 2024; 22:373. [PMID: 39256781 PMCID: PMC11389437 DOI: 10.1186/s12916-024-03568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is associated with maternal prenatal exposures and immediate birth outcomes. However, the association of GAmAge with long-term overweight or obesity (OWO) trajectories is yet to be determined. METHODS GAmAge was calculated for 831 children from a US predominantly urban, low-income, multi-ethnic birth cohort based on cord blood DNA methylation profile using Illumina EPIC array. Repeated anthropometric measurements aligned with pediatric primary care schedule allowed us to calculate body-mass-index percentiles (BMIPCT) at specific age and to define long-term weight trajectories from birth to 18 years. RESULTS GAmAge was associated with BMIPCT trajectories, defined by 4 groups: stable (consistent OWO: "early OWO"; constant normal weight: "NW") or non-stable (OWO by year 1 of follow-up: "late OWO"; OWO by year 6 of follow-up: "NW to very late OWO"). GAmAge differentiated between the group with consistently normal BMIPCT pattern and the non-stable groups with late and very late OWO development. Such differentiation was observed in the age periods of birth to 1year, 3years, 6years, 10years, and 14years (p < 0.05 for all). The findings persisted after adjusting for GEAA, maternal smoking, delivery method, and child's sex in multivariate models. Birth weight was a mediator for the GAmAge effect on OWO status for specific groups at multiple age periods. CONCLUSIONS GAmAge is associated with BMIPCT trajectories from birth to age 18 years, independent of GEAA and birth weight. If further confirmed, GAmAge may serve as an early biomarker for predicting BMI trajectory to inform early risk assessment and prevention of OWO. TRIAL REGISTRATION ClinicalTrials.gov (NCT03228875).
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Guoying Wang
- Center On Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Xiumei Hong
- Center On Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospitaland, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaobin Wang
- Center On Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Ryan J, Phyo AZZ, Krasniqi SP, Carkaxhiu SI, Fransquet P, Kaas‐Petersen SH, Limani DA, Xhemaili VD, Salihu M, Prapashtica Q, Zekaj N, Turjaka V, Wang S, Rushiti F, Hjort L. An epigenome-wide study of a needs-based family intervention for offspring of trauma-exposed mothers in Kosovo. Brain Behav 2024; 14:e70029. [PMID: 39262181 PMCID: PMC11391026 DOI: 10.1002/brb3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Maternal stress and trauma during pregnancy have been shown to influence cortisol levels and epigenetic patterns, including DNA methylation, in the offspring. This study aimed to determine whether a tailor-made family intervention could help reduce cortisol levels in children born to traumatized mothers, and to determine whether it effected offspring DNA methylation. The secondary aim was to determine whether the family intervention influenced DNA methylation aging, a marker of biological aging. METHODS A needs-based family intervention was designed to help address relational difficulties and family functioning, and included a focus on family strengths and problem-solving patterns. Women survivors of sexual violence during the Kosovar war in 1998-1999, and their families (children with or without partners) were randomly assigned to 10 sessions of a family therapy over a 3-5-month period, or to a waitlist control group. Both mothers and children completed assessments prior to and after the intervention phase. Children's blood samples collected at these two time points were used to measure cortisol and epigenome-wide DNA methylation patterns (Illumina EPIC array). Cortisol levels, and genome-wide DNA methylation changes pre-/postintervention were compared between children in the intervention and the waitlist groups. DNA methylation age and accelerated biological aging were calculated. RESULTS Sixty-two women-child dyads completed the study, 30 were assigned first to the intervention group, and 32 to the waitlist control group. In adjusted linear regression, the family intervention was associated with a significant decline in cortisol levels compared to the waitlist control (β = -124.72, 95% confidence interval [CI]: -197.4 to -52.1, p = .001). Children in the intervention group, compared to the waitlist control group, showed >1% differential methylation degree at 5819 CpG (5'-C-phosphate-G-3') sites across the genome (p < .01), with the largest methylation difference being 21%. However, none of these differences reached genome-wide significant levels. There was no significant difference in DNA methylation aging between the two groups. CONCLUSION We find evidence that a tailored family-based intervention reduced stress levels in the children (based on cortisol levels), and modified DNA methylation levels at a number of sites across the genome. This study provides some preliminary evidence to suggest the potential for tailored interventions to help break the intergenerational transmission of trauma, however, large studies powered to detect associations at genome-wide significant levels are needed.
Collapse
Affiliation(s)
- Joanne Ryan
- Biological Neuropsychiatry and Dementia Unit, School of Public Health and Preventative MedicineMonash UniversityMelbourneAustralia
| | - Aung Zaw Zaw Phyo
- Biological Neuropsychiatry and Dementia Unit, School of Public Health and Preventative MedicineMonash UniversityMelbourneAustralia
| | | | | | - Peter Fransquet
- Faculty of Health, School of Psychology, Centre for Social & Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | | | | | | | - Mimoza Salihu
- Kosovo Rehabilitation Center for Torture Victims (KRCT)Pristina KosovoAustralia
| | | | - Nebahate Zekaj
- Kosovo Rehabilitation Center for Torture Victims (KRCT)Pristina KosovoAustralia
| | - Vesa Turjaka
- Kosovo Rehabilitation Center for Torture Victims (KRCT)Pristina KosovoAustralia
| | - Shr‐Jie Wang
- The Danish Institute Against Torture (DIGNITY)CopenhagenDenmark
| | - Feride Rushiti
- Kosovo Rehabilitation Center for Torture Victims (KRCT)Pristina KosovoAustralia
| | - Line Hjort
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Obstetrics, Center for Pregnant Women with DiabetesCopenhagen University HospitalCopenhagenDenmark
| |
Collapse
|
7
|
Sullivan ADW, Merrill SM, Konwar C, Coccia M, Rivera L, MacIsaac JL, Lieberman AF, Kobor MS, Bush NR. Intervening After Trauma: Child-Parent Psychotherapy Treatment Is Associated With Lower Pediatric Epigenetic Age Acceleration. Psychol Sci 2024; 35:1062-1073. [PMID: 39141017 DOI: 10.1177/09567976241260247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Early-life adversity increases the risk of health problems. Interventions supporting protective and responsive caregiving offer a promising approach to attenuating adversity-induced changes in stress-sensitive biomarkers. This study tested whether participation in an evidence-based dyadic psychosocial intervention, child-parent psychotherapy (CPP), was related to lower epigenetic age acceleration, a trauma-sensitive biomarker of accelerated biological aging that is associated with later health impairment, in a sample of children with trauma histories. Within this quasi-experimental, repeated-measures study, we examined epigenetic age acceleration at baseline and postintervention in a low-income sample of children receiving CPP treatment (n = 45; age range = 2-6 years; 76% Latino) compared with a weighted, propensity-matched community-comparison sample (n = 110; age range = 3-6 years; 40% Latino). Baseline epigenetic age acceleration was equivalent across groups. However, posttreatment, epigenetic age acceleration in the treatment group was lower than in the matched community sample. Findings highlight the potential for a dyadic psychosocial intervention to ameliorate accelerated biological aging in trauma-exposed children.
