1
|
Ge H, Zhang L, Zhang W, Yuan Q, Xiao X. Neutrophil-to-lymphocyte ratio predicts poor prognosis in patients with chronic kidney disease-related pulmonary hypertension: A retrospective study. Medicine (Baltimore) 2024; 103:e40161. [PMID: 39496051 PMCID: PMC11537574 DOI: 10.1097/md.0000000000040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024] Open
Abstract
Inflammation plays a crucial role in chronic kidney disease (CKD) and pulmonary hypertension (PH). Considering that the neutrophil-to-lymphocyte ratio (NLR) has recently emerged as a powerful predictor of adverse outcomes in many chronic diseases, we aimed to investigate the association between NLR and all-cause mortality in patients with CKD-related PH. A total of 176 hospitalized patients with predialysis CKD-related PH were recruited retrospectively from January 2012 to June 2020 by reviewing electronic medical records. The NLR and clinical characteristics of the patients were included in the current analysis. The Kaplan-Meier method and univariate and multivariate Cox regression analyses were performed to identify the association between NLR and the incidence of all-cause mortality. Baseline NLR values were associated with hemoglobin, estimated glomerular filtration rate and C-reactive protein. During a median follow-up period of 32.5 (11.3-53.0) months, 23 patients died. Regardless of whether the NLR acted as a continuous variable with a hazard ratio of 1.408 (95% confidence interval: 1.124-1.763) or a categorical variable (NLR ≤4.3 vs NLR >4.3) with a hazard ratio of 3.100 (95% confidence interval: 1.299-7.402), an elevated NLR was significantly associated with all-cause mortality in different models. A greater NLR at baseline was remarkably associated with a higher all-cause mortality in hospitalized patients with CKD-related PH.
Collapse
Affiliation(s)
- Huipeng Ge
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiwei Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Organ Fibrosis Key Laboratory of Hunan province, Central South University, Changsha, Hunan, China
- National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Organ Fibrosis Key Laboratory of Hunan province, Central South University, Changsha, Hunan, China
- National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Dai L, Chen Y, Wu J, He Z, Zhang Y, Zhang W, Xie Y, Zeng H, Zhong X. A novel complement C3 inhibitor CP40-KK protects against experimental pulmonary arterial hypertension via an inflammasome NLRP3 associated pathway. J Transl Med 2024; 22:164. [PMID: 38365806 PMCID: PMC10870435 DOI: 10.1186/s12967-023-04741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disease characterized by complement dependent and proinflammatory activation of macrophages. However, effective treatment for complement activation in PAH is lacking. We aimed to explore the effect and mechanism of CP40-KK (a newly identified analog of selective complement C3 inhibitor CP40) in the PAH model. METHODS We used western blotting, immunohistochemistry, and immunofluorescence staining of lung tissues from the monocrotaline (MCT)-induced rat PAH model to study macrophage infiltration, NLPR3 inflammasome activation, and proinflammatory cytokines (IL-1β and IL-18) release. Surface plasmon resonance (SPR), ELISA, and CH50 assays were used to test the affinity between CP40-KK and rat/human complement C3. CP40-KK group rats only received CP40-KK (2 mg/kg) by subcutaneous injection at day 15 to day 28 continuously. RESULTS C3a was significantly upregulated in the plasma of MCT-treated rats. SPR, ELISA, and CH50 assays revealed that CP40-KK displayed similar affinity binding to human and rat complement C3. Pharmacological inhibition of complement C3 cleavage (CP40-KK) could ameliorate MCT-induced NLRP3 inflammasome activity, pulmonary vascular remodeling, and right ventricular hypertrophy. Mechanistically, increased proliferation of pulmonary arterial smooth muscle cells is closely associated with macrophage infiltration, NLPR3 inflammasome activation, and proinflammatory cytokines (IL-1β and IL-18) release. Besides, C3a enhanced IL-1β activity in macrophages and promoted pulmonary arterial smooth muscle cell proliferation in vitro. CONCLUSION Our findings suggest that CP40-KK treatment was protective in the MCT-induced rat PAH model, which might serve as a therapeutic option for PAH.
