1
|
Chat V, Dagayev S, Moran U, Snuderl M, Weber J, Ferguson R, Osman I, Kirchhoff T. A genome-wide association study of germline variation and melanoma prognosis. Front Oncol 2023; 12:1050741. [PMID: 36741706 PMCID: PMC9894711 DOI: 10.3389/fonc.2022.1050741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Background The high mortality of cutaneous melanoma (CM) is partly due to unpredictable patterns of disease progression in patients with early-stage lesions. The reliable prediction of advanced disease risk from early-stage CM, is an urgent clinical need, especially given the recent expansion of immune checkpoint inhibitor therapy to the adjuvant setting. In our study, we comprehensively investigated the role of germline variants as CM prognostic markers. Methods We performed a genome-wide association analysis in two independent cohorts of N=551 (discovery), and N=550 (validation) early-stage immunotherapy-naïve melanoma patients. A multivariable Cox proportional hazard regression model was used to identify associations with overall survival in the discovery group, followed by a validation analysis. Transcriptomic profiling and survival analysis were used to elucidate the biological relevance of candidate genes associated with CM progression. Results We found two independent associations of germline variants with melanoma prognosis. The alternate alleles of these two SNPs were both associated with an increased risk of death [rs60970102 in MELK: HR=3.14 (2.05-4.81), p=1.48×10-7; and rs77480547 in SH3BP4: HR=3.02 (2.02-4.52), p=7.58×10-8, both in the pooled cohort]. The addition of the combined risk alleles (CRA) of the identified variants into the prognostic model improved the predictive power, as opposed to a model of clinical covariates alone. Conclusions Our study provides suggestive evidence of novel melanoma germline prognostic markers, implicating two candidate genes: an oncogene MELK and a tumor suppressor SH3BP4, both previously suggested to affect CM progression. Pending further validation, these findings suggest that the genetic factors may improve the prognostic stratification of high-risk early-stage CM patients, and propose putative biological insights for potential therapeutic investigation of these targets to prevent aggressive outcome from early-stage melanoma.
Collapse
Affiliation(s)
- Vylyny Chat
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States
- Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, United States
- The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Sasha Dagayev
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States
- Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, United States
- The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Una Moran
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States
- The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Matija Snuderl
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Jeffrey Weber
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States
- The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Robert Ferguson
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States
- Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, United States
- The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| | - Iman Osman
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States
- The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tomas Kirchhoff
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States
- Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, United States
- The Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|
3
|
Pecorelli A, Valacchi G. Oxidative-Stress-Sensitive microRNAs in UV-Promoted Development of Melanoma. Cancers (Basel) 2022; 14:3224. [PMID: 35804995 PMCID: PMC9265047 DOI: 10.3390/cancers14133224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma is the most aggressive and life-threatening form of skin cancer. Key molecular events underlying the melanocytic transformation into malignant melanoma mainly involve gene mutations in which exposure to ultraviolet (UV) radiation plays a prominent role. However, several aspects of UV-induced melanomagenesis remain to be explored. Interestingly, redox-mediated signaling and perturbed microRNA (miRNA) profiles appear to be interconnected contributing factors able to act synergistically in melanoma initiation and progression. Since UV radiation can promote both redox imbalance and miRNA dysregulation, a harmful crosstalk between these two key cellular networks, with UV as central hub among them, is likely to occur in skin tissue. Therefore, decoding the complex circuits that orchestrate the interaction of UV exposure, oxidative stress, and dysregulated miRNA profiling can provide a deep understanding of the molecular basis of the melanomagenesis process. Furthermore, these mechanistic insights into the reciprocal regulation between these systems could have relevant implications for future therapeutic approaches aimed at counteracting UV-induced redox and miRNome imbalances for the prevention and treatment of malignant melanoma. In this review, we illustrate current information on the intricate connection between UV-induced dysregulation of redox-sensitive miRNAs and well-known signaling pathways involved in the malignant transformation of normal melanocytes to malignant melanoma.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Giuseppe Valacchi
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
4
|
Sánchez-Sendra B, González-Muñoz JF, Pérez-Debén S, Monteagudo C. The Prognostic Value of miR-125b, miR-200c and miR-205 in Primary Cutaneous Malignant Melanoma Is Independent of BRAF Mutational Status. Cancers (Basel) 2022; 14:cancers14061532. [PMID: 35326682 PMCID: PMC8946551 DOI: 10.3390/cancers14061532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Melanoma accounts for the majority of skin cancer-related deaths. On the one hand, most melanomas contain mutations in the BRAF gene (predominantly V600E), and on the other hand, miRNAs modulate different steps in melanoma development and progression, but there are no reports that study the relation between BRAF mutational status and the expression of miRNAs, which is important for an accurate patient prognosis. The aim of our retrospective study was to know whether BRAF mutations influence the prognostic value of miR-125b, miR-200c and miR-205 intratumoral expression in primary cutaneous melanomas. Globally, our results showed that miR-125b, miR-200c and miR-205 expression predicted the clinical outcome of primary melanomas independently of BRAF status. Thus, our findings support that BRAF mutations alone do not predict the risk of metastasis development or melanoma survival and that miR-125b, miR-200c and miR-205 may be considered as accurate prognostic biomarkers in melanoma regardless of BRAF mutational status. Abstract BRAF mutations are present in around 50% of cutaneous malignant melanomas and are related to a poor outcome in advanced-stage melanoma patients. miRNAs are epigenetic regulators that modulate different cellular processes in cancer, including melanoma development and progression. However, there are no studies on the potential associations of the genetic alterations of the BRAF gene with miRNA expression in primary cutaneous melanomas. Here, in order to analyze the influence of BRAF mutations in the ability of selected miRNAs to predict clinical outcome and patient survival at the time of diagnosis, we studied the prognostic value of miR-125b, miR-200c and miR-205 expression depending on the BRAF mutational status in fresh, frozen primary tumor specimens. For this purpose, RNA was extracted for studying both BRAF mutations by Sanger sequencing and miRNA expression. Our results indicate that, although there seems to be a slight preference for their predictive ability in the BRAF mutated group, the expression of these three miRNAs serves effectively to predict the clinical outcome of melanoma patients independently of BRAF mutational status at the time of primary tumor diagnosis.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sendra
- Department of Pathology, University of Valencia, 46010 Valencia, Spain;
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
| | | | - Silvia Pérez-Debén
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
| | - Carlos Monteagudo
- Department of Pathology, University of Valencia, 46010 Valencia, Spain;
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
- Department of Pathology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-398-3953
| |
Collapse
|
5
|
Rivera HM, Muñoz EN, Osuna D, Florez M, Carvajal M, Gómez LA. Reciprocal Changes in miRNA Expression with Pigmentation and Decreased Proliferation Induced in Mouse B16F1 Melanoma Cells by L-Tyrosine and 5-Bromo-2'-Deoxyuridine. Int J Mol Sci 2021; 22:ijms22041591. [PMID: 33562431 PMCID: PMC7914888 DOI: 10.3390/ijms22041591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.
Collapse
Affiliation(s)
- Hernán Mauricio Rivera
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Esther Natalia Muñoz
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Daniel Osuna
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Mauro Florez
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Michael Carvajal
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Luis Alberto Gómez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
6
|
Li H, Xu Y, Zhao D. MicroRNA-193b regulates human ovarian cancer cell growth via targeting STMN1. Exp Ther Med 2020; 20:3310-3315. [PMID: 32855702 DOI: 10.3892/etm.2020.9033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the eighth most common malignancy among women worldwide. Ovarian cancer exhibits no obvious symptoms in the early stage of tumorigenesis and currently, no effective methods for the early detection and treatment of ovarian cancer have been established. Therefore, the identification of novel targets is critical to the early diagnosis and clinical treatment of ovarian cancer. microRNAs (miRs) are small non-coding RNAs, which serve an important biological role in a number of physiological processes and in oncogenesis. Previous studies have reported that miRNA-193b is dysregulated in a variety of types of human cancer. However, the roles of miRNA-193b in human ovarian cancer has not been determined. The present study investigated the roles of miRNA-193b in human ovarian cancer cells. Reverse transcription-quantitative PCR results indicated that the expression of miRNA-193b in ovarian cancer cells was significantly down-regulated compared with non-malignant cells. Cell counting kit-8 results indicated that the up-regulation of miRNA-193b inhibited ovarian cancer cell proliferation and induced ovarian cancer cell apoptosis. The present study also indicated that stathmin 1 (STMN1) was a direct target of miRNA-193b, and the up-regulation of miRNA-193b significantly decreased the expression of STMN1 in ovarian cancer cells. In conclusion, the results demonstrated that miRNA-193b serves as a tumor suppressor in human ovarian cancer by inhibiting cell proliferation and inducing cell apoptosis. Therefore, the assessment of miRNA-193b may provide insight into a novel diagnostic biomarker and potential therapeutic target for patients with ovarian cancer.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Gynaecology, Shi Jia Zhuang The Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuping Xu
- Department of Gynaecology, Shi Jia Zhuang The Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Danni Zhao
- Department of Gynaecology, Shi Jia Zhuang The Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
7
|
Melanoma-Derived Exosomal miR-125b-5p Educates Tumor Associated Macrophages (TAMs) by Targeting Lysosomal Acid Lipase A (LIPA). Cancers (Basel) 2020; 12:cancers12020464. [PMID: 32079286 PMCID: PMC7072270 DOI: 10.3390/cancers12020464] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, promoting tumor initiation, growth, progression, metastasis, and immune evasion. Recently it was shown that cancer cell-derived exosomes induce a tumor-promoting phenotype in TAMs. Exosome-loaded proteins, DNA, and RNAs may contribute to the macrophage reprogramming. However, the exact mediators and mechanisms, particularly in melanoma, are not known. In this study we examined the effects of cutaneous melanoma-derived exosomes on macrophage function and the underlying mechanisms. First, we showed that exposure to melanoma exosomes induces a tumor-promoting TAM phenotype in macrophages. Sequencing revealed enrichment for several miRNAs including miR-125b-5p in cutaneous melanoma exosomes. We showed that miR-125b-5p is delivered to macrophages by melanoma exosomes and partially induces the observed tumor-promoting TAM phenotype. Finally, we showed that miR-125b-5p targets the lysosomal acid lipase A (LIPA) in macrophages, which in turn contributes to their phenotype switch and promotes macrophage survival. Thus, our data show for the first time that miR-125b-5p transferred by cutaneous melanoma-derived exosomes induces a tumor-promoting TAM phenotype in macrophages.