Collapse
Affiliation(s)
- Alexandra D W Sullivan
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco
| | - Sarah M Merrill
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia
- Centre for Molecular Medicine and Therapeutics, Faculty of Medicine, University of British Columbia
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University
| | - Chaini Konwar
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia
- Centre for Molecular Medicine and Therapeutics, Faculty of Medicine, University of British Columbia
| | - Michael Coccia
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco
| | - Luisa Rivera
- Neukom Institute for Computational Science, Dartmouth College
| | - Julia L MacIsaac
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia
- Centre for Molecular Medicine and Therapeutics, Faculty of Medicine, University of British Columbia
| | - Alicia F Lieberman
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia
- Centre for Molecular Medicine and Therapeutics, Faculty of Medicine, University of British Columbia
- Child and Brain Development Program, Canadian Institute for Advanced Research Institute, Toronto, Ontario, Canada
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco
- Department of Pediatrics, Division of Developmental Medicine, University of California, San Francisco
| |
Collapse
|
8
|
England-Mason G, Merrill SM, Liu J, Martin JW, MacDonald AM, Kinniburgh DW, Gladish N, MacIsaac JL, Giesbrecht GF, Letourneau N, Kobor MS, Dewey D. Sex-Specific Associations between Prenatal Exposure to Bisphenols and Phthalates and Infant Epigenetic Age Acceleration. EPIGENOMES 2024; 8:31. [PMID: 39189257 PMCID: PMC11348373 DOI: 10.3390/epigenomes8030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal-infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from -0.36 to -0.66, 95% CIs from -1.28 to -0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarah M. Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
| | - Amy M. MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W. Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Gladish
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L. MacIsaac
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Gerald F. Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
9
|
Dye CK, Alschuler DM, Wu H, Duarte C, Monk C, Belsky DW, Lee S, O’Donnell K, Baccarelli AA, Scorza P. Maternal Adverse Childhood Experiences and Biological Aging During Pregnancy and in Newborns. JAMA Netw Open 2024; 7:e2427063. [PMID: 39120899 PMCID: PMC11316241 DOI: 10.1001/jamanetworkopen.2024.27063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 08/10/2024] Open
Abstract
Importance Adverse childhood experiences (ACEs), potentially traumatic experiences occurring before the age of 18 years, are associated with epigenetic aging later in life and may be transmitted across generations. Objective To test evidence of the transmission of biological embedding of life experience across generations by analyzing maternal ACEs and epigenetic clocks measured in mothers during pregnancy and in their children at birth. Design, Setting, and Participants For this cross-sectional study, data from the Accessible Resource for Integrated Epigenomic Studies (ARIES) substudy of the Avon Longitudinal Study of Parents and Children (ALSPAC) were analyzed. The ALSPAC study recruited 14 541 women who gave birth in the Avon Health District in the UK between April 1, 1991, and December 31, 1992. The ARIES substudy comprised 1018 mother-offspring dyads based on the availability of DNA samples profiled in 2014. Epigenetic age was estimated using DNA methylation-based epigenetic clocks (including Horvath, Hannum, GrimAge, PhenoAge, and DunedinPACE) in mothers during pregnancy and the Knight and Bohlin cord blood epigenetic clocks in newborns. Analyses were performed between October 1, 2022, and November 30, 2023. Exposures A composite measure of maternal ACEs was the primary exposure in both maternal and offspring models; as a secondary analysis, individual ACEs were measured separately. The Edinburgh Postnatal Depression Scale (EPDS) was used to investigate depression during pregnancy as an exposure. Main Outcomes and Measures Changes in epigenetic age acceleration (EAA) were investigated as the primary outcome in maternal models during pregnancy. Changes in epigenetic gestational age acceleration (GAA) were the primary outcome in offspring analyses. Linear regression analyses were used to determine the association between maternal ACEs and both outcomes. Results This study included 883 mother-child dyads. The mean (SD) maternal age at delivery was 29.8 (4.3) years. Pregnant women with higher ACE scores exhibited higher GrimAge EAA (β, 0.22 [95% CI, 0.12 to 0.33] years; P < .001). Maternal ACEs were not associated with GAA in newborns using P < .05 as a cutoff to determine statistical significance. Depression was associated with higher GrimAge EAA (β, 0.06 [95% CI, 0.02 to 0.10] years; P = .01) in mothers during pregnancy, but not in newborns, and did not mediate the association between ACEs and EAA. Conclusions and Relevance The findings of this study suggest that maternal ACEs may be associated with epigenetic aging later in life, including during pregnancy, supporting a role for maternal ACEs in offspring development and health later in life.
