1
|
Brouwer NJ, Verdijk RM, Heegaard S, Marinkovic M, Esmaeli B, Jager MJ. Conjunctival melanoma: New insights in tumour genetics and immunology, leading to new therapeutic options. Prog Retin Eye Res 2021; 86:100971. [PMID: 34015548 DOI: 10.1016/j.preteyeres.2021.100971] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Recent developments in oncology have led to a better molecular and cellular understanding of cancer, and the introduction of novel therapies. Conjunctival melanoma (CoM) is a rare but potentially devastating disease. A better understanding of CoM, leading to the development of novel therapies, is urgently needed. CoM is characterized by mutations that have also been identified in cutaneous melanoma, e.g. in BRAF, NRAS and TERT. These mutations are distinct from the mutations found in uveal melanoma (UM), affecting genes such as GNAQ, GNA11, and BAP1. Targeted therapies that are successful in cutaneous melanoma may therefore be useful in CoM. A recent breakthrough in the treatment of patients with metastatic cutaneous melanoma was the development of immunotherapy. While immunotherapy is currently sparsely effective in intraocular tumours such as UM, the similarities between CoM and cutaneous melanoma (including in their immunological tumour micro environment) provide hope for the application of immunotherapy in CoM, and preliminary clinical data are indeed emerging to support this use. This review aims to provide a comprehensive overview of the current knowledge regarding CoM, with a focus on the genetic and immunologic understanding. We elaborate on the distinct position of CoM in contrast to other types of melanoma, and explain how new insights in the pathophysiology of this disease guide the development of new, personalized, treatments.
Collapse
Affiliation(s)
- Niels J Brouwer
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert M Verdijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Leiden University Medica Center, Leiden, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Eye Pathology Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Bita Esmaeli
- Department of Plastic Surgery, Orbital Oncology and Ophthalmic Plastic Surgery, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Arruda EL, Japiassu KB, de Melo Souza PL, Araújo KCF, Thomaz DV, Cortez AP, Garcia LF, Valadares MC, de Souza Gil E, de Oliveira V. Zidovudine Glycosylation by Filamentous Fungi Leads to a Better Redox Stability and Improved Cytotoxicity in B16F10 Murine Melanoma Cells. Anticancer Agents Med Chem 2020; 20:1688-1694. [PMID: 32329702 DOI: 10.2174/1871520620666200424112504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The strategic development of therapeutic agents, capable of being targeted at their active sites, has been a major goal in treatment of cancer. The delivery of drugs for tumors has as its main challenge the development of safe and effective drugs, since the goal of chemotherapy is to eliminate the tumor completely without affecting healthy cells. The aim of present study was to investigate the antioxidant, anticancer activities of zidovudine and its α-O-glycosylated derivative obtained by biosynthesis of a filamentous fungi, Cunninghamela echinulata. METHODS An evaluation of the cytotoxic potential of zidovudine and its α-O-glycosylated was performed in fibroblasts and melanoma cells by the tetrazolium reduction method (MTT) and the antioxidant activity of this derivative was observed. RESULTS The antioxidant activity of zidovudine demonstrated an electrochemical oxidation potential of 0.91V, while the α-O-glycosylated derivative did not exhibit any antioxidant activity. The zidovudine exhibited low cytotoxicity for melanoma and fibroblast cells, while the α-O-glycosylated derivative presented better cytotoxicity on melanoma cells at a concentration of 10mg. mL-1. CONCLUSION This study demonstrates the specific cytotoxicity of the glycoconjugate and suggests that glycosylation by biosynthesis can be a useful strategy for obtaining new anticancer compounds.