Collapse
Affiliation(s)
- Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yu Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Jinhua Wu
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, Guangxi, China
| | - Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yueqi Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yang Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| | - Xiaodan Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Mathew R. Critical Role of Caveolin-1 Loss/Dysfunction in Pulmonary Hypertension. Med Sci (Basel) 2021; 9:medsci9040058. [PMID: 34698188 PMCID: PMC8544475 DOI: 10.3390/medsci9040058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare disease with a high morbidity and mortality rate. A number of systemic diseases and genetic mutations are known to lead to PH. The main features of PH are altered vascular relaxation responses and the activation of proliferative and anti-apoptotic pathways, resulting in pulmonary vascular remodeling, elevated pulmonary artery pressure, and right ventricular hypertrophy, ultimately leading to right heart failure and premature death. Important advances have been made in the field of pulmonary pathobiology, and several deregulated signaling pathways have been shown to be associated with PH. Clinical and experimental studies suggest that, irrespective of the underlying disease, endothelial cell disruption and/or dysfunction play a key role in the pathogenesis of PH. Endothelial caveolin-1, a cell membrane protein, interacts with and regulates several transcription factors and maintains homeostasis. Disruption of endothelial cells leads to the loss or dysfunction of endothelial caveolin-1, resulting in reciprocal activation of proliferative and inflammatory pathways, leading to cell proliferation, medial hypertrophy, and PH, which initiates PH and facilitates its progression. The disruption of endothelial cells, accompanied by the loss of endothelial caveolin-1, is accompanied by enhanced expression of caveolin-1 in smooth muscle cells (SMCs) that leads to pro-proliferative and pro-migratory responses, subsequently leading to neointima formation. The neointimal cells have low caveolin-1 and normal eNOS expression that may be responsible for promoting nitrosative and oxidative stress, furthering cell proliferation and metabolic alterations. These changes have been observed in human PH lungs and in experimental models of PH. In hypoxia-induced PH, there is no endothelial disruption, loss of endothelial caveolin-1, or enhanced expression of caveolin-1 in SMCs. Hypoxia induces alterations in membrane composition without caveolin-1 or any other membrane protein loss. However, caveolin-1 is dysfunctional, resulting in cell proliferation, medial hypertrophy, and PH. These alterations are reversible upon removal of hypoxia, provided there is no associated EC disruption. This review examined the role of caveolin-1 disruption and dysfunction in PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Section of Pediatric Cardiology, Departments of Pediatrics and Physiology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
4
|
Wu Y, Cai C, Yang L, Xiang Y, Zhao H, Zeng C. Inhibitory effects of formononetin on the monocrotaline‑induced pulmonary arterial hypertension in rats. Mol Med Rep 2020; 21:1192-1200. [PMID: 31922224 PMCID: PMC7003019 DOI: 10.3892/mmr.2020.10911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a fatal syndrome resulting from enhanced pulmonary arterial pressure and pulmonary vessel resistance. Perivascular inflammation and extracellular matrix deposition are considered to be the crucial pathophysiologic bases of PAH. Formononetin (FMN), a natural phytoestrogen isolated from red clover (Trifolium pratense), has a variety of proapoptotic, anti-inflammatory and anti-tumor activities. However, the therapeutic effectiveness of FMN for PAH remains unclear. In the present study, 60 mg/kg monocrotaline (MCT) was first used to induce PAH in rats, and then all rats were treated with different concentrations of FMN (10, 30 and 60 mg/kg/day). At the end of this study, the hemodynamics and pulmonary vascular morphology of rats were evaluated. Specifically, matrix metalloproteinase (MMP)2, transforming growth factor β1 (TGFβ1) and MMP9 were measured using western blot and immunohistochemical staining. Collagen type I, collagen type III, fibronectin, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin-1β, ERK and NF-κB were quantified using western blotting. The results demonstrated that FMN significantly alleviated the changes of hemodynamics and pulmonary vascular morphology, and decreased the MCT-induced upregulations of TGFβ1, MMP2 and MMP9 expression levels. Meanwhile, the expression levels of collagen type I, collagen type III and fibronectin in rat lungs decreased after FMN treatment. Furthermore, the phosphorylated ERK and NF-κB also decreased after FMN treatment. Taken together, the present study indicated that FMN serves a therapeutic role in the MCT-induced PAH in rats via suppressing pulmonary vascular remodeling, which may be partially related to ERK and NF-κB signals.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Changhong Cai
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Lebing Yang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Huan Zhao
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Chunlai Zeng
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
5
|
Hypoxia and Local Inflammation in Pulmonary Artery Structure and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:325-334. [PMID: 29047096 DOI: 10.1007/978-3-319-63245-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia is recognized as a contributor to pulmonary vascular diseases such as pulmonary hypertension. Hypoxia-induced inflammatory changes can enhance structural and functional changes in pulmonary artery (PA) in the context of PH. Accordingly, understanding how hypoxia and inflammation are linked in the context of pulmonary artery structure and function could be relevant towards development of novel therapies for PH. In this regard, factors such as thymic stromal lymphopoietin (TSLP), an inflammatory cytokine, and brain-derived neurotrophic factor (BDNF), a neurotrophin, have been found critical for nonvascular systems such as airway and asthma. While TSLP canonically affects the immune system, in nonvascular systems, noncanonical effects such as altered [Ca2+]i and cell proliferation have been noted: aspects also relevant to the PA, where there is currently little to no data. Similarly, better known in the nervous system, there is increasing evidence that BDNF is locally produced by structural cells of the airway and can contribute to asthma pathophysiology. In this chapter, we summarize the potential relevance of factors such as TSLP and BDNF to the PA and in the context of hypoxia influences towards development of PH. We focus on cell sources and targets such as PA endothelial cells (PAECs) and smooth muscle cells (PASMCs), and the effects of TSLP or BDNF on intracellular Ca2+ responses to vasoconstrictor agonist, cell proliferation, and potential signaling cascades involved.