Collapse
Affiliation(s)
- Christian K. Dye
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Cristiane Duarte
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York
| | - Catherine Monk
- Department of Psychiatry, Columbia University, New York, New York
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Daniel W. Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, New York, New York
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Kieran O’Donnell
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Pamela Scorza
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| |
Collapse
|
10
|
Hogan CM, Merrill SM, Hernandez Valencia E, McHayle AA, Sisitsky MD, McDermott JM, Parent J. The Impact of Early Life Adversity on Peripubertal Accelerated Epigenetic Aging and Psychopathology. J Am Acad Child Adolesc Psychiatry 2024:S0890-8567(24)00352-6. [PMID: 38969335 DOI: 10.1016/j.jaac.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE To examine longitudinal associations between early life threat and deprivation on epigenetic age acceleration at ages 9 and 15 years, and to examine associations of age acceleration on later internalizing and externalizing symptoms. METHOD The study examines a large (n = 2,039) and racially diverse (Black/African American = 44%, Latino = 18%, White = 5%) sample from a national dataset. Epigenetic age acceleration was estimated using the pediatric buccal epigenetic clock. Early life threat and deprivation were measured using composites from the Parent-Child Conflict Tactics Scale and county-level violent and property crime rate data. Internalizing and externalizing symptoms came from parent-reported Child Behavior Checklist. Path analysis models examined associations of threat and deprivation at age 3 years on epigenetic age acceleration at ages 9 and 15. Experiences of threat were further broken down into threat experienced in the home and in the community. RESULTS Home threat experienced at age 3 years predicted age acceleration at 9 and 15, and community threat experienced at 3 predicted age acceleration at 15, but not at 9. Deprivation was not a significant predictor of accelerated aging. Age acceleration at age 9 predicted externalizing, but not internalizing, symptoms at age 15. Community threat had a direct effect on externalizing. No association emerged with internalizing. CONCLUSION Findings revealed that threat, not deprivation, was predictive of age acceleration, demonstrating support for this pattern longitudinally, using an epigenetic clock that is accurate in children. The findings provide critical nuance to the examination of threat, and highlight associated risks and possible intervention points for externalizing symptoms.
Collapse
Affiliation(s)
| | - Sarah M Merrill
- Warren Alpert Medical School at Brown University, Providence, Rhode Island
| | | | - Allison A McHayle
- Warren Alpert Medical School at Brown University, Providence, Rhode Island
| | | | | | - Justin Parent
- Warren Alpert Medical School at Brown University, Providence, Rhode Island; University of Rhode Island, Kingston, Rhode Island; Emma Pendleton Bradley Hospital, East Providence, Rhode Island
| |
Collapse
|
11
|
Lumour-Mensah T, Lemos B. Evidence of reduced gestational age in response to in utero arsenic exposure and implications for aging trajectories of the newborn. ENVIRONMENT INTERNATIONAL 2024; 185:108566. [PMID: 38461780 PMCID: PMC12002551 DOI: 10.1016/j.envint.2024.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Arsenic exposure is associated with a plethora of age-related health outcomes of disparate etiology. However, evidence of the impact of arsenic on aging remains limited. Here, we investigated the utility of epigenetic clocks in two different populations and the impact of maternal arsenic exposure during pregnancy on epigenetic gestational age at birth. To do this, we examined publicly available DNA methylation data and estimated gestational age across five gestational clocks in two unrelated human populations. These populations also differ in the extent of arsenic exposure and the targeted tissue of analysis (cord blood and placental tissue). Our results indicate that same-tissue clocks produce gestational age estimates that are more highly correlated with clinical gestational age. Interestingly, our results also indicate that arsenic exposure is associated with gestational age, with higher arsenic exposures associated with decreased gestational age. We also applied two pediatric clocks to evaluate infant biological age in the same samples. The data is suggestive of higher pediatric age in infants exposed to higher arsenic levels during gestation. Taken altogether, our findings are consistent with past work indicating that that in utero arsenic exposure is associated with decreased gestational maturity as characterized by infant outcomes such as low birthweight and lung underdevelopment and dysfunction in arsenic exposed infants. The findings are also consistent with arsenic exposure setting infants on a trajectory of accelerated epigenetic aging that starts at birth.
Collapse
Affiliation(s)
- Tabitha Lumour-Mensah
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States
| | - Bernardo Lemos
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States; R. Ken Coit College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ, United States; Coit Center for Longevity and Neurotherapeutics, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
12
|
Laubach ZM, Bozack A, Aris IM, Slopen N, Tiemeier H, Hivert MF, Cardenas A, Perng W. Maternal prenatal social experiences and offspring epigenetic age acceleration from birth to mid-childhood. Ann Epidemiol 2024; 90:28-34. [PMID: 37839726 PMCID: PMC10842218 DOI: 10.1016/j.annepidem.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Investigate associations of maternal social experiences with offspring epigenetic age acceleration (EAA) from birth through mid-childhood among 205 mother-offspring dyads of minoritized racial and ethnic groups. METHODS We used linear regression to examine associations of maternal experiences of racial bias or discrimination (0 = none, 1-2 = intermediate, or 3+ = high), social support (tertile 1 = low, 2 = intermediate, 3 = high), and socioeconomic status index (tertile 1 = low, 2 = intermediate, 3 = high) during the prenatal period with offspring EAA according to Horvath's Pan-Tissue, Horvath's Skin and Blood, and Intrinsic EAA clocks at birth, 3 years, and 7 years. RESULTS In comparison to children of women who did not experience any racial bias or discrimination, those whose mothers reported highest levels of racial bias or discrimination had lower Pan-Tissue clock EAA in early (-0.50 years; 90% CI: -0.91, -0.09) and mid-childhood (-0.75 years; -1.41, -0.08). We observed similar associations for the Skin and Blood clock and Intrinsic EAA. Maternal experiences of discrimination were not associated with Pan-Tissue EAA at birth. Neither maternal social support nor socioeconomic status predicted offspring EAA. CONCLUSIONS Children whose mothers experienced higher racial bias or discrimination exhibited slower EAA. Future studies are warranted to confirm these findings and establish associations of early-life EAA with long-term health outcomes.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Ecology and Evolutionary Biology (EBIO), University of Colorado Boulder
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse (CORAL), Department of Population Medicine, Harvard Medical School, Boston, MA
| | - Natalie Slopen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CORAL), Department of Population Medicine, Harvard Medical School, Boston, MA; Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD Center), Department of Epidemiology, Colorado School of Public Health, Aurora, CO.