Collapse
|
8
|
Yin Y, Li X, Guo Z, Zhou F. MicroRNA‑381 regulates the growth of gastric cancer cell by targeting TWIST1. Mol Med Rep 2019; 20:4376-4382. [PMID: 31545430 DOI: 10.3892/mmr.2019.10651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/29/2019] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) has one of the highest mortality rates among all types of cancer in the world. At present, an efficient treatment for GC remains elusive. Studies have demonstrated that microRNAs (miRs) are abnormally expressed in cancer, and that these serve important roles in the development and metastasis of various human tumors, including GC. It has been suggested that regulation of miRs may bring about new developments in GC therapy. miR‑381 has been reported to be downregulated in human cancer, and it regulates cancer cell growth in numerous types of cancer. The present study reports that miR‑381 was downregulated in GC cells, and upregulation of miR‑381 may inhibit GC cell growth, which may be attributed to the inhibition of cell proliferation and the promotion of apoptosis. Furthermore, Twist‑related protein 1 (TWIST1) was predicted and confirmed to be a direct target of miR‑381 by dual‑luciferase assay in GC. Upregulation of miR‑381 caused a decrease in the expression of TWIST1 at the mRNA and protein levels in GC cells. Taken together, the present study demonstrated that miR‑381 is downregulated in GC cells, and that miR‑381 may inhibit GC cell growth. Therefore, miR‑381 may serve as a novel target for the clinical treatment of GC in the future.
Collapse
Affiliation(s)
- Yongling Yin
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaoyun Li
- Department of Internal Medicine‑Oncology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Zongquan Guo
- Digestive Department, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
9
|
MiR-125b Suppression Inhibits Apoptosis and Negatively Regulates Sema4D in Avian Leukosis Virus-Transformed Cells. Viruses 2019; 11:v11080728. [PMID: 31394878 PMCID: PMC6723722 DOI: 10.3390/v11080728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Subgroup J avian leukosis virus (ALV-J), an oncogenic retrovirus, causes hemangiomas and myeloid tumors in chickens. We previously showed that miR-125b is down-regulated in ALV-J-induced tumors. This study aimed to investigate the possible role of miR-125b in ALV-J-mediated infection and tumorigenesis. Knockdown of miR-125b expression in HP45 cells reduced, whereas over-expression induced late-stage apoptosis. Bioinformatics analysis and luciferase activity assays indicate that miR-125b targets Semaphorin 4D/CD100 (Sema4D) by binding the 3'-untranslated region of messenger RNA (mRNA). Up-regulation of miR-125b in the DF1 cell line suppressed Sema4D expression, whereas miR-125 down-regulation increased Sema4D expression levels. To uncover the function of Sema4D during ALV-J infection, animal infection experiments and in vitro assays were performed and show that Sema4D mRNA levels were up-regulated in ALV-J-infected tissues and cells. Finally, functional experiments show that miR-125 down-regulation and Sema4D over-expression inhibited apoptosis in HP45 cells. These results suggest that miR-125b and its target Sema4D might play an important role in the aggressive growth of HP45 cells induced by avian leukosis viruses (ALVs). These findings improve our understanding of the underlying mechanism of ALV-J infection and tumorigenesis.
Collapse
|
10
|
Qiu H, Chen F, Chen M. MicroRNA-138 negatively regulates the hypoxia-inducible factor 1α to suppress melanoma growth and metastasis. Biol Open 2019; 8:8/8/bio042937. [PMID: 31371307 PMCID: PMC6737980 DOI: 10.1242/bio.042937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Melanoma with rapid progression towards metastasis has become the deadliest form of skin cancer. However, the mechanism of melanoma growth and metastasis is still unclear. Here, we found that miRNA-138 was lowly expressed and hypoxia-inducible factor 1α (HIF1α) was highly expressed in patients’ melanoma tissue compared with the paracancerous tissues, and they had a significant negative correlation (r=−0.877, P<0.001). Patients with miRNA-138low/HIF1αhigh signatures were predominant in late stage III/IV of melanoma. Further, bioinformatic analysis demonstrated that miRNA-138 directly targeted HIF1α. We found that the introduction of pre-miRNA-138 sequences to A375 cells reduced HIF1α mRNA expression and suppressed cell proliferation, migration and invasion. Overexpression of miRNA-138 or inhibition of HIF1α significantly suppressed the growth and metastasis of melanoma in vivo. Our study demonstrates the role and clinical relevance of miRNA-138 and HIF1α in melanoma cell growth and metastasis, providing a novel therapeutic target for suppression of melanoma growth and metastasis. Summary: Our study demonstrates the role and clinical relevance of miRNA-138 and HIF1α in melanoma cell growth and metastasis, providing a novel therapeutic target for suppression of melanoma growth and metastasis.
Collapse
Affiliation(s)
- Haijiang Qiu
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| | - Fangchao Chen
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| | - Minjun Chen
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
11
|
Yu M, Xu B, Yang H, Xue S, Zhang R, Zhang H, Ying X, Dai Z. MicroRNA-218 regulates the chemo-sensitivity of cervical cancer cells through targeting survivin. Cancer Manag Res 2019; 11:6511-6519. [PMID: 31372052 PMCID: PMC6636183 DOI: 10.2147/cmar.s199659] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Cervical cancer is one of the most lethal malignancies among women in the world. Every year about 311,365 women die because of cervical cancer. Chemo-resistance is the main reason of the lethal malignancies, and the mechanism of chemo-resistance in cervical cancer still remains largely elusive. Purpose: Previous studies reported that microRNAs played important biological roles in the chemo-resistance in many types of cancers, in the present study we tried to investigate the biological roles of microRNA-218 in chemo-resistance in cervical cancer cells. Results: Real-time PCR results indicated microRNA-218 was downregulated in cisplatin-resistant HeLa/DDP and SiHa/DDP cells compared with the mock HeLa and SiHa cells. CCK-8 assay results showed upregulation of microRNA-218 enhanced the cisplatin sensitivity of cervical cancer cells; while downregulation of microRNA-218 decreased the cisplatin sensitivity of cervical cancer cells. Dual-luciferase assay indicated survivin was a direct target of microRNA-218. Western blotting and PCR results indicated the expression of survivin in HeLa/DDP and SiHa/DDP cells was significantly increased compared with HeLa and SiHa cells. Further study indicated induction of microRNA-218 decreased the expression of survivin while inhibition of microRNA-218 increased the expression of survivin in cervical cancer cells. Cell apoptosis results indicated induction of microRNA-218 induced the cell apoptosis in cervical cancer cells. Conclusion: Our data revealed microRNA-218 enhanced the cisplatin sensitivity in cervical cancer cells through regulation of cell growth and cell apoptosis, which could potentially benefit to the cervical cancer treatment in the future.
