1
|
Baiyegunhi OO, Mann J, Khaba T, Nkosi T, Mbatha A, Ogunshola F, Chasara C, Ismail N, Ngubane T, Jajbhay I, Pansegrouw J, Dong KL, Walker BD, Ndung'u T, Ndhlovu ZM. CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection. Nat Commun 2022; 13:4041. [PMID: 35831418 PMCID: PMC9279299 DOI: 10.1038/s41467-022-31692-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.
Collapse
Affiliation(s)
- Omolara O Baiyegunhi
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Trevor Khaba
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | | | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Bruce D Walker
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Institute for Medical Sciences and Engineering and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Durban, South Africa.
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Vignoles M, Andrade V, Noguera M, Brander C, Mavian C, Salemi M, Paredes R, Sharkey M, Stevenson M. Persistent HIV-1 transcription in CD4 + T cells from ART-suppressed individuals can originate from biologically competent proviruses. J Virus Erad 2021; 7:100053. [PMID: 34621530 PMCID: PMC8479831 DOI: 10.1016/j.jve.2021.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
HIV-1 is able to persist in the face of potent antiretroviral therapy (ART). A number of strategies are being explored to allow ART-free viral remission or viral eradication. In order to gauge the progress of these strategies, assays with which to measure viral reservoir size and activity are needed. In a large percentage of aviremic individuals on suppressive ART, viral transcripts can be detected in peripheral blood CD4+ T cells. While this cell-associated RNA has been considered as a marker of viral reservoir activity, it is unclear whether cell-associated viral transcripts in aviremic individuals originate from biologically competent proviruses as opposed to being a product of abortive transcription from defective proviruses. We assessed whether cell-associated viral RNA in peripheral blood CD4+ T cells from aviremic individuals on ART originated from biologically competent proviruses. We demonstrate that cell-associated viral RNA transcripts were highly related to viral sequences obtained by ex vivo outgrowth. This relationship was also observed when viral transcription in the outgrowth cultures was limited to donor CD4+ T cells. Our study indicates that cell-associated viral RNA warrants further consideration as a viral reservoir surrogate in individuals on suppressive ART.
Collapse
Affiliation(s)
- M. Vignoles
- Department of Medicine, University of Miami Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - V. Andrade
- Department of Medicine, University of Miami Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - M. Noguera
- Institut de Recerca de La SIDA - IrsiCaixa Hospital Universitari Germans Trias i Pujol, Crta. De Canyet S/n, Planta 2a, 08916, Badalona, Catalonia, Spain
| | - C. Brander
- Institut de Recerca de La SIDA - IrsiCaixa Hospital Universitari Germans Trias i Pujol, Crta. De Canyet S/n, Planta 2a, 08916, Badalona, Catalonia, Spain
| | - C. Mavian
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - M. Salemi
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - R. Paredes
- Institut de Recerca de La SIDA - IrsiCaixa Hospital Universitari Germans Trias i Pujol, Crta. De Canyet S/n, Planta 2a, 08916, Badalona, Catalonia, Spain
| | - M. Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - M. Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
3
|
Olivetta E, Chiozzini C, Arenaccio C, Manfredi F, Ferrantelli F, Federico M. Extracellular vesicle-mediated intercellular communication in HIV-1 infection and its role in the reservoir maintenance. Cytokine Growth Factor Rev 2019; 51:40-48. [PMID: 31926807 DOI: 10.1016/j.cytogfr.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
HIV-1 infection is efficiently controlled by combination anti-retroviral therapy (cART). However, despite preventing disease progression, cART does not eradicate virus infection which persists in a latent form for an individual's lifetime. The latent reservoir comprises memory CD4+ T lymphocytes, macrophages, and dendritic cells; however, for the most part, the reservoir is generated by virus entry into activated CD4+ T lymphocytes committed to return to a resting state, even though resting CD4+ T lymphocytes can be latently infected as well. The HIV-1 reservoir is not recognized by the immune system, is quite stable, and has the potential to re-seed systemic viremia upon cART interruption. Viral rebound can occur even after a long period of cART interruption. This event is most likely a consequence of the extended half-life of the HIV-1 reservoir, the maintenance of which is not clearly understood. Several recent studies have identified extracellular vesicles (EVs) as a driving force contributing to HIV-1 reservoir preservation. In this review, we discuss recent findings in the field of EV/HIV-1 interplay, and then propose a mechanism through which EVs may contribute to HIV-1 persistence despite cART. Understanding the basis of the HIV-1 reservoir maintenance continues to be a matter of great relevance in view of the limitations of current strategies aimed at HIV-1 eradication.