Collapse
Affiliation(s)
- Evilanna L Arruda
- Laboratorio de Bioconversao, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| | - Kamila B Japiassu
- Laboratorio de Bioconversao, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| | - Paula L de Melo Souza
- Laboratorio de Bioconversao, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| | - Kelly C F Araújo
- Laboratorio de Bioconversao, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| | - Douglas V Thomaz
- Laboratorio de Pesquisa em Produtos Naturais, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, , Goiania, GO, Brazil
| | - Alane P Cortez
- Laboratorio de Farmacologia e Toxicologia Celular, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| | - Luane F Garcia
- Laboratorio de Anlises Farmaceuticas e Ambientais, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| | - Marize C Valadares
- Laboratorio de Farmacologia e Toxicologia Celular, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| | - Eric de Souza Gil
- Laboratorio de Anlises Farmaceuticas e Ambientais, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| | - Valéria de Oliveira
- Laboratorio de Bioconversao, Faculdade de Farmacia, Universidade Federal de Goias, P.O. Box 131, Goiania, GO, Brazil
| |
Collapse
|
3
|
Wagner MS, Schultze E, Oliveira TL, de Leon PMM, Thurow HS, Campos VF, Oliveira I, de Souza D, Rodrigues OED, Collares T, Seixas FK. Revitalizing the AZT Through of the Selenium: An Approach in Human Triple Negative Breast Cancer Cell Line. Front Oncol 2018; 8:525. [PMID: 30524958 PMCID: PMC6262369 DOI: 10.3389/fonc.2018.00525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/26/2018] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer represents about 15% of all cases of breast cancer, and still represents a therapeutic challenge. 3′-Azido-3′-deoxythymidine (AZT) is a nucleoside reverse transcriptase inhibitor with antitumor activity. Chalcogenides compounds, such as selenium, are very important intermediates applied in organic synthesis. Our objective was to investigate the effect and the underlying cell death mechanisms of AZT and its derivatives, in human breast cancer cell lines. The inhibitory effect of AZT and derivatives (1072, 1073, and 1079) was determined by MTT assay (0.1, 1, 10, 50, and 100 μM for concentrations and times 4, 24, 48, and 72 h) and Live/Dead in tumor cell lines MCF-7, MDA-MB 231 and also in non-tumor cell line CHO. Gene expression profiles related to apoptosis were investigated by qRT-PCR and induction of apoptosis was investigated by flow cytometry. MTT and Live/Dead assays showed that AZT derivatives decreased the rate of cell proliferation at concentrations of 50 and 100 μM in tumor cell lines MCF-7 and MDA-MB 231 while the commercial AZT presented a low antitumoral potential in all strains tested. In flow cytometry analysis we demonstrated that derivatives of AZT induced apoptosis, with an increase in both initial and late stages in both tumor cell lines evaluated, especially in MDA-MB 231. Our data show that the AZT derivative 1072 increased the expression of transcripts of the genes caspase 3 and 8 in MDA-MB 231 cell line when compared to control, suggesting that the extrinsic pathway of apoptosis was activated. In conclusion, derivatives of AZT, especially 1072, induce cytotoxicity in vitro in the triple negative breast cancer cell line through activation of the extrinsic pathway of apoptosis. These compounds containing selenium in its formulation are potential therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Mônica Silveira Wagner
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Eduarda Schultze
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Thais Larre Oliveira
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Priscila Marques Moura de Leon
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Helena Strelow Thurow
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Isabel Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Diego de Souza
- LabSelen-NanoBio - Universidade de Federal de Santa Maria, Santa Maria, Brazil
| | | | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
4
|
Ecker A, Ledur PC, da Silva RS, Leal DBR, Rodrigues OED, Ardisson-Araújo D, Waczuk EP, da Rocha JBT, Barbosa NV. Chalcogenozidovudine Derivatives With Antitumor Activity: Comparative Toxicities in Cultured Human Mononuclear Cells. Toxicol Sci 2018; 160:30-46. [PMID: 29036705 DOI: 10.1093/toxsci/kfx152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Considering a novel series of zidovudine (AZT) derivatives encompassing selenoaryl moieties promising candidates as therapeutics, we examined the toxicities elicited by AZT and derivatives 5'-(4-Chlorophenylseleno)zidovudine (SZ1); 5'-(Phenylseleno)zidovudine (SZ2); and 5'-(4-Methylphenylseleno)zidovudine (SZ3) in healthy cells and in mice. Resting and stimulated cultured human peripheral blood mononuclear cells (PBMCs) were treated with the compounds at concentrations ranging from 10 to 200 µM for 24 and/or 72 h. Adult mice received a single injection of compounds (100 µmol/kg, s.c.) and 72 h after administration, hepatic/renal biomarkers were analyzed. Resting and stimulated PBMCs exposed to SZ1 displayed loss of viability, increased reactive species production, disruption in cell cycle, apoptosis and increased transcript levels and production of pro-inflammatory cytokines. In a mild way, most of these effects were also induced by SZ2. AZT and SZ3 did not cause significant toxicity towards resting PBMCs. Differently, both compounds elicited apoptosis and S phase arrest in stimulated cells. AZT and derivatives administration did not change the body weight and plasma biochemical markers in mice. However, the absolute weight and organ-to-body weight ratio of liver, kidneys and spleen were altered in AZT, SZ1-, and SZ2-treated mice. Our results highlighted the involvement of derivatives SZ1 and SZ2 in redox and immunological dyshomeostasis leading to activation of apoptotic signaling pathways in healthy cells under different division phases. On the other hand, the derivative SZ3 emerged as a promising candidate for further viral infection/antitumor studies as a new effective therapy with low toxicity for immune cells and after acute in vivo treatment.