Collapse
Affiliation(s)
- Minmin Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, People's Republic of China
| | - Baozhen Xu
- Department of Obstetrics and Gynecology, Nanjing Lishui People's Hospital, Nanjing 211200, People's Republic of China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Huaian Maternal and Child Health Care Hospital, Huaian 223002, People's Republic of China
| | - Songlin Xue
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, People's Republic of China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, People's Republic of China
| | - Hongmei Zhang
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, People's Republic of China
| | - Xiaoyan Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Zhiqin Dai
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Nanjing 210009, People's Republic of China
| |
Collapse
|
12
|
Yan J, Jiang Q, Lu H, Na S, Long S, Xin Y, Zhang C, Zhang J. Association between microRNA-125b expression in formalin-fixed paraffin-embedded tumor tissues and prognosis in patients with melanoma. Oncol Lett 2019; 18:1856-1862. [PMID: 31423254 PMCID: PMC6607191 DOI: 10.3892/ol.2019.10506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/09/2019] [Indexed: 01/14/2023] Open
Abstract
Melanoma is an invasive and malignant type of tumor with unsatisfactory therapeutic outcomes. The present study aimed to detect the expression levels of microRNA (miR)-125b in formalin-fixed paraffin-embedded (FFPE) melanoma tissues and the association of its expression levels with the clinical features, diagnosis and prognosis of melanoma. Expression levels of miR-125b in 29 FFPE melanoma specimens (16 primary and 13 metastatic tumors), and 16 intradermal nevus (IDN) specimens as a control, were detected by reverse transcription-quantitative PCR. Associations among miR-125b expression and mortality, patient age and sex, tumor location and size, lymph node metastasis (LNM) and TNM stage were analyzed by t-test. The diagnostic value of miR-125b for melanoma was evaluated by receiver operating characteristic (ROC) curve analysis. Prognosis of patients in the microRNA-125b low- and high-expression groups was analyzed by Fisher's exact test. The association between miR-125b expression and the overall survival of patients with melanoma was assessed using Kaplan-Meier curve analysis and a Cox proportional hazards model. The results revealed that the expression levels of miR-125b in primary and metastatic melanomas were significantly lower than those in the IDN control group (P<0.05), and the expression levels of miR-125b in the metastatic group were significantly lower than those in the primary group (P<0.05). In addition, the expression levels of miR-125b were significantly associated with LNM (P=0.001) and TNM stage (P=0.004), but not with age, sex, tumor size or location (P>0.05). ROC curve analysis revealed that the area under the curve (AUC) was 0.880, with a 95% CI of 0.777–0.984 (P<0.05). The overall survival rate of the patients with a low expression level of miR-125b (20.0%) was lower than that of patients with a high expression level of miR-125b (64.3%) (P<0.05). miR-125b expression was an independent predictor of overall survival in patients with melanoma [hazard ratio (HR), 0.252; 95% CI, 0.087–0.729]. Overall, these findings indicated that a low expression level of miR-125b was associated with higher LNM and TNM stage in patients with melanoma, and that this has a certain diagnostic value. miR-125b may be used for the early screening of melanoma and determining the prognosis of patients with melanoma, and may be a potential target for the treatment of the disease.
Collapse
Affiliation(s)
- Junfeng Yan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qingkun Jiang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huilan Lu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sijia Na
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sang Long
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuqi Xin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chongchong Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jie Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
13
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
14
|
Sánchez-Sendra B, Martinez-Ciarpaglini C, González-Muñoz JF, Murgui A, Terrádez L, Monteagudo C. Downregulation of intratumoral expression of miR-205, miR-200c and miR-125b in primary human cutaneous melanomas predicts shorter survival. Sci Rep 2018; 8:17076. [PMID: 30459436 PMCID: PMC6244285 DOI: 10.1038/s41598-018-35317-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/31/2018] [Indexed: 12/02/2022] Open
Abstract
While only 15–25 percent of melanoma patients develop distant metastasis and die, this disease is still responsible for the majority of skin cancer-related deaths. The availability of adjuvant therapies makes the selection of high-risk patients essential. We evaluated the intratumoral expression of ten miRNAs in primary melanomas in relation to its ability to predict melanoma survival. To this end, we correlated miRNA expression in 132 cryopreserved primary and metastatic tumors with clinicopathological factors and clinical outcome. We found sequential downregulation of intratumoral expression of miR-125b, miR-182, miR-200c and miR-205 over the full spectrum of melanoma progression. Moreover, downregulation of these miRNAs occurred in primary melanomas that further disseminated to distant sites. Furthermore, miR-125b, miR-200c and miR-205 correlated as independent factors with shorter survival. Our in vitro findings demonstrate that loss of miR-205 potentiates the invasive ability of melanoma cells. We conclude that the downregulation of miR-205 in primary melanomas is an intrinsic property that might contribute to distant metastasis. In particular, the interaction of melanoma cells with the extracellular matrix is one of the key mechanisms by which miR-205 influences melanoma metastasis. In conclusion, miR-125b, miR-200c and miR-205 are useful prognostic biomarkers at the time of diagnosis to select high-risk patients.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sendra
- Department of Pathology, University of Valencia, Valencia, Spain.,Biomedical Research Institute INCLIVA, Valencia, Spain
| | | | | | - Amelia Murgui
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Liria Terrádez
- Department of Pathology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Carlos Monteagudo
- Department of Pathology, University of Valencia, Valencia, Spain. .,Biomedical Research Institute INCLIVA, Valencia, Spain. .,Department of Pathology, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
15
|
Abstract
Although microRNAs (miRNAs) have emerged as potent mediators of melanoma development and progression, a precise understanding of their oncogenic role remains unclear. In this study, we analysed formalin-fixed and paraffin-embedded tissues from two separate melanoma cohorts and from a series of benign melanocytic nevi. Using three different quantification methods [array analysis, quantitative PCR (qPCR) and in-situ hybridization (ISH) quantified by digital image analysis], we found considerable miRNA dysregulation in tumours. Using array analysis, samples mainly clustered according to their biological group (benign vs. malignant) and 77 miRNAs differed significantly between nevi and melanoma samples. Increase of miR-21 and miR-142, and decrease of miR-125b, miR-211, miR-101 and miR-513c in the melanomas were verified in both cohorts using qPCR, whereas the decrease of miR-205 observed with array analysis could not be confirmed using qPCR. ISH with digital quantification showed expression of miR-21 and miR-125b in the melanocytic lesions. miR-21 ISH was increased in melanomas, whereas quantification of miR-125b showed uniform ISH expression across nevi and melanomas. Our results support the important involvement of different miRNAs in melanoma biology and may serve as solid basics for further miRNA investigations in melanoma formalin-fixed and paraffin-embedded tissue. In particular, there is increased expression of miR-21 in melanomas compared with benign nevi.
Collapse
|
16
|
Zhang X, Yao J, Guo K, Huang H, Huai S, Ye R, Niu B, Ji T, Han W, Li J. The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget 2017; 9:2105-2119. [PMID: 29416757 PMCID: PMC5788625 DOI: 10.18632/oncotarget.23249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have shown drug resistance of gastric cancer cells could be modulated by abnormal expression of microRNAs. Cisplatin (DDP) is one of the most commonly used drugs for chemotherapy of gastric cancer. In this study, the potential function of miR-125b on DDP resistance in gastric cancer cells was investigated. Sixteen miRNAs significantly differential expressed in gastric tumor tissues and adjacent tissues were characterized and their corresponding putative target genes were also screened. MiR-125b was selected as our focus for its evident down-regulated expression among candidate genes. Real-time polymerase chain reaction assay indicated that miR-125b was significantly down-regulated in gastric cancer tissues and various cell lines. HER2 was identified as a target gene of miR-125b by dual luciferase reporter assay and Western blot. Moreover, miR-125b overexpression inhibited not only the proliferation, migration, and invasion abilities of HGC-27 and MGC-803 cells, but also in vivo tumor growth of MGC-803 cells by an intratumoral delivery approach. Notably, we observed up-regulated miR-125b contributed to the chemosensitivity of DDP in HGC-27 and MGC-803 cells at different concentrations and also possessed sensibilization for DDP at different times. MiR-125b expression was found to be related to lymph node metastasis, HER2 expression and overall survival of patients through correlation analysis. Collectively, these results indicate miR-125b may regulate DDP resistance as a promising therapeutic target for gastric cancer treatment in future.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jie Yao
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Kai Guo
- Department of Gastroenterology, The 161th Hospital of PLA, Wuhan 430010, P.R. China
| | - Hu Huang
- Department of Oncology, The 161th Hospital of PLA, Wuhan 430010, P.R. China
| | - Siyuan Huai
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rui Ye
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Department of Oncology, Beidaihe Sanatorium of Beijing Military Command, Qinhuangdao 066100, P.R. China
| | - Baolong Niu
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Tiannan Ji
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jianxiong Li
- Department of Radiotherapy, Hainan Branch of Chinese PLA General Hospital, Sanya 572000, P.R. China
| |
Collapse
|
17
|
Rodríguez-Cerdeira C, Molares-Vila A, Carnero-Gregorio M, Corbalán-Rivas A. Recent advances in melanoma research via "omics" platforms. J Proteomics 2017; 188:152-166. [PMID: 29138111 DOI: 10.1016/j.jprot.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 02/09/2023]
Abstract
Melanoma has a high mortality rate and metastatic melanoma is highly resistant to conventional therapies. "Omics" fields such as proteomics and microRNA and exosome studies have provided new knowledge to complement the information generated by genomic studies. This work aimed to review the current status of biomarker discovery for melanoma through multi-"omics" platforms. A few sets of novel microRNAs and proteins are described, some of them with important implications in suppressing melanoma at different stages. Upregulation of genes involved in angiogenesis, immunosuppressive factors, modification of stroma, capture of melanoma cells in lymph nodes and factors responsible for tumour cell recruitment have been identified in exosomes, among molecules with other functions. A remarkable series of proteins involved in epithelial-mesenchymal/mesenchymal-epithelial transitions, inflammation, motility, proliferation and progression processes, centrosome amplification, aneuploidy, inhibition of CD8+ effector T-cells, and metastasis in general were identified. Genomic and protein-protein interactions or metabolome levels were not analysed. Proteomics tools such as Orbitrap shotgun mass spectrometry or deep mining proteomic analysis utilizing high-resolution reversed phase nanoseparation in combination with mass spectrometry are also discussed. The application of these tools together with bioinformatics approaches applied to the clinical setting will enable the implementation of personalized medicine in the near future.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain.