Collapse
Affiliation(s)
- Eleonora Olivetta
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Claudia Arenaccio
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesco Manfredi
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
4
|
Nunes JM, Furtado MN, de Morais Nunes ER, Sucupira MCA, Diaz RS, Janini LMR. Modulation of epigenetic factors during the early stages of HIV-1 infection in CD4 + T cells in vitro. Virology 2018; 523:41-51. [PMID: 30077875 DOI: 10.1016/j.virol.2018.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/15/2022]
Abstract
Several studies have related epigenetic mechanisms to HIV-1 latency. However, the epigenetic modifications of the host cell genome involved in the early stages of HIV-1 infection remain unclear. This study aimed to investigate epigenetic factors that are regulated at the beginning of HIV-1 infection in activated and resting CD4+ T cells. We analyzed the gene expression of 84 epigenetic targets, global DNA methylation, and HIV-1 replication kinetics for 36 h after infecting CD4+ T cells obtained from the blood of twelve healthy donors. The epigenetic targets aurora kinase B (AURKB), aurora kinase C (AURKC) and DNA methyltransferase 3B (DNMT3B), and the global DNA methylation profile are regulated during HIV-1 replication in CD4+ T cells, and this regulation can be influenced by the activation state of the cell at the time of infection. Approaches that affect the expression of these epigenetic targets could help current strategies to suppress HIV-1 replication.
Collapse
Affiliation(s)
- Jorge Meneses Nunes
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Maria Nadiege Furtado
- Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Edsel Renata de Morais Nunes
- Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Maria Cecilia Araripe Sucupira
- Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Ricardo Sobhie Diaz
- Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| | - Luiz Mário Ramos Janini
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil; Laboratory of Retrovirology, Discipline of Infectious Diseases, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
5
|
Cummins NW, Rizza S, Litzow MR, Hua S, Lee GQ, Einkauf K, Chun TW, Rhame F, Baker JV, Busch MP, Chomont N, Dean PG, Fromentin R, Haase AT, Hampton D, Keating SM, Lada SM, Lee TH, Natesampillai S, Richman DD, Schacker TW, Wietgrefe S, Yu XG, Yao JD, Zeuli J, Lichterfeld M, Badley AD. Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study. PLoS Med 2017; 14:e1002461. [PMID: 29182633 PMCID: PMC5705162 DOI: 10.1371/journal.pmed.1002461] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Notwithstanding 1 documented case of HIV-1 cure following allogeneic stem cell transplantation (allo-SCT), several subsequent cases of allo-SCT in HIV-1 positive individuals have failed to cure HIV-1 infection. The aim of our study was to describe changes in the HIV reservoir in a single chronically HIV-infected patient on suppressive antiretroviral therapy who underwent allo-SCT for treatment of acute lymphoblastic leukemia. METHODS AND FINDINGS We prospectively collected peripheral blood mononuclear cells (PBMCs) by leukapheresis from a 55-year-old man with chronic HIV infection before and after allo-SCT to measure the size of the HIV-1 reservoir and characterize viral phylogeny and phenotypic changes in immune cells. At day 784 post-transplant, when HIV-1 was undetectable by multiple measures-including PCR measurements of both total and integrated HIV-1 DNA, replication-competent virus measurement by large cell input quantitative viral outgrowth assay, and in situ hybridization of colon tissue-the patient consented to an analytic treatment interruption (ATI) with frequent clinical monitoring. He remained aviremic off antiretroviral therapy until ATI day 288, when a low-level virus rebound of 60 HIV-1 copies/ml occurred, which increased to 1,640 HIV-1 copies/ml 5 days later, prompting reinitiation of ART. Rebounding plasma HIV-1 sequences were phylogenetically distinct from proviral HIV-1 DNA detected in circulating PBMCs before transplantation. The main limitations of this study are the insensitivity of reservoir measurements, and the fact that it describes a single case. CONCLUSIONS allo-SCT led to a significant reduction in the size of the HIV-1 reservoir and a >9-month-long ART-free remission from HIV-1 replication. Phylogenetic analyses suggest that the origin of rebound virus was distinct from the viruses identified pre-transplant in the PBMCs.
