1
|
Tariq R, Hussain N, Bajwa MH, Aziz HF, Shamim MS, Enam SA. Multicentric low-grade glioma: A systematic review of a rare neuro-oncological disease. Clin Neurol Neurosurg 2025; 251:108821. [PMID: 40068356 DOI: 10.1016/j.clineuro.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025]
Abstract
INTRODUCTION Multicentric and multifocal gliomas are rare and mainly described in high-grade gliomas, however, they have rarely been reported with LGG in about 2-10 % of all cases. This study aims to identify the reported multicentric low-grade gliomas (mLGGs) in literature and review their pathologies, management, and outcomes. METHODS A systematic search using a pre-defined search strategy was conducted across three databases (PubMed, Cochrane Library, and Scopus). Following the PRISMA guidelines, relevant articles were selected. The data including demographic details, clinical presentations, lesion locations, pathology, neurosurgical interventions, extent of resection, adjuvant therapies, and survival outcomes were reported. RESULTS We identified 36 patients across 17 studies. Presenting symptoms varied, with seizures (27.7 %) and headaches (22.2 %) being the most common. Typical imaging features involve hypo- to isotense signals on T1-weighted images and hyperintensity on T2-weighted images, with MR spectroscopy aiding in differentiation. Histological consistency across tumor sites was observed in 29 cases, with some variability in a few. Survival was 66.6 % among patients, and initial reports in the 1960s indicated high mortality due to intracranial pressure shifts. Adjuvant therapies included chemotherapy (14 patients) and radiotherapy (9 patients), though many cases lacked complete therapy data. Although chemotherapy and radiotherapy lacked a significant impact on progression-free survival, early, extensive resection remains advocated, with a mean progression-free survival of 30.14 months. CONCLUSION Most of the current evidence surrounding mLGG consists of case reports with few retrospective case series. Early, extensive resection appears to be the most effective approach for managing mLGG, while adjuvant therapies have limited impact on progression-free survival, highlighting the need for more comprehensive molecular profiling to guide treatment. Further research into standardized protocols for adjuvant therapies and long-term outcomes is essential to optimize survival and improve management of unresectable or recurrent cases.
Collapse
Affiliation(s)
- Rabeet Tariq
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan; Center of Oncological Research in Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Nowal Hussain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohammad Hamza Bajwa
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Muhammad Shahzad Shamim
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan; Center of Oncological Research in Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
2
|
Karabacak M, Jazayeri SB, Jagtiani P, Mavridis O, Carrasquilla A, Yong RL, Margetis K. Geriatric grade 2 and 3 gliomas: A national cancer database analysis of demographics, treatment utilization, and survival. J Clin Neurosci 2024; 127:110763. [PMID: 39059334 DOI: 10.1016/j.jocn.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
With increasing life expectancies and population aging, the incidence of elderly patients with grade 2 and 3 gliomas is increasing. However, there is a paucity of knowledge on factors affecting their treatment selection and overall survival (OS). Geriatric patients aged between 60 and 89 years with histologically proven grade 2 and 3 intracranial gliomas were identified from the National Cancer Database between 2010 and 2017. We analyzed patients' demographic data, tumor characteristics, treatment modality, and outcomes. The Kaplan-Meier method was used to analyze OS. Univariate and multivariate analyses were performed to assess the predictive factors of mortality and treatment selection. A total of 6257 patients were identified: 3533 (56.3 %) hexagenerians, 2063 (32.9 %) septuagenarians, and 679 (10.8 %) octogenarians. We identified predictors of lower OS in patients, including demographic factors (older age, non-zero Charlson-Deyo score, non-Hispanic ethnicity), socioeconomic factors (low income, treatment at non-academic centers, government insurance), and tumor-specific factors (higher grade, astrocytoma histology, multifocality). Receiving surgery and chemotherapy were associated with a lower risk of mortality, whereas receiving radiotherapy was not associated with better OS. Our findings provide valuable insights into the complex interplay of demographic, socioeconomic, and tumor-specific factors that influence treatment selection and OS in geriatric grade 2 and 3 gliomas. We found that advancing age correlates with a decrease in OS and a reduced likelihood of undergoing surgery, chemotherapy, or radiotherapy. While receiving surgery and chemotherapy were associated with improved OS, radiotherapy did not exhibit a similar association.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States of America
| | - Seyed Behnam Jazayeri
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pemla Jagtiani
- School of Medicine, SUNY Downstate Health Sciences University, New York, NY, United States of America
| | - Olga Mavridis
- Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Alejandro Carrasquilla
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States of America
| | - Raymund L Yong
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States of America
| | - Konstantinos Margetis
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States of America.
| |
Collapse
|
3
|
Zhang J, Gong L, Zhu H, Sun W, Tian J, Zhang Y, Liu Q, Li X, Zhang F, Wang S, Zhu S, Ding D, Zhang W, Yang C. RICH2 decreases the mitochondrial number and affects mitochondrial localization in diffuse low-grade glioma-related epilepsy. Neurobiol Dis 2023; 188:106344. [PMID: 37926169 DOI: 10.1016/j.nbd.2023.106344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Epilepsy, a common complication of diffuse low-grade gliomas (DLGGs; diffuse oligodendroglioma and astrocytoma collectively), severely compromises the quality of life of patients. DLGG epileptogenicity may primarily be generated by interactions between the tumor and the neocortex. Neuronal uptake of dysfunctional mitochondria from the extracellular environment can lead to abnormal neuronal discharge. Mitochondrial dysfunction is frequently observed in gliomas that can transmigrate across the plasma membranes. Here, we examined the role of the Rho GTPase-activating protein 44 (RICH2) in mitochondrial dynamics and DLGG-related epilepsy. We investigated the association between mitochondrial and RICH2 expression in human DLGG tissues using immunohistochemistry. We examined the association between RICH2 and epilepsy in nude mouse glioma models by electrophysiology. The effect of RICH2 on mitochondrial morphology and calcium motility were assessed by single cell fluorescence microscopy. Quantitative RT-PCR (qRT-PCR) and Western blot analysis were performed to characterize RICH2 induced expression changes in the genes related to mitochondrial dynamics, mitogenesis and mitochondrial function. We found that RICH2 expression was higher in oligodendroglioma than in astrocytoma and was correlated with better prognosis and higher epilepsy rate in patients. The expression of mitochondria may be associated with clinical DLGG-related epilepsy and reduced by RICH2 overexpression. And RICH2 could promote DLGG-related epilepsy in tumorigenic nude mice. RICH2 overexpression decreased calcium flow and the mitochondria released from glioma cells (SW1088 and U251) into the extracellular environment, potentially via downregulation of MFN-1/MFN-2 levels which suggests reduced mitochondrial fusion. In addition, we observed decreased mitochondrial trafficking into neurons (released from glioma cells and trafficked into neurons), which could explain the higher incidence of DLGG-related epilepsy due to reduced neuroprotection. Furthermore, RICH2 downregulated MAPK/ERK/HIF-1 pathway. In conclusion, these results suggest that RICH2 could promote epilepsy by (i) inhibiting mitochondrial fusion via MFN downregulation and Drp-1 upregulation; (ii) altering the MAPK/ERK/Hif-1 signaling axis. RICH2 may be a potential target in the treatment of DLGG-related epilepsy.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Tian
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaolan Li
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuqin Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shumei Wang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaojun Zhu
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongjing Ding
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Epilepsy-related white matter network changes in patients with frontal lobe glioma. J Neuroradiol 2023; 50:258-265. [PMID: 35346748 DOI: 10.1016/j.neurad.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Epilepsy is a common symptom in patients with frontal lobe glioma. Tumor-related epilepsy was recently considered a type of network disease. Glioma can severely influence the integrity of the white matter network. The association between white matter network changes and presurgical epilepsy remains unclear in glioma patients. This study aims to identify alterations to the subcortical brain networks caused by glioma and glioma-related epilepsy. METHODS Sixty-one patients with frontal lobe gliomas were enrolled and stratified into the epileptic and non-epileptic groups. Additionally, 14 healthy participants were enrolled after matching for age, sex, and education level. All participants underwent diffusion tensor imaging. Graph theoretical analysis was applied to reveal topological changes in their white matter networks. Regions affected by tumors were excluded from the analysis. RESULTS Global efficiency was significantly decreased (p = 0.008), while the shortest path length increased (p = 0.02) in the left and right non-epileptic groups compared to the controls. A total of five edges exhibited decreased fiber count in the non-epileptic group (p < 0.05, false discovery rate-corrected). The topological properties and connectional edges showed no significant differences when comparing the epileptic groups and the controls. Additionally, the degree centrality of several nodes connected to the alternated edges was also diminished. CONCLUSIONS Compared to the controls, the epilepsy groups showed raletively intact WM networks, while the non-epileptsy groups had damaged network with lower efficiency and longer path length. These findings indicated that the occurrence of glioma related epilepsy have association with white matter network intergrity.