Collapse
|
6
|
Wang Y, Hu F, Mu X, Wu F, Yang D, Zheng G, Sun X, Gong K, Zhang Z. Protective effects of drag-reducing polymers in a rat model of monocrotaline-induced pulmonary hypertension. Biorheology 2016; 53:13-22. [PMID: 26889655 DOI: 10.3233/bir-15062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Drag-reducing polymers (DRPs) are blood-soluble macromolecules which may increase blood flow and reduce vascular resistance. The purpose of the present study was to observe the effect of DRPs on monocrotaline-induced pulmonary hypertension (PH) in the rat model. METHODS A total of 64 male Wistar rats were randomly divided into four groups: Group I (pulmonary hypertension model + DRP treatment); Group II (pulmonary hypertension model + saline treatment); Group III (control + DRP treatment); Group IV (control + saline treatment). After five weeks, comparisons were made of the following indices: survival rate, body weight, blood pressure, right ventricular systolic pressure, right ventricular hypertrophy, wall thickness of pulmonary arteries, the internal diameter of small pulmonary arteries, plasma IL-1β and IL-6. RESULTS The survival rate after 5 weeks varied significantly across all groups (P=0.013), but the survival rates of Groups I and II were not statistically significantly different. Administration of DRP (intravenous injection twice weekly) attenuated the PH-induced increase in right ventricular systolic pressure and suppressed the increases in right ventricular (RV) weight and the ratio of right ventricular weight to left ventricle plus septum weight (RV/LV + S). DRP treatment also significantly decreased the wall thickness of pulmonary arteries, augmented the internal diameter of small pulmonary arteries, and suppressed increases in the plasma levels of IL-1β and IL-6. CONCLUSIONS DRP treatment with intravenous injection effectively inhibited the development of monocrotaline-induced pulmonary hypertension in the rat model. DRPs may have potential application for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Yali Wang
- Department of Respiratory Diseases, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Feng Hu
- Department of Cardiovascular Diseases, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoyan Mu
- Department of Respiratory Diseases, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Feng Wu
- Department of Respiratory Diseases, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dechun Yang
- Department of Respiratory Diseases, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Guixiang Zheng
- Department of Cardiovascular Diseases, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoning Sun
- Department of Cardiovascular Diseases, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Kaizheng Gong
- Department of Cardiovascular Diseases, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengang Zhang
- Department of Cardiovascular Diseases, The Second Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Wang H, Liu T, Cai YY, Luo L, Wang M, Yang M, Cai L. Pulmonary hypertension in polymyositis. Clin Rheumatol 2015; 34:2105-12. [PMID: 26468158 DOI: 10.1007/s10067-015-3095-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/16/2015] [Accepted: 10/08/2015] [Indexed: 01/25/2023]
Abstract
Pulmonary hypertension (PH) is relatively common in connective tissue diseases. However, few studies have focused on the pulmonary hypertension (PH) associated with polymyositis (PM). Our aim is to investigate the prevalence of PH and determine the associated factors for PH in patients with PM. Multicenter study of 61 patients with PM underwent evaluation including general information, physical examination, laboratory indictors, thoracic high-resolution CT (HRCT) imaging, and transthoracic echocardiography (TTE). TTE was performed to estimate the pulmonary arterial pressure. PH was defined as resting systolic pulmonary artery pressure (sPAP) ≥40 mmHg. PH was identified in ten patients (16.39 %) who had few cardiopulmonary symptoms. PM patients with PH had higher prevalence of interstitial lung disease (ILD) and pericardial effusion (PE) compared with patients without PH (18 vs. 11.5 %, p = 0.005; 11.5 vs. 9.8 %, p = 0.004; respectively). After controlling for age, gender, and potential factors, ILD and PE were independently associated with PH in patients with PM in multivariate analysis (OR = 8.193, 95 % CI 1.241-54.084, p = 0.029; OR = 8.265, 95 % CI 1.298-52.084, p = 0.025; respectively). Depending on TTE, the possible prevalence of PH was 16.39 % in patients with PM. Both ILD and PE may contribute to the development of PH in PM.
Collapse
Affiliation(s)
- Han Wang
- Cardiovascular Disease Research Institute, The Third People's Hospital of Chengdu, 82 Qinlong St, Chengdu, Sichuan, 610031, People's Republic of China
| | - Tao Liu
- Department of Neurology, People's Hospital of Hainan Province, 19 Xiuhua Road, Haikou, Hainan, 570311, People's Republic of China
| | - Ying-ying Cai
- Department of Geriatric, The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang St, Chengdu, Sichuan, 610083, People's Republic of China
| | - Lian Luo
- Cardiovascular Disease Research Institute, The Third People's Hospital of Chengdu, 82 Qinlong St, Chengdu, Sichuan, 610031, People's Republic of China
| | - Meng Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang St, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Mengmeng Yang
- Cardiovascular Disease Research Institute, The Third People's Hospital of Chengdu, 82 Qinlong St, Chengdu, Sichuan, 610031, People's Republic of China
| | - Lin Cai
- Cardiovascular Disease Research Institute, The Third People's Hospital of Chengdu, 82 Qinlong St, Chengdu, Sichuan, 610031, People's Republic of China.
| |
Collapse
|
8
|
Jin H, Wang Y, Zhou L, Liu L, Zhang P, Deng W, Yuan Y. Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J Pineal Res 2014; 57:442-50. [PMID: 25251287 DOI: 10.1111/jpi.12184] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/21/2014] [Indexed: 01/11/2023]
Abstract
Hypoxia-induced inflammation and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) play important roles in the pathological process of hypoxic pulmonary hypertension (HPH). Melatonin possesses anti-inflammatory and antiproliferative properties. However, the effect of melatonin on HPH remains unclear. In this study, adult Sprague-Dawley rats were exposed to intermittent chronic hypoxia for 4 wk to mimic a severe HPH condition. Hemodynamic and pulmonary pathomorphology data showed that chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of the right ventricle/left ventricle plus septum (RV/LV+S) ratio, and median width of pulmonary arterioles. Melatonin attenuated the elevation of RVSP, RV/LV+S, and mitigated the pulmonary vascular structure remodeling. Melatonin also suppressed the hypoxia-induced high expression of proliferating cell nuclear antigen (PCNA), hypoxia-inducible factor-1α (HIF-1α), and nuclear factor-κB (NF-κB). In vitro, melatonin concentration-dependently inhibited the proliferation of PASMCs and the levels of phosphorylation of Akt and extracellular signal-regulated kinases1/2 (ERK1/2) caused by hypoxia. These results suggested that melatonin might potentially prevent HPH via anti-inflammatory and antiproliferative mechanisms.