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Miguel Carnero-Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics & Immunology, Universidade de Vigo (UVIGO), Spain
| | - Alberte Corbalán-Rivas
- Nursery Department, Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| |
Collapse
|
18
|
Pei G, Lan Y, Chen D, Ji L, Hua ZC. FAK regulates E-cadherin expression via p-SrcY416/p-ERK1/2/p-Stat3Y705 and PPARγ/miR-125b/Stat3 signaling pathway in B16F10 melanoma cells. Oncotarget 2017; 8:13898-13908. [PMID: 28108732 PMCID: PMC5355148 DOI: 10.18632/oncotarget.14687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/07/2017] [Indexed: 01/19/2023] Open
Abstract
Focal adhesion kinase (FAK) is involved in tumor cell migration and metastasis. However, the underlying mechanism remains unclear. Here, we present a signaling pathway involved in the regulation of melanoma cell migration by FAK. We found that the interference of FAK expression suppressed B16F10 cell migration/metastasis, and altered the expressions of genes involved in melanoma migration/metastasis. The down-regulation of FAK inhibited the expression of p-SrcY416, p-ERK1/2, Stat3 and p-Stat3Y705, while promoted the expression of PPARγ, miR-125b and E-cadherin. Then we found that FAK inhibited E-cadherin expression via p-SrcY416/p-ERK1/2/ p-Stat3Y705 and PPARγ/miR-125b/Stat3 signaling pathway in B16F10 cell. Moreover, miR-125b inhibited B16F10 cell migration. Furthermore, we repeated the key data with human melanoma cell line A375. The results obtained from A375 cells fell in line with those from B16F10 cells. Using Oncomine database, we found that the mRNA levels of FAK, Src, ERK1/2 and Stat3 increased, while the mRNA levels of PPARγ, C21orf34 (miR-125b host gene) and E-cadherin decreased in human metastatic melanoma. The data from human breast cancer confirmed those from metastatic melanoma. Taken together, our study suggests that down-regulation of FAK promotes E-cadherin expression via p-SrcY416/p-ERK1/2/p-Stat3Y705 and PPARγ/miR-125b/Stat3 signaling pathway. Our findings provide a novel explanation regarding how FAK promotes melanoma cell migration, suggesting that FAK might be a potential target for melanoma therapy.
Collapse
Affiliation(s)
- Guoshun Pei
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Yan Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Dianhua Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Lina Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210046, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, Jiangsu, 213164, China
| |
Collapse
|
19
|
Taguchi YH. Tensor decomposition-based unsupervised feature extraction applied to matrix products for multi-view data processing. PLoS One 2017; 12:e0183933. [PMID: 28841719 PMCID: PMC5571984 DOI: 10.1371/journal.pone.0183933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/04/2017] [Indexed: 01/17/2023] Open
Abstract
In the current era of big data, the amount of data available is continuously increasing. Both the number and types of samples, or features, are on the rise. The mixing of distinct features often makes interpretation more difficult. However, separate analysis of individual types requires subsequent integration. A tensor is a useful framework to deal with distinct types of features in an integrated manner without mixing them. On the other hand, tensor data is not easy to obtain since it requires the measurements of huge numbers of combinations of distinct features; if there are m kinds of features, each of which has N dimensions, the number of measurements needed are as many as Nm, which is often too large to measure. In this paper, I propose a new method where a tensor is generated from individual features without combinatorial measurements, and the generated tensor was decomposed back to matrices, by which unsupervised feature extraction was performed. In order to demonstrate the usefulness of the proposed strategy, it was applied to synthetic data, as well as three omics datasets. It outperformed other matrix-based methodologies.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
20
|
Babapoor S, Wu R, Kozubek J, Auidi D, Grant-Kels JM, Dadras SS. Identification of microRNAs associated with invasive and aggressive phenotype in cutaneous melanoma by next-generation sequencing. J Transl Med 2017; 97:636-648. [PMID: 28218741 DOI: 10.1038/labinvest.2017.5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
A comprehensive repertoire of human microRNAs (miRNAs) that could be involved in early melanoma invasion into the dermis remains unknown. To this end, we sequenced small RNAs (18-30 nucleotides) isolated from an annotated series of invasive melanomas (average invasive depth, 2.0 mm), common melanocytic nevi, and matched normal skin (n=28). Our previously established bioinformatics pipeline identified 765 distinct mature known miRNAs and defined a set of top 40 list that clearly segregated melanomas into thin (0.75 mm) and thick (2.7 mm) groups. Among the top, miR-21-5p, let-7b-5p, let-7a-5p, miR-424-5p, miR-423-5p, miR-21-3p, miR-199b-5p, miR-182-5p, and miR-205-5p were differentially expressed between thin and thick melanomas. In a validation cohort (n=167), measured expression of miR-21-5p and miR-424-5p, not previously reported in melanoma, were significantly increased in invasive compared with in situ melanomas (P<0.0001). Increased miR-21-5p levels were significantly associated with invasive depth (P=0.038), tumor mitotic index (P=0.038), lymphovascular invasion (P=0.0036), and AJCC stage (P=0.038). In contrast, let-7b levels were significantly decreased in invasive and in situ melanomas compared with common and dysplastic nevi (P<0.0001). Decreased let-7b levels were significantly associated with invasive depth (P=0.011), Clark's level (P=0.013), ulceration (P=0.0043), and AJCC stage (P=0.011). These results define a distinct set of miRNAs associated with invasive and aggressive melanoma phenotype.
Collapse
Affiliation(s)
- Sankhiros Babapoor
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Rong Wu
- CICATS Biostatics Center, University of Connecticut Health Center, Farmington, CT, USA
| | - James Kozubek
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Donna Auidi
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Soheil S Dadras
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA.,Department of Dermatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
21
|
The Molecular Revolution in Cutaneous Biology: Noncoding RNAs: New Molecular Players in Dermatology and Cutaneous Biology. J Invest Dermatol 2017; 137:e105-e111. [PMID: 28411840 DOI: 10.1016/j.jid.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/10/2015] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Abstract
Progress in genome sequencing achieved during the last two decades revealed that only about 2% of the genome codes for proteins, while the largest genome fraction is encoding thousands of non-coding RNAs. Non-coding RNAs play indispensable roles in regulating the activity and stability of the genome. Recent research in the area of the non-coding transcriptome signified the crucial roles for RNA regulatory networks in the normal development and their implications in a variety of pathological conditions. Here, recent advances in our understanding of non-coding RNA-mediated regulation of skin development and homeostasis are highlighted, focusing mainly on the regulatory roles of miRNAs and lncRNAs.
Collapse
|
22
|
|
23
|
Zeng Y, Fu M, Wu GW, Zhang AZ, Chen JP, Lin HY, Fu YA, Jia J, Cai ZD, Wu XJ, Lan P. Upregulation of microRNA-370 promotes cell apoptosis and inhibits proliferation by targeting PTEN in human gastric cancer. Int J Oncol 2016; 49:1589-99. [DOI: 10.3892/ijo.2016.3642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 11/06/2022] Open
|
24
|
A restricted signature of serum miRNAs distinguishes glioblastoma from lower grade gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:124. [PMID: 27476114 PMCID: PMC4967504 DOI: 10.1186/s13046-016-0393-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
Background Malignant gliomas are the most common primary brain tumors in adults and challenging cancers for diagnosis and treatment. They remain a disease for which non-invasive, diagnostic and/or prognostic novel biomarkers are highly desirable. Altered microRNA (miRNA) profiles have been observed in tumor tissues and biological fluids. To date only a small set of circulating/serum miRNA is found to be differentially expressed in brain tumors compared to normal controls. Here a restricted signature of circulating/serum miRNA including miR-15b*,-23a, −99a, −125b, −133a, −150*, −197, −340, −497, −548b-5p and let-7c were investigated as potential non-invasive biomarkers in the diagnosis of glioma patients. Methods Serum and tissues miRNAs expression in patients with brain cancers (n = 30) and healthy controls (n = 15) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Relative expression was calculated using the comparative Ct method. Statistical significance (p ≤ 0,05) was determined using the Mann–Whitney rank sum and Fisher’s exact test. Diagnostic accuracy of miRNAs in distinguishing glioblastoma multiforme (GBM) from lower grade cancer was assessed by the Receiver Operating Characteristic (ROC) curve analysis. To validate the role of the identified miRNAs in cancer a comprehensive literature search was conducted using PubMed, Web of Science (Core Collection) and Scopus databases. Results We observed a decrease of miR-497 and miR-125b serum levels depending on tumor stages with reduced level in GBM than lower grade tumors. The ROC curve analysis distinguishing GBM from lower grade cases yielded an area under the curve (AUC) of 0.87 (95 % confidence interval (CI) = 0.712–1) and of 0.75 (95 % CI = 0.533–0.967) for miR-497 and -125b, respectively. GBM patients are more likely to show a miR-497 and -125b down-regulation than the lower grade group (p = 0.002 and p = 0.024, respectively). These results were subsequently compared with evidence from 19 studies included in the final systematic review. Conclusions Although multiple biomarkers are currently leveraged in the clinic to detect specific cancer types, no such standard blood biomolecules are used as yet in gliomas. Our data suggest that serum miR-497 and -125b could be a novel diagnostic markers with good perspectives for future clinical applications in patients with glioma.