Collapse
Affiliation(s)
- Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stacey Rizza
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark R. Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephane Hua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Guinevere Q. Lee
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kevin Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tae-Wook Chun
- HIV Immunovirology Unit, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frank Rhame
- Abbott Northwestern Hospital, Allina Health, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason V. Baker
- Division of Infectious Diseases, Hennepin County Medical Center, Minneapolis, Minnesota, United States of America
| | - Michael P. Busch
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM, University of Montreal Hospital Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
| | - Patrick G. Dean
- Division of Transplantation Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rémi Fromentin
- Centre de Recherche du CHUM, University of Montreal Hospital Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
| | - Ashley T. Haase
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dylan Hampton
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Sheila M. Keating
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Steven M. Lada
- University of California, San Diego, San Diego, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Sekar Natesampillai
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Douglas D. Richman
- University of California, San Diego, San Diego, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen Wietgrefe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Joseph D. Yao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John Zeuli
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
6
|
HIV-Specific Granzyme B-Secreting but Not Gamma Interferon-Secreting T Cells Are Associated with Reduced Viral Reservoirs in Early HIV Infection. J Virol 2017; 91:JVI.02233-16. [PMID: 28179527 DOI: 10.1128/jvi.02233-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
A major barrier to a human immunodeficiency virus type 1 (HIV-1) infection cure is the establishment of a viral reservoir in spite of combined antiretroviral therapy (cART). It is unclear how HIV-specific cytotoxic T lymphocytes (CTLs) influence the size of the reservoir in early HIV infection. Twenty-eight subjects with early HIV infection were recruited to receive cART and followed for 48 weeks. HIV reservoirs in peripheral CD4+ T cells measured by cell-associated proviral DNA and viral outgrowth cultures were determined at baseline and after 48 weeks of cART. At baseline, granzyme B and gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays were performed with peptides spanning the HIV proteome. All subjects had detectable HIV-specific granzyme B and IFN-γ responses at baseline. The quantity and specificity of granzyme B responses did not correlate with IFN-γ responses. For granzyme B, Tat/Rev was the most dominant whereas for IFN-γ, Gag predominated. HIV-specific granzyme B T cell responses negatively correlated with HIV proviral loads at baseline and at 48 weeks and with replication-competent viral infectious units per million (IUPM) CD4+ T cells at baseline but not significantly at 48 weeks. Tat/Rev-, Env-, Gag-, and Vif-specific granzyme B responses correlated most strongly with reservoir control. There was no correlation of HIV-specific IFN-γ responses with reservoir size at baseline or at 48 weeks. The majority of granzyme B responses were contributed by CD8+ T cells. Thus, our findings suggest that the induction of potent granzyme B-producing CTLs to Tat, Rev, Env, Gag, and Vif during early infection may be able to prevent the establishment of a large viral reservoir, thereby facilitating a reduced HIV burden.IMPORTANCE A major barrier to the cure of human immunodeficiency virus type 1 (HIV-1) infection is the establishment of a viral reservoir that must be significantly reduced or eradicated entirely to enable a cure. Combined antiretroviral therapy (cART) alone is unable to clear this viral reservoir. It has been shown that CD8+ cytotoxic T lymphocytes (CTLs) are important in controlling early HIV infection by reducing plasma viremia. However, it is not known if these HIV-specific CTLs influence the establishment of the viral reservoir in early HIV infection. We show that HIV-specific granzyme B responses targeting HIV Tat/Rev, Env, Gag, and Vif, but not IFN-γ responses, are associated with reduced virus reservoirs at baseline and at 48 weeks of cART. These findings shed light on the nature of the effector CTL response that might limit reservoir size with implications for cure research and HIV vaccines.