Collapse
|
5
|
Yahanda AT, Rich KM, Dacey RG, Zipfel GJ, Dunn GP, Dowling JL, Smyth MD, Leuthardt EC, Limbrick DD, Honeycutt J, Sutherland GR, Jensen RL, Evans J, Chicoine MR. Survival After Resection of Newly-Diagnosed Intracranial Grade II Ependymomas: An Initial Multicenter Analysis and the Logistics of Intraoperative Magnetic Resonance Imaging. World Neurosurg 2022; 167:e757-e769. [PMID: 36028106 DOI: 10.1016/j.wneu.2022.08.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To identify factors, including the use of intraoperative magnetic resonance imaging (iMRI), impacting overall survival (OS) and progression-free survival (PFS) after resections of newly diagnosed intracranial grade II ependymomas performed across 4 different institutions. METHODS Analyses of a multicenter mixed retrospective/prospective database assessed the impact of patient, treatment, and tumor characteristics on OS and PFS. iMRI workflow and logistics were also outlined. RESULTS Forty-three patients were identified (mean age 25.4 years, mean follow-up 52.8 months). The mean OS was 52.8 ± 44.7 months. Univariate analyses failed to identify prognostic factors associated with OS, likely due to relatively shorter follow-up time for this less aggressive glioma subtype. The mean PFS was 43.7 ± 39.8 months. Multivariate analyses demonstrated that gross-total resection was associated with prolonged PFS compared to both subtotal resection (STR) (P = 0.005) and near-total resection (P = 0.01). Infratentorial location was associated with improved PFS compared to supratentorial location (P = 0.04). Log-rank analyses of Kaplan-Meier survival curves showed that increasing extent of resection (EOR) led to improved OS specifically for supratentorial tumors (P = 0.02) and improved PFS for all tumors (P < 0.001). Thirty cases (69.8%) utilized iMRI, of which 12 (27.9%) involved additional resection after iMRI. Of these, 8/12 (66.7%) resulted in gross-total resection, while 2/12 (16.7%) were near-total resection and 2/12 (16.7%) were subtotal resection. iMRI was not an independent prognosticator of PFS (P = 0.72). CONCLUSIONS Greater EOR and infratentorial location were associated with increased PFS for grade II ependymomas. Greater EOR was associated with longer OS only for supratentorial tumors. A longer follow-up is needed to establish prognostic factors for this cohort, including use of iMRI.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
| | - Keith M Rich
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ralph G Dacey
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Joshua L Dowling
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew D Smyth
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - John Honeycutt
- Department of Neurological Surgery, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Garnette R Sutherland
- Department of Neurological Surgery, University of Calgary School of Medicine, Calgary, Alberta, Canada
| | - Randy L Jensen
- Department of Neurological Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John Evans
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Michael R Chicoine
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Deacu M, Docu Axelerad A, Popescu S, Topliceanu TS, Aschie M, Bosoteanu M, Cozaru GC, Cretu AM, Voda RI, Orasanu CI. Aggressiveness of Grade 4 Gliomas of Adults. Clin Pract 2022; 12:701-713. [PMID: 36136867 PMCID: PMC9498876 DOI: 10.3390/clinpract12050073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Grade 4 adult gliomas are IDH-mutant astrocytomas and IDH-wildtype glioblastomas. They have a very high mortality rate, with survival at 5 years not exceeding 5%. We aimed to conduct a clinical imaging and morphogenetic characterization of them, as well as to identify the main negative prognostic factors that give them such aggressiveness. We conducted a ten-year retrospective study. We followed the clinical, imaging, and morphogenetic aspects of the cases. We analyzed immunohistochemical markers (IDH1, Ki-67, and nestin) and FISH tests based on the CDKN2A gene. The obtained results were analyzed using SPSS Statistics with the appropriate parameters. The clinical aspects representing negative prognostic factors were represented by patients’ comorbidities: hypertension (HR = 1.776) and diabetes mellitus/hyperglycemia (HR = 2.159). The lesions were mostly supratentorial, and the temporal lobe was the most affected. The mean volume was 88.05 cm3 and produced a midline shift with an average of 8.52 mm. Subtotal surgical resection was a negative prognostic factor (HR = 1.877). The proliferative index did not influence survival rate, whereas CDKN2A gene mutations were shown to have a major impact on survival. We identified the main negative prognostic factors that support the aggressiveness of grade 4 gliomas: patient comorbidities, type of surgical resection, degree of cell differentiation, and CDKN2A gene mutations.
Collapse
Affiliation(s)
- Mariana Deacu
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Any Docu Axelerad
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Neurology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Steliana Popescu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Radiology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Theodor Sebastian Topliceanu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
| | - Mariana Aschie
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Academy of Medical Sciences of Romania, 030167 Bucharest, Romania
| | - Madalina Bosoteanu
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
- Clinical Service of Pathology, Departments of Genetics, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Ana Maria Cretu
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Clinical Service of Pathology, Departments of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania
- Correspondence: ; Tel.: +40-72-281-4037
| |
Collapse
|
7
|
Survival and functional outcomes in paediatric thalamic and thalamopeduncular low grade gliomas. Acta Neurochir (Wien) 2022; 164:1459-1472. [PMID: 35043265 DOI: 10.1007/s00701-021-05106-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Childhood thalamopeduncular gliomas arise at the interface of the thalamus and cerebral peduncle. The optimal treatment is total resection but not at the cost of neurological function. We present long-term clinical and oncological outcomes of maximal safe resection. METHODS Retrospective review of prospectively collected data: demography, symptomatology, imaging, extent of resection, surgical complications, histology, functional and oncological outcome. RESULTS During 16-year period (2005-2020), 21 patients were treated at our institution. These were 13 girls and 8 boys (mean age 7.6 years). Presentation included progressive hemiparesis in 9 patients, raised intracranial pressure in 9 patients and cerebellar symptomatology in 3 patients. The tumour was confined to the thalamus in 6 cases. Extent of resection was judged on postoperative imaging as total (6), near-total (6) and less extensive (9). Surgical complications included progression of baseline neurological status in 6 patients, and 5 of these gradually improved to preoperative status. All tumours were classified as low-grade gliomas. Disease progression was observed in 9 patients (median progression-free survival 7.3 years). At last follow-up (median 6.1 years), all patients were alive, median Lansky score of 90. Seven patients were without evidence of disease, 6 had stable disease, 7 stable following progression and 1 had progressive disease managed expectantly. CONCLUSION Paediatric patients with low-grade thalamopeduncular gliomas have excellent long-term functional and oncological outcomes when gross total resection is not achievable. Surgery should aim at total resection; however, neurological function should not be endangered due to excellent chance for long-term survival.
Collapse
|
8
|
Nakasu S, Nakasu Y. Malignant Progression of Diffuse Low-grade Gliomas: A Systematic Review and Meta-analysis on Incidence and Related Factors. Neurol Med Chir (Tokyo) 2022; 62:177-185. [PMID: 35197400 PMCID: PMC9093671 DOI: 10.2176/jns-nmc.2021-0313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malignant progression of diffuse low-grade glioma (LGG) is a critical event affecting patient survival; however, the incidence and related factors have been inconsistent in literature. According to the PRISMA guidelines, we systematically reviewed articles from 2009, meta-analyzed the incidence of malignant progression, and clarified factors related to the transformation. Forty-one articles were included in this study (n = 7,122; n, number of patients). We identified two definitions of malignant progression: histologically proven (Htrans) and clinically defined (Ctrans). The malignant progression rate curves of Htrans and Ctrans were almost in parallel when constructed from the results of meta-regression by the mean follow-up time. The true transformation rate was supposed to lie between the two curves, approximately 40% at the 10-year mean follow-up. Risk of malignant progression was evaluated using hazard ratio (HR). Pooled HRs were significantly higher in tumors with a larger pre- and postoperative tumor volume, lower degree of resection, and notable preoperative contrast enhancement on magnetic resonance imaging than in others. Oligodendroglial histology and IDH mutation (IDHm) with 1p/19q codeletion (Codel) also significantly reduced the HRs. Using Kaplan-Meier curves from eight studies with molecular data, we extracted data and calculated the 10-year malignant progression-free survival (10yMPFS). The 10yMPFS in patients with IDHm without Codel was 30.4% (95% confidence interval [95% CI]: 22.2-39.0) in Htrans and 38.3% (95% CI: 32.3-44.3) in Ctrans, and that with IDHm with Codel was 71.7% (95% CI: 61.7-79.5) in Htrans and 62.5% (95% CI: 55.9-68.5) in Ctrans. The effect of adjuvant radiotherapy or chemotherapy could not be determined.
Collapse
Affiliation(s)
- Satoshi Nakasu
- Division of Neurosurgery, Omi Medical Center.,Department of Neurosurgery, Shiga University of Medical Science
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science.,Division of Neurosurgery, Shizuoka Cancer Center
| |
Collapse
|
9
|
Albuquerque LAF, Almeida JP, de Macêdo Filho LJM, Joaquim AF, Duffau H. Extent of resection in diffuse low-grade gliomas and the role of tumor molecular signature-a systematic review of the literature. Neurosurg Rev 2021; 44:1371-1389. [PMID: 32770298 DOI: 10.1007/s10143-020-01362-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
There is a lack of class I evidence concerning the impact of surgery in the treatment of diffuse low-grade glioma; the early maximal resection with preservation of eloquent brain areas has been accepted as the first therapeutic option. We performed a systematic review of the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and protocol. Inclusion criteria: only case series with at least 100 patients containing supratentorial hemispheric diffuse low-grade glioma (according to any of the WHO classification used in papers published between 2000 to 2019), with pre- and postoperative MRI study were included in the qualitative and quantitative analyses. The extent of resection should be defined based on MRI at least in two categories and correlated with patients' outcomes (with univariate or multivariate analyses) using overall survival (OS) or malignant progression-free survival (MPFS). A total of 18 series with 4386 patients, published in 20 papers, were included in this systematic review. All the series that evaluates the relation between the extent of resection (EOR) and OS showed a statistically significant improvement of OS at univariate and/or multivariate analyzes with a greater EOR. Six studies showed a statistically significant improvement of MPFS with a greater EOR. We demonstrate that when a more rigorous analysis of EOR is performed, a benefit of a more aggressive resection on OS and MPFS is observed. Our review about EOR in different molecular groups of DLGG also suggests a benefit of maximum safe resection for all different subtypes, even though "radical surgery" may be associated with better OS and MPFS in tumors with a more aggressive signature.
Collapse
Affiliation(s)
- Lucas Alverne F Albuquerque
- Department of Neurosurgery, General Hospital of Fortaleza, Fortaleza, Ceará, Brazil.