| |
Collapse
|
13
|
Sosnowski DW, Rojo-Wissar DM, Peng G, Parade SH, Sharkey K, Hoyo C, Murphy SK, Hernandez RG, Johnson SB. Maternal Childhood Adversity and Infant Epigenetic Aging: Moderation by Restless Sleep During Pregnancy. Dev Psychobiol 2024; 66:e22464. [PMID: 38601952 PMCID: PMC11003750 DOI: 10.1002/dev.22464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024]
Abstract
Maternal exposure to childhood adversity is associated with detrimental health outcomes throughout the lifespan and may have implications for offspring. Evidence links maternal adverse childhood experiences (ACEs) to detrimental birth outcomes, yet the impact on the infant's epigenome is unclear. Moreover, maternal sleep habits during pregnancy may influence this association. Here, we explore whether restless sleep during pregnancy moderates the association between exposure to maternal childhood adversity and infant epigenetic age acceleration in 332 mother-infant dyads (56% female; 39% Black; 25% Hispanic). During the 2nd trimester, mothers self-reported childhood adversity and past-week restless sleep; DNA methylation from umbilical vein endothelial cells was used to estimate five epigenetic clocks. Multivariable linear regression was used to test study hypotheses. Despite no evidence of main effects, there was evidence of an interaction between maternal ACEs and restless sleep in predicting infant epigenetic age acceleration using the EPIC Gestational Age clock. Only infants whose mothers reported exposure to both ACEs and restless sleep demonstrated accelerated epigenetic aging. Results provide preliminary evidence that maternal childhood adversity and sleep may influence the infant epigenome.
Collapse
Affiliation(s)
- David W. Sosnowski
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health
| | - Darlynn M. Rojo-Wissar
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital
| | - Gang Peng
- Department of Medical & Molecular Genetics, Indiana University School of Medicine
| | - Stephanie H. Parade
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital
| | - Katherine Sharkey
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University
- Department of Medicine, The Warren Alpert Medical School of Brown University
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment North Carolina State University
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine
| | | | - Sara B. Johnson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health
- Department of Pediatrics, Johns Hopkins School of Medicine
| |
Collapse
|
14
|
Merrill SM, Letourneau N, Giesbrecht GF, Edwards K, MacIsaac JL, Martin JW, MacDonald AM, Kinniburgh DW, Kobor MS, Dewey D, England-Mason G, The APrON Study Team. Sex-Specific Associations between Prenatal Exposure to Di(2-ethylhexyl) Phthalate, Epigenetic Age Acceleration, and Susceptibility to Early Childhood Upper Respiratory Infections. EPIGENOMES 2024; 8:3. [PMID: 38390895 PMCID: PMC10885049 DOI: 10.3390/epigenomes8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.
Collapse
Affiliation(s)
- Sarah M Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Nicole Letourneau
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Karlie Edwards
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael S Kobor
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - The APrON Study Team
- University of Calgary, Calgary, AB T2N 1N4, Canada
- University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
15
|
Viola TW, Danzer C, Mardini V, Szobot C, Chrusciel JH, Stertz L, Schmitz JM, Walss-Bass C, Fries GR, Grassi-Oliveira R. Prenatal cocaine exposure and its influence on pediatric epigenetic clocks and epigenetic scores in humans. Sci Rep 2024; 14:1946. [PMID: 38253635 PMCID: PMC10803757 DOI: 10.1038/s41598-024-52433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
The investigation of the effects of prenatal cocaine exposure (PCE) on offspring has been inconsistent, with few studies investigating biological outcomes in humans. We profiled genome-wide DNA methylation (DNAm) of umbilical cord blood (UCB) from newborns with (n = 35) and without (n = 47) PCE. We used DNAm data to (1) assess pediatric epigenetic clocks at birth and (2) to estimate epigenetic scores (ES) for lifetime disorders. We generated gestational epigenetic age estimates (DNAmGA) based on Knight and Bohlin epigenetic clocks. We also investigated the association between DNAmGA and UCB serum brain-derived neurotrophic factor (BDNF) levels. Considering the large-scale DNAm data availability and existing evidence regarding PCE as a risk for health problems later in life, we generated ES for tobacco smoking, psychosis, autism, diabetes, and obesity. A gene ontology (GO) analysis on the CpGs included in the ES with group differences was performed. PCE was associated with lower DNAmGA in newborns, and this effect remained significant when controlling for potential confounders, such as blood cell type composition predicted by DNAm and obstetric data. DNAmGA was negatively correlated with BDNF levels in the serum of UCB. Higher tobacco smoking, psychosis, and diabetes ES were found in the PCE group. The GO analysis revealed GABAergic synapses as a potential pathway altered by PCE. Our findings of decelerated DNAmGA and ES for adverse phenotypes associated with PCE, suggest that the effects of gestational cocaine exposure on the epigenetic landscape of human newborns are detectable at birth.