Collapse
|
7
|
Dampier W, Nonnemacher MR, Mell J, Earl J, Ehrlich GD, Pirrone V, Aiamkitsumrit B, Zhong W, Kercher K, Passic S, Williams JW, Jacobson JM, Wigdahl B. HIV-1 Genetic Variation Resulting in the Development of New Quasispecies Continues to Be Encountered in the Peripheral Blood of Well-Suppressed Patients. PLoS One 2016; 11:e0155382. [PMID: 27195985 PMCID: PMC4873138 DOI: 10.1371/journal.pone.0155382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
As a result of antiretroviral therapeutic strategies, human immunodeficiency virus type 1 (HIV-1) infection has become a long-term clinically manageable chronic disease for many infected individuals. However, despite this progress in therapeutic control, including undetectable viral loads and CD4+ T-cell counts in the normal range, viral mutations continue to accumulate in the peripheral blood compartment over time, indicating either low level reactivation and/or replication. Using patients from the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort, whom have been sampled longitudinally for more than 7 years, genetic change was modeled against to the dominant integrated proviral quasispecies with respect to selection pressures such as therapeutic interventions, AIDS defining illnesses, and other factors. Phylogenetic methods based on the sequences of the LTR and tat exon 1 of the HIV-1 proviral DNA quasispecies were used to obtain an estimate of an average mutation rate of 5.3 nucleotides (nt)/kilobasepair (kb)/year (yr) prior to initiation of antiretroviral therapy (ART). Following ART the baseline mutation rate was reduced to an average of 1.02 nt/kb/yr. The post-ART baseline rate of genetic change, however, appears to be unique for each patient. These studies represent our initial steps in quantifying rates of genetic change among HIV-1 quasispecies using longitudinally sampled sequences from patients at different stages of disease both before and after initiation of combination ART. Notably, while long-term ART reduced the estimated mutation rates in the vast majority of patients studied, there was still measurable HIV-1 mutation even in patients with no detectable virus by standard quantitative assays. Determining the factors that affect HIV-1 mutation rates in the peripheral blood may lead to elucidation of the mechanisms associated with changes in HIV-1 disease severity.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jean W. Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey M. Jacobson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
8
|
Joshi P, Maidji E, Stoddart CA. Inhibition of Heat Shock Protein 90 Prevents HIV Rebound. J Biol Chem 2016; 291:10332-46. [PMID: 26957545 PMCID: PMC4858980 DOI: 10.1074/jbc.m116.717538] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/06/2016] [Indexed: 12/21/2022] Open
Abstract
HIV evades eradication because transcriptionally dormant proviral genomes persist in long-lived reservoirs of resting CD4(+) T cells and myeloid cells, which are the source of viral rebound after cessation of antiretroviral therapy. Dormant HIV genomes readily produce infectious virus upon cellular activation because host transcription factors activated specifically by cell stress and heat shock mediate full-length HIV transcription. The molecular chaperone heat shock protein 90 (Hsp90) is overexpressed during heat shock and activates inducible cellular transcription factors. Here we show that heat shock accelerates HIV transcription through induction of Hsp90 activity, which activates essential HIV-specific cellular transcription factors (NF-κB, NFAT, and STAT5), and that inhibition of Hsp90 greatly reduces gene expression mediated by these factors. More importantly, we show that Hsp90 controls virus transcription in vivo by specific Hsp90 inhibitors in clinical development, tanespimycin (17-(allylamino)-17-demethoxygeldanamycin) and AUY922, which durably prevented viral rebound in HIV-infected humanized NOD scid IL-2Rγ(-/-) bone marrow-liver-thymus mice up to 11 weeks after treatment cessation. Despite the absence of rebound viremia, we were able to recover infectious HIV from PBMC with heat shock. Replication-competent virus was detected in spleen cells from these nonviremic Hsp90 inhibitor-treated mice, indicating the presence of a tissue reservoir of persistent infection. Our novel findings provide in vivo evidence that inhibition of Hsp90 activity prevents HIV gene expression in replication-competent cellular reservoirs that would typically cause rebound in plasma viremia after antiretroviral therapy cessation. Alternating or supplementing Hsp90 inhibitors with current antiretroviral therapy regimens could conceivably suppress rebound viremia from persistent HIV reservoirs.