Collapse
|
25
|
Deng Z, Hao J, Lei D, He Y, Lu L, He L. Pivotal MicroRNAs in Melanoma: A Mini-Review. Mol Diagn Ther 2016; 20:449-55. [DOI: 10.1007/s40291-016-0219-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Latchana N, Ganju A, Howard JH, Carson WE. MicroRNA dysregulation in melanoma. Surg Oncol 2016; 25:184-9. [PMID: 27566021 DOI: 10.1016/j.suronc.2016.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 05/19/2016] [Indexed: 01/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer. Current challenges facing the management of melanoma include accurate prediction of individuals who will respond to adjuvant therapies as well as early detection of recurrences. These and other challenges have prompted investigation into biomarkers that could be used as diagnostic, prognostic and therapeutic aids. MicroRNAs (miRs) are small 19-22 nucleotide RNA inhibitors of protein translation. Over 800 different miRs are present within cells and importantly miR expression profiles may vary across different cells types and stages of malignancy. Unique expression profiles have been described for malignant melanoma; however, this work has yet to be translated into routine clinical practice. We highlight pertinent studies involving common miRs implicated in the oncogenesis of melanoma including miR-21, miR-125b, miR-150, miR-155, miR-205, and miR-211. In particular, emphasis is placed upon differential expression across different stages of melanoma progression, prognostic implications and potential mechanistic involvement. Focused efforts on inhibition of these miRs could be the most efficient method of translating preclinical endeavors into clinically meaningful applications.
Collapse
Affiliation(s)
- Nicholas Latchana
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - Akaansha Ganju
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - J Harrison Howard
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - William E Carson
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Zhang J, Na S, Liu C, Pan S, Cai J, Qiu J. MicroRNA-125b suppresses the epithelial-mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumour Biol 2015; 37:5941-9. [PMID: 26596831 DOI: 10.1007/s13277-015-4409-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence has shown that aberrant miRNAs contribute to the development and progression of human melanoma. Previous studies have shown that miR-125b functions as a suppressor in malignant melanoma. However, the molecular function and mechanism by which miR-125b influences melanoma growth and invasion are still unclear. In this study, we aimed to investigate the role of miR-125b in melanoma progression and metastasis. We found that miR-125b expression is significantly downregulated in primary melanoma, and an even greater downregulation was observed in metastatic invasion. Restored expression of miR-125b in melanoma suppressed cell proliferation and invasion both in vitro and in vivo. Furthermore, our findings demonstrate that upregulating miR-125b significantly inhibits malignant phenotypes by repressing the expression of integrin alpha9 (ITGA9). Finally, our data reveal that upregulated expression of ITGA9 in melanoma tissues is inversely associated with miR-125b levels. Together, our results demonstrate that upregulation of ITGA9 in response to the decrease in miR-125b in metastatic melanoma is responsible for melanoma tumor cell migration and invasion.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Plastic Surgery, The First Affiliated Hospital to Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, China
| | - Sijia Na
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital to Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Caiyue Liu
- Department of Plastic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Shuting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital to Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Junying Cai
- Department of Anesthesiology, The Second Affiliated Hospital to Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital to Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
28
|
Villaruz LC, Huang G, Romkes M, Kirkwood JM, Buch SC, Nukui T, Flaherty KT, Lee SJ, Wilson MA, Nathanson KL, Benos PV, Tawbi HA. MicroRNA expression profiling predicts clinical outcome of carboplatin/paclitaxel-based therapy in metastatic melanoma treated on the ECOG-ACRIN trial E2603. Clin Epigenetics 2015; 7:58. [PMID: 26052356 PMCID: PMC4457092 DOI: 10.1186/s13148-015-0092-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Carboplatin/paclitaxel (CP), with or without sorafenib, result in objective response rates of 18-20 % in unselected chemotherapy-naïve patients. Molecular predictors of survival and response to CP-based chemotherapy in metastatic melanoma (MM) are critical to improving the therapeutic index. Intergroup trial E2603 randomized MM patients to CP with or without sorafenib. Expression data were collected from pre-treatment formalin-fixed paraffin-embedded (FFPE) tumor tissues from 115 of 823 patients enrolled on E2603. The selected patients were balanced across treatment arms, BRAF status, and clinical outcome. We generated data using Nanostring array (microRNA (miRNA) expression) and DNA-mediated annealing, selection, extension and ligation (DASL)/Illumina microarrays (HT12 v4) (mRNA expression) with protocols optimized for FFPE samples. Integrative computational analysis was performed using a novel Tree-guided Recursive Cluster Selection (T-ReCS) [1] algorithm to select the most informative features/genes, followed by TargetScan miRNA target prediction (Human v6.2) and mirConnX [2] for network inference. RESULTS T-ReCS identified PLXNB1 as negatively associated with progression-free survival (PFS) and miR-659-3p as the primary miRNA associated positively with PFS. miR-659-3p was differentially expressed based on PFS but not based on treatment arm, BRAF or NRAS status. Dichotomized by median PFS (less vs greater than 4 months), miR-659-3p expression was significantly different. High miR-659-3p expression distinguished patients with responsive disease (complete or partial response) from patients with stable disease. miR-659-3p predicted gene targets include NFIX, which is a transcription factor known to interact with c-Jun and AP-1 in the context of developmental processes and disease. CONCLUSIONS This novel integrative analysis implicates miR-659-3p as a candidate predictive biomarker for MM patients treated with platinum-based chemotherapy and may serve to improve patient selection.
Collapse
Affiliation(s)
- Liza C Villaruz
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - Grace Huang
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Marjorie Romkes
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - John M Kirkwood
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - Shama C Buch
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Tomoko Nukui
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Keith T Flaherty
- University of Pennsylvania, Philadelphia, PA USA.,Massachusetts General Hospital, Boston, MA USA
| | | | - Melissa A Wilson
- University of Pennsylvania, Philadelphia, PA USA.,New York University, New York, NY USA
| | | | | | - Hussein A Tawbi
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| |
Collapse
|
29
|
MicroRNAs: New players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways. ACTA ACUST UNITED AC 2015; 1:21-30. [PMID: 26618104 DOI: 10.1007/s40495-014-0013-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs are endogenous small non-coding RNAs of 20-22 nucleotides that repress gene expression at the post-transcriptional level. There is growing interest in the role of miRNAs in cancer chemoprevention, and several naturally occurring chemopreventive agents have been found to be modulators of miRNA expression both in vitro and in vivo. Moreover, these chemopreventive phytochemicals commonly possess anti-oxidative and/or anti-inflammatory properties, and Nrf2 has been extensively studied as a molecular target in cancer prevention. The crosstalk between miRNAs and the traditional cellular signaling pathways of chemoprevention remain to be fully elucidated. This review summarizes the data regarding the potential interactions between miRNAs and anti-oxidative and anti-inflammatory pathways. Cellular redox homeostasis can affect the biogenesis and processing of miRNAs, which in turn regulate the Nrf2 pathway of detoxifying/anti-oxidative genes. We also discuss the miRNA regulatory mechanisms in relation to inflammation-related cancer signaling pathways.
Collapse
|
30
|
Zhang J, Lu L, Xiong Y, Qin W, Zhang Y, Qian Y, Jiang H, Liu W. MLK3 promotes melanoma proliferation and invasion and is a target of microRNA-125b. Clin Exp Dermatol 2015; 39:376-84. [PMID: 24635082 DOI: 10.1111/ced.12286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Metastatic melanoma is a disease with high mortality and limited therapeutic options. MicroRNAs (miRNAs) can be used to classify melanoma stage. METHODS Expression of the miRNA miR-125b and serine/threonine kinase mixed lineage kinase (MLK)3 was assessed in primary malignant melanoma tissues and several melanoma cell lines by quantitative reverse transcription PCR. The effect of MLK3 and miR-125b on cell proliferation was evaluated by MTS assay, and cell invasion was evaluated by Transwell invasion assays. Targeting of MLK3 by miR-125b was evaluated using luciferase reporter assay and western blotting. RESULTS We found significantly increased levels of MLK3 in metastatic primary malignant melanomas and melanoma cell lines, with levels being especially high in metastatic lines. To investigate the functional significance of MLK3, we used knockdown MLK3, which was found to suppress cell growth and invasion. Using bioinformatics, we identified MLK3 as one potential target of miR-125b. miRNA transfection and luciferase assay confirmed that MLK3 was regulated by miR-125b at both the transcriptional and translational levels. Cell proliferation and cell invasion was inhibited by overexpression of miR-125b. CONCLUSIONS MLK3 is upregulated in metastatic melanoma, and regulates cell proliferation and invasion in melanoma cells. MLK3 is a direct target of miR-125b.