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil.
| | - João Paulo Almeida
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Andrei F Joaquim
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
10
|
Obara T, Blonski M, Brzenczek C, Mézières S, Gaudeau Y, Pouget C, Gauchotte G, Verger A, Vogin G, Moureaux JM, Duffau H, Rech F, Taillandier L. Adult Diffuse Low-Grade Gliomas: 35-Year Experience at the Nancy France Neurooncology Unit. Front Oncol 2020; 10:574679. [PMID: 33194684 PMCID: PMC7656991 DOI: 10.3389/fonc.2020.574679] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
Background To report survival, spontaneous prognostic factors, and treatment efficacy in a French monocentric cohort of diffuse low-grade glioma (DLGG) patients over 35 years of follow-up. Methods A monocentric retrospective study of 339 patients diagnosed with a new DLGG between 01/01/1982 and 01/01/2017 was created. Inclusion criteria were patient age ≥18 years at diagnosis and histological diagnosis of WHO grade II glioma (according to 1993, 2007, and 2016 WHO classifications). The survival parameters were estimated using the Kaplan-Meier method with a 95% confidence interval. Differences in survival were tested for statistical significance by the log-rank test. Factors were considered significant when p ≤ 0.1 and p ≤ 0.05 in the univariate and multivariate analyses, respectively. Results A total of 339 patients were included with a median follow-up of 8.7 years. The Kaplan-Meier median overall survival was 15.7 years. At the time of radiological diagnosis, Karnofsky Performance Status score and initial tumor volume were significant independent prognostic factors. Oncological prognostic factors were the extent of resection for patients who underwent surgery and the timing of radiotherapy for those concerned. In this study, patients who had delayed radiotherapy (provided remaining low grade) did not have worse survival compared with patients who had early radiotherapy. The functional capabilities of the patients were preserved enough so that they could remain independent during at least three quarters of the follow-up. Conclusion This large monocentric series spread over a long time clarifies the effects of different therapeutic strategies and their combination in the management of DLGG.
Collapse
Affiliation(s)
- Tiphaine Obara
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| | - Marie Blonski
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| | - Cyril Brzenczek
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sophie Mézières
- Department of Mathematics, Elie Cartan Institute, Nancy, France.,INRIA Biology, Genetics and Statistics, Nancy, France
| | - Yann Gaudeau
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Celso Pouget
- Department of Pathology, CHRU, Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035, CHRU Nancy, France
| | - Guillaume Gauchotte
- Department of Pathology, CHRU, Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035, CHRU Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, France.,IADI, INSERM U1254, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Guillaume Vogin
- UMR 7365 CNRS, IMoPA Biopole Lorraine University Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Radiation Therapy, Baclese Radiation Therapy Centre, Esch/Alzette, Luxembourg
| | - Jean-Marie Moureaux
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1051 Laboratory, National Institute for Health and Medical Research (INSERM), Institute for Neurosciences of Montpellier, Montpellier University Medical Center, Montpellier, France
| | - Fabien Rech
- Department of Neurosurgery, CHRU, Nancy, France
| | - Luc Taillandier
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| |
Collapse
|
11
|
Yahanda AT, Patel B, Shah AS, Cahill DP, Sutherland G, Honeycutt J, Jensen RL, Rich KM, Dowling JL, Limbrick DD, Dacey RG, Kim AH, Leuthardt EC, Dunn GP, Zipfel GJ, Leonard JR, Smyth MD, Shah MV, Abram SR, Evans J, Chicoine MR. Impact of Intraoperative Magnetic Resonance Imaging and Other Factors on Surgical Outcomes for Newly Diagnosed Grade II Astrocytomas and Oligodendrogliomas: A Multicenter Study. Neurosurgery 2020; 88:63-73. [DOI: 10.1093/neuros/nyaa320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 11/12/2022] Open
Abstract
Abstract
BACKGROUND
Few studies use large, multi-institutional patient cohorts to examine the role of intraoperative magnetic resonance imaging (iMRI) in the resection of grade II gliomas.
OBJECTIVE
To assess the impact of iMRI and other factors on overall survival (OS) and progression-free survival (PFS) for newly diagnosed grade II astrocytomas and oligodendrogliomas.
METHODS
Retrospective analyses of a multicenter database assessed the impact of patient-, treatment-, and tumor-related factors on OS and PFS.
RESULTS
A total of 232 resections (112 astrocytomas and 120 oligodendrogliomas) were analyzed. Oligodendrogliomas had longer OS (P < .001) and PFS (P = .01) than astrocytomas. Multivariate analyses demonstrated improved OS for gross total resection (GTR) vs subtotal resection (STR; P = .006, hazard ratio [HR]: .23) and near total resection (NTR; P = .02, HR: .64). GTR vs STR (P = .02, HR: .54), GTR vs NTR (P = .04, HR: .49), and iMRI use (P = .02, HR: .54) were associated with longer PFS. Frontal (P = .048, HR: 2.11) and occipital/parietal (P = .003, HR: 3.59) locations were associated with shorter PFS (vs temporal). Kaplan-Meier analyses showed longer OS with increasing extent of surgical resection (EOR) (P = .03) and 1p/19q gene deletions (P = .02). PFS improved with increasing EOR (P = .01), GTR vs NTR (P = .02), and resections above STR (P = .04). Factors influencing adjuvant treatment (35.3% of patients) included age (P = .002, odds ratio [OR]: 1.04) and EOR (P = .003, OR: .39) but not glioma subtype or location. Additional tumor resection after iMRI was performed in 105/159 (66%) iMRI cases, yielding GTR in 54.5% of these instances.
CONCLUSION
EOR is a major determinant of OS and PFS for patients with grade II astrocytomas and oligodendrogliomas. Intraoperative MRI may improve EOR and was associated with increased PFS.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Bhuvic Patel
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Amar S Shah
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Daniel P Cahill
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Garnette Sutherland
- Department of Neurological Surgery, University of Calgary School of Medicine, Calgary, Canada
| | - John Honeycutt
- Department of Neurological Surgery, Cook Children's Medical Center, Fort Worth, Texas
| | - Randy L Jensen
- Department of Neurological Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Keith M Rich
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joshua L Dowling
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Ralph G Dacey
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Gavin P Dunn
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, Ohio
| | - Matthew D Smyth
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mitesh V Shah
- Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indianapolis, Indiana
| | - Steven R Abram
- Department of Neurological Surgery, St. Thomas Hospital, Nashville, Tennessee
| | - John Evans
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
12
|
Radiotherapy in adult low-grade glioma: nationwide trends in treatment and outcomes. Clin Transl Oncol 2020; 23:628-637. [DOI: 10.1007/s12094-020-02458-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/10/2020] [Indexed: 01/28/2023]
|
13
|
Lin D, Deng X, Zheng D, Gu C, Yu L, Xu S, Li D, Fang J, Yin B, Sheng H, Lin J, Zhang X, Zhang N. The effects of tumor size and postoperative radiotherapy for patients with adult low-grade (WHO grade II) infiltrative supratentorial astrocytoma/oligodendroglioma: A population-based and propensity score matched study. Cancer Med 2018; 7:5973-5987. [PMID: 30378290 PMCID: PMC6308075 DOI: 10.1002/cam4.1853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Background The update of 2018 NCCN guidelines (central nervous system cancers) recommended the risk classification of postoperative patients diagnosed as adult low‐grade (WHO grade II) infiltrative supratentorial astrocytoma/oligodendroglioma (ALISA/O) should take tumor size into consideration. Moreover, the guidelines removed postoperative radiotherapy (PORT) for low risk patients. Our study aimed to explore the specific tumor size to divide postoperative patients into relatively low‐ or high risk subgroups and the effect of PORT for ALISA/O patients. Methods We conducted a retrospective study choosing 1277 postoperative ALISA/O patients from the Surveillance, Epidemiology, and End Results database. The X‐tile analysis provided the optimal cutoff point based on tumor size. The differences between surgery alone and surgery +RT groups were balanced by propensity score‐matched analysis. The multivariable analysis and the nomogram evaluated multiple prognostic factors based on cancer‐specific survival (CSS) and overall survival (OS). Results X‐tile plots defined 59 mm (P < 0.001) as the optimal cutoff tumor size value in terms of CSS, which was verified in multivariate analysis (P < 0.001). The Kaplan‐Meier analysis showed that the surgery alone had higher CSS and OS than surgery +RT, while the low risk group had no statistical significance after propensity score match. Multivariable analysis showed that surgery +RT was independently associated with diminished OS and CSS for high risk group, which had no statistical significance for low‐risk group. Conclusions Our study suggested that tumor size of 59 mm was an optimal cutoff point to divide postoperative patients into relatively low‐ or high risk subgroups. PORT may not benefit patients, while the effects of PORT for low risk patients need further research.
Collapse
Affiliation(s)
- Dong‐Dong Lin
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiang‐Yang Deng
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dong‐Dong Zheng
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cheng‐Hui Gu
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Li‐Sheng Yu
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shang‐Yu Xu
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dan‐Dong Li
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jun‐Hao Fang
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Bo Yin
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Han‐Song Sheng
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jian Lin
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiao‐Lei Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Nu Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
14
|
Garcia CR, Slone SA, Pittman T, St. Clair WH, Lightner DD, Villano JL. Comprehensive evaluation of treatment and outcomes of low-grade diffuse gliomas. PLoS One 2018; 13:e0203639. [PMID: 30235224 PMCID: PMC6147430 DOI: 10.1371/journal.pone.0203639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/26/2018] [Indexed: 01/31/2023] Open
Abstract
Background Low-grade gliomas affect younger adults and carry a favorable prognosis. They include a variety of biological features affecting clinical behavior and treatment. Having no guidelines on treatment established, we aim to describe clinical and treatment patterns of low-grade gliomas across the largest cancer database in the United States. Methods We analyzed the National Cancer Database from 2004 to 2015, for adult patients with a diagnosis of World Health Organization grade II diffuse glioma. Results We analyzed 13,621 cases with median age of 41 years. Over 56% were male, 88.4% were white, 6.1% were black, and 7.6% Hispanic. The most common primary site location was the cerebrum (79.9%). Overall, 72.2% received surgery, 36.0% radiation, and 27.3% chemotherapy. Treatment combinations included surgery only (41.5%), chemotherapy + surgery (6.6%), chemotherapy only (3.1%), radiation + chemotherapy + surgery (10.7%), radiation + surgery (11.5%), radiation only (6.1%), and radiotherapy + chemotherapy (6.7%). Radiation was more common in treatment of elderly patients, 1p/19q co-deletion (37.3% versus 24.3%, p<0.01), and tumors with midline location. Median survival was 11 years with younger age, 1p/19q co-deletion, and cerebrum location offered survival advantage. Conclusions Tumor location, 1p/19q co-deletion, and age were the main determinants of treatment received and survival, likely reflecting tumor biology differences. Any form of treatment was preferred over watchful waiting in the majority of the patients (86.1% versus 8.1%). Survival of low-grade gliomas is higher than previously reported in the majority of clinical trials and population-based analyses. Our analysis provides a real world estimation of treatment decisions, use of molecular data, and outcomes.