Collapse
Affiliation(s)
- Haifeng Jin
- Institute of Cancer Stem Cell, The First Affiliated Hospital, Dalian Medical University Cancer Center, Dalian, China; Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Sadamura-Takenaka Y, Ito T, Noma S, Oyama Y, Yamada S, Kawahara KI, Inoue H, Maruyama I. HMGB1 promotes the development of pulmonary arterial hypertension in rats. PLoS One 2014; 9:e102482. [PMID: 25032709 PMCID: PMC4102514 DOI: 10.1371/journal.pone.0102482] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022] Open
Abstract
Rationale Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. However, the molecular and cellular mechanisms driving inflammation have not been fully elucidated. Objectives To elucidate the roles of high mobility group box 1 protein (HMGB1), a ubiquitous DNA-binding protein with extracellular pro-inflammatory activity, in a rat model of PAH. Methods Male Sprague-Dawley rats were administered monocrotaline (MCT). Concentrations of HMGB1 in bronchoalveolar lavage fluid (BALF) and serum, and localization of HMGB1 in the lung were examined over time. The protective effects of anti-HMGB1 neutralizing antibody against MCT-induced PAH were tested. Results HMGB1 levels in BALF were elevated 1 week after MCT injection, and this elevation preceded increases of other pro-inflammatory cytokines, such as TNF-α, and the development of PAH. In contrast, serum HMGB1 levels were elevated 4 weeks after MCT injection, at which time the rats began to die. Immunohistochemical analyses indicated that HMGB1 was translocated to the extranuclear space in periarterial infiltrating cells, alveolar macrophages, and bronchial epithelial cells of MCT-injected rats. Anti-HMGB1 neutralizing antibody protected rats against MCT-induced lung inflammation, thickening of the pulmonary artery wall, and elevation of right ventricular systolic pressure, and significantly improved the survival of the MCT-induced PAH rats. Conclusions Our results identify extracellular HMGB1 as a promoting factor for MCT-induced PAH. The blockade of HMGB1 activity improved survival of MCT-induced PAH rats, and thus might be a promising therapy for the treatment of PAH.
Collapse
Affiliation(s)
- Yukari Sadamura-Takenaka
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Ito
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Noma
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoko Oyama
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | - Ko-ichi Kawahara
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
10
|
Nicholson GT, Samai C, Kanaan U. Pulmonary hypertension in Kawasaki disease. Pediatr Cardiol 2014; 34:1966-8. [PMID: 22987110 DOI: 10.1007/s00246-012-0510-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/26/2012] [Indexed: 12/01/2022]
Abstract
This report describes the case of two pediatric patients who demonstrated echocardiographic evidence of pulmonary hypertension (PH) during the acute phase of Kawasaki disease. The etiology of PH development in this setting is currently unknown, but the authors hypothesize that pulmonary vasculitis may play a significant role. Fortunately, the PH appeared to be self-limited and resolved in both cases with routine treatment of Kawasaki disease.
Collapse
Affiliation(s)
- George T Nicholson
- Division of Pediatric Cardiology, Sibley Heart Center Cardiology, Children's Healthcare of Atlanta, Emory University, 1405 Clifton Road NE, Atlanta, GA, 30322, USA,
| | | | | |
Collapse
|
11
|
Dolenc J, Šebeštjen M, Vrtovec B, Koželj M, Haddad F. Pulmonary hypertension in patients with advanced heart failure is associated with increased levels of interleukin-6. Biomarkers 2014; 19:385-90. [PMID: 24831174 DOI: 10.3109/1354750x.2014.918654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Inflammatory, endothelial and neurohormonal biomarkers are involved in heart failure (HF) and pulmonary hypertension (PH) pathogenesis. OBJECTIVE To study these biomarkers in PH due to advanced HF. MATERIALS AND METHODS Thirty adults with HF were included. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), high-sensitivity C-reactive protein (hsCRP), endothelin-1 and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) were measured in peripheral vein and pulmonary artery during right heart catheterisation. RESULTS IL-6, TNF-α, hsCRP and NT-proBNP correlated with pulmonary pressures independent of ventricular function, HF etiology and vascular bed. IL-6 was independent predictor of systolic pulmonary artery pressure (sPAP). DISCUSSION AND CONCLUSION Inflammatory biomarkers correlate to PH severity. IL-6 predicts sPAP in advanced HF.