Collapse
Affiliation(s)
- Assis Ecker
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| | | | - Rafael S da Silva
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Daniela Bitencourt Rosa Leal
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Oscar E D Rodrigues
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Daniel Ardisson-Araújo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| | - Emily Pansera Waczuk
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| | - Nilda Vargas Barbosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| |
Collapse
|
5
|
McCusker JP, Dumontier M, Yan R, He S, Dordick JS, McGuinness DL. Finding melanoma drugs through a probabilistic knowledge graph. PeerJ Comput Sci 2017; 3:e106. [PMID: 37133296 PMCID: PMC10151034 DOI: 10.7717/peerj-cs.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/27/2016] [Indexed: 05/04/2023]
Abstract
Metastatic cutaneous melanoma is an aggressive skin cancer with some progression-slowing treatments but no known cure. The omics data explosion has created many possible drug candidates; however, filtering criteria remain challenging, and systems biology approaches have become fragmented with many disconnected databases. Using drug, protein and disease interactions, we built an evidence-weighted knowledge graph of integrated interactions. Our knowledge graph-based system, ReDrugS, can be used via an application programming interface or web interface, and has generated 25 high-quality melanoma drug candidates. We show that probabilistic analysis of systems biology graphs increases drug candidate quality compared to non-probabilistic methods. Four of the 25 candidates are novel therapies, three of which have been tested with other cancers. All other candidates have current or completed clinical trials, or have been studied in in vivo or in vitro. This approach can be used to identify candidate therapies for use in research or personalized medicine.
Collapse
Affiliation(s)
| | - Michel Dumontier
- Stanford Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Yan
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sylvia He
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jonathan S. Dordick
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deborah L. McGuinness
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
6
|
de Souza D, Mariano DOC, Nedel F, Schultze E, Campos VF, Seixas F, da Silva RS, Munchen TS, Ilha V, Dornelles L, Braga AL, Rocha JBT, Collares T, Rodrigues OED. New Organochalcogen Multitarget Drug: Synthesis and Antioxidant and Antitumoral Activities of Chalcogenozidovudine Derivatives. J Med Chem 2015; 58:3329-39. [DOI: 10.1021/jm5015296] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Diego de Souza
- LabSelen-NanoBio
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Douglas O. C. Mariano
- LabSelen-NanoBio
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Fernanda Nedel
- Molecular
and Cellular Oncology Group, Graduate Program in Biotechnology, Universidade Federal de Pelotas, 96010-610 Pelotas, Brazil
| | - Eduarda Schultze
- Molecular
and Cellular Oncology Group, Graduate Program in Biotechnology, Universidade Federal de Pelotas, 96010-610 Pelotas, Brazil
| | - Vinícius F. Campos
- Molecular
and Cellular Oncology Group, Graduate Program in Biotechnology, Universidade Federal de Pelotas, 96010-610 Pelotas, Brazil
| | - Fabiana Seixas
- Molecular
and Cellular Oncology Group, Graduate Program in Biotechnology, Universidade Federal de Pelotas, 96010-610 Pelotas, Brazil
| | - Rafael S. da Silva
- LabSelen-NanoBio
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Taiana S. Munchen
- LabSelen-NanoBio
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Vinicius Ilha
- LabSelen-NanoBio
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Luciano Dornelles
- LabSelen-NanoBio
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Antonio L. Braga
- Departamento