Collapse
Affiliation(s)
- Catherine R. Garcia
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stacey A. Slone
- Division on Cancer Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Thomas Pittman
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - William H. St. Clair
- Department of Radiation Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Donita D. Lightner
- Department of Neurology, University of Kentucky, Lexington, Kentucky, United States of America
| | - John L. Villano
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neurology, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
15
|
Brown TJ, Bota DA, van Den Bent MJ, Brown PD, Maher E, Aregawi D, Liau LM, Buckner JC, Weller M, Berger MS, Glantz M. Management of low-grade glioma: a systematic review and meta-analysis. Neurooncol Pract 2018; 6:249-258. [PMID: 31386075 DOI: 10.1093/nop/npy034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Optimum management of low-grade gliomas remains controversial, and widespread practice variation exists. This evidence-based meta-analysis evaluates the association of extent of resection, radiation, and chemotherapy with mortality and progression-free survival at 2, 5, and 10 years in patients with low-grade glioma. Methods A quantitative systematic review was performed. Inclusion criteria included controlled trials of newly diagnosed low-grade (World Health Organization Grades I and II) gliomas in adults. Eligible studies were identified, assigned a level of evidence for every endpoint considered, and analyzed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The relative risk of mortality and of progression at 2, 5, and 10 years was calculated for patients undergoing resection (gross total, subtotal, or biopsy), radiation, or chemotherapy. Results Gross total resection was significantly associated with decreased mortality and likelihood of progression at all time points compared to subtotal resection. Early radiation was not associated with decreased mortality; however, progression-free survival was better at 5 years compared to patients receiving delayed or no radiation. Chemotherapy was associated with decreased mortality at 5 and 10 years in the high-quality literature. Progression-free survival was better at 5 and 10 years compared to patients who did not receive chemotherapy. In patients with isocitrate dehydrogenase 1 gene (IDH1) R132H mutations receiving chemotherapy, progression-free survival was better at 2 and 5 years than in patients with IDH1 wild-type gliomas. Conclusions Results from this review, the first to quantify differences in outcome associated with surgery, radiation, and chemotherapy in patients with low-grade gliomas, can be used to inform evidence-based management and future clinical trials.
Collapse
Affiliation(s)
- Timothy J Brown
- Department of Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Daniela A Bota
- Department of Neurology, University of California Irvine, USA.,Department of Neurological Surgery, University of California Irvine, USA
| | | | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth Maher
- Department of Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Dawit Aregawi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.,Department of Oncology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Linda M Liau
- Department of Neurological Surgery, University of California Los Angeles, USA
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, USA
| | - Michael Glantz
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.,Department of Oncology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
16
|
Chen YR, Sole J, Ugiliweneza B, Johnson E, Burton E, Woo SY, Koutourousiou M, Williams B, Boakye M, Skirboll S. National Trends for Reoperation in Older Patients with Glioblastoma. World Neurosurg 2018; 113:e179-e189. [DOI: 10.1016/j.wneu.2018.01.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/29/2022]
|
17
|
Mochizuki AY, Frost IM, Mastrodimos MB, Plant AS, Wang AC, Moore TB, Prins RM, Weiss PS, Jonas SJ. Precision Medicine in Pediatric Neurooncology: A Review. ACS Chem Neurosci 2018; 9:11-28. [PMID: 29199818 PMCID: PMC6656379 DOI: 10.1021/acschemneuro.7b00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central nervous system tumors are the leading cause of cancer related death in children. Despite much progress in the field of pediatric neurooncology, modern combination treatment regimens often result in significant late effects, such as neurocognitive deficits, endocrine dysfunction, secondary malignancies, and a host of other chronic health problems. Precision medicine strategies applied to pediatric neurooncology target specific characteristics of individual patients' tumors to achieve maximal killing of neoplastic cells while minimizing unwanted adverse effects. Here, we review emerging trends and the current literature that have guided the development of new molecularly based classification schemas, promising diagnostic techniques, targeted therapies, and delivery platforms for the treatment of pediatric central nervous system tumors.
Collapse
Affiliation(s)
- Aaron Y. Mochizuki
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Isaura M. Frost
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Melina B. Mastrodimos
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ashley S. Plant
- Division
of Pediatric Oncology, Children’s Hospital of Orange County, Orange, California 92868, United States
| | - Anthony C. Wang
- Department
of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Theodore B. Moore
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Robert M. Prins
- Department
of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Steven J. Jonas
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children’s
Discovery and Innovation Institute, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
18
|
Youland RS, Kreofsky CR, Schomas DA, Brown PD, Buckner JC, Laack NN. The impact of adjuvant therapy for patients with high-risk diffuse WHO grade II glioma. J Neurooncol 2017; 135:535-543. [PMID: 28836106 DOI: 10.1007/s11060-017-2599-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/18/2017] [Indexed: 11/26/2022]
Abstract
Despite recent randomized, prospective evidence supporting use of RT and chemotherapy (CRT) for high-risk low-grade gliomas (LGG), many patients have historically received RT alone, chemotherapy alone or observation postoperatively. The purpose of this study is to evaluate outcomes for historical treatments in comparison to CRT for high-risk diffuse WHO grade II glioma patients. Records from 309 adults with WHO grade II glioma (1997-2008) eligible for RTOG 9802 (incomplete resection/biopsy or age ≥40 years) were retrospectively reviewed. Kaplan-Meier estimates were used for progression-free survival (PFS) and overall survival (OS). The Cox proportional hazards model was used for estimates of risk ratios for univariate and multivariate analyses. Median follow-up was 10.6 years. Adjuvant treatments included radiotherapy (RT) alone (45%), observation (31%), CRT (21%) and chemotherapy alone (3%). Non-astrocytic histology, TERT promoter mutation, 1p/19q codeletion and extensive resections were associated with improved PFS and OS on univariate analysis (all p < 0.05). IDH mutations and adjuvant CRT was associated with improved PFS (all p < 0.05). On multivariate analysis, histology, molecular grouping and extent of resection were significantly associated with PFS and OS. In addition, multivariate analysis revealed that CRT was associated with improved PFS and OS compared with RT alone, and improved PFS compared with observation. This study confirms the benefit of adding chemotherapy to RT compared with RT alone or observation. These findings emphasize the need for aggressive treatment in patients with high-risk LGG.
Collapse
Affiliation(s)
- Ryan S Youland
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Cole R Kreofsky
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David A Schomas
- Department of Radiation Oncology, Saint Luke's Cancer Institute, Kansas City, MO, 64111, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jan C Buckner
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
19
|
Spitaels J, Devriendt D, Sadeghi N, Luce S, De Witte O, Goldman S, Mélot C, Lefranc F. Management of supratentorial recurrent low-grade glioma: A multidisciplinary experience in 35 adult patients. Oncol Lett 2017; 14:2789-2795. [PMID: 28928820 PMCID: PMC5588534 DOI: 10.3892/ol.2017.6543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
The management of recurrent diffuse low-grade gliomas (LGGs) is controversial. In the present study, the multidisciplinary management of 35 patients with recurrent LGGs was retrospectively analyzed. Tumor progression or recurrence was defined by clinical, radiological and/or metabolic pejorative evolution. All patients were regularly followed up by a multidisciplinary neuro-oncological group at Hôpital Erasme. Patients with histologically confirmed supratentorial LGGs (7 astrocytoma, 22 oligodendrogliomas and 6 oligoastrocytomas) who had undergone surgery between August 2004 and November 2010 were included. A total of 3 patients exhibited no tumor progression (median follow-up (FU), 81 months; range, 68-108 months). Tumor recurrence occurred in the 32 remaining patients [progression-free survival (PFS), 26 months; range, 2-104 months]. In addition, 25/29 (86%) patients who received surgery alone underwent reoperation at the time of tumor recurrence, and high-grade transformation occurred in 6 of these patients (24%). Furthermore, 4/29 (14%) patients were treated with adjuvant therapy alone (3 chemotherapy and 1 radiotherapy). In the 19 patients with no high-grade transformation at reintervention, 3 received adjuvant therapy and 16 were regularly followed up through multimodal imaging. The PFS time of the patients who underwent reoperation with close FU (n=16) and for the patients receiving adjuvant therapy with or without surgery (n=7) at first recurrence was 10 and 24 months (P=0.005), respectively. However, no significant difference was observed for overall survival (P=0.403). At the time of this study, 22 of the 35 patients included were alive following a median FU time of 109 months (range, 55-136). The results of the present study could change the multidisciplinary approach used into a more aggressive approach with adjuvant therapy, with or without surgery, for the treatment of a select subpopulation of patients with LGGs at the first instance of tumor recurrence.
Collapse
Affiliation(s)
- Julien Spitaels
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Daniel Devriendt
- Department of Radiotherapy, Institut Jules Bordet, 1000 Brussels, Belgium
| | - Niloufar Sadeghi
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sylvie Luce
- Department of Medical Oncology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Olivier De Witte
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Serge Goldman
- Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Christian Mélot
- Department of Emergency, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
20
|
Boissonneau S, Duffau H. Identifying clinical risk in low grade gliomas and appropriate treatment strategies, with special emphasis on the role of surgery. Expert Rev Anticancer Ther 2017; 17:703-716. [PMID: 28608763 DOI: 10.1080/14737140.2017.1342537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Diffuse low-grade glioma (DLGG) is a chronic tumoral disease that ineluctably grows, migrates along white matter pathways, and progresses to a higher grade of malignancy. Areas covered: To determine the best individualized treatment attitude for each DLGG patient, and to redefine it over the years, i.e. to optimize the 'onco-functional balance' of serial and multimodal therapies, the understanding of the natural history of this chronic disease is crucial but not sufficient. A paradigmatic shift is to tailor the individual management according to the dynamic relationships between DLGG course and neural remodeling. In this spirit, a better knowledge of brain plasticity in a connectomal account of cerebral processing has enabled a dramatic improvement of both oncological and functional outcomes in DLGG patients, by increasing overall survival while preserving (or even improving) the quality of life. Expert commentary: Here, we propose an individualized and recursive therapeutic strategy in DLGG, leading to the concept of a 'personalized functional neuro-oncology', by emphasizing the role of early and maximal safe surgical resection(s) reliably achieved using intraoperative mapping of cortico-subcortical networks in awake patients.