Collapse
Affiliation(s)
- Jure Dolenc
- Department of Cardiology, University Medical Centre Ljubljana , Ljubljana , Slovenia
| | | | | | | | | |
Collapse
|
12
|
Knobloch J, Feldmann M, Wahl C, Jungck D, Behr J, Stoelben E, Koch A. Endothelin receptor antagonists attenuate the inflammatory response of human pulmonary vascular smooth muscle cells to bacterial endotoxin. J Pharmacol Exp Ther 2013; 346:290-9. [PMID: 23720457 DOI: 10.1124/jpet.112.202358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Bacterial infections induce exacerbations in chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD), by enhancing airway inflammation. Exacerbations are frequently associated with right heart decompensation and accelerate disease progression. Endothelin receptor antagonists (ERAs) might have therapeutic potential as pulmonary vasodilators and anti-inflammatory agents, but utility in exacerbations of chronic lung diseases is unknown. We hypothesized that cytokine releases induced by lipopolysaccharide (LPS), the major bacterial trigger of inflammation, are reduced by ERAs in pulmonary vascular smooth muscle cells (PVSMCs). Ex vivo cultivated human PVSMCs were preincubated with the endothelin-A-receptor selective inhibitor ambrisentan, with the endothelin-B-receptor selective inhibitor BQ788 [sodium (2R)-2-{[(2S)-2-({[(2R,6S)-2,6-dimethyl-1-piperidinyl]carbonyl}amino)-4,4-dimethylpentanoyl][1-(methoxycarbonyl)-d-tryptophyl]amino}hexanoate], or with the dual blocker bosentan before stimulation with smooth LPS (S-LPS), rough LPS (Re-LPS), or a mixture of long and short forms (M-LPS). Expression of cytokines and LPS receptors (TLR4, CD14) were analyzed via enzyme-linked immunosorbent assay (ELISA) and/or quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). All LPS forms induced interleukin (IL)-6-, IL-8-, and granulocyte macrophage-colony stimulating factor (GM-CSF) release. Bosentan and BQ788 inhibited M-LPS-induced release of all cytokines and soluble CD14 (sCD14) but not TLR4 expression. Ambrisentan blocked M-LPS-induced IL-6 release but not IL-8, GM-CSF, or LPS receptors. IL-8 release induced by S-LPS, which requires CD14 to activate TLR4, was blocked by bosentan and BQ788. IL-8 release induced by Re-LPS, which does not require CD14 to activate TLR4, was insensitive to both bosentan and BQ788. In conclusion, PVSMCs contribute to inflammation in bacteria-induced exacerbations of chronic lung diseases. Inhibition of the endothelin-B receptor suppresses cytokine release induced by long/smooth LPS attributable to sCD14 downregulation. ERAs, particularly when targeting the endothelin-B receptor, might have therapeutic utility in exacerbations of chronic lung diseases.
Collapse
MESH Headings
- Anti-Inflammatory Agents/pharmacology
- Bosentan
- Cells, Cultured
- Cytokines/metabolism
- Endothelin B Receptor Antagonists
- Endothelin Receptor Antagonists
- Humans
- Inflammation/metabolism
- Interleukin-8/metabolism
- Lipopolysaccharide Receptors/genetics
- Lipopolysaccharide Receptors/metabolism
- Lipopolysaccharides/isolation & purification
- Lipopolysaccharides/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oligopeptides/pharmacology
- Phenylpropionates/pharmacology
- Piperidines/pharmacology
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pyridazines/pharmacology
- RNA, Messenger/metabolism
- Salmonella/chemistry
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Jürgen Knobloch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep and Respiratory Medicine, University Hospital Bergmannsheil, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Yu YRA, Mao L, Piantadosi CA, Gunn MD. CCR2 deficiency, dysregulation of Notch signaling, and spontaneous pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2013; 48:647-54. [PMID: 23492191 PMCID: PMC3707377 DOI: 10.1165/rcmb.2012-0182oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 01/01/2013] [Indexed: 12/11/2022] Open
Abstract
In pulmonary arterial hypertension (PAH), there is overexpression of the chemokine, C-C chemokine ligand type 2 (CCL2), and infiltration of myeloid cells into the pulmonary vasculature. Inhibition of CCL2 in animals decreases PAH, suggesting that the CCL2 receptor (CCR2) plays a role in PAH development. To test this hypothesis, we exposed wild-type (WT) and CCR2-deficient (Ccr2(-/-)) mice to chronic hypobaric hypoxia to induce PAH. After hypoxic stress, Ccr2(-/-) mice displayed a more severe PAH phenotype, as demonstrated by increased right ventricular (RV) systolic pressures, RV hypertrophy, and tachycardia relative to WT mice. However, these mice also exhibited increased RV systolic pressures and increased pulmonary artery muscularization under normoxic conditions. Moreover, Ccr2(-/-) mice displayed decreased pulmonary vascular branching at 3 weeks of age and increased vascular muscularization at birth, suggesting that an abnormality in pulmonary vascular development leads to spontaneous PAH in these animals. No significant differences in cytokine responses were observed between WT and Ccr2(-/-) mice during either normoxia or hypoxia. However, Ccr2(-/-) mice displayed increased Notch-3 signaling and dysregulated Notch ligand expression, suggesting a possible cause for their abnormal pulmonary vascular development. Our findings imply that CCR2 does not directly contribute to the development of PAH, but does play a previously unrecognized role in pulmonary vasculature development and remodeling wherein the absence of CCR2 results in spontaneous PAH, most likely via dysregulation of Notch signaling. Our results demonstrate that CCR2 has impacts beyond leukocyte recruitment, and is required for the proper expression of Notch signaling molecules.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Arterioles/pathology