Collapse
Affiliation(s)
- Pheroze Joshi
- From the Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110
| | - Ekaterina Maidji
- From the Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110
| | - Cheryl A Stoddart
- From the Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110
| |
Collapse
|
9
|
A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells. J Virol 2016; 90:4441-4453. [PMID: 26889036 DOI: 10.1128/jvi.00222-16] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a "shock-and-kill" approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703 ex vivo exhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56(dim)CD16(+)NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4(+)and CD8(+)T cells. Furthermore, CD4(+)T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4(+)T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4(+)T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. IMPORTANCE We demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family are due to its novel "dumbbell-shape" structure made of covalently closed, natural DNA. In our study, we found that incubation of peripheral blood mononuclear cells with MGN1703 results in natural killer cell activation and increased natural killer cell function, which significantly inhibited the spread of HIV in a culture of autologous CD4(+)T cells. Furthermore, we discovered that MGN1703-mediated activation can enhance HIV-1 transcription in CD4(+)T cells, suggesting that this molecule may serve a dual purpose in HIV-1 eradication therapy: enhanced immune function and latency reversal. These findings provide a strong preclinical basis for the inclusion of MGN1703 in an HIV eradication clinical trial.
Collapse
|
10
|
Simonetti FR, Sobolewski MD, Fyne E, Shao W, Spindler J, Hattori J, Anderson EM, Watters SA, Hill S, Wu X, Wells D, Su L, Luke BT, Halvas EK, Besson G, Penrose KJ, Yang Z, Kwan RW, Van Waes C, Uldrick T, Citrin DE, Kovacs J, Polis MA, Rehm CA, Gorelick R, Piatak M, Keele BF, Kearney MF, Coffin JM, Hughes SH, Mellors JW, Maldarelli F. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci U S A 2016; 113:1883-8. [PMID: 26858442 PMCID: PMC4763755 DOI: 10.1073/pnas.1522675113] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reservoirs of infectious HIV-1 persist despite years of combination antiretroviral therapy and make curing HIV-1 infections a major challenge. Most of the proviral DNA resides in CD4(+)T cells. Some of these CD4(+)T cells are clonally expanded; most of the proviruses are defective. It is not known if any of the clonally expanded cells carry replication-competent proviruses. We report that a highly expanded CD4(+) T-cell clone contains an intact provirus. The highly expanded clone produced infectious virus that was detected as persistent plasma viremia during cART in an HIV-1-infected patient who had squamous cell cancer. Cells containing the intact provirus were widely distributed and significantly enriched in cancer metastases. These results show that clonally expanded CD4(+)T cells can be a reservoir of infectious HIV-1.
Collapse
Affiliation(s)
- Francesco R Simonetti
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy
| | | | - Elizabeth Fyne
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Junko Hattori
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Elizabeth M Anderson
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Sarah A Watters
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Shawn Hill
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - David Wells
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Li Su
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Brian T Luke
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Elias K Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Guillaume Besson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kerri J Penrose
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Zhiming Yang
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892
| | - Richard W Kwan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Carter Van Waes
- National Institute on Deafness and Communication Disorders Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, MD 20892; Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892
| | - Thomas Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD 20892
| | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892
| | - Joseph Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Michael A Polis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Catherine A Rehm
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Mary F Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - John W Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702;
| |
Collapse
|
11
|
Denton PW, Søgaard OS, Tolstrup M. Using animal models to overcome temporal, spatial and combinatorial challenges in HIV persistence research. J Transl Med 2016; 14:44. [PMID: 26861779 PMCID: PMC4746773 DOI: 10.1186/s12967-016-0807-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 12/03/2022] Open
Abstract
Research challenges associated with understanding HIV persistence during antiretroviral therapy can be categorized as temporal, spatial and combinatorial. Temporal research challenges relate to the timing of events during establishment and maintenance of HIV persistence. Spatial research challenges regard the anatomical locations and cell subsets that harbor persistent HIV. Combinatorial research challenges pertain to the order of administration, timing of administration and specific combinations of compounds to be administered during HIV eradication therapy. Overcoming these challenges will improve our understanding of HIV persistence and move the field closer to achieving eradication of persistent HIV. Given that humanized mice and non-human primate HIV models permit rigorous control of experimental conditions, these models have been used extensively as in vivo research platforms for directly addressing these research challenges. The aim of this manuscript is to provide a comprehensive review of these recent translational advances made in animal models of HIV persistence.
Collapse
Affiliation(s)
- Paul W Denton
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark. .,Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark.
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| |
Collapse
|
12
|
Maldarelli F. The role of HIV integration in viral persistence: no more whistling past the proviral graveyard. J Clin Invest 2016; 126:438-47. [PMID: 26829624 DOI: 10.1172/jci80564] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV.