Collapse
Affiliation(s)
- J Zhang
- Department of Plastic Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Essential Role of microRNA in Skin Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:307-30. [DOI: 10.1007/978-3-319-22671-2_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Syed DN, Lall RK, Mukhtar H. MicroRNAs and Photocarcinogenesis. Photochem Photobiol 2014; 91:173-87. [DOI: 10.1111/php.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Deeba N. Syed
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Rahul K. Lall
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Hasan Mukhtar
- Department of Dermatology; University of Wisconsin; Madison WI
| |
Collapse
|
33
|
Alegre E, Sanmamed MF, Rodriguez C, Carranza O, Martín-Algarra S, González A. Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch Pathol Lab Med 2014; 138:828-32. [PMID: 24878024 DOI: 10.5858/arpa.2013-0134-oa] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Malignant melanoma is an aggressive tumor that produces exosomes, which contain microRNAs (miRNAs) that could be of utility in following tumoral cell dysregulation. MicroR-125b is a miRNA whose down-regulation seems to be implicated in melanoma progression. OBJECTIVE To analyze miR-125b levels in serum, and in exosomes obtained from serum, from patients with advanced melanoma. DESIGN Serum samples were obtained from 21 patients with advanced melanoma, from 16 disease-free patients with melanoma, and from 19 healthy volunteers. Exosomes were isolated from serum by precipitation, and miR-16 and miR-125b levels were quantified by real-time polymerase chain reaction. RESULTS MicroR-16, but not miR-125b, was detected in all samples, and miR-16 levels were significantly higher in serum than they were in exosomes. MicroR-16 expression levels did not differ significantly between the 2 groups (patients with melanoma and healthy donors). There was a significant relationship between miR-125b and miR-16 levels in exosomes. Additionally, miR-125b levels in exosomes were significantly lower in patients with melanoma compared with disease-free patients with melanoma and healthy controls. CONCLUSIONS Exosomes can provide a suitable material to measure circulating miRNA in melanoma, and miR-16 can be used as an endogenous normalizer. Lower levels of miR-125b in exosomes obtained from serum are associated with advanced melanoma disease, probably reflecting the tumoral cell dysregulation.
Collapse
Affiliation(s)
- Estibaliz Alegre
- From the Laboratory of Biochemistry (Drs Alegre and González and Ms Rodriguez) and the Department of Medical Oncology (Drs Sanmamed and Martín-Algarra and Dr Carranza), University Clinic of Navarra, Pamplona, Navarra, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Nyholm AM, Lerche CM, Manfé V, Biskup E, Johansen P, Morling N, Thomsen BM, Glud M, Gniadecki R. miR-125b induces cellular senescence in malignant melanoma. BMC DERMATOLOGY 2014; 14:8. [PMID: 24762088 PMCID: PMC4021480 DOI: 10.1186/1471-5945-14-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 04/16/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Micro RNAs (miRs) have emerged as key regulators during oncogenesis. They have been found to regulate cell proliferation, differentiation, and apoptosis. Mir-125b has been identified as an oncomir in various forms of tumours, but we have previously proposed that miR-125b is a suppressor of lymph node metastasis in cutaneous malignant melanoma. Our goal was therefore to further examine this theory. METHODS We used in-situ-hybridization to visualise miR-125b expression in primary tumours and in lymph node metastasis. Then using a miRVector plasmid containing a miR-125b-1 insert we transfected melanoma cell line Mel-Juso and then investigated the effect of the presence of a stable overexpression of miR-125b on growth by western blotting, flow cytometry and β-galactosidase staining. The tumourogenicity of the transfected cells was tested using a murine model and the tumours were further examined with in-situ-hybridization. RESULTS In primary human tumours and in lymph node metastases increased expression of miR-125b was found in single, large tumour cells with abundant cytoplasm. A stable overexpression of miR-125b in human melanoma cell line Mel-Juso resulted in a G0/G1 cell cycle block and emergence of large cells expressing senescence markers: senescence-associated beta-galactosidase, p21, p27 and p53. Mel-Juso cells overexpressing miR-125b were tumourigenic in mice, but the tumours exhibited higher level of cell senescence and decreased expression of proliferation markers, cyclin D1 and Ki67 than the control tumours. CONCLUSIONS Our results confirm the theory that miR-125b functions as a tumour supressor in cutaneous malignant melanoma by regulating cellular senescence, which is one of the central mechanisms protecting against the development and progression of malignant melanoma.
Collapse
Affiliation(s)
- Anne Marie Nyholm
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Catharina M Lerche
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Valentina Manfé
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Edyta Biskup
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Peter Johansen
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birthe Mørk Thomsen
- Department of Pathology, University of Copenhagen, Faculty of Health and Medical Sciences, Bispebjerg Hospital, Copenhagen, Denmark
| | - Martin Glud
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Robert Gniadecki
- Department of Dermatology, Faculty of Health and Medical Sciences, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
35
|
Li J, You T, Jing J. MiR-125b inhibits cell biological progression of Ewing's sarcoma by suppressing the PI3K/Akt signalling pathway. Cell Prolif 2014; 47:152-60. [PMID: 24517182 DOI: 10.1111/cpr.12093] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Increasing evidence has suggested the close relationship between microRNAs (miRNAs) dysregulation and the carcinogenesis of Ewing's sarcoma (ES), among of which miR-125b has been reported to be decreased in ES tissues recently. Strikingly, ectopic expression of miR-125b could suppress cell proliferation of ES cell line A673, suggesting the tumor suppressor role of miR-125b in ES. However, the other accurate mechanistic functions and relative molecule mechanisms are largely unknown. MATERIALS AND METHODS Herein, we completed a series of experiments to investigate the role of miR-125b in Ewing's sarcoma. We restored the expression of miR-125b in ES cell line A673 through transfection with miR-125b mimics. To further understand the role of miR-125b in ES, we detected the effects of miR-125b on the cell proliferation, migration and invasion, cell cycle as well as cell apoptosis. RESULTS We found that restored expression of miR-125b in ES cell line A673 inhibited cell proliferation, migration and invasion, arrested cell cycle progression, and induced cell apoptosis. Moreover, bioinformatic prediction suggested the oncogene, phosphoinositide-3-kinase catalytic subunit delta (PIK3CD), was a target gene of miR-125b in ES cells. Further quantitative RT-PCR and western blot assays identified over-expression of miR-125b suppressed the expression of PIK3CD mRNA and protein. PIK3CD participates in regulating the PI3K signaling pathway, which has been reported to play an important role in the development of ES. Suppression of PIK3CD down-regulated the expression of phospho-AKT and phospho-mTOR proteins and inhibited the biologic progression of A673 cells. CONCLUSIONS Collectively, these data suggest that miR-125b functions as a tumor suppressor by targeting the PI3K/Akt/mTOR signaling pathway, and may provide potential therapy strategy for ES patients by targeting miRNA expression.
Collapse
Affiliation(s)
- J Li
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | | | | |
Collapse
|
36
|
Gajos-Michniewicz A, Duechler M, Czyz M. MiRNA in melanoma-derived exosomes. Cancer Lett 2014; 347:29-37. [PMID: 24513178 DOI: 10.1016/j.canlet.2014.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 02/08/2023]
Abstract
Proteins, RNAs and viruses can be spread through exosomes, therefore transport utilizing these nanovesicles is of the great interest. MiRNAs are common exosomal constituents capable of influencing expression of a variety of target genes. MiRNA signatures of exosomes are unique in cancer patients and differ from those in normal controls. The knowledge about miRNA profiles of tumor-derived exosomes may contribute to better diagnosis, determination of tumor progression and response to treatment, as well as to the development of targeted therapies. We summarize the current knowledge with regard to miRNAs that are found in exosomes derived from tumors, particularly from melanoma.
Collapse
Affiliation(s)
| | - Markus Duechler
- Department of Bioorganic Chemistry, Centre for Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Poland.
| |
Collapse
|
37
|
Ferracin M, Bassi C, Pedriali M, Pagotto S, D'Abundo L, Zagatti B, Corrà F, Musa G, Callegari E, Lupini L, Volpato S, Querzoli P, Negrini M. miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression. Mol Cancer 2013; 12:130. [PMID: 24165569 PMCID: PMC4176119 DOI: 10.1186/1476-4598-12-130] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/23/2013] [Indexed: 01/23/2023] Open
Abstract
Background The microRNA 125b is a double-faced gene expression regulator described both as a tumor suppressor gene (in solid tumors) and an oncogene (in hematologic malignancies). In human breast cancer, it is one of the most down-regulated miRNAs and is able to modulate ERBB2/3 expression. Here, we investigated its targets in breast cancer cell lines after miRNA-mimic transfection. We examined the interactions of the validated targets with ERBB2 oncogene and the correlation of miR-125b expression with clinical variables. Methods MiR-125b possible targets were identified after transfecting a miRNA-mimic in MCF7 cell line and analyzing gene expression modifications with Agilent microarrays and Sylamer bioinformatic tool. Erythropoietin (EPO) and its receptor (EPOR) were validated as targets of miR-125b by luciferase assay and their expression was assessed by RT-qPCR in 42 breast cancers and 13 normal samples. The molecular talk between EPOR and ERBB2 transcripts, through miR-125b, was explored transfecting MDA-MD-453 and MDA-MB-157 with ERBB2 RNA and using RT-qPCR. Results We identified a panel of genes down-regulated after miR-125b transfection and putative targets of miR-125b. Among them, we validated erythropoietin (EPO) and its receptor (EPOR) - frequently overexpressed in breast cancer - as true targets of miR-125b. Moreover, we explored possible correlations with clinical variables and we found a down-regulation of miR-125b in metastatic breast cancers and a significant positive correlation between EPOR and ERBB2/HER2 levels, that are both targets of miR-125b and function as competing endogenous RNAs (ceRNAs). Conclusions Taken together our results show a mechanism for EPO/EPOR and ERBB2 co-regulation in breast cancer and confirm the importance of miR-125b in controlling clinically-relevant cancer features.