- Calcium-Binding Proteins/metabolism
- Dendritic Cells/immunology
- Familial Primary Pulmonary Hypertension
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/metabolism
- Hypoxia/complications
- Hypoxia/immunology
- Hypoxia/metabolism
- Intercellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Jagged-2 Protein
- Lung/blood supply
- Macrophages/immunology
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Receptor, Notch3
- Receptors, CCR2/deficiency
- Receptors, CCR2/genetics
- Receptors, Notch/metabolism
- Serrate-Jagged Proteins
- Signal Transduction
Collapse
Affiliation(s)
- Yen-Rei A Yu
- Division of Pulmonary and Critical Care, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
14
|
Associated inflammation or increased flow-mediated shear stress, but not pressure alone, disrupts endothelial caveolin-1 in infants with pulmonary hypertension. Pulm Circ 2013. [PMID: 23372934 DOI: 10.4103/2045-8932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endothelial caveolin-1 loss is an important feature of pulmonary hypertension (PH); the rescue of caveolin-1 abrogates experimental PH. Recent studies in human PH suggest that the endothelial caveolin-1 loss is followed by an enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation. In order to evaluate caveolin-1 expression in infants with PH, we examined the available clinical histories, hemodynamic data, and the expression of caveolin-1, PECAM-1, vWF, and smooth muscle α-actin in the lung biopsy/autopsy specimens obtained from infants with congenital heart disease (CHD, n = 8) and lung disease (n = 9). In CHD group, PH associated with increased pulmonary blood flow exhibited loss of endothelial caveolin-1 and PECAM-1 in pulmonary arteries; additional vWF loss was associated with enhanced expression of caveolin-1 in SMC. In the absence of PH, increased or decreased pulmonary blood flow did not disrupt endothelial caveolin-1, PECAM-1, or vWF; nor was there any enhanced expression of caveolin-1 in SMC. In Lung Disease + PH group, caveolin-1, PECAM-1, and vWF were well preserved in seven infants, and importantly, SMC in these arteries did not exhibit enhanced caveolin-1 expression. Two infants with associated inflammatory disease exhibited loss of endothelial caveolin-1 and PECAM-1; additional loss of vWF was accompanied by enhanced expression of caveolin-1 in SMC. Thus, associated flow-induced shear stress or inflammation, but not elevated pulmonary artery pressure alone, disrupts endothelial caveolin-1. Subsequent vWF loss, indicative of extensive endothelial damage is associated with enhanced expression of caveolin-1 in SMC, which may worsen the disease.
Collapse
|
15
|
Dereddy N, Huang J, Erb M, Guzel S, Wolk JH, Sett SS, Gewitz MH, Mathew R. Associated inflammation or increased flow-mediated shear stress, but not pressure alone, disrupts endothelial caveolin-1 in infants with pulmonary hypertension. Pulm Circ 2013; 2:492-500. [PMID: 23372934 PMCID: PMC3555420 DOI: 10.4103/2045-8932.105038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endothelial caveolin-1 loss is an important feature of pulmonary hypertension (PH); the rescue of caveolin-1 abrogates experimental PH. Recent studies in human PH suggest that the endothelial caveolin-1 loss is followed by an enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation. In order to evaluate caveolin-1 expression in infants with PH, we examined the available clinical histories, hemodynamic data, and the expression of caveolin-1, PECAM-1, vWF, and smooth muscle α-actin in the lung biopsy/autopsy specimens obtained from infants with congenital heart disease (CHD, n = 8) and lung disease (n = 9). In CHD group, PH associated with increased pulmonary blood flow exhibited loss of endothelial caveolin-1 and PECAM-1 in pulmonary arteries; additional vWF loss was associated with enhanced expression of caveolin-1 in SMC. In the absence of PH, increased or decreased pulmonary blood flow did not disrupt endothelial caveolin-1, PECAM-1, or vWF; nor was there any enhanced expression of caveolin-1 in SMC. In Lung Disease + PH group, caveolin-1, PECAM-1, and vWF were well preserved in seven infants, and importantly, SMC in these arteries did not exhibit enhanced caveolin-1 expression. Two infants with associated inflammatory disease exhibited loss of endothelial caveolin-1 and PECAM-1; additional loss of vWF was accompanied by enhanced expression of caveolin-1 in SMC. Thus, associated flow-induced shear stress or inflammation, but not elevated pulmonary artery pressure alone, disrupts endothelial caveolin-1. Subsequent vWF loss, indicative of extensive endothelial damage is associated with enhanced expression of caveolin-1 in SMC, which may worsen the disease.