Collapse
Affiliation(s)
- Thiago Wendt Viola
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Christina Danzer
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, A701-129, 8200, Aarhus, Denmark
| | - Victor Mardini
- Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| | - Claudia Szobot
- Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| | - João Henrique Chrusciel
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Laura Stertz
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, The University of Texas Health Science Center at Houston, Houston, USA
| | - Joy M Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, The University of Texas Health Science Center at Houston, Houston, USA
| | - Consuelo Walss-Bass
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, The University of Texas Health Science Center at Houston, Houston, USA
| | - Gabriel R Fries
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, The University of Texas Health Science Center at Houston, Houston, USA
| | - Rodrigo Grassi-Oliveira
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, A701-129, 8200, Aarhus, Denmark.
| |
Collapse
|
16
|
Meir AY, Wang G, Hong X, Wang X, Liang L. Newborn DNA methylation age differentiates long-term weight trajectory: The Boston Birth Cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.02.23297965. [PMID: 37961472 PMCID: PMC10635264 DOI: 10.1101/2023.11.02.23297965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is associated with maternal prenatal exposures and immediate birth outcomes. However, the association of GAmAge with long-term overweight or obesity (OWO) trajectories is yet to be determined. Methods GAmAge was calculated for 831 children from a US predominantly urban, low-income, multi-ethnic birth cohort using Illumina EPIC array and cord-blood DNA samples. Repeated anthropometric measurements aligned with pediatric primary care schedule allowed us to calculate body-mass-index percentiles (BMIPCT) at specific age and to define long-term weight trajectories from birth to 18 years. Results Four BMIPCT trajectory groups described the long-term weight trajectories: stable (consistent OWO: "early OWO"; constant normal weight: "NW") or non-stable (OWO by year 1 of follow-up: "late OWO"; OWO by year 6 of follow-up: "NW to very late OWO") BMIPCT. were used GAmAge was a predictor of long-term obesity, differentiating between group with consistently high BMIPCT and group with normal BMIPCT patterns and groups with late OWO development. Such differentiation can be observed in the age periods of birth to 1year, 3years, 6years, 10years, and 14years (p<0.05 for all; multivariate models adjusted for GEAA, maternal smoking, delivery method, and child's sex). Birth weight was a mediator for the GAmAge effect on OWO status for specific groups at multiple age periods. Conclusions GAmAge is associated with BMI trajectories from birth to age 18 years, independent of GEAA and birth weight. If further confirmed, GAmAge may serve as an early biomarker for future OWO risk.
Collapse
|
17
|
Sullivan ADW, Bozack AK, Cardenas A, Comer JS, Bagner DM, Forehand R, Parent J. Parenting Practices May Buffer the Impact of Adversity on Epigenetic Age Acceleration Among Young Children With Developmental Delays. Psychol Sci 2023; 34:1173-1185. [PMID: 37733001 PMCID: PMC10626625 DOI: 10.1177/09567976231194221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
This study examined whether children exposed to adversity would exhibit lower epigenetic age acceleration in the context of improved parenting. Children with developmental delays and externalizing behavior problems (N = 62; Mage = 36.26 months; 70.97% boys, 29.03% girls; 71% Latinx, 22.6% Black) were drawn from a larger randomized controlled trial (RCT), which randomized them to receive Internet-delivered parent-child interaction therapy (iPCIT; n = 30) or community referrals as usual (RAU; n = 32). Epigenetic age acceleration was estimated with the pediatric buccal epigenetic clock, using saliva. Adversity was assessed using parent, family, and neighborhood-level cumulative-risk indicators. Adversity interacted with Time 2 (T2) observations of positive and negative-parenting practices to predict epigenetic age acceleration 1.5 years later, regardless of treatment assignment. Children exposed to more adversity displayed lower epigenetic age acceleration when parents evidenced increased positive (b = -0.15, p = .001) and decreased negative (b = -0.12, p = .01) parenting practices.
Collapse
Affiliation(s)
- Alexandra D. W. Sullivan
- Department of Psychological Science, University of Vermont
- Department of Psychiatry, Center for Health and Community, University of California, San Francisco
| | - Anne K. Bozack
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
| | - Andres Cardenas
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
- Department of Pediatrics, School of Medicine, Stanford University
| | - Jonathan S. Comer
- Department of Psychology and Center for Children and Families, Florida International University
| | - Daniel M. Bagner
- Department of Psychology and Center for Children and Families, Florida International University
| | - Rex Forehand
- Department of Psychological Science, University of Vermont
| | - Justin Parent
- Bradley-Hasbro Children’s Research Center, E. P. Bradley Hospital, Providence, RI
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University
| |
Collapse
|
18
|
Fransquet PD, Macdonald JA, Ryan J, Greenwood CJ, Olsson CA. Exploring perinatal biopsychosocial factors and epigenetic age in 1-year-old offspring. Epigenomics 2023; 15:927-939. [PMID: 37905426 DOI: 10.2217/epi-2023-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Background: Little is known about the determinants of epigenetic aging in pediatric populations. Methods: Epigenetic age was estimated from 258 1-year-olds, using pediatric buccal epigenetic and Horvath clocks. We explored associations between epigenetic age and maternal indicators of mental and relational health, substance use and general physical health assessed during trimester three. Results: Higher anxiety and stress, BMI and higher parent-parent relationship quality were associated with pediatric buccal epigenetic clock differences. High blood pressure during pregnancy was associated with Horvath age acceleration. Third-trimester smoking and pre-pregnancy weight were associated with acceleration and deceleration respectively, and concordant across clocks. Conclusion: A broad range of maternal factors may shape epigenetic age in infancy; further research is needed to explore the possible effects on health and development.