Collapse
Affiliation(s)
| | - Hugues Duffau
- b Department of Neurosurgery , Gui de Chauliac Hospital, Montpellier University Medical Center , Montpellier , France.,c Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1051, Institute for Neurosciences of Montpellier , Montpellier University Medical Center , Montpellier , France
| |
Collapse
|
21
|
Youland RS, Schomas DA, Brown PD, Parney IF, Laack NNI. Patterns of care and treatment outcomes in older adults with low grade glioma: a 50-year experience. J Neurooncol 2017; 133:339-346. [PMID: 28432585 DOI: 10.1007/s11060-017-2439-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to identify changes in presentation, treatment and outcomes of older patients with low-grade glioma (LGG) over the past 50 years. 94 adults aged 55 or older upon diagnosis of a WHO grade II LGG at Mayo Clinic between 1960 and 2011 were included and grouped by those diagnosed before (group I: 1960-1989) and after (group II: 1990-2011) the routine use of post-operative MRI. Median follow-up was 11.4 years. Pathologic diagnoses included astrocytoma in 55%, mixed oligoastrocytoma in 18% and oligodendroglioma in 27%. Gross total resection (GTR) was achieved in 10%, radical subtotal resection (rSTR) in 6%, subtotal resection (STR) in 20% and biopsy only in 64%. Post-operative radiotherapy (PORT) was given in 77%. More patients in the modern era received GTR/rSTR (20 vs. 7%), though the difference was not statistically significant. Median progression-free survival (PFS) was 3.0 years, with 5- and 10-year PFS rates of 31 and 10%, respectively. Median, 5- and 10-year overall survival (OS) was 4.1 years, 43 and 17%, respectively. PFS and OS did not improve in the modern era. Factors negatively associated with PFS on multivariate analysis included astrocytoma histology, contrast enhancement and STR/biopsy. Factors associated with poor OS on multivariate analysis included astrocytoma histology, deep location, contrast enhancement and STR/biopsy. Despite reports of improving outcomes for younger patients treated in the modern era, outcomes have not significantly improved for older patients. Further efforts to improve outcomes based on molecular genotyping are needed to determine a rational strategy for treatment intensification.
Collapse
Affiliation(s)
- Ryan S Youland
- Department of Radiation Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - David A Schomas
- Department of Radiation Oncology, Saint Luke's Cancer Institute, Kansas City, MO, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Nadia N I Laack
- Department of Radiation Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
22
|
Delgado-López PD, Corrales-García EM, Martino J, Lastra-Aras E, Dueñas-Polo MT. Diffuse low-grade glioma: a review on the new molecular classification, natural history and current management strategies. Clin Transl Oncol 2017; 19:931-944. [PMID: 28255650 DOI: 10.1007/s12094-017-1631-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/14/2017] [Indexed: 01/01/2023]
Abstract
The management of diffuse supratentorial WHO grade II glioma remains a challenge because of the infiltrative nature of the tumor, which precludes curative therapy after total or even supratotal resection. When possible, functional-guided resection is the preferred initial treatment. Total and subtotal resections correlate with increased overall survival. High-risk patients (age >40, partial resection), especially IDH-mutated and 1p19q-codeleted oligodendroglial lesions, benefit from surgery plus adjuvant chemoradiation. Under the new 2016 WHO brain tumor classification, which now incorporates molecular parameters, all diffusely infiltrating gliomas are grouped together since they share specific genetic mutations and prognostic factors. Although low-grade gliomas cannot be regarded as benign tumors, large observational studies have shown that median survival can actually be doubled if an early, aggressive, multi-stage and personalized therapy is applied, as compared to prior wait-and-see policy series. Patients need an honest long-term therapeutic strategy that should ideally anticipate neurological, cognitive and histopathologic worsening.
Collapse
Affiliation(s)
- P D Delgado-López
- Servicio de Neurocirugía, Hospital Universitario de Burgos, Avda Islas Baleares 3, 09006, Burgos, Spain.
| | - E M Corrales-García
- Servicio de Oncología Radioterápica, Hospital Universitario de Burgos, Burgos, Spain
| | - J Martino
- Servicio de Neurocirugía, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - E Lastra-Aras
- Servicio de Oncología Médica, Hospital Universitario de Burgos, Burgos, Spain
| | - M T Dueñas-Polo
- Servicio de Oncología Radioterápica, Hospital Universitario de Burgos, Burgos, Spain
| |
Collapse
|
23
|
Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, Miyake K, Nariai T, Narita Y, Hashimoto N, Okuda O, Matsuda H, Kubota K, Ito K, Nakazato Y, Kubomura K. Diagnostic Performance and Safety of Positron Emission Tomography Using 18F-Fluciclovine in Patients with Clinically Suspected High- or Low-grade Gliomas: A Multicenter Phase IIb Trial. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2017; 5:10-21. [PMID: 28840134 PMCID: PMC5221680 DOI: 10.22038/aojnmb.2016.7869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The study objective was to assess the diagnostic performance of positron emission tomography (PET) for gliomas using the novel tracer 18F-fluciclovine (anti-[18F]FACBC) and to evaluate the safety of this tracer in patients with clinically suspected gliomas. METHODS Anti-[18F]FACBC was administered to 40 patients with clinically suspected high- or low-grade gliomas, followed by PET imaging. T1-weighted, contrast-enhanced T1-weighted, and fluid-attenuated inversion recovery (or T2-weighted) magnetic resonance imaging (MRI) scans were obtained to plan for the tissue collection. Tissues were collected from either "areas visualized using anti-[18F]FACBC PET imaging but not using contrast-enhanced T1-weighted imaging" or "areas visualized using both anti-[18F]FACBC-PET imaging and contrast-enhanced T1-weighted imaging" and were histopathologically examined to assess the diagnostic accuracy of anti-[18F]FACBC-PET for gliomas. RESULTS The positive predictive value of anti-[18F]FACBC-PET imaging for glioma in areas visualized using anti-[18F]FACBC-PET imaging, but not visualized using contrast-enhanced T1-weighted images, was 100.0% (26/26), and the value in areas visualized using both contrast-enhanced T1-weighted imaging and anti-[18F]FACBC-PET imaging was 87.5% (7/8). Twelve adverse events occurred in 7 (17.5%) of the 40 patients who received anti-[18F]FACBC. Five events in five patients were considered to be adverse drug reactions; however, none of the events were serious, and all except one resolved spontaneously without treatment. CONCLUSION This Phase IIb trial showed that anti-[18F]FACBC-PET imaging was effective for the detection of gliomas in areas not visualized using contrast-enhanced T1-weighted MRI and the tracer was well tolerated.
Collapse
Affiliation(s)
- Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University, Graduate School of Medicine, Aichi, Japan
| | - Toshihiko Iuchi
- Division of Neurological Surgery, Chiba Cancer Center, Chiba, Japan
| | - Naohiro Tsuyuguchi
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama International Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Osamu Okuda
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuo Kubota
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kimiteru Ito
- Department of Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Kan Kubomura
- Clinical Development Department, Nihon Medi-Physics Co., Ltd., Tokyo, Japan
| |
Collapse
|
24
|
Kunz M, Nachbichler SB, Ertl L, Fesl G, Egensperger R, Niyazi M, Schmid I, Tonn JC, Peraud A, Kreth FW. Early treatment of complex located pediatric low-grade gliomas using iodine-125 brachytherapy alone or in combination with microsurgery. Cancer Med 2015; 5:442-53. [PMID: 26714663 PMCID: PMC4799958 DOI: 10.1002/cam4.605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022] Open
Abstract
To analyze efficacy, functional outcome, and treatment toxicity of low-dose rate I-125 brachytherapy (SBT) alone or in combination with best safe resection (in case of larger tumor volumes) as first-line treatment for pediatric low-grade gliomas (PLGGs) not suitable for complete resection. Consecutively treated (2000-2014) complex located circumscribed WHO grade I/II PLGGs were included. For small tumors (≤4 cm in diameter) SBT alone was performed; for larger tumors best safe resection and subsequent SBT was chosen. Temporary Iodine-125 seeds were used (median reference dose: 54 Gy). Treatment response was estimated with the modified MacDonald criteria. Analysis of functional outcome included ophthalmological, endocrinological and neurological evaluation. Survival was analyzed with the Kaplan-Meier method. Prognostic factors were obtained from proportional hazards models. Toxicity was categorized according to the Common Terminology Criteria for Adverse Events. Fifty-eight patients were included treated either with SBT alone (n = 39) or with SBT plus microsurgery (n = 19). Five-year progression-free survival was 87%. Two patients had died due to tumor progression. Among survivors, improvement/stabilization/deterioration of functional deficits was seen in 20/14/5 patients, respectively. Complete/partial response had beneficial impact on functional scores (P = 0.02). The 5-year estimated risk to receive adjuvant radiotherapy/chemotherapy was 5.2%. The overall early (delayed) toxicity rate was 8.6% (10.3%), respectively. No permanent morbidity occurred. In complex located PLGGs, early SBT alone or combined with best safe resection preserves/improves functional scores and results in tumor control rates usually achieved with complete resection. Long-term analysis is necessary for confirmation of these results.