Collapse
Affiliation(s)
- Narendra Dereddy
- Section of Pediatric Cardiology, Maria Fareri Children's Hospital, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Circulating cytokines and growth factors in pediatric pulmonary hypertension. Mediators Inflamm 2012; 2012:143428. [PMID: 23316102 PMCID: PMC3536060 DOI: 10.1155/2012/143428] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/25/2012] [Accepted: 11/15/2012] [Indexed: 01/19/2023] Open
Abstract
Background. Management of pediatric pulmonary hypertension (PH) remains challenging. We have assessed a panel of circulating proteins in children with PH to investigate their value as predictive and/or prognostic biomarkers. From these determinations, we aim to develop a practical, noninvasive tool to aid in the management of pediatric PH. Methods. Twelve cytokines and growth factors putatively associated with lung or vascular disease were examined in plasma specimens from 70 children with PH using multiplex protein array technology. Associations between hemodynamics, adverse events, and protein markers were evaluated. Results. Epidermal growth factor (EGF) and IL-6 were associated with important hemodynamics. Of the twelve proteins, VEGF and IL-6 were significantly, univariately associated with the occurrence of an adverse event, with odds ratios (95% confidence intervals) of 0.56 (0.33–0.98) and 1.69 (1.03–2.77), respectively. When hemodynamic predictors were combined with protein markers, the ability to predict adverse outcomes within the following year significantly increased. Conclusions. Specific circulating proteins are associated with hemodynamic variables in pediatric PH. If confirmed in additional cohorts, measurement of these proteins could aid patient care and design of clinical trials by identifying patients at risk for adverse events. These findings also further support a role for inflammation in pediatric PH.
Collapse
|
17
|
ICAM-1 and IL-8 are expressed by DEHP and suppressed by curcumin through ERK and p38 MAPK in human umbilical vein endothelial cells. Inflammation 2012; 35:859-70. [PMID: 21932059 DOI: 10.1007/s10753-011-9387-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study aimed to determine whether curcumin isolated from the rhizome of Curcuma longa Linn could inhibit di-(2-ethylhexyl) phthalate (DEHP)-induced allergic inflammatory responses in human umbilical vein endothelial cells (HUVECs). We found that DEHP dose-dependently elevated adhesion molecule-1 (ICAM-1) protein level within 15-30 min, which was independent of de novo protein synthesis. And a late-phase induction of ICAM-1 was observed within 8 h treatment of DEHP via de novo protein synthesis through transcription and translation. DEHP also increased the expression of interleukin (IL)-8 in a time- and dose-dependent manner. Pretreatment with curcumin dose-dependently decreased DEHP-induced expression of ICAM-1 and IL-8 as well as phosphorylation of ERK1/2 and p38. Preincubation with ERK1/2 inhibitor (PD98059) or p38 inhibitor (SB203580) markedly blocked DEHP-stimulated activation of ICAM-1 and IL-8. We suggest that curcumin inhibits DEHP-induced expression of ICAM-1 and IL-8 through ERK and p38 MAPK signaling pathways in HUVECs and may contribute to ameliorate pathologies of DEHP-related allergic disorders.
Collapse
|
18
|
Huang J, Wolk JH, Gewitz MH, Mathew R. Caveolin-1 expression during the progression of pulmonary hypertension. Exp Biol Med (Maywood) 2012; 237:956-65. [PMID: 22890027 DOI: 10.1258/ebm.2012.011382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caveolin-1 plays a pivotal role in maintaining vascular health. Progressive loss of endothelial caveolin-1 and activation of proliferative and anti-apoptotic pathways occur before the onset of monocrotaline (MCT)-induced pulmonary hypertension (PH), and the rescue of endothelial caveolin-1 attenuates PH. Recently, we reported endothelial caveolin-1 loss associated with enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation in human PH. To examine whether the loss of endothelial caveolin-1 followed by an enhanced expression in SMC is a sequential event in the progression of PH, we studied rats at two and four weeks post-MCT. Right ventricular (RV) systolic pressure, RV hypertrophy, pulmonary vascular histology, and the expression of caveolin-1 and endothelial membrane proteins (platelet/endothelial cell adhesion molecule-1 [PECAM-1], both α and β subunits of soluble guanylate cyclase [sGC]), von Willebrand factor (vWF), smooth muscle α-actin, proliferative and anti-apoptotic factors (PY-STAT3 and Bcl-xL) and matrix metalloproteinase (MMP) 2 in the lungs were examined. PH was accompanied by a progressive loss of endothelial caveolin-1, activation of PY-STAT3, increased Bcl-xL expression and vascular remodeling at two and four weeks post-MCT. Loss of PECAM-1 and sGC (both subunits) paralleled that of caveolin-1, whereas vWF was well preserved at two weeks post-MCT. At four weeks post-MCT, 29% of the arteries showed a loss of vWF in addition to endothelial caveolin-1, and 70% of these arteries exhibited enhanced expression of caveolin-1 in SMC; and there was increased expression and activity of MMP2. In conclusion, MCT-induced endothelial injury disrupts endothelial cell membrane with a progressive loss of endothelial caveolin-1, and the activation of proliferative and antiapoptotic pathways leading to PH. Subsequent extensive endothelial cell damage results in enhanced expression of caveolin-1 in SMC. In addition, there is a progressive increase in MMP2 expression and activity. These alterations may further facilitate cell proliferation, matrix degradation and cell migration, thus contributing to the progression of the disease.