Collapse
|
13
|
Maldarelli F. HIV-infected cells are frequently clonally expanded after prolonged antiretroviral therapy: implications for HIV persistence. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30930-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
De Ravin SS, Gray JT, Throm RE, Spindler J, Kearney M, Wu X, Coffin JM, Hughes SH, Malderelli F, Sorrentino BP, Malech HL. False-positive HIV PCR test following ex vivo lentiviral gene transfer treatment of X-linked severe combined immunodeficiency vector. Mol Ther 2014; 22:244-245. [PMID: 24487563 DOI: 10.1038/mt.2013.296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Suk See De Ravin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - John T Gray
- St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert E Throm
- St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jon Spindler
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Mary Kearney
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - John M Coffin
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA; Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Frank Malderelli
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Lau CY, Maldarelli F, Eckelman WC, Neumann RD. Rational development of radiopharmaceuticals for HIV-1. Nucl Med Biol 2014; 41:299-308. [PMID: 24607432 PMCID: PMC3954989 DOI: 10.1016/j.nucmedbio.2014.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/18/2013] [Accepted: 01/10/2014] [Indexed: 12/29/2022]
Abstract
The global battle against HIV-1 would benefit from a sensitive and specific radiopharmaceutical to localize HIV-infected cells. Ideally, this probe would be able to identify latently infected host cells containing replication competent HIV sequences. Clinical and research applications would include assessment of reservoirs, informing clinical management by facilitating assessment of burden of infection in different compartments, monitoring disease progression and monitoring response to therapy. A "rational" development approach could facilitate efficient identification of an appropriate targeted radiopharmaceutical. Rational development starts with understanding characteristics of the disease that can be effectively targeted and then engineering radiopharmaceuticals to hone in on an appropriate target, which in the case of HIV-1 (HIV) might be an HIV-specific product on or in the host cell, a differentially expressed gene product, an integrated DNA sequence specific enzymatic activity, part of the inflammatory response, or a combination of these. This is different from the current approach that starts with a radiopharmaceutical for a target associated with a disease, mostly from autopsy studies, without a strong rationale for the potential to impact patient care. At present, no targeted therapies are available for HIV latency, although a number of approaches are under study. Here we discuss requirements for a radiopharmaceutical useful in strategies targeting persistently infected cells. The radiopharmaceutical for HIV should be developed based on HIV biology, studied in an animal model and then in humans, and ultimately used in clinical and research settings.
Collapse
|
16
|
Souza TML, Temerozo JR, Giestal-de-Araujo E, Bou-Habib DC. The effects of neurotrophins and the neuropeptides VIP and PACAP on HIV-1 infection: histories with opposite ends. Neuroimmunomodulation 2014; 21:268-82. [PMID: 24603065 DOI: 10.1159/000357434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
The nerve growth factor (NGF) and other neurotrophins, and the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are largely present in human tissue and can exert modulatory activities on nervous, endocrine and immune system functions. NGF, VIP and PACAP receptors are expressed systemically in organisms, and thus these mediators exhibit pleiotropic natures. The human immunodeficiency virus type 1 (HIV-1), the causal agent of the acquired immunodeficiency syndrome (AIDS), infects immune cells, and its replication is modulated by a number of endogenous factors that interact with HIV-1-infected cells. NGF, VIP and PACAP can also affect HIV-1 virus particle production upon binding to their receptors on the membranes of infected cells, which triggers cell signaling pathways that modify the HIV-1 replicative cycle. These molecules exert opposite effects on HIV-1 replication, as NGF and other neurotrophins enhance and VIP and PACAP reduce viral production in HIV-1-infected human primary macrophages. The understanding of AIDS pathogenesis should consider the mechanisms by which the replication of HIV-1, a pathogen that causes chronic morbidity, is influenced by neurotrophins, VIP and PACAP, i.e. molecules that exert a broad spectrum of physiological activities on the neuroimmunoendocrine axis. In this review, we will present the main effects of these two groups of mediators on the HIV-1 replicative cycle, as well as the mechanisms that underlie their abilities to modulate HIV-1 production in infected immune cells, and discuss the possible repercussion of the cross talk between NGF and both neuropeptides on the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Thiago Moreno L Souza
- Laboratory of Respiratory Viruses, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|