Collapse
Affiliation(s)
- Manuela Ferracin
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wagenseller AG, Shada A, D'Auria KM, Murphy C, Sun D, Molhoek KR, Papin JA, Dutta A, Slingluff CL. MicroRNAs induced in melanoma treated with combination targeted therapy of Temsirolimus and Bevacizumab. J Transl Med 2013; 11:218. [PMID: 24047116 PMCID: PMC3853033 DOI: 10.1186/1479-5876-11-218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 09/04/2013] [Indexed: 11/30/2022] Open
Abstract
Background Targeted therapies directed at commonly overexpressed pathways in melanoma have clinical activity in numerous trials. Little is known about how these therapies influence microRNA (miRNA) expression, particularly with combination regimens. Knowledge of miRNAs altered with treatment may contribute to understanding mechanisms of therapeutic effects, as well as mechanisms of tumor escape from therapy. We analyzed miRNA expression in metastatic melanoma tissue samples treated with a novel combination regimen of Temsirolimus and Bevacizumab. Given the preliminary clinical activity observed with this combination regimen, we hypothesized that we would see significant changes in miRNA expression with combination treatment. Methods Using microarray analysis we analyzed miRNA expression levels in melanoma samples from a Cancer Therapy Evaluation Program-sponsored phase II trial of combination Temsirolimus and Bevacizumab in advanced melanoma, which elicited clinical benefit in a subset of patients. Pre-treatment and post-treatment miRNA levels were compared using paired t-tests between sample groups (patients), using a p-value < 0.01 for significance. Results microRNA expression remained unchanged with Temsirolimus alone; however, expression of 15 microRNAs was significantly upregulated (1.4 to 2.5-fold) with combination treatment, compared to pre-treatment levels. Interestingly, twelve of these fifteen miRNAs possess tumor suppressor capabilities. We identified 15 putative oncogenes as potential targets of the 12 tumor suppressor miRNAs, based on published experimental evidence. For 15 of 25 miRNA-target mRNA pairings, changes in gene expression from pre-treatment to post-combination treatment samples were inversely correlated with changes in miRNA expression, supporting a functional effect of those miRNA changes. Clustering analyses based on selected miRNAs suggest preliminary signatures characteristic of clinical response to combination treatment and of tumor BRAF mutational status. Conclusions To our knowledge, this is the first study analyzing miRNA expression in pre-treatment and post-treatment human metastatic melanoma tissue samples. This preliminary investigation suggests miRNAs that may be involved in the mechanism of action of combination Temsirolimus and Bevacizumab in metastatic melanoma, possibly through inhibition of oncogenic pathways, and provides the preliminary basis for further functional studies of these miRNAs.
Collapse
Affiliation(s)
- Aubrey G Wagenseller
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kozubek J, Ma Z, Fleming E, Duggan T, Wu R, Shin DG, Dadras SS. In-depth characterization of microRNA transcriptome in melanoma. PLoS One 2013; 8:e72699. [PMID: 24023765 PMCID: PMC3762816 DOI: 10.1371/journal.pone.0072699] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/10/2013] [Indexed: 01/09/2023] Open
Abstract
The full repertoire of human microRNAs (miRNAs) that could distinguish common (benign) nevi from cutaneous (malignant) melanomas remains to be established. In an effort to gain further insight into the role of miRNAs in melanoma, we applied Illumina next-generation sequencing (NGS) platform to carry out an in-depth analysis of miRNA transcriptome in biopsies of nevi, thick primary (>4.0 mm) and metastatic melanomas with matched normal skin in parallel to melanocytes and melanoma cell lines (both primary and metastatic) (n = 28). From this data representing 698 known miRNAs, we defined a set of top-40 list, which properly classified normal from cancer; also confirming 23 (58%) previously discovered miRNAs while introducing an additional 17 (42%) known and top-15 putative novel candidate miRNAs deregulated during melanoma progression. Surprisingly, the miRNA signature distinguishing specimens of melanoma from nevus was significantly different than that of melanoma cell lines from melanocytes. Among the top list, miR-203, miR-204-5p, miR-205-5p, miR-211-5p, miR-23b-3p, miR-26a-5p and miR-26b-5p were decreased in melanomas vs. nevi. In a validation cohort (n = 101), we verified the NGS results by qRT-PCR and showed that receiver-operating characteristic curves for miR-211-5p expression accurately discriminated invasive melanoma (AUC = 0.933), melanoma in situ (AUC = 0.933) and dysplastic (atypical) nevi (AUC = 0.951) from common nevi. Target prediction analysis of co-transcribed miRNAs showed a cooperative regulation of key elements in the MAPK signaling pathway. Furthermore, we found extensive sequence variations (isomiRs) and other non-coding small RNAs revealing a complex melanoma transcriptome. Deep-sequencing small RNAs directly from clinically defined specimens provides a robust strategy to improve melanoma diagnostics.
Collapse
Affiliation(s)
- James Kozubek
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth Fleming
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Tatiana Duggan
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Rong Wu
- Connecticut Institute for Clinical and Translational Science Biostatics Center, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Dong-Guk Shin
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Soheil S. Dadras
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
40
|
Giangreco AA, Nonn L. The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J Steroid Biochem Mol Biol 2013; 136:86-93. [PMID: 23333596 PMCID: PMC3686905 DOI: 10.1016/j.jsbmb.2013.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/03/2012] [Accepted: 01/01/2013] [Indexed: 12/31/2022]
Abstract
Vitamin D3 deficiency is rampant which may contribute to increased risk of many diseases including cancer, cardiovascular disease and autoimmune disorders. Genomic activity of the active metabolite 1,25-dihydroxyvitamin D (1,25D) mediates most vitamin D3's actions and many gene targets of 1,25D have been characterized. As the importance of non-coding RNAs has emerged, the ability of vitamin D3via 1,25D to regulate microRNAs (miRNAs) has been demonstrated in several cancer cell lines, patient tissue and sera. In vitamin D3 intervention patient trials, significant differences in miRNAs are observed between treatment groups and/or between baseline and followup. In patient sera from population studies, specific miRNA differences associate with serum levels of 25D. The findings thus far indicate that dietary vitamin D3 in patients and 1,25D in vitro not only regulate specific miRNA(s), but may also globally upregulate miRNA levels. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
- Corresponding author at: Department of Pathology, 840 S. Wood St, Room 130 CSN, Chicago, IL60612, USA. Tel.: +1 312 996 0194; fax: +1 312 996 7586
| |
Collapse
|
41
|
Tili E, Michaille JJ, Croce CM. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 2013; 253:167-84. [PMID: 23550646 DOI: 10.1111/imr.12050] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Esmerina Tili
- Department of Molecular Virology; Immunology and Medical Genetics; The Ohio State University Medical Center; Comprehensive Cancer Center; Columbus; OH; USA
| | | | - Carlo M. Croce
- Department of Molecular Virology; Immunology and Medical Genetics; The Ohio State University Medical Center; Comprehensive Cancer Center; Columbus; OH; USA
| |
Collapse
|
42
|
Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, Altmeyer P, Bechara FG. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 2013; 351:85-98. [PMID: 23111773 DOI: 10.1007/s00441-012-1514-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/01/2012] [Indexed: 01/08/2023]
Abstract
Perturbations in microRNA (miRNA) expression profiles have been reported for cutaneous malignant melanoma (CMM) predominantly when examined in cell lines. Despite the rapidly growing number of newly discovered human miRNA sequences, the availability of up-to-date miRNA expression profiles for clinical samples of primary cutaneous malignant melanoma (PCMM), cutaneous malignant melanoma metastases (CMMM), and benign melanocytic nevi (BMN) is limited. Specimens excised from the center of tumors (lesional) from patients with PCMM (n=9), CMMM (n=4), or BMN (n=8) were obtained during surgery. An exploratory microarray analysis was performed by miRNA expression profiling based on Agilent platform screening for 1205 human miRNAs. The results from the microarray analysis were validated by TaqMan quantitative real-time polymerase chain reaction. In addition to several miRNAs previously known to be associated with CMM, 19 unidentified miRNA candidates were found to be dysregulated in CMM patient samples. Among the 19 novel miRNA candidates, the genes hsa-miR-22, hsa-miR-130b, hsa-miR-146b-5p, hsa-miR-223, hsa-miR-301a, hsa-miR-484, hsa-miR-663, hsa-miR-720, hsa-miR-1260, hsa-miR-1274a, hsa-miR-1274b, hsa-miR-3663-3p, hsa-miR-4281, and hsa-miR-4286 were upregulated, and the genes hsa-miR-24-1*, hsa-miR-26a, hsa-miR-4291, hsa-miR-4317, and hsa-miR-4324 were downregulated. The results of this study partially confirm previous CMM miRNA profiling studies identifying miRNAs that are dysregulated in CMM. However, we report several novel miRNA candidates in CMM tumors; these miRNA sequences require further validation and functional analysis to evaluate whether they play a role in the pathogenesis of CMM.