de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - João B. T. Rocha
- LabSelen-NanoBio
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Tiago Collares
- Molecular
and Cellular Oncology Group, Graduate Program in Biotechnology, Universidade Federal de Pelotas, 96010-610 Pelotas, Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| |
Collapse
|
7
|
Matteucci C, Minutolo A, Marino-Merlo F, Grelli S, Frezza C, Mastino A, Macchi B. Characterization of the enhanced apoptotic response to azidothymidine by pharmacological inhibition of NF-kB. Life Sci 2015; 127:90-7. [PMID: 25744407 DOI: 10.1016/j.lfs.2015.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 01/28/2015] [Indexed: 12/26/2022]
Abstract
AIMS The present study addresses the issue of enhanced apoptotic response to AZT following co-treatment with an NF-kB inhibitor. MAIN METHODS To investigate this issue, different cell lines were assayed for susceptibility to AZT-mediated apoptosis without or with the addition of the NF-kB inhibitor Bay-11-7085. For further investigation, U937 cells were selected as good-responder cells to the combination treatment with 32 or 128 μM AZT, and 1 μM Bay-11-7085. Inhibition of NF-kB activation by Bay-11-7085 in cells treated with AZT was assayed through Western blot analysis of p65 expression and by EMSA. Involvement of the mitochondrial pathway of apoptosis in mechanisms underlying the improved effect of AZT following Bay-11-7085 co-treatment, was evaluated by assaying the cytochrome c release and the mitochondrial membrane potential (MMP) status using the JC-1 dye. Moreover, the transcriptional activity of both anti- and pro-apoptotic genes in U937 cells after combination treatment was quantitatively evaluated through real-time PCR. KEY FINDINGS We found that the combined treatment induced high levels of cytochrome c release and of MMP collapse in association with evident changes in the expression of both anti- and pro-apoptotic genes of the Bcl-2 family. Overexpression of Bcl-2 significantly suppressed the sensitization of U937 cells to an enhanced apoptotic response to AZT following co-treatment with the NF-kB inhibitor. SIGNIFICANCE The new findings suggest that a combination regimen based on AZT plus an NF-kB inhibitor could represent a new chemotherapeutic tool for retrovirus-related pathologies.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Marino-Merlo
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Caterina Frezza
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Antonio Mastino
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy; The Institute of Translational Pharmacology, CNR, Rome, Italy.
| | - Beatrice Macchi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
8
|
Wang J, Wang YJ, Chen ZS, Kwon CH. Synthesis and evaluation of sulfonylethyl-containing phosphotriesters of 3′-azido-3′-deoxythymidine as anticancer prodrugs. Bioorg Med Chem 2014; 22:5747-56. [DOI: 10.1016/j.bmc.2014.09.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
9
|
Fang JL, Han T, Wu Q, Beland FA, Chang CW, Guo L, Fuscoe JC. Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol 2014; 88:609-23. [PMID: 24292225 PMCID: PMC5901687 DOI: 10.1007/s00204-013-1169-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 11/13/2013] [Indexed: 01/27/2023]
Abstract
Zidovudine (3'-azido-3'-deoxythymidine; AZT) is the most widely used nucleoside reverse transcriptase inhibitor for the treatment of AIDS patients and prevention of mother-to-child transmission of HIV-1. Previously, we demonstrated that AZT had significantly greater growth inhibitory effects upon the human liver carcinoma cell line HepG2 as compared to the immortalized human liver cell line THLE2. We have now used gene expression profiling to determine the molecular pathways associated with toxicity in both cell lines. HepG2 cells were incubated with 0, 2, 20, or 100 μM AZT for 2 weeks; THLE2 cells were treated with 0, 50, 500, or 2,500 μM AZT, concentrations