Collapse
Affiliation(s)
- Peter D Fransquet
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
| | - Jacqui A Macdonald
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Joanne Ryan
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Christopher J Greenwood
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Craig A Olsson
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Peng G, Sosnowski DW, Murphy SK, Johnson SB, Skaar D, Schleif WS, Hernandez RG, Monforte H, Zhao H, Hoyo C. An epigenetic clock for gestational age based on human umbilical vein endothelial cells from a diverse population of newborns. RESEARCH SQUARE 2023:rs.3.rs-3112428. [PMID: 37461438 PMCID: PMC10350106 DOI: 10.21203/rs.3.rs-3112428/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Background Epigenetic clocks are emerging as a useful tool in many areas of research. Many epigenetic clocks have been developed for adults; however, there are fewer clocks focused on newborns and most are trained using blood from European ancestry populations. In this study, we built an epigenetic clock based on primary human umbilical vein endothelial cells from a racially and ethnically diverse population. Results Using human umbilical vein endothelial cell [HUVEC]-derived DNA, we calculated epigenetic gestational age using 83 CpG sites selected through elastic net regression. In this study with newborns from different racial/ethnic identities, epigenetic gestational age and clinical gestational age were more highly correlated (r = 0.85), than epigenetic clocks built from adult and other pediatric populations. The correlation was also higher than clocks based on blood samples from newborns with European ancestry. We also found that birth weight was positively associated with epigenetic gestational age acceleration (EGAA), while NICU admission was associated with lower EGAA. Newborns self-identified as Hispanic or non-Hispanic Black had lower EGAA than self-identified as non-Hispanic White. Conclusions Epigenetic gestational age can be used to estimate clinical gestational age and may help index neonatal development. Caution should be exercised when using epigenetic clocks built from adults with children, especially newborns. We highlight the importance of cell type-specific epigenetic clocks and general pan tissue epigenetic clocks derived from a large racially and ethnically diverse population.
Collapse
Affiliation(s)
- Gang Peng
- Indiana University School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Segura AG, de la Serna E, Sugranyes G, Baeza I, Valli I, Díaz-Caneja C, Martín N, Moreno DM, Gassó P, Rodriguez N, Mas S, Castro-Fornieles J. Epigenetic age deacceleration in youth at familial risk for schizophrenia and bipolar disorder. Transl Psychiatry 2023; 13:155. [PMID: 37156786 PMCID: PMC10167217 DOI: 10.1038/s41398-023-02463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Epigenetic modifications occur sequentially during the lifespan, but their pace can be altered by external stimuli. The onset of schizophrenia and bipolar disorder is critically modulated by stressors that may alter the epigenetic pattern, a putative signature marker of exposure to environmental risk factors. In this study, we estimated the age-related epigenetic modifications to assess the differences between young individuals at familial high risk (FHR) and controls and their association with environmental stressors. The sample included 117 individuals (6-17 years) at FHR (45%) and a control group (55%). Blood and saliva samples were used estimate the epigenetic age with six epigenetic clocks through methylation data. Environmental risk was measured with obstetric complications, socioeconomic statuses and recent stressful life events data. Epigenetic age was correlated with chronological age. FHR individuals showed epigenetic age deacceleration of Horvath and Hannum epigenetic clocks compared to controls. No effect of the environmental risk factors on the epigenetic age acceleration could be detected. Epigenetic age acceleration adjusted by cell counts showed that the FHR group was deaccelerated also with the PedBE epigenetic clock. Epigenetic age asynchronicities were found in the young at high risk, suggesting that offspring of affected parents follow a slower pace of biological aging than the control group. It still remains unclear which environmental stressors orchestrate the changes in the methylation pattern. Further studies are needed to better characterize the molecular impact of environmental stressors before illness onset, which could be critical in the development of tools for personalized psychiatry.
Collapse
Affiliation(s)
- Alex G Segura
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Elena de la Serna
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gisela Sugranyes
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Inmaculada Baeza
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Valli
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Covadonga Díaz-Caneja
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Nuria Martín
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Dolores M Moreno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Adolescent Inpatient Unit, Department of Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Psychiatry Department, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Gassó
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Natalia Rodriguez
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Sergi Mas
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Josefina Castro-Fornieles
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
21
|
Bozack AK, Rifas-Shiman SL, Gold DR, Laubach ZM, Perng W, Hivert MF, Cardenas A. DNA methylation age at birth and childhood: performance of epigenetic clocks and characteristics associated with epigenetic age acceleration in the Project Viva cohort. Clin Epigenetics 2023; 15:62. [PMID: 37046280 PMCID: PMC10099681 DOI: 10.1186/s13148-023-01480-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Epigenetic age acceleration (EAA) and epigenetic gestational age acceleration (EGAA) are biomarkers of physiological development and may be affected by the perinatal environment. The aim of this study was to evaluate performance of epigenetic clocks and to identify biological and sociodemographic correlates of EGAA and EAA at birth and in childhood. In the Project Viva pre-birth cohort, DNA methylation was measured in nucleated cells in cord blood (leukocytes and nucleated red blood cells, N = 485) and leukocytes in early (N = 120, median age = 3.2 years) and mid-childhood (N = 460, median age = 7.7 years). We calculated epigenetic gestational age (EGA; Bohlin and Knight clocks) and epigenetic age (EA; Horvath and skin & blood clocks), and respective measures of EGAA and EAA. We evaluated the performance of clocks relative to chronological age using correlations and median absolute error. We tested for associations of maternal-child characteristics with EGAA and EAA using mutually adjusted linear models controlling for estimated cell type proportions. We also tested associations of Horvath EA at birth with childhood EAA. RESULTS Bohlin EGA was strongly correlated with chronological gestational age (Bohlin EGA r = 0.82, p < 0.001). Horvath and skin & blood EA were weakly correlated with gestational age, but moderately correlated with chronological age in childhood (r = 0.45-0.65). Maternal smoking during pregnancy was associated with higher skin & blood EAA at birth [B (95% CI) = 1.17 weeks (- 0.09, 2.42)] and in early childhood [0.34 years (0.03, 0.64)]. Female newborns and children had lower Bohlin EGAA [- 0.17 weeks (- 0.30, - 0.04)] and Horvath EAA at birth [B (95% CI) = - 2.88 weeks (- 4.41, - 1.35)] and in childhood [early childhood: - 0.3 years (- 0.60, 0.01); mid-childhood: - 0.48 years (- 0.77, - 0.18)] than males. When comparing self-reported Asian, Black, Hispanic, and more than one race or other racial/ethnic groups to White, we identified significant differences in EGAA and EAA at birth and in mid-childhood, but associations varied across clocks. Horvath EA at birth was positively associated with childhood Horvath and skin & blood EAA. CONCLUSIONS Maternal smoking during pregnancy and child sex were associated with EGAA and EAA at multiple timepoints. Further research may provide insight into the relationship between perinatal factors, pediatric epigenetic aging, and health and development across the lifespan.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Epidemiology and Population Health, Stanford University, Research Park, 1701 Page Mill Road, Stanford, CA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Zachary M Laubach
- Department of Ecology and Evolutionary Biology (EEB), University of Colorado Boulder, Boulder, CO, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health and Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Research Park, 1701 Page Mill Road, Stanford, CA, USA.