Collapse
Affiliation(s)
- Jing Huang
- Section of Pediatric Cardiology, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
19
|
Sowa G. Regulation of Cell Signaling and Function by Endothelial Caveolins: Implications in Disease. TRANSLATIONAL MEDICINE (SUNNYVALE, CALIF.) 2012; Suppl 8:001. [PMID: 26605130 PMCID: PMC4655115 DOI: 10.4172/2161-1025.s8-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caveolae are cholesterol- and glycosphingolipid-rich omega-shaped invaginations of the plasma membrane that are very abundant in vascular endothelial cells and present in most cell types. Caveolins are the major coat protein components of caveolae. Multiple studies using knockout mouse, small interfering RNA, and cell-permeable peptide delivery approaches have significantly enhanced our understanding of the role of endothelial caveolae and caveolin-1 in physiology and disease. Several postnatal pulmonary and cardiovascular pathologies have been reported in caveolin-1 knockout mice, many of which have been recently rescued by selective re-expression of caveolin-1 in endothelium of these mice. A large body of experimental evidence mostly using caveolin-1 knockout mice suggests that, depending on the disease model, endothelial caveolin-1 may play either a protective or a detrimental role. For instance, physiological or higher expression levels of caveolin-1 in endothelium might be beneficial in such diseases as pulmonary hypertension, cardiac hypertrophy, or ischemic injury. On the other hand, endothelial caveolin-1 might contribute to acute lung injury and inflammation, atherosclerosis or pathological angiogenesis associated with inflammatory bowel disease. Moreover, depending on the specific model, endothelial caveolin-1 may either promote or suppress tumor-induced angiogenesis. In addition to overwhelming evidence for the role of endothelial caveolin-1, more recent studies also suggest that endothelial caveolin-2 could possibly play a role in pulmonary disease. The purpose of this review is to focus on how caveolin-1 expressed in endothelial cells regulates endothelial cell signaling and function. The review places particular emphasis on relevance to disease, including but not limited to Pulmonary and cardiovascular disorders as well as cancer. In addition to caveolin-1, possible importance of the less-studied endothelial caveolin-2 in pulmonary diseases will be also discussed.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
20
|
Bauer EM, Zheng H, Comhair S, Erzurum S, Billiar TR, Bauer PM. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice. PLoS One 2011; 6:e28578. [PMID: 22194859 PMCID: PMC3237464 DOI: 10.1371/journal.pone.0028578] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/10/2011] [Indexed: 01/13/2023] Open
Abstract
Background Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension. Methodology/Principal Findings Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3−/− hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3−/− mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3−/− mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3−/− mice. Conclusions Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.
Collapse
Affiliation(s)
- Eileen M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Han Zheng
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Suzy Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Serpil Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philip M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Cell-specific dual role of caveolin-1 in pulmonary hypertension. Pulm Med 2011; 2011:573432. [PMID: 21660237 PMCID: PMC3109422 DOI: 10.1155/2011/573432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/10/2011] [Indexed: 12/15/2022] Open
Abstract
A wide variety of cardiopulmonary and systemic diseases are known to lead to pulmonary hypertension (PH). A number of signaling pathways have been implicated in PH; however, the precise mechanism/s leading to PH is not yet clearly understood. Caveolin-1, a membrane scaffolding protein found in a number of cells including endothelial and smooth muscle cells, has been implicated in PH. Loss of endothelial caveolin-1 is reported in clinical and experimental forms of PH. Caveolin-1, also known as a tumor-suppressor factor, interacts with a number of transducing molecules that reside in or are recruited to caveolae, and it inhibits cell proliferative pathways. Not surprisingly, the rescue of endothelial caveolin-1 has been found not only to inhibit the activation of proliferative pathways but also to attenuate PH. Recently, it has emerged that during the progression of PH, enhanced expression of caveolin-1 occurs in smooth muscle cells, where it facilitates cell proliferation, thus contributing to worsening of the disease. This paper summarizes the cell-specific dual role of caveolin-1 in PH.
Collapse
|
22
|
Li XQ, Wang HM, Yang CG, Zhang XH, Han DD, Wang HL. Fluoxetine inhibited extracellular matrix of pulmonary artery and inflammation of lungs in monocrotaline-treated rats. Acta Pharmacol Sin 2011; 32:217-22. [PMID: 21217769 DOI: 10.1038/aps.2010.187] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate the effects of the selective serotonin reuptake inhibitor (SSRI) fluoxetine on extracellular matrix (ECM) remodeling of the pulmonary artery and inflammation of the lungs in pulmonary arterial hypertension (PAH) induced by monocrotaline in rats. METHODS MCT-induced chronic PAH was established in Wistar rats. After treatment with fluoxetine for 3 weeks, pulmonary hemodynamic measurement and morphological investigation of lung tissues were undertaken. The main components of the ECM, elastin and collagen, were detected using Van Gieson stain and Orcein stain, respectively, or using Victoria-ponceau's double stain. The ECM proteolytic enzymes matrix metalloproteinase (MMP)-2 and MMP-9, and the tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2, were detected by Western blot. Inflammation of lung tissue was assayed using lung morphology and inflammatory cytokine expression. RESULTS Fluoxetine (2 and 10 mg/kg) significantly inhibited MCT-induced PAH, attenuated pulmonary arterial muscularization and ECM remodeling, and decreased MMP/TIMP expression. Fluoxetine also suppressed inflammatory responses in lung tissue and inhibited the expression of the inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP-1) and intercellular adhesion molecule-1 (ICAM-1). CONCLUSION Fluoxetine inhibited MCT-induced ECM remodeling of the pulmonary artery and inflammation of lung tissue. These effects were related to its inhibition on MMPs/TIMPs and cytokine productions.
Collapse
|
23
|
Mathew R. Gene therapy for pulmonary arterial hypertension: is a cure in sight? Expert Opin Biol Ther 2011; 11:129-31. [DOI: 10.1517/14712598.2011.542367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|