that were equi-toxic to those used in the HepG2 cells. After the treatment, total RNA was isolated and subjected to microarray analysis. Global analysis of gene expression, with a false discovery rate ≤0.01 and a fold change ≥1.5, indicated that 6- to 70-fold more genes were differentially expressed in a significant concentration-dependent manner in HepG2 cells when compared to THLE2 cells. Comparative analysis indicated that 7 % of these genes were common to both cell lines. Among the common differentially expressed genes, 70 % changed in the same direction, most of which were associated with cell death and survival, cell cycle, cell growth and proliferation, and DNA replication, recombination, and repair. As determined by the uptake of [methyl-(3)H]AZT, the intracellular levels of total AZT were approximately twofold higher in THLE2 cells than in HepG2 cells. The expression of thymidine kinase 1 (TK1) and UDP-glucuronosyltransferase 2B7 (UGT2B7) genes that regulate the metabolic activation and deactivation of AZT, respectively, was increased in HepG2 cells but decreased in THLE2 cells after treatment with AZT. This differential response in AZT metabolism was confirmed by real-time PCR, western blotting, and/or enzymatic assays. These data indicate that molecular pathways involved with cell death and survival, cell cycle, cell growth and proliferation, and DNA replication, recombination, and repair are involved in the toxicities associated with AZT in both human cell lines, and that the difference in expression of TK1 and UGT2B7 in response to AZT treatment in HepG2 cells and THLE2 cells might explain why HepG2 cells are more sensitive than THLE2 cells to the toxicity of AZT.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA,
| | | | | | | | | | | | | |
Collapse
|
10
|
Shen T, Ma J, Zhang L, Yu X, Liu M, Hou Y, Wang Y, Ma C, Li S, Zhu D. Positive feedback-loop of telomerase reverse transcriptase and 15-lipoxygenase-2 promotes pulmonary hypertension. PLoS One 2013; 8:e83132. [PMID: 24376652 PMCID: PMC3871619 DOI: 10.1371/journal.pone.0083132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Pulmonary hypertension (PH) is characterized with pulmonary vasoconstriction and vascular remodeling mediated by 15-lipoxygenase (15-LO)/15-hydroxyeicosatetraenoic acid (15-HETE) according to our previous studies. Meanwhile, telomerase reverse transcriptase (TERT) activity is highly correlated with vascular injury and remodeling, suggesting that TERT may be an essential determinant in the development of PH. The aim of this study was to determine the contribution and molecular mechanisms of TERT in the pathogenesis of PH. APPROACH AND RESULTS We measured the right ventricular systolic pressure (RVSP) and ventricular weight, analyzed morphometric change of the pulmonary vessels in the hypoxia or monocrotaline treated rats. Bromodeoxyuridine incorporation, transwell assay and flow cytometry in pulmonary smooth muscle cells were performed to investigate the roles and relationship of TERT and 15-LO/15-HETE in PH. We revealed that the expression of TERT was increased in pulmonary vasculature of patients with PH and in the monocrotaline or hypoxia rat model of PH. The up-regulation of TERT was associated with experimental elevated RVSP and pulmonary vascular remodeling. Coimmunoprecipitation experiments identified TERT as a novel interacting partner of 15-LO-2. TERT and 15-LO-2 augmented protein expression of each other. In addition, the proliferation, migration and cell-cycle transition from G0/G1 phase to S phase induced by hypoxia were inhibited by TERT knockdown, which were rescued by 15-HETE addition. CONCLUSIONS These results demonstrate that TERT regulates pulmonary vascular remodeling. TERT and 15-LO-2 form a positive feedback loop and together promote proliferation and migration of pulmonary artery smooth muscle cells, creating a self-amplifying circuit which propels pulmonary hypertension.