| |
Collapse
|
22
|
Plonski NM, Chen C, Dong Q, Qin N, Song N, Parikh HM, Shelton K, Finch ER, Easton J, Mulder H, Zhang J, Neale G, Walker E, Wang H, Krull K, Ness KK, Hudson MM, Robison LL, Li Q, Williams A, Wang Z. Epigenetic Age in Peripheral Blood Among Children, Adolescent, and Adult Survivors of Childhood Cancer. JAMA Netw Open 2023; 6:e2310325. [PMID: 37115548 PMCID: PMC10148192 DOI: 10.1001/jamanetworkopen.2023.10325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Importance Certain cancer therapies are risk factors for epigenetic age acceleration (EAA) among survivors of childhood cancer, and EAA is associated with chronic health conditions (CHCs). However, small numbers of younger survivors (aged <20 years) previously evaluated have limited the ability to calculate EAA among this age group. Objective To evaluate the change rate of epigenetic age (EA) and EAA in younger compared with older survivors and the possible association of EAA with early-onset obesity (aged <20 years), severity/burden of CHCs, and late mortality (>5 years from cancer diagnosis). Design, Setting, and Participants Study participants were from the St Jude Lifetime Cohort, initiated in 2007 with ongoing follow-up. The present study was conducted from April 17, 2022, to March 23, 2023. Survivors in this cohort of European ancestry with DNA methylation data were included. Cross-sectional annual changes in EA and EAA were compared across 5 different chronologic age groups: age 0 to 9 (children), 10 to 19 (adolescents), 20 to 34 (younger adults), 35 to 49 (middle-aged adults), and greater than or equal to 50 (older adults) years. Logistic regression evaluated the association between EAA and early-onset obesity or severity/burden of CHCs. Cox proportional hazards regression assessed the association between EAA and late mortality. Main Outcomes and Measures Early-onset obesity, severity/burden of CHCs (graded using the Common Terminology Criteria for Adverse Events (grade 1, mild; 2, moderate; 3, severe/disabling; 4, life-threatening) and were combined into high vs low severity/burden based on frequency and grade), and late mortality were the outcomes based on follow-up until April 2020. Expanded DNA methylation profiling increased the number of survivors younger than 20 years (n = 690). Epigenetic age was calculated primarily using the Levine clock, and EAA was derived from least squares regression of EA against chronologic age and was standardized to a z score (Levine EEA). Results Among 2846 participants (median age, 30.3 [IQR, 9.3-41.5] years; 53% males), the cross-sectional annual change in EA_Levine was higher in children (1.63 years) and adolescents (1.14 years), and the adjusted least-squares mean of Levine EEA was lower in children (-0.22 years) and older adults (-1.70 years). Each 1-SD increase in Levine EEA was associated with increased risk of developing early-onset obesity (odds ratio [OR], 1.46; 95% CI, 1.19-1.78), high severity/burden of CHCs (OR, 1.13; 95% CI, 1.03-1.24), and late mortality (hazard ratio, 1.75; 95% CI, 1.35-2.26). Conclusions and Relevance The findings of this study suggest that EAA measured in children and adolescent survivors of childhood cancer is associated with early-onset obesity, severity/burden of all CHCs, and late mortality. Evaluating EAA may help identify survivors of childhood cancer at increased risk for early-onset obesity, morbidity in general, and mortality.