Collapse
Affiliation(s)
- Mathias Kunz
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Silke B Nachbichler
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany
| | - Lorenz Ertl
- Department of Neuroradiology, Ludwig-Maximilians-University, Munich, Germany
| | - Gunther Fesl
- Department of Neuroradiology, Ludwig-Maximilians-University, Munich, Germany
| | - Rupert Egensperger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany
| | - Irene Schmid
- Department of Pediatric Oncology and Hematology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Aurelia Peraud
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
25
|
Ryken TC, Parney I, Buatti J, Kalkanis SN, Olson JJ. The role of radiotherapy in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015; 125:551-83. [PMID: 26530266 DOI: 10.1007/s11060-015-1948-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/04/2015] [Indexed: 01/26/2023]
Abstract
QUESTIONS (1) What is the optimal role of external beam radiotherapy in the management of adult patients with newly diagnosed low-grade glioma (LGG) in terms of improving outcome (i.e., survival, complications, seizure control or other reported outcomes of interest)? (2) Which radiation strategies (dose, timing, fractionation, stereotactic radiation, brachytherapy, chemotherapy) improve outcomes compared to standard external beam radiation therapy in the initial management of low grade gliomas in adults? (3) Do specific factors (e.g., age, volume, extent of resection, genetic subtype) identify subgroups with better outcomes following radiation therapy than the general population of adults with newly diagnosed low-grade gliomas? TARGET POPULATION These recommendations apply to adults with newly diagnosed diffuse LGG. RECOMMENDATIONS OUTCOMES IN ADULT PATIENTS WITH NEWLY DIAGNOSED LOW GRADE GLIOMA TREATED WITH RADIOTHERAPY: Level I Radiotherapy is recommended in the management of newly diagnosed low-grade glioma in adults to prolong progression free survival, irrespective of extent of resection. Level II Radiotherapy is recommended in the management of newly diagnosed low grade glioma in adults as an equivalent alternative to observation in preserving cognitive function, irrespective of extent of resection. Level III Radiotherapy is recommended in the management of newly diagnosed low grade glioma in adults to improve seizure control in patients with epilepsy and subtotal resection. Level III Radiotherapy is recommended in the management of newly diagnosed low-grade glioma in adults to prolong overall survival in patients with subtotal resection. Level III Consideration of the risk of radiation induced morbidity, including cognitive decline, imaging abnormalities, metabolic dysfunction and malignant transformation, is recommended when the delivery of radiotherapy is selected in the management of newly diagnosed low-grade glioma in adults. STRATEGIES OF RADIOTHERAPY IN ADULT PATIENTS WITH NEWLY DIAGNOSED LOW GRADE GLIOMA: Level I Lower dose radiotherapy is recommended as an equivalent alternative to higher dose immediate postoperative radiotherapy (45-50.4 vs. 59.4-64.8 Gy) in the management of newly diagnosed low-grade glioma in adults with reduced toxicity. Level III Delaying radiotherapy until recurrence or progression is recommended as an equivalent alternative to immediate postoperative radiotherapy in the management of newly diagnosed low-grade glioma in adults but may result in shorter time to progression. Level III The addition of chemotherapy to radiotherapy is not recommended over whole brain radiotherapy alone in the management of low-grade glioma, as it provides no additional survival benefit. Level III Limited-field radiotherapy is recommended over whole brain radiotherapy in the management of low-grade glioma. Level III Either stereotactic radiosurgery or brachytherapy are recommended as acceptable alternatives to external radiotherapy in selected patients. PROGNOSTIC FACTORS IN ADULT PATIENTS WITH NEWLY DIAGNOSED LOW GRADE GLIOMA TREATED WITH RADIOTHERAPY: Level II It is recommended that age greater than 40 years, astrocytic pathology, diameter greater than 6 cm, tumor crossing the midline and preoperative neurological deficit be considered as negative prognostic indicators when predicting overall survival in adult low grade glioma patients treated with radiotherapy. Level II It is recommended that smaller tumor size, extent of surgical resection and higher mini-mental status exam be considered as positive prognostic indicators when predicting overall survival and progression free survival in patients in adult low grade glioma patients treated with radiotherapy. Level III It is recommended that seizures at presentation, presence of oligodendroglial histological component and 1p19q deletion (along with additional relevant factors-see Table 1) be considered as positive prognostic indicators when predicting response to radiotherapy in adults with low grade gliomas. Level III It is recommended that increasing age, decreasing performance status, decreasing cognition, presence of astrocytic histological component (along with additional relevant factors (see Tables 1, 2) be considered as negative prognostic indicators when predicting response to radiotherapy.
Collapse
Affiliation(s)
- Timothy C Ryken
- Department of Neurosurgery, Kansas University Medical Center, Kansas City, KS, USA.
| | - Ian Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - John Buatti
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
26
|
Aghi MK, Nahed BV, Sloan AE, Ryken TC, Kalkanis SN, Olson JJ. The role of surgery in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015; 125:503-30. [PMID: 26530265 DOI: 10.1007/s11060-015-1867-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
Abstract
QUESTION Should patients with imaging suggestive of low grade glioma (LGG) undergo observation versus treatment involving a surgical procedure? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS Surgical resection is recommended over observation to improve overall survival for patients with diffuse low-grade glioma (Level III) although observation has no negative impact on cognitive performance and quality of life (Level II). QUESTION What is the impact of extent of resection on progression free survival (PFS) or overall survival (OS) in LGG patients? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS IMPACT OF EXTENT OF RESECTION ON PFS: LEVEL II It is recommended that GTR or STR be accomplished instead of biopsy alone when safe and feasible so as to decrease the frequency of tumor progression recognizing that the rate of progression after GTR is fairly high. IMPACT OF EXTENT OF RESECTION ON OS LEVEL III Greater extent of resection can improve OS in LGG patients. QUESTION What tools are available to increase extent of resection in LGG patients? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS INTRAOPERATIVE MRI DURING SURGERY: LEVEL III The use of intraoperative MRI should be considered as a method of increasing the extent of resection of LGGs. QUESTION What is the impact of surgical resection on seizure control and accuracy of pathology in low grade glioma patients? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS SURGICAL RESECTION AND SEIZURE CONTROL: LEVEL III After taking into account the patient's clinical status and tumor location, gross total resection is recommended for patients with diffuse LGG as a way to achieve more favorable seizure control. ACCURACY OF DIAGNOSIS LEVEL III Taking into account the patient's clinical status and tumor location, surgical resection should be carried out to maximize the chance of accurate diagnosis. QUESTION What tools can improve the safety of surgery for LGGs in eloquent locations? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS PREOPERATIVE IMAGING: LEVEL III It is recommended that preoperative functional MRI and diffusion tensor imaging be utilized in the appropriate clinical setting to improve functional outcome after surgery for LGG. INTRAOPERATIVE MAPPING OF TUMORS IN ELOQUENT AREAS LEVEL III Intraoperative mapping is recommended for patients with diffuse LGGs in eloquent locations compared to patients with non-eloquently located diffuse LGGs as a way of preserving function.
Collapse
Affiliation(s)
- Manish K Aghi
- Department of Neurosurgery, University of California, 505 Parnassus Avenue, Room M779, San Francisco, CA, 94143-0112, USA.
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew E Sloan
- Department of Neurosurgery, University Hospitals, Cleveland, OH, USA
| | - Timothy C Ryken
- Department of Neurosurgery, Kansas University Medical Center, Kansas City, KS, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Sridharan V, Urbanski LM, Bi WL, Thistle K, Miller MB, Ramkissoon S, Reardon DA, Dunn IF. Multicentric Low-Grade Gliomas. World Neurosurg 2015; 84:1045-50. [DOI: 10.1016/j.wneu.2015.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
28
|
Wang K, Wang Y, Fan X, Wang J, Li G, Ma J, Ma J, Jiang T, Dai J. Radiological features combined with IDH1 status for predicting the survival outcome of glioblastoma patients. Neuro Oncol 2015; 18:589-97. [PMID: 26409566 DOI: 10.1093/neuonc/nov239] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/24/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Radiological characteristics may reflect the biological features of brain tumors and may be associated with genetic alterations that occur in tumorigenesis. This study aimed to investigate the relationship between radiological features and IDH1 status as well as their predictive value for survival of glioblastoma patients. METHODS The clinical information and MR images of 280 patients with histologically confirmed glioblastoma were retrospectively reviewed. The radiological characteristics of tumors were examined on MR images, and the IDH1 status was determined using DNA sequencing for all cases. The Kaplan-Meier method and Cox regression model were used to identify prognostic factors for progression-free and overall survival. RESULTS The IDH1 mutation was associated with longer progression-free survival (P = .022; hazard ratio, 0.602) and overall survival (P = .018; hazard ratio, 0.554). In patients with the IDH1 mutation, tumor contrast enhancement and peritumoral edema indicated worse progression-free survival (P = .015 and P = .024, respectively) and worse overall survival (P = .024 and P = .032, respectively). For tumors with contrast enhancement, multifocal contrast enhancement of the tumor lesion was associated with poor progression-free survival (P = .002) and poor overall survival (P = .010) in patients with wild-type IDH1 tumors. CONCLUSIONS Combining the radiological features and IDH1 status of a tumor allows more accurate prediction of survival outcomes in glioblastoma patients. The complementary roles of genetic changes and radiological features of tumors should be considered in future studies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| | - Yinyan Wang
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| | - Xing Fan
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| | - Jiangfei Wang
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| | - Guilin Li
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| | - Jieling Ma
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| | - Jun Ma
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| | - Tao Jiang
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| | - Jianping Dai
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (K.W., J.M., J.M., J.D.); Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (Y.W., X.F., J.W., T.J.); Department of Pathology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China (G.L.); Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (Y.W., X.F., T.J., J.D.); Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China (T.J.)