Collapse
Affiliation(s)
- Tingting Shen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Lei Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Xiufeng Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Mengmeng Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Yunlong Hou
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanyan Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Cui Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
| | - Shuzhen Li
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, Heilongjiang Province, China
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
11
|
Chen P, Liu Y, Sun Y, Chen C, Qi Y, Zhang Y. AZT and emodin exhibit synergistic growth-inhibitory effects on K562/ADM cells by inducing S phase cell cycle arrest and suppressing MDR1 mRNA/p-gp protein expression. PHARMACEUTICAL BIOLOGY 2013; 51:1586-1591. [PMID: 24004004 DOI: 10.3109/13880209.2013.803257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Previous studies have demonstrated that both 3'-azido-3'-deoxythymidine (AZT) and emodin, a traditional chemotherapy agent, can inhibit the growth of many types of cancer cells. OBJECTIVE This study aimed to evaluate the effect of AZT and emodin on adriamycin-resistant human chronic myelogenous leukemia (K562/ADM) cells, determine the expression of multidrug resistance 1 (MDR1) mRNA/p-glycoprotein (p-gp) protein, a protein known to induce resistance to anticancer agents, and to elucidate the underlying molecular mechanisms. MATERIALS AND METHODS K562/ADM cells were treated with AZT (10-160 μM) or emodin (5-80 μM) for 24, 48 and 72 h and cell viability was measured using the MTT assay. The effect of AZT (16.5, 33 and 66 μM) and emodin (6.1, 17.6 and 33.2 μM) on K562/ADM cell cycle distribution was determined by flow cytometry, and MDR1 mRNA/p-gp protein expression was determined by real time RT-PCR and western blotting. RESULTS The growth suppression of emodin was dramatically enhanced by AZT in K562/ADM cells. The IC50 of AZT and emodin was lower than that of emodin alone. All examined combinations of AZT and emodin yielded a synergetic effect (CI < 1). Furthermore, AZT and emodin altered the cell cycle distribution and led to an accumulation of cells in S phase. Meanwhile, the expression of MDR1 mRNA/p-gp protein was markedly decreased. DISCUSSION AND CONCLUSION These results show a synergistic growth-inhibitory effect of AZT and emodin in K562/ADM cells, which is achieved through S phase arrest. MDR1 might ultimately be responsible for these phenomena.
Collapse
Affiliation(s)
- Peng Chen
- School of Life Science, Lanzhou University , Lanzhou , China
| | | | | | | | | | | |
Collapse
|
12
|
Azidothymidine hinders arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells by induction of p21 and attenuation of G2/M arrest. Ann Hematol 2013; 92:1207-20. [DOI: 10.1007/s00277-013-1763-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/12/2013] [Indexed: 12/12/2022]
|
13
|
Souza Sobrinho CPD, Gragnani A, Santos IDAO, Oliveira AF, Lipay MVN, Ferreira LM. AZT on telomerase activity and cell proliferation in HS 839.T melanoma cells. Acta Cir Bras 2012. [PMID: 23207751 DOI: 10.1590/s0102-86502012001200005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate telomerase activity and proliferation of HS839.T melanoma cells, subjected to the action of AZT. METHODS Cells were grown in triplicate, AZT at different concentrations: 50, 100 and 200 μM, was added and left for 24 and 48 hours, and its effects were compared with the control group. Telomerase activity was detected by PCR and cell proliferation was evaluated by MTT. RESULTS After 24 hours, there was no inhibition of cell proliferation or telomerase activity when compared to the control group. After 48 hours, there was a momentary decrease, suggesting that the cell lines used in this study are sensitive to AZT, but quickly recover both the enzyme activity and cell proliferation. CONCLUSION The action of AZT on the melanoma cells studied, at the concentrations and times tested, did not inhibit telomerase activity nor affect cell proliferation.