Collapse
Affiliation(s)
- Noel-Marie Plonski
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheng Chen
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
| | - Qian Dong
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Song
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa
| | - Kyla Shelton
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily R Finch
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Mulder
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Geoffrey Neale
- Hartwell Center, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily Walker
- Hartwell Center, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Hui Wang
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
| | - Kevin Krull
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Qian Li
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - AnnaLynn Williams
- Division of Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
23
|
Cecil CAM, Neumann A, Walton E. Epigenetics applied to child and adolescent mental health: Progress, challenges and opportunities. JCPP ADVANCES 2023; 3:jcv2.12133. [PMID: 36910008 PMCID: PMC7614304 DOI: 10.1002/jcv2.12133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Epigenetic processes are fast emerging as a promising molecular system in the search for both biomarkers and mechanisms underlying human health and disease risk, including psychopathology. Methods In this review, we discuss the application of epigenetics (specifically DNA methylation) to research in child and adolescent mental health, with a focus on the use of developmentally sensitive datasets, such as prospective, population-based cohorts. We look back at lessons learned to date, highlight current developments in the field and areas of priority for future research. We also reflect on why epigenetic research on child and adolescent mental health currently lags behind other areas of epigenetic research and what we can do to overcome existing barriers. Results To move the field forward, we advocate for the need of large-scale, harmonized, collaborative efforts that explicitly account for the time-varying nature of epigenetic and mental health data across development. Conclusion We conclude with a perspective on what the future may hold in terms of translational applications as more robust signals emerge from epigenetic research on child and adolescent mental health.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.,Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Neumann
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| |
Collapse
|
24
|
Ferraguti G, Terracina S, Micangeli G, Lucarelli M, Tarani L, Ceccanti M, Spaziani M, D'Orazi V, Petrella C, Fiore M. NGF and BDNF in pediatrics syndromes. Neurosci Biobehav Rev 2023; 145:105015. [PMID: 36563920 DOI: 10.1016/j.neubiorev.2022.105015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Neurotrophins (NTs) as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) play multiple roles in different settings including neuronal development, function and survival in both the peripheral and the central nervous systems from early stages. This report aims to provide a summary and subsequent review of evidences on the role of NTs in rare and non-common pediatric human diseases associated with changes in neurodevelopment. A variety of diseases has been analyzed and many have been linked to NTs neurobiological effects, including chronic granulomatous disease, hereditary sensory and autonomic neuropathy, Duchenne muscular dystrophy, Bardet-Biedl syndrome, Angelman syndrome, fragile X syndrome, trisomy 16, Williams-Beuren syndrome, Prader-Willi syndrome, WAGR syndrome, fetal alcohol spectrum disorders, Down syndrome and Klinefelter Syndrome. NTs alterations have been associated with numerous pathologic manifestations including cognitive defects, behavioral abnormalities, epilepsy, obesity, tumorigenesis as well as muscle-skeletal, immunity, bowel, pain sensibility and cilia diseases. In this report, we discuss that further studies are needed to clear a possible therapeutic role of NTs in these still often uncurable diseases.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| |
Collapse
|
25
|
Long-term impact of paediatric critical illness on the difference between epigenetic and chronological age in relation to physical growth. Clin Epigenetics 2023; 15:8. [PMID: 36639798 PMCID: PMC9840263 DOI: 10.1186/s13148-023-01424-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Altered DNA-methylation affects biological ageing in adults and developmental processes in children. DNA-methylation is altered by environmental factors, trauma and illnesses. We hypothesised that paediatric critical illness, and the nutritional management in the paediatric intensive care unit (PICU), affects DNA-methylation changes that underly the developmental processes of childhood ageing. RESULTS We studied the impact of critical illness, and of the early use of parenteral nutrition (early-PN) versus late-PN, on "epigenetic age-deviation" in buccal mucosa of 818 former PICU-patients (406 early-PN, 412 late-PN) who participated in the 2-year follow-up of the multicentre PEPaNIC-RCT (ClinicalTrials.gov-NCT01536275), as compared with 392 matched healthy children, and assessed whether this relates to their impaired growth. The epigenetic age-deviation (difference between PedBE clock-estimated epigenetic age and chronological age) was calculated. Using bootstrapped multivariable linear regression models, we assessed the impact hereon of critical illness, and of early-PN versus late-PN. As compared with healthy children, epigenetic age of patients assessed 2 years after PICU-admission deviated negatively from chronological age (p < 0.05 in 51% of bootstrapped replicates), similarly in early-PN and late-PN groups. Next, we identified vulnerable subgroups for epigenetic age-deviation using interaction analysis. We revealed that DNA-methylation age-deceleration in former PICU-patients was dependent on age at time of illness (p < 0.05 for 83% of bootstrapped replicates), with vulnerability starting from 6 years onwards. Finally, we assessed whether vulnerability to epigenetic age-deviation could be related to impaired growth from PICU-admission to follow-up at 2 and 4 years. Multivariable repeated measures ANOVA showed that former PICU-patients, as compared with healthy children, grew less in height (p = 0.0002) and transiently gained weight (p = 0.0003) over the 4-year time course. Growth in height was more stunted in former PICU-patients aged ≥ 6-years at time of critical illness (p = 0.002) than in the younger patients. CONCLUSIONS As compared with healthy children, former PICU-patients, in particular those aged ≥ 6-years at time of illness, revealed epigenetic age-deceleration, with a physical correlate revealing stunted growth in height. Whether this vulnerability around the age of 6 years for epigenetic age-deceleration and stunted growth years later relates to altered endocrine pathways activated at the time of adrenarche requires further investigation.
Collapse
|
26
|
Hart DA. Sex Differences in Biological Systems and the Conundrum of Menopause: Potential Commonalities in Post-Menopausal Disease Mechanisms. Int J Mol Sci 2022; 23:4119. [PMID: 35456937 PMCID: PMC9026302 DOI: 10.3390/ijms23084119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex-specific differences in biology and physiology likely start at the time of conception and progress and mature during the pre-puberty time frame and then during the transitions accompanying puberty. These sex differences are impacted by both genetics and epigenetic alterations during the maturation process, likely for the purpose of preparing for successful reproduction. For females, later in life (~45-50) they undergo another transition leading to a loss of ovarian hormone production at menopause. The reasons for menopause are not clear, but for a subset of females, menopause is accompanied by an increased risk of a number of diseases or conditions that impact a variety of tissues. Most research has mainly focused on the target cells in each of the affected tissues rather than pursue the alternative option that there may be commonalities in the development of these post-menopausal conditions in addition to influences on specific target cells. This review will address some of the potential commonalities presented by an integration of the literature regarding tissue-specific aspects of these post-menopausal conditions and data presented by space flight/microgravity (a condition not anticipated by evolution) that could implicate a loss of a regulatory function of the microvasculature in the risk attached to the affected tissues. Thus, the loss of the integration of the paracrine relationships between endothelial cells of the microvasculature of the tissues affected in the post-menopausal environment could contribute to the risk for post-menopausal diseases/conditions. The validation of this concept could lead to new approaches for interventions to treat post-menopausal conditions, as well as provide new understanding regarding sex-specific biological regulation.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; ; Tel.: +1-403-220-4571
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| |
Collapse
|
27
|
Hoist the sails, promote the hopes. Chin Med J (Engl) 2021; 134:2899-2900. [PMID: 34939976 PMCID: PMC8710343 DOI: 10.1097/cm9.0000000000001953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|