| |
Collapse
|
29
|
Nitta M, Muragaki Y, Maruyama T, Ikuta S, Komori T, Maebayashi K, Iseki H, Tamura M, Saito T, Okamoto S, Chernov M, Hayashi M, Okada Y. Proposed therapeutic strategy for adult low-grade glioma based on aggressive tumor resection. Neurosurg Focus 2015; 38:E7. [PMID: 25599276 DOI: 10.3171/2014.10.focus14651] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT There is no standard therapeutic strategy for low-grade glioma (LGG). The authors hypothesized that adjuvant therapy might not be necessary for LGG cases in which total radiological resection was achieved. Accordingly, they established a treatment strategy based on the extent of resection (EOR) and the MIB-1 index: patients with a high EOR and low MIB-1 index were observed without postoperative treatment, whereas those with a low EOR and/or high MIB-1 index received radiotherapy (RT) and/or chemotherapy. In the present retrospective study, the authors reviewed clinical data on patients with primarily diagnosed LGGs who had been treated according to the above-mentioned strategy, and they validated the treatment policy. Given their results, they will establish a new treatment strategy for LGGs stratified by EOR, histological subtype, and molecular status. METHODS One hundred fifty-three patients with diagnosed LGG who had undergone resection or biopsy at Tokyo Women's Medical University between January 2000 and August 2010 were analyzed. The patients consisted of 84 men and 69 women, all with ages ≥ 15 years. A total of 146 patients underwent surgical removal of the tumor, and 7 patients underwent biopsy. RESULTS Postoperative RT and nitrosourea-based chemotherapy were administered in 48 and 35 patients, respectively. Extent of resection was significantly associated with both overall survival (OS; p = 0.0096) and progression-free survival (PFS; p = 0.0007) in patients with diffuse astrocytoma but not in those with oligodendroglial subtypes. Chemotherapy significantly prolonged PFS, especially in patients with oligodendroglial subtypes (p = 0.0009). Patients with a mutant IDH1 gene had significantly longer OS (p = 0.034). Multivariate analysis did not identify MIB-1 index or RT as prognostic factors, but it did identify chemotherapy as a prognostic factor for PFS and EOR as a prognostic factor for OS and PFS. CONCLUSIONS The findings demonstrated that EOR was significantly correlated with patient survival; thus, one should aim for maximum tumor resection. In addition, patients with a higher EOR can be safely observed without adjuvant therapy. For patients with partial resection, postoperative chemotherapy should be administered for those with oligodendroglial subtypes, and repeat resection should be considered for those with astrocytic tumors. More aggressive treatment with RT and chemotherapy may be required for patients with a poor prognosis, such as those with diffuse astrocytoma, 1p/19q nondeleted tumors, or IDH1 wild-type oligodendroglial tumors with partial resection.
Collapse
|
30
|
Wang YY, Wang K, Li SW, Wang JF, Ma J, Jiang T, Dai JP. Patterns of Tumor Contrast Enhancement Predict the Prognosis of Anaplastic Gliomas with IDH1 Mutation. AJNR Am J Neuroradiol 2015; 36:2023-9. [PMID: 26316565 DOI: 10.3174/ajnr.a4407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/21/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE It is proposed that isocitrate dehydrogenase 1 (IDH1) mutation predicts the outcome in patients with high-grade glioma. In addition, contrast enhancement on preoperative MR imaging reflects tumor biologic features. Patients with anaplastic glioma with the IDH1 mutation were evaluated by using MR imaging to determine whether tumor enhancement is a prognostic factor and can be used to predict survival. MATERIALS AND METHODS A cohort of 216 patients with histologically confirmed anaplastic glioma was reviewed retrospectively. Tumor contrast-enhancement patterns were classified on the basis of preoperative T1 contrast MR images. Tumor IDH1 status was examined by using RNA sequencing. We used univariate analysis and the multivariate Cox model to evaluate the prognostic value of the IDH1 mutation and tumor contrast-enhancement pattern for progression-free survival and overall survival. RESULTS In all 216 patients, IDH1 mutation was associated with longer progression-free survival (P = .004, hazard ratio = 0.439) and overall survival (P = .002, hazard ratio = 0.406). For patients with IDH1 mutant anaplastic glioma, the absence of contrast enhancement was associated with longer progression-free survival (P = .038, hazard ratio = 0.473) and overall survival (P = .043, hazard ratio = 0.436). Furthermore, we were able to stratify the progression-free survival and overall survival of patients with IDH1 mutation by using the tumor contrast-enhancement patterns (P = .022 and 0.029, respectively; log-rank). CONCLUSIONS Tumor enhancement on postcontrast MR imaging is a valuable prognostic factor for patients with anaplastic glioma and IDH1 mutation. Furthermore, the contrast-enhancement patterns could potentially be used to stratify the survival outcome of such patients.
Collapse
Affiliation(s)
- Y Y Wang
- From the Departments of Neurosurgery (Y.Y.W., J.F.W., T.J.) Beijing Neurosurgical Institute (Y.Y.W., T.J., J.P.D.), Capital Medical University, Beijing, China
| | - K Wang
- Neuroradiology (K.W., S.W.L., J.M., J.P.D.), Beijing Tian Tan Hospital
| | - S W Li
- Neuroradiology (K.W., S.W.L., J.M., J.P.D.), Beijing Tian Tan Hospital
| | - J F Wang
- From the Departments of Neurosurgery (Y.Y.W., J.F.W., T.J.)
| | - J Ma
- Neuroradiology (K.W., S.W.L., J.M., J.P.D.), Beijing Tian Tan Hospital
| | - T Jiang
- From the Departments of Neurosurgery (Y.Y.W., J.F.W., T.J.) Beijing Neurosurgical Institute (Y.Y.W., T.J., J.P.D.), Capital Medical University, Beijing, China Center for Brain Tumor (T.J.), Beijing Institute for Brain Disorders, Beijing, China.
| | - J P Dai
- Neuroradiology (K.W., S.W.L., J.M., J.P.D.), Beijing Tian Tan Hospital Beijing Neurosurgical Institute (Y.Y.W., T.J., J.P.D.), Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Waqar M, Hanif S, Brodbelt AR, Rathi N, Das K, Zakaria R, Walker C, Jenkinson MD. Prognostic Factors in Lobar World Health Organization Grade II Astrocytomas. World Neurosurg 2015; 84:154-62. [PMID: 25779854 DOI: 10.1016/j.wneu.2015.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND World Health Organization grade II astrocytomas (AII) are the commonest low-grade glioma subset, but their prognostic factors are subject to debate. This institutional study aimed to identify prognostic factors in lobar AII. METHODS Retrospective review of newly diagnosed, lobar AII between 2006 and 2012. Patient demographics, imaging, and treatment data were obtained. Isocitrate dehydrogenase-1 (IDH1) status was assessed via immunohistochemistry. Multivariate analysis was performed with Cox regression to identify prognostic factors for overall survival (OS) and progression-free survival (PFS). RESULTS A total of 92 adult patients were identified with a median age of 42 years (range 20-73 years) and median follow-up period of 45 months (range, 7-98 months). Seizures were the commonest mode of presentation (75%). IDH1 immunopositivity was seen in 46 of 83 patients (55%). Radiology diagnosis agreed with histology in 76% of cases, and 28% of tumors had documented evidence of some degree of contrast enhancement. Surgical management was either resection (51%) or biopsy (49%) and postoperative radiotherapy was used in patients with unfavorable prognostic features. The median OS and PFS were 85 months (range 2-98 months) and 36 months (95% confidence interval [95% CI] 27-45 months), respectively. Surgical resection (P < 0.001; hazard ratio [HR] 5.072; 95% CI 2.050-12.550), absence of contrast enhancement (P = 0.006; HR 3.180; 95% CI 1.403-7.206), and IDH1 immunopositivity (P = 0.006; HR 3.310; 95% CI 1.416-7.738) were associated with improved OS. Good performance status (P = 0.005; HR 5.965; 95% CI 1.710-20.804) and absence of contrast enhancement (P < 0.001; HR 3.446; 95% CI 1.883-6.304) were associated with improved PFS. CONCLUSIONS Patients with World Health Organization grade II astrocytomas have better overall survival if their tumor is nonenhancing, amenable to surgical resection, and exhibits the IDH1 mutation. These factors should be used to guide patient management and inform prognosis.
Collapse
Affiliation(s)
- Mueez Waqar
- School of Medicine, University of Liverpool, Liverpool, United Kingdom; Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.
| | - Shahid Hanif
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Andrew R Brodbelt
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Nitika Rathi
- Department of Neuropathology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Kumar Das
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Carol Walker
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael D Jenkinson
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
32
|
Wang YY, Zhang T, Li SW, Qian TY, Fan X, Peng XX, Ma J, Wang L, Jiang T. Mapping p53 mutations in low-grade glioma: a voxel-based neuroimaging analysis. AJNR Am J Neuroradiol 2014; 36:70-6. [PMID: 25104286 DOI: 10.3174/ajnr.a4065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Brain tumor location has proved to be a prognostic factor that may be associated with features of neoplastic origin. Mutation of p53 is an atypical genetic change that occurs during tumorigenesis. Thus, a potential correlation may exist between tumor location and p53 status. The purpose of the current study was to identify anatomic characteristics of mutant p53 expression by using quantitative neuroimaging analyses. MATERIALS AND METHODS Preoperative MR images from 182 patients with histologically confirmed low-grade gliomas were retrospectively analyzed. All tumors were manually marked and registered to the standard space. Using a voxel-based lesion-symptom mapping analysis, we located brain regions associated with a high occurrence of p53 mutation and corrected them by using a permutation test. The acquired clusters were further included as a factor in survival analyses. RESULTS Statistical analysis demonstrated that the left medial temporal lobe and right anterior temporal lobe were specifically associated with high expression of mutant p53. Kaplan-Meier curves showed that tumors located in these regions were associated with significantly worse progression-free survival compared with tumors occurring elsewhere. CONCLUSIONS Our voxel-level imaging analysis provides new evidence that genetic changes during cancer may have anatomic specificity. Additionally, the current study suggests that tumor location identified on structural MR images could potentially be used for customized presurgical outcome prediction.