Collapse
|
14
|
The combined use of known antiviral reverse transcriptase inhibitors AZT and DDI induce anticancer effects at low concentrations. Neoplasia 2012; 14:44-53. [PMID: 22355273 DOI: 10.1593/neo.11426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 03/20/2011] [Accepted: 12/13/2011] [Indexed: 12/31/2022] Open
Abstract
A hallmark of tumor cell survival is the maintenance of elongated telomeres. It is known that antiviral reverse transcriptase inhibitors (RTIs) such as azidothymidine (AZT) and didanosine (ddI) lead to telomere shortening at high, potentially toxic concentrations. We hypothesized that those drugs might have synergistic effects enabling successful therapy with low, nontoxic concentrations. Biologic effects of AZT and ddI were analyzed at concentrations that correspond to minimal plasma levels achieved during human immunodeficiency virus therapy. Long-term coapplication of low-dose AZT and ddI induced a significant shortening of telomeres in the tumor cell lines HCT-116, SkMel-28, MelJuso, and Jurkat. Treatment of cells with both RTI, but not with single RTI, led to a significant accumulation of γH2AX, to p53 phosphorylation, and to cell apoptosis in all cell lines. Oral low-dose dual RTI application but not low-dose single RTI application was associated with a significantly reduced tumor growth of HCT-116 cells in mice. This antiproliferative activity of the combined use of AZT and ddI at low, clinically applicable concentrations warrants clinical testing in human solid cancer.
Collapse
|
15
|
Sbardella G, Mai A, Bartolini S, Castellano S, Cirilli R, Rotili D, Milite C, Santoriello M, Orlando S, Sciamanna I, Serafino A, Lavia P, Spadafora C. Modulation of cell differentiation, proliferation, and tumor growth by dihydrobenzyloxopyrimidine non-nucleoside reverse transcriptase inhibitors. J Med Chem 2011; 54:5927-5936. [PMID: 21755950 DOI: 10.1021/jm200734j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of 5-alkyl-2-(alkylthio)-6-(1-(2,6-difluorophenyl)propyl)-3,4-dihydropyrimidin-4(3H)-one derivatives (3a-h) belonging to the F(2)-DABOs class of non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs) are endowed with a strong antiproliferative effect and induce cytodifferentiation in A375 melanoma cells. Among tested compounds, the most potent is 3g (SPV122), which also induces apoptosis in a cell-density-dependent manner and antagonizes tumor growth in animal models. All these effects are similar or even more pronounced than those previously reported for other nucleoside or non-nucleoside inhibitors of reverse transcriptase or by functional knockout of the reverse-transcriptase-encoding long interspersed element 1 by RNA interference (RNAi). Taken together with our previously reported results, these data further confirm our idea that cellular alterations induced by NNRTIs are a consequence of the inhibition of the endogenous reverse transcriptase in A375 cells and support the potential of NNRTIs as valuable agents in cancer therapy.
Collapse
Affiliation(s)
- Gianluca Sbardella
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brüning A, Burger P, Gingelmaier A, Mylonas I. The HIV reverse transcriptase inhibitor tenofovir induces cell cycle arrest in human cancer cells. Invest New Drugs 2011; 30:1389-95. [PMID: 21713384 DOI: 10.1007/s10637-011-9704-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/13/2011] [Indexed: 12/12/2022]
Abstract
Selected HIV drugs, either of the protease inhibitor type or the nucleoside antagonist type, have been shown to exert tumoricidal effects. Here, we show that the HIV reverse transcriptase inhibitor Truvada, a combination drug of the cytidine analogue emtricitabine and the adenosine analogue tenofovir, induces DNA damage and cell cycle arrest in human cancer cells. Phosphorylation of the DNA repair enzyme H2AX by emtricitabine/tenofovir indicated that it interfered with the integrity of the DNA and replication machinery in human cancer cells. Long term incubation of cancer cells with emtricitabine/tenofovir caused the formation of multi-nuclear giant cells, further indicating DNA replication problems. When tested as single agents, the anti-tumoral activity of emtricitabine/tenofovir was predominantly caused by tenofovir, although the combination with emtricitabine enhanced its effect on cancer cells. Combined with established anti-cancer drugs, emtricitabine/tenofovir was preferentially found to enhance the cytotoxic effect of doxorubicin, a promising drug for the treatment of relapsed, chemoresistant cancer. These results show that especially the adenosine analogue tenofovir could be used to interfere with the proliferation machinery of human cancer cells and to be applied for chemosensitization of cancer cells to already established DNA-interacting drugs.