Collapse
Affiliation(s)
- Michael Sand
- Department of Dermatology, Venereology and Allergology, Ruhr University Bochum, Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang ZX, Lu CY, Yang YL, Dou KF, Tao KS. MicroRNA-125b expression in gastric adenocarcinoma and its effect on the proliferation of gastric cancer cells. Mol Med Rep 2012; 7:229-32. [PMID: 23128435 DOI: 10.3892/mmr.2012.1156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/17/2012] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs exert regulatory effects on a number of genes, thereby contributing to both physiological and pathological processes. The functions of microRNAs in tumorigenesis are becoming increasingly clear. In the present study, we investigated the role of microRNA-125b (miR‑125b), previously implicated in prostate and breast cancer, in gastric cancer, particularly regarding proliferation and apoptosis of gastric cancer cells. The expression of miR‑125b was measured in 50 samples of gastric cancer tissues and corresponding para-cancerous tissues by real-time PCR. The levels of miR‑125b expression in the gastric cancer tissues were significantly higher compared to the adjacent normal tissues (P<0.05). To begin to understand how the increased expression of miR‑125b may promote gastric cancer, the miR‑125b mimic was transfected into the gastric cancer cell line, HGC‑27, for the determination of proliferation (CCK8) and apoptosis (Annexin V) by flow cytometry. The results demonstrated that the proliferation significantly increased and apoptosis significantly decreased in the HGC‑27 cells following transfection with the miR‑125b mimic, compared to the untreated and scramble‑treated controls (P<0.05). Thus, miR‑125b may act as an oncogene in gastric cancer by dysregulating gastric cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Zhao-Xu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital of the Fourth Military Medical University, Xi'an 710032, PR China.
| | | | | | | | | |
Collapse
|
44
|
Leibowitz-Amit R, Sidi Y, Avni D. Aberrations in the micro-RNA biogenesis machinery and the emerging roles of micro-RNAs in the pathogenesis of cutaneous malignant melanoma. Pigment Cell Melanoma Res 2012; 25:740-57. [DOI: 10.1111/pcmr.12018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Eckert RL, Adhikary G, Balasubramanian S, Rorke EA, Vemuri MC, Boucher SE, Bickenbach JR, Kerr C. Biochemistry of epidermal stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2427-34. [PMID: 22820019 DOI: 10.1016/j.bbagen.2012.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. SCOPE OF REVIEW A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. MAJOR CONCLUSIONS An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. GENERAL SIGNIFICANCE Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
MicroRNA-125b functions as a tumor suppressor in hepatocellular carcinoma cells. Int J Mol Sci 2012; 13:8762-8774. [PMID: 22942733 PMCID: PMC3430264 DOI: 10.3390/ijms13078762] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/19/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of multiple cellular processes, and the deregulation of miRNA is a common event in diverse human diseases, particularly cancer. However, the mechanisms underlying the relationship between disordered miRNA expression and tumorigenesis have remained largely unknown. In this study, we demonstrated the down-regulation of miR-125b in hepatocellular carcinoma (HCC) tissues and HCC cell lines by Northern blot and quantitative RT-PCR analyses. The ectopic expression of miR-125b reduced the cellular proliferation and cell cycle progression of HCC cells by targeting Mcl-1 and IL6R. Furthermore, the miR-125b-induced inhibition of cell proliferation was rescued by the expression of Mcl-1 or IL6R variants that lacked 3′ UTRs. Thus, this study revealed the differential expression of miR-125b in HCC cells and elucidated its potential as a tumor suppressor in HCC development.
Collapse
|
47
|
Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 2012; 32:2984-91. [PMID: 22797068 DOI: 10.1038/onc.2012.307] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A fundamental event in the development and progression of malignant melanoma is the deregulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of tumor progression in melanoma and thus the most important member of the AP-1 transcription factor family for this disease. Interestingly, we revealed that c-Jun expression was regulated on the post-transcriptional level and therefore speculated that miRNAs could be involved in c-Jun regulation. We determined seed sequences for miR-125b and miR-527 in the coding region of c-Jun mRNA that hints at the direct involvement of miRNA-dependent regulation on the protein level. We found that the expression of miR-125b was significantly reduced in malignant melanoma cell lines and tissue samples compared with melanocytes, whereas miR-527 remained unchanged. In further functional experiments, treatment of melanoma cells with pre-miR-125b resulted in strong suppression of cellular proliferation and migration, supporting the role of miR-125b in melanoma. In addition, transfection of pre-miR-125b led to strong downregulation of c-Jun protein but not mRNA expression in melanoma cells. Luciferase assays using reporter plasmids containing the miR-125b seed sequence in the luciferase coding region confirmed the direct interaction with miR-125b. Furthermore, immunoprecipitation of Ago-2 revealed that c-Jun mRNA accumulated in the RNA-induced silencing complex after pre-miR-125b transfection in melanoma cells. In summary, we identified an important role for miR-125b in malignant melanoma. Moreover, we demonstrated post-transcriptional regulation of c-Jun by this miRNA and showed that c-Jun is a main mediator of the effects of miR-125b on melanoma cells.
Collapse
Affiliation(s)
- M Kappelmann
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Segura MF, Greenwald HS, Hanniford D, Osman I, Hernando E. MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis 2012; 33:1823-32. [PMID: 22693259 DOI: 10.1093/carcin/bgs205] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Melanoma incidence and associated mortality continue to increase worldwide. The lack of treatments with durable responses for stage IV melanoma may be due, at least in part, to an incomplete understanding of the molecular mechanisms that regulate tumor initiation and/or progression to metastasis. Recent evidence supports miRNA dysregulation in melanoma impacting several well-known pathways such as the PI3K/AKT or RAS/MAPK pathways, but also underexplored cellular processes like protein glycosylation and immune modulation. There is also increasing evidence that miRNA can improve patient prognostic classification over the classical staging system and provide new therapeutic opportunities. The integration of this recently acquired knowledge with known molecular alterations in protein coding genes characteristic of these tumors (i.e., BRAF and NRAS mutations, CDKN2A inactivation) is critical for a complete understanding of melanoma pathogenesis. Here, we compile the evidence of the functional roles of miRNAs in melanomagenesis and progression, and of their clinical utility as biomarkers, prognostic tools and potential therapeutic targets. Characterization of miRNA alterations in melanoma may provide new angles for therapeutic intervention, help to decipher mechanisms of drug resistance, and improve patient classification for disease surveillance and clinical benefit.
Collapse
Affiliation(s)
- Miguel F Segura
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | | | | | | | | |
Collapse
|
49
|
Bousquet M, Nguyen D, Chen C, Shields L, Lodish HF. MicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA. Haematologica 2012; 97:1713-21. [PMID: 22689670 DOI: 10.3324/haematol.2011.061515] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We previously described a t(2;11)(p21;q23) chromosomal translocation found in patients with myelodysplasia or acute myeloid leukemia that leads to over-expression of the microRNA miR-125b, and we showed that transplantation of mice with murine stem/progenitor cells overexpressing miR-125b is able to induce leukemia. In this study, we investigated the mechanism of myeloid transformation by miR-125b. DESIGN AND METHODS To investigate the consequences of miR-125b over-expression on myeloid differentiation, apoptosis and proliferation, we used the NB4 and HL60 human promyelocytic cell lines and the 32Dclone3 murine promyelocytic cell line. To test whether miR-125b is able to transform myeloid cells, we used the non-tumorigenic and interleukin-3-dependent 32Dclone3 cell line over-expressing miR-125b, in xenograft experiments in nude mice and in conditions of interleukin-3 deprivation. To identify new miR-125b targets, we compared, by RNA-sequencing, the transcriptome of cell lines that do or do not over-express miR-125b. RESULTS We showed that miR-125b over-expression blocks apoptosis and myeloid differentiation and enhances proliferation in both species. More importantly, we demonstrated that miR-125b is able to transform the 32Dclone3 cell line by conferring growth independence from interleukin-3; xenograft experiments showed that these cells form tumors in nude mice. Using RNA-sequencing and quantitative real-time polymerase chain reaction experiments, we identified multiple miR-125b targets. We demonstrated that ABTB1, an anti-proliferative factor, is a new direct target of miR-125b and we confirmed that CBFB, a transcription factor involved in hematopoiesis, is also targeted by miR-125b. MiR-125b controls apoptosis by down-regulating genes involved in the p53 pathway including BAK1 and TP53INP1. CONCLUSIONS This study demonstrates that in a myeloid context, miR-125b is an oncomiR able to transform cell lines. miR-125b blocks myeloid differentiation in part by targeting CBFB, blocks apoptosis through down-regulation of multiple genes involved in the p53 pathway, and confers a proliferative advantage to human and mouse myeloid cell lines in part by targeting ABTB1.
Collapse
Affiliation(s)
- Marina Bousquet
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Cutaneous malignant melanoma is the most aggressive and lethal form of skin cancer. Over the past decades, its incidence has been increasing by 3-8% per year in western countries while mortality has stabilized. Melanoma is a heterogenous disease and can be subclassified based on distinct clinical characteristics, histopathological features and mutation patterns within NRAS and BRAF genes. Recent data indicate that microRNAs (miRNAs) are involved in the pathogenesis of malignant melanoma. MiRNAs are small, non-coding, regulatory RNA molecules expressed in a tissue and cell specific manner and are known to play a crucial role in cell homeostasis and carcinogenesis. MiRNAs might prove to be powerful cancer biomarkers and future therapeutic targets. In this review, we focused on the miRNA involvement in four molecular pathways known to be deregulated in malignant melanoma, including the RAS-RAF-MEK-ERK pathway, the p16(INK4A) -CDK4-RB pathway, the PIK3-AKT pathway and the MITF pathway.
Collapse
Affiliation(s)
- M Glud
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark.
| | | |
Collapse
|