1
|
Xiao Y, Yang P, Xiao W, Yu Z, Li J, Li X, Lin J, Zhang J, Pei M, Hong L, Yang J, Lin Z, Jiang P, Xiang L, Li G, Ai X, Dai W, Tang W, Wang J. POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration. Chin Med J (Engl) 2025; 138:838-850. [PMID: 39183556 PMCID: PMC11970810 DOI: 10.1097/cm9.0000000000003181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown. METHODS Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice. RESULTS POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples. CONCLUSIONS The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Ping Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wushuang Xiao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhen Yu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaying Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaofeng Li
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jianjiao Lin
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Jieming Zhang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Miaomiao Pei
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Linjie Hong
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Juanying Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhizhao Lin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ping Jiang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li Xiang
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinbo Ai
- Department of Gastroenterology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Weiyu Dai
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Weimei Tang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jide Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| |
Collapse
|
2
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Soares S, Aires F, Monteiro A, Pinto G, Faria I, Sales G, Correa-Duarte MA, Guerreiro S, Fernandes R. Radiotherapy Metastatic Prostate Cancer Cell Lines Treated with Gold Nanorods Modulate miRNA Signatures. Int J Mol Sci 2024; 25:2754. [PMID: 38474003 DOI: 10.3390/ijms25052754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNA (miRNA) modulation has been identified as a promising strategy for improving the response of human prostate cancer (PCa) to radiotherapy (RT). Studies have shown that mimics or inhibitors of miRNAs could modulate the sensitivity of PCa cells to RT. In addition, pegylated gold nanoparticles have been studied as a therapeutic approach to treat PCa cells and/or vehicles for carrying miRNAs to the inside of cells. Therefore, we evaluated the capacity of hypofractionated RT and pegylated gold nanorods (AuNPr-PEG) to modulate the miRNA signature on PCa cells. Thus, RT-qPCR was used to analyze miRNA-95, miRNA-106-5p, miRNA-145-5p, and miRNA-541-3p on three human metastatic prostate cell lines (PC3, DU145, and LNCaP) and one human prostate epithelial cell line (HprEpiC, a non-tumor cell line) with and without treatment. Our results showed that miRNA expression levels depend on cell type and the treatment combination applied using RT and AuNPr-PEG. In addition, cells pre-treated with AuNPr-PEG and submitted to 2.5 Gy per day for 3 days decreased the expression levels of miRNA-95, miRNA-106, miRNA-145, and miRNA-541-3p. In conclusion, PCa patients submitted to hypofractionated RT could receive personalized treatment based on their metastatic cellular miRNA signature, and AuNPr-PEG could be used to increase metastatic cell radiosensitivity.
Collapse
Affiliation(s)
- Sílvia Soares
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- Faculty of Chemistry, University of Vigo, 36310 Vigo, Spain
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Fátima Aires
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Gabriela Pinto
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Isabel Faria
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
| | - Goreti Sales
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| | - Miguel A Correa-Duarte
- CINBIO, University of Vigo, 36310 Vigo, Spain
- Southern Galicia Institute of Health Research (IISGS), Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Madrid, Spain
| | - Susana Guerreiro
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, 4200-465 Porto, Portugal
- Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Rúben Fernandes
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- UFP@RISE, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|