Collapse
Affiliation(s)
- Y Y Wang
- From the Beijing Neurosurgical Institute (Y.Y.W., T.J.) Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - T Zhang
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - S W Li
- Neuroradiology (S.W.L., J.M.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - T Y Qian
- Siemens Healthcare (T.Y.Q.), MR Collaboration NE Asia, Beijing, China
| | - X Fan
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - X X Peng
- Department of Epidemiology and Biostatistics (X.X.P.), School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | - J Ma
- Neuroradiology (S.W.L., J.M.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - L Wang
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.) China National Clinical Research Center for Neurological Diseases (L.W.), Beijing, China
| | - T Jiang
- From the Beijing Neurosurgical Institute (Y.Y.W., T.J.) Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.) Beijing Institute for Brain Disorders (T.J.), Beijing, China.
| |
Collapse
|
33
|
Waqar M, Hanif S, Rathi N, Das K, Zakaria R, Brodbelt AR, Walker C, Jenkinson MD. Diagnostic challenges, management and outcomes of midline low-grade gliomas. J Neurooncol 2014; 120:389-98. [DOI: 10.1007/s11060-014-1563-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
|
34
|
Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ, Guo D, Ullrich NJ, Robison NJ, Chi SN, Beroukhim R, Kieran MW, Manley PE. Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer 2014; 61:1173-9. [PMID: 24482038 PMCID: PMC4657506 DOI: 10.1002/pbc.24958] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Children with pediatric low-grade gliomas (PLGG) are known to have excellent 10-year survival rates; however the outcomes of adult survivors of PLGG are unknown. We identified patients diagnosed with PLGG diagnosed between 1973 and 2008 through the Surveillance Epidemiology and End Results (SEER) database to examine outcomes of adult survivors of PLGG. PROCEDURE Four thousand and forty patients with either WHO grade I or II PLGG were identified and outcome data retrieved. Two analyses were performed to assess survival and risk of death from tumor. Competing risks analysis was conducted and cumulative incidence curves of death due to disease were generated. Cox proportional hazards regression was performed, with adjustment for non-disease death. Kaplan-Meier curves for overall cancer specific survival (OS) were also generated. RESULTS The 20-year OS was 87% ± 0.8% and the 20-year cumulative incidence of death due to glioma was 12% ± 0.8%. The incidence of death after transition to adulthood (age greater than 22 years) was slightly lower, with 20-year cumulative incidence of disease death of 7% ± 1.8%. Year of diagnosis, age of diagnosis, histology, WHO grade, primary site, radiation, and degree of initial resection were prognostic in univariate analysis, while the administration of radiation was the greatest risk of death in multivariate analysis of OS (hazard ratio = 3.9). CONCLUSIONS PLGGs are associated with an excellent long-term survival, with a low likelihood of PLGG related death in adult survivors. Treatment strategies for pediatric tumors should therefore aim for disease control during childhood and adolescence with an emphasis on minimizing long-term treatment induced toxicities.
Collapse
Affiliation(s)
- Pratiti Bandopadhayay
- Division of Pediatric Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's HospitalBoston, Massachusetts,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, Massachusetts
| | - Guillaume Bergthold
- Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, Massachusetts
| | - Wendy B London
- Department of Medicine, Boston Children's HospitalBoston, Massachusetts
| | - Liliana C Goumnerova
- Division of Pediatric Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's HospitalBoston, Massachusetts,Department of Pediatric Neurosurgery, Boston Children's HospitalBoston, Massachusetts
| | - Andres Morales La Madrid
- Division of Pediatric Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's HospitalBoston, Massachusetts
| | - Karen J Marcus
- Department of Radiation Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute and Brigham and Women's HospitalBoston, Massachusetts
| | - Dongjing Guo
- Department of Medicine, Boston Children's HospitalBoston, Massachusetts
| | - Nicole J Ullrich
- Division of Pediatric Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's HospitalBoston, Massachusetts,Department of Neurology, Boston Children's HospitalBoston, Massachusetts
| | - Nathan J Robison
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, University of Southern California Keck School of MedicineLos Angeles, California
| | - Susan N Chi
- Division of Pediatric Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's HospitalBoston, Massachusetts
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, Massachusetts,Department of Medical Oncology, Dana-Farber Cancer InstituteBoston, Massachusetts
| | - Mark W Kieran
- Division of Pediatric Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's HospitalBoston, Massachusetts
| | - Peter E Manley
- Division of Pediatric Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's HospitalBoston, Massachusetts,*Correspondence to: Peter Manley, Pediatric Neuro-Oncology Program, D3148, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215., E-mail:
| |
Collapse
|
35
|
Abstract
Oligodendroglial tumors are relatively rare, comprising approximately 5% of all glial neoplasms. Oligodendroglial tumor patients have a better prognosis than those with astrocytic neoplasms, and patients with tumors that contain 1p/19q co-deletions or IDH-1 mutations appear to be particularly sensitive to treatment. In the past decade, scientists have made significant progress in the unraveling the molecular events that relate to the pathogenesis of these neoplasms. There is considerable excitement resulting from the recent reports from two large phase III randomized trials (European Organization for Research and Treatment of Cancer [EORTC] 26951 and Radiation Therapy Oncology Group [RTOG] 9402), which disclosed that patients with newly diagnosed 1p/19q co-deleted anaplastic oligodendroglial tumors have a 7+year increase in median overall survival following chemoradiation, as compared to radiation alone. This has stimulated a renewed interest in the development of new therapeutic strategies for treatment and potential cure of oligodendroglial tumors, based on an improved scientific understanding of the molecular events involved in the pathogenesis of these neoplasms. The goal of this document is to summarize the key translational developments and recent clinical therapeutic trial data, with a correlative perspective on current and future directions.
Collapse
Affiliation(s)
- Kurt A Jaeckle
- Departments of Neurology and Oncology, Mayo Clinic Florida, Jacksonville, FL.
| |
Collapse
|
36
|
Abstract
Low-grade gliomas (LGGs) are a diverse group of primary brain tumors that often arise in young, otherwise healthy patients and generally have an indolent course with longer-term survival in comparison with high-grade gliomas. Treatment options include observation, surgery, radiation, chemotherapy, or a combined approach, and management is individualized based on tumor location, histology, molecular profile, and patient characteristics. Moreover, in this type of brain tumor with a relatively good prognosis and prolonged survival, the potential benefits of treatment must be carefully weighed against potential treatment-related risks. We review in this article current management strategies for LGG, including surgery, radiotherapy, and chemotherapy. In addition, the importance of profiling the genetic and molecular properties of LGGs in the development of targeted anticancer therapies is also reviewed. Finally, given the prevalence of these tumors in otherwise healthy young patients, the impact of treatment on neurocognitive function and quality of life is also evaluated.
Collapse
Affiliation(s)
- Deborah A Forst
- Departments of Neurology, Neurosurgery, and Radiation Oncology, and Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
37
|
Management of low-grade gliomas: a review of patient-perceived quality of life and neurocognitive outcome. World Neurosurg 2014; 82:e299-309. [PMID: 24560709 DOI: 10.1016/j.wneu.2014.02.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 11/08/2013] [Accepted: 02/18/2014] [Indexed: 01/23/2023]
Abstract
Low-grade glioma (LGG) comprises nearly 20% of all central nervous system glial tumors, with approximately 2000-3000 patients diagnosed annually in the United States. Because of their infiltrative ability and aggressive nature, the average 10-year survival is 30% when <90% of the tumor is resected. Since the 1970s, prognosis for LGGs has improved significantly. This improvement is primarily attributable to earlier diagnoses via magnetic resonance imaging scanning, increased awareness of the more favorable oligo component, technical advances in intraoperative neurosurgery, and stratification for young age. Using a number of prognostic factors, LGGs have been classified into low-risk and high-risk subgroups. Optimal therapy for patients with low-risk, supratentorial grade II glioma remains a highly controversial issue in the neuro-oncology community. The concerns regarding the toxicity of therapy often outweigh the benefits of delaying tumor progression. The recommendation for observation is made without full prospective understanding of the impact of radiologic tumor progression on the quality of life (QOL), neurocognitive function (NCF), seizure control, and functional status of these patients. We present a review of the current knowledge of the management of LGG with emphasis upon patient-reported outcomes of QOL, NCF, and seizure control. We also discuss current clinical trials with proposals to evaluate QOL, NCF, and seizure control in patients undergoing observation alone after newly diagnosed low-risk LGG or treatment options for those patients in the high-risk group.
Collapse
|
38
|
Youland RS, Schomas DA, Brown PD, Nwachukwu C, Buckner JC, Giannini C, Parney IF, Laack NN. Changes in presentation, treatment, and outcomes of adult low-grade gliomas over the past fifty years. Neuro Oncol 2013; 15:1102-10. [PMID: 23814262 DOI: 10.1093/neuonc/not080] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND To identify changes in patient presentation, treatment, and outcomes of low-grade gliomas (LGGs) over the past 50 years. METHODS Records of 852 adults who received a diagnosis at Mayo Clinic from 1960 through 2011 with World Health Organization grade II LGGs were reviewed and grouped by those who received a diagnosis before (group I: 1960-1989) and after (group II: 1990-2011) the routine use of postoperative MRI. RESULTS Median follow-up was 23.3 and 8.7 years for groups I and II, respectively. Patients in group I more often presented with seizures, headaches, sensory/motor impairment, and astrocytoma histology. Over time, more gross total resections (GTRs) were achieved, fewer patients received postoperative radiotherapy (PORT), and more received chemotherapy. Median progression-free survival (PFS) and overall survival (OS) were 4.4 and 8.0 years, respectively. Although PFS was similar, 10-year OS was better in group II (47%) than in group I (33%; P < .0001). Improved PFS in multivariate analysis was associated with group I patients, nonastrocytoma histology, small tumor size, successful GTR, or radical subtotal resection (rSTR), PORT, and postoperative chemotherapy. Factors associated with improved OS in multivariate analysis were younger age, nonastrocytoma histology, small tumor size, and GTR/rSTR. CONCLUSIONS OS for LGG has improved over the past 50 years, despite similar rates of progression. In the modern cohort, more patients are receiving a diagnosis of oligodendroglioma and are undergoing extensive resections, both of which are associated with improvements in OS. Because of risk factor stratification by clinicians, the use of PORT has decreased and is primarily being used to treat high-risk tumors in modern patients.
Collapse
|