Collapse
Affiliation(s)
- Ansgar Brüning
- Department of Obstetrics and Gynecology, Campus Innenstadt, Ludwig-Maximilians-University Munich, Maistrasse 11, 80337 Munich, Germany.
| | | | | | | |
Collapse
|
17
|
Wu Q, Beland FA, Chang CW, Fang JL. XPC is essential for nucleotide excision repair of zidovudine-induced DNA damage in human hepatoma cells. Toxicol Appl Pharmacol 2010; 251:155-62. [PMID: 21192964 DOI: 10.1016/j.taap.2010.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 12/18/2022]
Abstract
Zidovudine (3'-azido-3'-dexoythymidine, AZT), a nucleoside reverse transcriptase inhibitor, can be incorporated into DNA and cause DNA damage. The mechanisms underlying the repair of AZT-induced DNA damage are unknown. To investigate the pathways involved in the recognition and repair of AZT-induced DNA damage, human hepatoma HepG2 cells were incubated with AZT for 2 weeks and the expression of DNA damage signaling pathways was determined using a pathway-based real-time PCR array. Compared to control cultures, damaged DNA binding and nucleotide excision repair (NER) pathways showed significantly increased gene expression. Further analysis indicated that AZT treatment increased the expression of genes associated with NER, including XPC, XPA, RPA1, GTF2H1, and ERCC1. Western blot analysis demonstrated that the protein levels of XPC and GTF2H1 were also significantly up-regulated. To explore further the function of XPC in the repair of AZT-induced DNA damage, XPC expression was stably knocked down by 71% using short hairpin RNA interference. In the XPC knocked-down cells, 100 μM AZT treatment significantly increased [³H]AZT incorporation into DNA, decreased the total number of viable cells, increased the release of lactate dehydrogenase, induced apoptosis, and caused a more extensive G2/M cell cycle arrest when compared to non-transfected HepG2 cells or HepG2 cells transfected with a scrambled short hairpin RNA sequence. Overall, these data indicate that XPC plays an essential role in the NER repair of AZT-induced DNA damage.
Collapse
Affiliation(s)
- Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
18
|
Fang JL, Beland FA. Long-term exposure to zidovudine delays cell cycle progression, induces apoptosis, and decreases telomerase activity in human hepatocytes. Toxicol Sci 2009; 111:120-30. [PMID: 19541796 DOI: 10.1093/toxsci/kfp136] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zidovudine (3'-azido-3'-deoxythymidine; AZT), which is currently used in the treatment of acquired immunodeficiency syndrome, has been shown to have anticancer properties. In the present study, we examined the mechanisms contributing to increased sensitivity of cancer cells to the growth-inhibitory effects of AZT. This was accomplished by incubating a hepatoma cell line (HepG2) and a normal liver cell line (THLE2) with AZT in continuous culture for up to 4 weeks and evaluating the number of viable and necrotic cells, the induction of apoptosis, cell cycle alterations, and telomerase activity. In HepG2 cells, AZT (2-100 microM) caused significant dose-dependent decreases in the number of viable cells at exposures > 24 h. During a 1-week recover period, there was only a slight increase in the number of viable cells treated with AZT. The decrease in viable cells was associated with an induction of apoptosis, a decrease in telomerase activity, and S and G2/M phase arrest of the cell cycle. During the recovery period, the extent of apoptosis and telomerase activity returned to control levels, whereas the disruption of cell cycle progression persisted. Western blot analysis indicated that AZT caused a decrease in checkpoint kinase 1 (Chk1) and kinase 2 (Chk2) and an increase in phosphorylated Chk1 (Ser345) and Chk2 (Thr68). Similar effects, to lesser extent, were observed in THLE2 cells given much higher concentrations of AZT (50-2500 microM). These data show that HepG2 cells are much more sensitive than THLE2 cells to AZT. They also indicate that a combination of a delay of cell cycle progression, an induction of apoptosis, and a decrease in telomerase activity is contributing to the decrease in the number of viable cells from AZT treatment, and that checkpoint enzymes Chk1 and Chk2 may play an important role in the delay of cell cycle progression.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | |
Collapse
|